1
|
Hada S, Shin IJ, Park HE, Kim KH, Kim KJ, Jeong SH, Kim NA. In-use stability of Rituximab and IVIG during intravenous infusion: Impact of peristaltic pump, IV bags, flow rate, and plastic syringes. Int J Pharm 2024; 663:124577. [PMID: 39137820 DOI: 10.1016/j.ijpharm.2024.124577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
This study investigates the impact of intravenous (IV) infusion protocols on the stability of Intravenous Immunoglobulin G (IVIG) and Rituximab, with a particular focus on subvisible particle generation. Infusion set based on peristaltic movement (Medifusion DI-2000 pump) was compared to a gravity-based infusion system (Accu-Drip) at different flow rates. The impacts of different diluents (0.9 % saline and 5.0 % dextrose) and plastic syringes with or without silicone oil (SO) were also investigated. The results from the aforementioned particular case demonstrated that peristaltic pumps generated high levels of subvisible particles (prominently < 25 µm), exacerbated by increasing flow rates, specifically in formulations lacking surfactants. Other factors, such as diluent type and syringe composition, also increased the number of subvisible particles. Strategies that can help overcome these complications include surfactant addition as well as the use of SO-free syringes and a gravity infusion system, which aid in reducing particle formation and preserving antibody monomer during administration. Altogether, these findings highlight the importance of the careful selection of formulations and infusion protocols to minimize particle generation during IV infusion both for patients' safety and treatment efficacy.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - I Jeong Shin
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ha Eun Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ki Hyun Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Kwang Joon Kim
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Nam Ah Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
2
|
Danilova E, Ezligini F, Stöckel C, Asakawa M, Hetland G. An evaluation of diethylhexyl phthalate free top & bottom in-line blood collection set with a new soft housing filter. Transfus Med 2024. [PMID: 39243178 DOI: 10.1111/tme.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/29/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND AND OBJECTIVES Di (2-ethylhexyl) phthalate (DEHP) plasticizer must be removed from polyvinylchloride (PVC) medical devices due to toxicity. DEHP/PVC blood bags were shown to provide stable quality under blood component production and to create good storage conditions for red blood cells concentrate (RBC). It is important that substitution of the DEHP maintains the RBC quality during storage, which should be achieved with Di (isononyl) cyclohexane-1,2-dicarboxylate (DINCH), although substitution of the plasticizer has been challenging. MATERIALS AND METHODS A DEHP-free Top & Bottom in-line RBC set was validated in a tertiary hospital blood bank facility. Volunteer blood donors were randomly allocated for blood collection into DINCH/PVC or DEHP/PVC set. The groups were additionally divided according to additive solution/filter combination: PAGGS-M + DINCH/PVC filter (only with DINCH/PVC set), and SAG-M + DINCH/PVC filter and SAG-M + DEHP/PVC filter (only with DEHP/PVC set). Processing and storage effects were assessed in all components. RESULTS RBC concentrates, platelet concentrates and plasma that was processed and stored in DEHP-free set fulfilled European requirements for quality. The cells stored in PAGGS-M after filtration through DEHP-free PVC filter showed the same low haemolysis compared with conventional set at 49 days of storage. Platelets stored in DINCH/PVC bag provided a sufficient quality of platelets after 7 days of storage. Plasma maintained the coagulation factors during 12 months of storage. CONCLUSION A new DINCH/PVC set allows production of blood components of satisfactory quality in DEHP-free environment.
Collapse
Affiliation(s)
- Elena Danilova
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Farshid Ezligini
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Connie Stöckel
- Asahi Kasei Medical Europe GmbH, Asahi Kasei Medical Co., Ltd., Chiyoda, Japan
| | - Masafumi Asakawa
- Marketing & Sales Department, Sepacell Division, Asahi Kasei Medical Co., Ltd., Chiyoda, Japan
| | - Geir Hetland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Guerrelli D, Desai M, Semaan Y, Essa Y, Zurakowski D, Cendali F, Reisz J, D'Alessandro A, Luban N, Posnack NG. Prevalence and clinical implications of heightened plastic chemical exposure in pediatric patients undergoing cardiopulmonary bypass. Transfusion 2024; 64:808-823. [PMID: 38590100 DOI: 10.1111/trf.17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Phthalate chemicals are used to manufacture plastic medical products, including many components of cardiopulmonary bypass (CPB) circuits. We aimed to quantify iatrogenic phthalate exposure in pediatric patients undergoing cardiac surgery and examine the link between phthalate exposure and postoperative outcomes. STUDY DESIGN AND METHODS The study included pediatric patients undergoing (n=122) unique cardiac surgeries at Children's National Hospital. For each patient, a single plasma sample was collected preoperatively and two additional samples were collected postoperatively upon return from the operating room and the morning after surgery. Concentrations of di(2-ethylhexyl) phthalate (DEHP) and its metabolites were quantified using ultra high-pressure liquid chromatography coupled to mass spectrometry. RESULTS Patients were subdivided into three groups, according to surgical procedure: (1) cardiac surgery not requiring CPB support, (2) cardiac surgery requiring CPB with a crystalloid prime, and (3) cardiac surgery requiring CPB with red blood cells (RBCs) to prime the circuit. Phthalate metabolites were detected in all patients, and postoperative phthalate levels were highest in patients undergoing CPB with an RBC-based prime. Age-matched (<1 year) CPB patients with elevated phthalate exposure were more likely to experience postoperative complications. RBC washing was an effective strategy to reduce phthalate levels in CPB prime. DISCUSSION Pediatric cardiac surgery patients are exposed to phthalate chemicals from plastic medical products, and the degree of exposure increases in the context of CPB with an RBC-based prime. Additional studies are warranted to measure the direct effect of phthalates on patient health outcomes and investigate mitigation strategies to reduce exposure.
Collapse
Affiliation(s)
- Devon Guerrelli
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, DC, USA
| | - Manan Desai
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Division of Cardiac Surgery, Children's National Hospital, Washington, DC, USA
| | - Youssef Semaan
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Department of Cardiovascular Services - Perfusion, Children's National Hospital, Washington, DC, USA
| | - Yasin Essa
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Division of Cardiac Surgery, Children's National Hospital, Washington, DC, USA
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Naomi Luban
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Hematology and Laboratory Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
4
|
Panneel L, Cleys P, Poma G, Ait Bamai Y, Jorens PG, Covaci A, Mulder A. Ongoing exposure to endocrine disrupting phthalates and alternative plasticizers in neonatal intensive care unit patients. ENVIRONMENT INTERNATIONAL 2024; 186:108605. [PMID: 38569425 DOI: 10.1016/j.envint.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Due to endocrine disrupting effects, di-(2-ethylhexyl) phthalate (DEHP), a plasticizer used to soften plastic medical devices, was restricted in the EU Medical Devices Regulation (EU MDR 2017/745) and gradually replaced by alternative plasticizers. Neonates hospitalized in the neonatal intensive care unit (NICU) are vulnerable to toxic effects of plasticizers. From June 2020 to August 2022, urine samples (n = 1070) were repeatedly collected from premature neonates (n = 132, 4-10 samples per patient) born at <31 weeks gestational age and/or <1500 g birth weight in the Antwerp University Hospital, Belgium. Term control neonates (n = 21, 1 sample per patient) were included from the maternity ward. Phthalate and alternative plasticizers' metabolites were analyzed using liquid-chromatography coupled to tandem mass spectrometry. Phthalate metabolites were detected in almost all urine samples. Metabolites of alternative plasticizers, di-(2-ethylhexyl)-adipate (DEHA), di-(2-ethylhexyl)-terephthalate (DEHT) and cyclohexane-1,2-dicarboxylic-di-isononyl-ester (DINCH), had detection frequencies ranging 30-95 %. Urinary phthalate metabolite concentrations were significantly higher in premature compared to control neonates (p = 0.023). NICU exposure to respiratory support devices and blood products showed increased phthalate metabolite concentrations (p < 0.001). Phthalate exposure increased from birth until four weeks postnatally. The estimated phthalate intake exceeded animal-derived no-effect-levels (DNEL) in 10 % of samples, with maximum values reaching 24 times the DNEL. 29 % of premature neonates had at least once an estimated phthalate intake above the DNEL. Preterm neonates are still exposed to phthalates during NICU stay, despite the EU Medical Devices Regulation. NICU exposure to alternative plasticizers is increasing, though currently not regulated, with insufficient knowledge on their hazard profile.
Collapse
Affiliation(s)
- Lucas Panneel
- Neonatal Intensive Care Unit, Antwerp University Hospital, Edegem, Belgium; Laboratory for Experimental Medicine and Paediatrics, University of Antwerp, Wilrijk, Belgium.
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Yu Ait Bamai
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Philippe G Jorens
- Laboratory for Experimental Medicine and Paediatrics, University of Antwerp, Wilrijk, Belgium; Department of Intensive Care Medicine and Clinical Pharmacology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Antonius Mulder
- Neonatal Intensive Care Unit, Antwerp University Hospital, Edegem, Belgium; Laboratory for Experimental Medicine and Paediatrics, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
5
|
Sherstyukova E, Sergunova V, Kandrashina S, Chernysh A, Inozemtsev V, Lomakina G, Kozlova E. Red Blood Cell Storage with Xenon: Safe or Disruption? Cells 2024; 13:411. [PMID: 38474375 DOI: 10.3390/cells13050411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Xenon, an inert gas commonly used in medicine, has been considered as a potential option for prolonged preservation of donor packed red blood cells (pRBCs) under hypoxic conditions. This study aimed to investigate how xenon affects erythrocyte parameters under prolonged storage. In vitro model experiments were performed using two methods to create hypoxic conditions. In the first method, xenon was introduced into bags of pRBCs which were then stored for 42 days, while in the second method, xenon was added to samples in glass tubes. The results of our experiment showed that the presence of xenon resulted in notable alterations in erythrocyte morphology, similar to those observed under standard storage conditions. For pRBC bags, hemolysis during storage with xenon exceeded the acceptable limit by a factor of six, whereas the closed-glass-tube experiment showed minimal hemolysis in samples exposed to xenon. Notably, the production of deoxyhemoglobin was specific to xenon exposure in both cell suspension and hemolysate. However, this study did not provide evidence for the purported protective properties of xenon.
Collapse
Affiliation(s)
- Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Snezhanna Kandrashina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Galina Lomakina
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Elena Kozlova
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
6
|
Uy RJ, Serrano K, Hadjesfandiari N, Shih AW, Devine D. The effects of pen ink and surface disinfectants on red blood cells stored in plasticized polyvinylchloride transfusion bags. Transfusion 2024; 64:141-149. [PMID: 38059437 DOI: 10.1111/trf.17620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Each unit of red blood cells (RBCs) produced represents a significant cost to the healthcare system. Unnecessary blood wastage should be minimized. In clinical settings, alterations to blood component bags after issue from the protected setting of the blood bank include pen markings, and those that are exposed to an infectious environment require surface disinfecting. These units may be discarded due to unclear effects on RBC quality. In this study, we investigate whether pen markings or surface disinfection negatively affects the quality of packed RBCs and whether pen ink diffuses through the blood bag. STUDY DESIGN AND METHODS RBC bags were marked with pens (water, oil, or alcohol-based) or subjected to surface disinfection (ethanol, hydrogen peroxide [Preempt wipes], or benzalkonium chloride-based wipes [CaviWipes]) and sampled 24 h after applying the treatment and at day 42 post collection (n = 3 for each condition). The samples were analyzed for RBC in vitro quality markers. The presence of any ink in the RBC bags was investigated using mass spectrometry (n = 2). RESULTS Data from 24 h and day 42 time points indicated no differences in RBC count, mean corpuscular volume, morphology, deformability, potassium content, or hemolysis for either pen markings or disinfectants when compared with their untreated controls (p > .05). No trace of ink was detected inside the bag. CONCLUSION RBC units marked with ballpoint, gel, or Sharpie pens do not suffer a loss of in vitro quality, nor do RBC units which have been surface disinfected with 70% ethanol, Preempt wipes or CaviWipes.
Collapse
Affiliation(s)
- Ralph Justin Uy
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Serrano
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Narges Hadjesfandiari
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew W Shih
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
| | - Dana Devine
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Romón I, Arroyo JL. A norm for all seasons: Application of the ISO 14001 standard to manage the environmental impacts of transfusion. Vox Sang 2023; 118:1038-1040. [PMID: 37920881 DOI: 10.1111/vox.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Iñigo Romón
- Hematology Department, University Hospital "Marqués de Valdecilla" - IDIVAL, Santander, Spain
| | - Jose L Arroyo
- Banco de Sangre y Tejidos de Cantabria, Hospital Santa Cruz de Liencres, Liencres, Spain
| |
Collapse
|
8
|
Min SW, Lim DK, Lee S, Kim J, Baek SY. Accurate determination of 11 representative phthalates and di(2-ethylhexyl) terephthalate in polyvinyl chloride using isotope dilution-gas chromatography/mass spectrometry. J Chromatogr A 2023; 1711:464454. [PMID: 37871502 DOI: 10.1016/j.chroma.2023.464454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Phthalates are mainly used as plasticizers in polyvinyl chloride (PVC). However, prolonged exposure to phthalates poses considerable risks to human health. Consequently, the utilization of phthalates in consumer products is subject to regulations, with a defined threshold of 0.1 %. In this study, we developed an accurate and simultaneous method for determination of 11 representative phthalates and a non-phthalate plasticizer (di(2-ethylhexyl) terephthalate, DEHT) in PVC as a higher-order reference method. Homogeneously prepared PVC samples, each containing approximately 0.1 % of the target plasticizer compounds, were analyzed using gas chromatography-mass spectrometry (GC-MS) with deuterium-labeled phthalates and DEHT. The developed method could effectively separate and quantify all target plasticizers without interference with each other and potential overlap between the isomeric forms of phthalates, di-isodecyl phthalate, and di-isononyl phthalate. The developed method has high-order metrological quality, exhibiting exceptional selectivity, accuracy, repeatability (≤ 2.17 %), reproducibility (≤ 2.16 %), and relative expanded uncertainty (≤ 5.6 %). This analytical method is thus suitable for accurately assessing the target plasticizer levels in PVC products for ensuring compliance with the established 0.1 % threshold. This method was successfully applied to quantify twelve distinct plasticizers in PVC products obtained from the Korean market, validating its effectiveness and reliability in real-world scenarios.
Collapse
Affiliation(s)
- Sang-Won Min
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea; Department of Chemistry, Chungnam National University, Daejon 34134, Republic of Korea
| | - Dong Kyu Lim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Sunyoung Lee
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejon 34134, Republic of Korea
| | - Song-Yee Baek
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea.
| |
Collapse
|
9
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Thelliez A, Sumian C, Chazard E, Reichenberg S, Lecoeur M, Decaudin B. Migration of di(2-ethylhexyl) phthalate, diisononylcyclohexane-1,2-dicarboxylate and di(2-ethylhexyl) terephthalate from transfusion medical devices in labile blood products: A comparative study. Vox Sang 2023; 118:533-542. [PMID: 37246454 DOI: 10.1111/vox.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND OBJECTIVES Polyvinyl chloride (PVC) plasticized with di(2-ethylhexyl) phthalate (DEHP) is a widely used material for medical transfusion devices. Not covalently bound to PVC, DEHP can migrate into blood products during storage. Recognized as an endocrine disruptor and raising concerns about its potential carcinogenicity and reprotoxicity, DEHP is gradually being withdrawn from the medical device market. Therefore, the use of alternative plasticizers, such as diisononylcyclohexane-1,2-dicarboxylate (DINCH) and di(2-ethylhexyl) terephthalate (DEHT), as potential candidates for the replacement of DEHP in medical transfusion devices has been investigated. The purpose of this study was to evaluate the quantity of PVC-plasticizers in the blood components according to their preparation, storage conditions and in function of the plasticizer. MATERIALS AND METHODS Whole blood was collected, and labile blood products (LBPs) were prepared by the buffy-coat method with a PVC blood bag plasticized either with DEHP, DINCH or DEHT. DINCH and DEHT equivalent concentrations were quantified in LBPs by liquid chromatography-tandem mass spectrometry or coupled with UV and compared to DEHP equivalent concentrations. RESULTS The plasticizer equivalent concentration to which a patient is exposed during a transfusion depends on the preparation of LBPs as well as their storage conditions, that is, temperature and storage time. At day 1, for all LBPs, the migration of DEHP is 5.0 and 8.5 times greater than DINCH and DEHT, respectively. At the end of the 49 days storage period, the DEHP equivalent concentration in red blood cells concentrate is statistically higher when compared to DINCH and DEHT, with maximal values of 1.85, 1.13 and 0.86 μg/dm2 /mL, respectively. CONCLUSION In addition to lower toxicity, transfused patients using PVC-DEHT or PVC-DINCH blood bags are less exposed to plasticizers than using PVC-DEHP bags with a ranging exposure reduction from 38.9% to 87.3%, due to lower leachability into blood components.
Collapse
Affiliation(s)
- Aurélie Thelliez
- ULR 7365-GRITA-Groupe de Recherche sur les Formes Injectables et Technologies Associées, Université de Lille, CHU Lille, Lille, France
- Macopharma, Tourcoing, France
| | | | - Emmanuel Chazard
- ULR 2694-METRICS, CERIMS, Université de Lille, CHU Lille, Lille, France
| | | | - Marie Lecoeur
- ULR 7365-GRITA-Groupe de Recherche sur les Formes Injectables et Technologies Associées, Université de Lille, CHU Lille, Lille, France
| | - Bertrand Decaudin
- ULR 7365-GRITA-Groupe de Recherche sur les Formes Injectables et Technologies Associées, Université de Lille, CHU Lille, Lille, France
| |
Collapse
|
11
|
Klei TRL, Begue S, Lotens A, Sigurjónsson ÓE, Wiltshire MD, George C, van den Burg PJM, Evans R, Larsson L, Thomas S, Najdovski T, Handke W, Eronen J, Mallas B, de Korte D. Recommendations for in vitro evaluation of blood components collected, prepared and stored in non-DEHP medical devices. Vox Sang 2023; 118:165-177. [PMID: 36510371 DOI: 10.1111/vox.13384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES DEHP, di(2-ethylhexyl) phthalate, is the most common member of the class of ortho-phthalates, which are used as plasticizers. The Medical Device Regulation has restricted the use of phthalates in medical devices. Also DEHP has been added to the Annex XIV of REACH, "Registration, Evaluation, Authorisation and Restriction of Chemicals" due to its endocrine disrupting properties to the environment. As such, the sunset date for commercialisation of DEHP-containing blood bags is May 27th 2025. There are major concerns in meeting this deadline as these systems have not yet been fully validated and/or CE-marked. Also, since DEHP is known to affect red cell quality during storage, it is imperative to transit to non-DEHP without affecting blood product quality. Here, EBA members aim to establish common grounds on the evaluation and assessment of blood components collected, prepared and stored in non-DEHP devices. MATERIALS AND METHODS Based on data as well as the input of relevant stakeholders a rationale for the validation of each component was composed. RESULTS The red cell components will require the most extensive validation as their quality is directly affected by the absence of DEHP, as opposed to platelet and plasma components. CONCLUSION Studies in the scope of evaluating the quality of blood products obtained with non-DEHP devices, under the condition that they are carried out according to these recommendations, could be used by all members of the EBA to serve as scientific support in the authorization process specific to their jurisdiction or for their internal validation use.
Collapse
Affiliation(s)
- Thomas R L Klei
- Department of Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Stephane Begue
- Etabissement Francais du Sang, Guadeloupe-Guyana et Martinique, Pointe-à-Pitre, France
| | - Anaïs Lotens
- Service du Sang, Belgian Red Cross, Brussel, Belgium
| | - Ólafur E Sigurjónsson
- Blood bank, Landspitalinn, Reykjavik, Iceland.,School of Technology, University of Iceland, Reykjavik, Iceland
| | | | - Chloë George
- Department of Component Development, Welsh Blood Service, Wrexham, UK
| | | | - Ryan Evans
- Department of New Developments, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Linda Larsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockhold, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockhol, Sweden
| | | | | | - Wiebke Handke
- Department of Research and Development, Bavarian Red Cross Blood Service, Nuremberg, Germany
| | - Juha Eronen
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Birte Mallas
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Dirk de Korte
- Department of Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Vermeulen C, den Besten G, van den Bos AG, Go M, Gouwerok E, Vlaar R, Schipperus MR, Spelmink SE, Janssen M, Lagerberg JW, de Korte D, Klei TRL. Clinical and in vitro evaluation of red blood cells collected and stored in a
non‐DEHP
plasticized bag system. Vox Sang 2022; 117:1163-1170. [DOI: 10.1111/vox.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Christie Vermeulen
- Department of Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
| | - Gijs den Besten
- Department of Clinical Chemistry Isala Hospital Zwolle The Netherlands
| | - Annegeet G. van den Bos
- Department of Laboratory Medicine Radboud University Medical Centre Nijmegen The Netherlands
| | - Mya Go
- Department of Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
- Department of Blood Cell Research Sanquin Research Amsterdam The Netherlands
- Landsteiner Laboratory, Academic Medical Centre University of Amsterdam Amsterdam The Netherlands
| | - Eric Gouwerok
- Department of Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
- Department of Blood Cell Research Sanquin Research Amsterdam The Netherlands
- Landsteiner Laboratory, Academic Medical Centre University of Amsterdam Amsterdam The Netherlands
| | - Richard Vlaar
- Department of Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
- Department of Blood Cell Research Sanquin Research Amsterdam The Netherlands
- Landsteiner Laboratory, Academic Medical Centre University of Amsterdam Amsterdam The Netherlands
| | | | - Saskia E. Spelmink
- Department of Transfusion Medicine Sanquin Blood Bank Amsterdam The Netherlands
| | - Mart Janssen
- Transfusion Technology Assessment Unit Donor Medicine Research Department, Sanquin Research Amsterdam The Netherlands
| | - Johan W. Lagerberg
- Department of Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
- Department of Blood Cell Research Sanquin Research Amsterdam The Netherlands
- Landsteiner Laboratory, Academic Medical Centre University of Amsterdam Amsterdam The Netherlands
| | - Dirk de Korte
- Department of Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
- Department of Blood Cell Research Sanquin Research Amsterdam The Netherlands
- Landsteiner Laboratory, Academic Medical Centre University of Amsterdam Amsterdam The Netherlands
| | - Thomas R. L. Klei
- Department of Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
| |
Collapse
|
13
|
Wang S, Liu Q, Cheng L, Wang L, Xu F, Yao C. Targeting biophysical cues to address platelet storage lesions. Acta Biomater 2022; 151:118-133. [PMID: 36028196 DOI: 10.1016/j.actbio.2022.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Platelets play vital roles in vascular repair, especially in primary hemostasis, and have been widely used in transfusion to prevent bleeding or manage active bleeding. Recently, platelets have been used in tissue repair (e.g., bone, skin, and dental alveolar tissue) and cell engineering as drug delivery carriers. However, the biomedical applications of platelets have been associated with platelet storage lesions (PSLs), resulting in poor clinical outcomes with reduced recovery, survival, and hemostatic function after transfusion. Accumulating evidence has shown that biophysical cues play important roles in platelet lesions, such as granule secretion caused by shear stress, adhesion affected by substrate stiffness, and apoptosis caused by low temperature. This review summarizes four major biophysical cues (i.e., shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) involved in the platelet preparation and storage processes, and discusses how they may synergistically induce PSLs such as platelet shape change, activation, apoptosis and clearance. We also review emerging methods for studying these biophysical cues in vitro and existing strategies targeting biophysical cues for mitigating PSLs. We conclude with a perspective on the future direction of biophysics-based strategies for inhibiting PSLs. STATEMENT OF SIGNIFICANCE: Platelet storage lesions (PSLs) involve a series of structural and functional changes. It has long been accepted that PSLs are initiated by biochemical cues. Our manuscript is the first to propose four major biophysical cues (shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) that platelets experience in each operation step during platelet preparation and storage processes in vitro, which may synergistically contribute to PSLs. We first clarify these biophysical cues and how they induce PSLs. Strategies targeting each biophysical cue to improve PSLs are also summarized. Our review is designed to draw the attention from a broad range of audience, including clinical doctors, biologists, physical scientists, engineers and materials scientists, and immunologist, who study on platelets physiology and pathology.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Qi Liu
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lihan Cheng
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lu Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
14
|
Razatos A, Acker JP, de Korte D, Bégué S, Noorman F, Doyle B, Zia M, Min K. Survey of blood centre readiness regarding removal of
DEHP
from blood bag sets: The
BEST
Collaborative Study. Vox Sang 2022; 117:796-802. [DOI: 10.1111/vox.13258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Razatos
- Terumo Blood and Cell Technologies Lakewood Colorado USA
| | - Jason P. Acker
- Department of Laboratory Medicine and Pathology University of Alberta Edmonton Canada
- Innovation and Portfolio Management Canadian Blood Services Edmonton Canada
| | - Dirk de Korte
- Department of Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
- Department of Blood Cell Research Sanquin Research Amsterdam The Netherlands
| | - Stéphane Bégué
- Etablissement Français du Sang La‐Plaine‐Saint‐Denis France
| | - Femke Noorman
- Quality, Research and Development Military Blood Bank Utrecht The Netherlands
| | - Barry Doyle
- Irish Blood Transfusion Service Dublin Ireland
| | - Majid Zia
- Hemerus Medical, LLC St Paul Minnesota USA
| | | | | |
Collapse
|
15
|
Larsson L, Ohlsson S, Derving J, Diedrich B, Sandgren P, Larsson S, Uhlin M. DEHT is a suitable plasticizer option for phthalate-free storage of irradiated red blood cells. Vox Sang 2021; 117:193-200. [PMID: 34268809 DOI: 10.1111/vox.13177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Due to increasing concerns about possible endocrine-disrupting properties, the use of the plasticizer di(2-ethylhexyl) phthalate (DEHP) will be banned in future blood storage. Di(2-ethylhexyl) terephthalate (DEHT) provides sufficient red blood cell (RBC) quality during conventional blood bank storage. It is important that a new plasticizer also maintains acceptable quality during exposure to high cell stress, such as irradiation, which is commonly used to prevent graft-versus-host disease. MATERIALS AND METHODS A total of 59 RBC units were collected and processed in polyvinyl chloride (PVC)-DEHT or PVC-DEHP blood bags combined with either saline-adenine-glucose-mannitol (SAGM) or phosphate-adenine-glucose-guanosine-saline-mannitol (PAGGSM) additive solution. All units were X-ray irradiated on day 2 post-collection. Sampling for assessment of parameters of storage lesion was performed on day 2 pre-irradiation and day 14 and 28 post-irradiation. RESULTS Though irradiation increased cell stress, DEHT/PAGGSM and current common European preference DEHP/SAGM were equally affected up to 14 days post-irradiation for all measured parameters. At day 28, haemolysis and microvesicle count were slightly increased in DEHT, whereas extracellular potassium ions, glucose, lactate, pH, mean corpuscular volume and microvesicle phosphatidylserine remained unaffected by plasticizer choice throughout storage. No individual unit exceeded 0.8% haemolysis, not even in DEHT/SAGM, the combination overall most affected by irradiation. Of the four combinations, membrane stability was least impacted in DEHP/PAGGSM. CONCLUSION We demonstrate that DEHT is a suitable plasticizer for storage of RBCs after X-ray irradiation cell stress. This strengthens the option of DEHT as a viable non-phthalate substitute for DEHP.
Collapse
Affiliation(s)
- Linda Larsson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Ohlsson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Derving
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Beatrice Diedrich
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Per Sandgren
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Stella Larsson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|