1
|
Peddibhotla S, Caples K, Mehta A, Chen QY, Hu J, Idlett-Ali S, Zhang L, Zgheib C, Xu J, Liechty KW, Malany S. Triazolothiadiazine derivative positively modulates CXCR4 signaling and improves diabetic wound healing. Biochem Pharmacol 2023; 216:115764. [PMID: 37634595 PMCID: PMC11115308 DOI: 10.1016/j.bcp.2023.115764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Development of specific therapies that target and accelerate diabetic wound repair is an urgent need to alleviate pain and suffering and the huge socioeconomic burden of this debilitating disease. C-X-C Motif Chemokine Ligand 12 (CXCL12) also know an stromal cell-derived factor 1α (SDF-1α) is a chemokine that binds the CXC chemokine receptor type 4 (CXCR4) and activates downstream signaling resulting in recruitment of hematopoietic cells to locations of tissue injury and promotes tissue repair. In diabetes, low expression of CXCL12 correlates with impaired wound healing. Activation of CXCR4 receptor signaling with agonists or positive allosteric modulators (PAMs) provides a potential for small molecule therapeutic discovery and development. We recently reported high throughput screening and identification of the CXCR4 partial agonist UCUF-728, characterization of in vitro activity and reduced wound closure time in diabetic mice at 100 μM as a proof-of-concept study. We report here, the discovery of a second chemical scaffold demonstrating increased agonist potency and represented by thiadiazine derivative, UCUF-965. UCUF-965 is a potent partial agonist of β-arrestin recruitment in CXCR4 receptor overexpressing cell line. Furthermore, UCUF-965 potentiates the CXCL12 maximal response in cAMP signaling pathway, activates CXCL12 stimulated migration in lymphoblast cells and modulates the levels of specific microRNA involved in the complex wound repair process, specifically in mouse fibroblasts. Our results indicate that UCUF-965 acts as a PAM agonist of the CXCR4 receptor. Furthermore, UCUF-965 enhanced angiogenesis markers and reduced wound healing time by 36% at 10.0 μM in diabetic mice models compared to untreated control.
Collapse
Affiliation(s)
| | - Karly Caples
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Alka Mehta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Junyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Shaquia Idlett-Ali
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Liping Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Junwang Xu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
方 怡, 陈 利, 李 艳, 冉 兴. [Latest Findings on MicroRNAs in Diabetic Chronic Wounds]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:949-952. [PMID: 36443033 PMCID: PMC10408961 DOI: 10.12182/20221160502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Diabetic chronic wound is one of the most serious complications of diabetes, imposing enormous socioeconomic burdens on diabetic patients, their families, and society due to its refractory nature. MicroRNAs (miRNAs) have emerged as important regulators of various physiological and pathological processes. Abnormalities arise in the regulatory functions of miRNAs in chronic diabetic wounds. Therefore, the modification of miRNAs expression in diabetic wounds is an important channel for the improvement of wound healing. The clinical translation of miRNA-based therapy may become a prospective direction of diabetic wound healing. However, miRNA-based therapy is still in its early stage of development, and actual translation into clinical application will take a long time. Herein, we summarized the latest research findings on miRNAs in diabetic chronic wounds healing.
Collapse
Affiliation(s)
- 怡轩 方
- 四川大学华西医院 内分泌代谢科 糖尿病足诊治中心 创面修复创新中心 (成都 610041)Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 利鸿 陈
- 四川大学华西医院 内分泌代谢科 糖尿病足诊治中心 创面修复创新中心 (成都 610041)Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 艳 李
- 四川大学华西医院 内分泌代谢科 糖尿病足诊治中心 创面修复创新中心 (成都 610041)Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 兴无 冉
- 四川大学华西医院 内分泌代谢科 糖尿病足诊治中心 创面修复创新中心 (成都 610041)Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Li D, Niu G, Landén NX. Beyond the Code: Noncoding RNAs in Skin Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041230. [PMID: 35197246 PMCID: PMC9438779 DOI: 10.1101/cshperspect.a041230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increasing number of noncoding RNAs (ncRNAs) have been found to regulate gene expression and protein functions, playing important roles in diverse biological processes and diseases. Their crucial functions have been reported in almost every cell type and all stages of skin wound healing. Evidence of their pathogenetic roles in common wound complications, such as chronic nonhealing wounds and excessive scarring, is also accumulating. Given their unique expression and functional properties, ncRNAs are promising therapeutic and diagnostic entities. In this review, we discuss current knowledge about the functional roles of noncoding elements, such as microRNAs, long ncRNAs, and circular RNAs, in skin wound healing, focusing on in vivo evidence from studies of human wound samples and animal wound models. Finally, we provide a perspective on the outlook of ncRNA-based therapeutics in wound care.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
4
|
Xu J, Hu J, Idlett-Ali S, Zhang L, Caples K, Peddibhotla S, Reeves M, Zgheib C, Malany S, Liechty KW. Discovery of Small Molecule Activators of Chemokine Receptor CXCR4 That Improve Diabetic Wound Healing. Int J Mol Sci 2022; 23:2196. [PMID: 35216311 PMCID: PMC8879702 DOI: 10.3390/ijms23042196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022] Open
Abstract
Diabetes produces a chronic inflammatory state that contributes to the development of vascular disease and impaired wound healing. Despite the known individual and societal impacts of diabetic ulcers, there are limited therapies effective at improving healing. Stromal cell-derived factor 1α (SDF-1α) is a CXC chemokine that functions via activation of the CXC chemokine receptor type 4 (CXCR4) receptor to recruit hematopoietic cells to locations of tissue injury and promote tissue repair. The expression of SDF-1α is reduced in diabetic wounds, suggesting a potential contribution to wound healing impairment and presenting the CXCR4 receptor as a target for therapeutic investigations. We developed a high-throughput β-arrestin recruitment assay and conducted structure-activity relationship (SAR) studies to screen compounds for utility as CXCR4 agonists. We identified CXCR4 agonist UCUF-728 from our studies and further validated its activity in vitro in diabetic fibroblasts. UCUF-728 reduced overexpression of miRNA-15b and miRNA-29a, negative regulators of angiogenesis and type I collagen production, respectively, in diabetic fibroblasts. In vivo, UCUF-728 reduced the wound closure time by 36% and increased the evidence of angiogenesis in diabetic mice. Together, this work demonstrates the clinical potential of small molecule CXCR4 agonists as novel therapies for pathologic wound healing in diabetes.
Collapse
Affiliation(s)
- Junwang Xu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, Anschutz Medical Campus, University of Colorado Denver Aurora, Denver, CO 80045, USA; (J.H.); (S.I.-A.); (L.Z.); (C.Z.)
| | - Junyi Hu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, Anschutz Medical Campus, University of Colorado Denver Aurora, Denver, CO 80045, USA; (J.H.); (S.I.-A.); (L.Z.); (C.Z.)
| | - Shaquia Idlett-Ali
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, Anschutz Medical Campus, University of Colorado Denver Aurora, Denver, CO 80045, USA; (J.H.); (S.I.-A.); (L.Z.); (C.Z.)
| | - Liping Zhang
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, Anschutz Medical Campus, University of Colorado Denver Aurora, Denver, CO 80045, USA; (J.H.); (S.I.-A.); (L.Z.); (C.Z.)
| | - Karly Caples
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (K.C.); (S.P.); (M.R.)
| | - Satyamaheshwar Peddibhotla
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (K.C.); (S.P.); (M.R.)
| | - Morgan Reeves
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (K.C.); (S.P.); (M.R.)
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, Anschutz Medical Campus, University of Colorado Denver Aurora, Denver, CO 80045, USA; (J.H.); (S.I.-A.); (L.Z.); (C.Z.)
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (K.C.); (S.P.); (M.R.)
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, Anschutz Medical Campus, University of Colorado Denver Aurora, Denver, CO 80045, USA; (J.H.); (S.I.-A.); (L.Z.); (C.Z.)
| |
Collapse
|
5
|
Wang J, Pothana K, Chen S, Sawant H, Travers JB, Bihl J, Chen Y. Ultraviolet B Irradiation Alters the Level and miR Contents of Exosomes Released by Keratinocytes in Diabetic Condition. Photochem Photobiol 2021; 98:1122-1130. [PMID: 34931322 PMCID: PMC9511213 DOI: 10.1111/php.13583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Ultraviolet B (UVB) stimulates the generation of extracellular vesicles, which elicit systemic effects. Here, we studied whether UVB affects the release and microRNA (miR) content of keratinocyte exosomes (EXs) in diabetic conditions. In vitro, we examined the UVB effects on affecting EX release from keratinocyte HaCaT cells (HaCaT‐EX) pretreated with high glucose. HaCaT‐EX functions were evaluated on Schwann cells (SCs). In vivo, UVB‐induced miR change in skin EXs of diabetic db/db mice was analyzed. The miRs of interest were validated in HaCaT‐EXs. We found that: (1) UVB promoted HaCaT‐EX generation in dose‐ and time‐dependent manners; 100 and 1800 J m−2 of UVB had the most prominent effect and were selected as effective low‐ and high‐fluence UVB in vitro. (2) A total of 13 miRs were differentially expressed >3‐fold in skin EXs in UVB‐treated db/db mice; miR‐126 was the most up‐regulated by low‐fluence UVB. (3) Functional studies revealed that the SC viability was improved by low‐fluence UVB HaCaT‐EXs, while worsened by high‐fluence UVB HaCaT‐EXs. (4) MiR‐126 inhibitor attenuated the effects induced by low‐fluence UVB HaCaT‐EXs. Our data have demonstrated that low‐ and high‐fluence UVBs promote HaCaT‐EX generation but differentially affect exosomal miR levels and functions under diabetic conditions.
Collapse
Affiliation(s)
- Jinju Wang
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Kartheek Pothana
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Shuzhen Chen
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Harshal Sawant
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.,The Dayton V.A. Medical Center, Dayton, OH, USA
| | - Ji Bihl
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
6
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
7
|
Yuan R, Dai X, Li Y, Li C, Liu L. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling. Mol Med Rep 2021; 24:758. [PMID: 34476508 PMCID: PMC8436211 DOI: 10.3892/mmr.2021.12398] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Pathological scars mainly refer to hypertrophic scars and keloids, and have a high incidence. Moreover, these scars seriously affect the patient's appearance and are associated with significant pain. The present study aimed to investigate the inhibitory effect of microRNA (miR)-29a from human adipose-derived mesenchymal stem cells (hADSCs) exosomes on scar formation. Firstly, the expression of miR-29a in thermal skin tissues of mice and human hypertrophic scar fibroblasts (HSFBs) was detected via reverse transcription-quantitative PCR. Exosomes derived from miR-29a-modified hADSCs were extracted and the influence of miR-29a-modified hADSCs-exo on the proliferation and function of HSFBs was determined. Lastly, the effect of miR-29a-modified hADSCs-exo on scar formation was determined using a thermal mouse model. The results demonstrated that miR-29a was downregulated in scar tissues after scalding and in HSFBs. After treating HSFBs with miR-29a-modified hADSC exosomes, miR-29a-overexpressing hADSC exosomes inhibited the proliferation and migration of HSFBs. Moreover, it was found that TGF-β2 was the target of miR-29a, and that hADSC exosome-derived miR-29a inhibited the fibrosis of HSFBs and scar hyperplasia after scalding in mice by targeting the TGF-β2/Smad3 signaling pathway. In summary, the current data indicated that miR-29a-modified hADSC exosome therapy can decrease scar formation by inhibiting the TGF-β2/Smad3 signaling pathway via its derived exogenous miR-29a, and this may be useful for the future treatment of pathological scars by providing a potential molecular basis.
Collapse
Affiliation(s)
- Ruihong Yuan
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiaoming Dai
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yisong Li
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chunshan Li
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liu Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
8
|
Li J, Wei M, Liu X, Xiao S, Cai Y, Li F, Tian J, Qi F, Xu G, Deng C. The progress, prospects, and challenges of the use of non-coding RNA for diabetic wounds. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:554-578. [PMID: 33981479 PMCID: PMC8063712 DOI: 10.1016/j.omtn.2021.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic diabetic wounds affect the quality of life of patients, resulting in significant social and economic burdens on both individuals and the health care system. Although treatment methods for chronic diabetic wounds have been explored, there remains a lack of effective treatment strategies; therefore, alternative strategies must be explored. Recently, the abnormal expression of non-coding RNA in diabetic wounds has received widespread attention since it is an important factor in the development of diabetic wounds. This article reviews the regulatory role of three common non-coding RNAs (microRNA [miRNA], long non-coding RNA [lncRNA], and circular RNA [circRNA]) in diabetic wounds and discusses the diagnosis, treatment potential, and challenges of non-coding RNA in diabetic wounds. This article provides insights into new strategies for diabetic wound diagnosis and treatment at the genetic and molecular levels.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Miaomiao Wei
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Xin Liu
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Shune Xiao
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Yuan Cai
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Fang Li
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Jiao Tian
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Fang Qi
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Guangchao Xu
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Chengliang Deng
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| |
Collapse
|
9
|
Niemiec SM, Louiselle AE, Hilton SA, Dewberry LC, Zhang L, Azeltine M, Xu J, Singh S, Sakthivel TS, Seal S, Liechty KW, Zgheib C. Nanosilk Increases the Strength of Diabetic Skin and Delivers CNP-miR146a to Improve Wound Healing. Front Immunol 2020; 11:590285. [PMID: 33193424 PMCID: PMC7662112 DOI: 10.3389/fimmu.2020.590285] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder associated with properties and an increased risk of chronic wounds due to sustained pro-inflammatory response. We have previously of radical scavenging cerium oxide nanoparticles (CNP) conjugated to the anti-inflammatory microRNA (miR)-146a, termed CNP-miR146a, improves diabetic wound healing by synergistically lowering oxidative stress and inflammation, and we sought to evaluate this treatment in a topical application. Silk fibroin is a biocompatible polymer that can be fabricated into nanostructures, termed nanosilk. Nanosilk is characterized by a high strength-to-density ratio and an ability to exhibit strain hardening. We therefore hypothesized that nanosilk would strengthen the biomechanical properties of diabetic skin and that nanosilk solution could effectively deliver CNP-miR146a to improve diabetic wound healing. The ability of nanosilk to deliver CNP-miR146a to murine diabetic wounds and improve healing was assessed by the rate of wound closure and inflammatory gene expression, as well as histologic analysis. The effect of nanosilk on the properties of human diabetic skin was evaluated by testing the biomechanical properties following topical application of a 7% nanosilk solution. Diabetic murine wounds treated with topical nanosilk and CNP-miR146a healed by day 14.5 compared to day 16.8 in controls (p = 0.0321). Wounds treated with CNP-miR146a had higher collagen levels than controls (p = 0.0126) with higher pro-fibrotic gene expression of TGFβ-1 (p = 0.0092), Col3α1 (p = 0.0369), and Col1α2 (p = 0.0454). Treatment with CNP-miR146a lowered pro-inflammatory gene expression of IL-6 (p = 0.0488) and IL-8 (p = 0.0009). Treatment of human diabetic skin with 7% nanosilk solution resulted in significant improvement in maximum load and modulus (p < 0.05). Nanosilk solution is able to strengthen the biomechanical properties of diabetic skin and can successfully deliver CNP-miR146a to improve diabetic wound healing through inhibition of pro-inflammatory gene signaling and promotion of pro-fibrotic processes.
Collapse
Affiliation(s)
- Stephen M. Niemiec
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| | - Amanda E. Louiselle
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| | - Sarah A. Hilton
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| | - Lindel C. Dewberry
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| | - Liping Zhang
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| | - Mark Azeltine
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| | - Junwang Xu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| | - Sushant Singh
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, FL, United States
| | - Tamil S. Sakthivel
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, FL, United States
| | - Sudipta Seal
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, FL, United States
- College of Medicine, UCF Prosthetics Cluster, University of Central Florida, Orlando, FL, United States
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
10
|
Petkovic M, Sørensen AE, Leal EC, Carvalho E, Dalgaard LT. Mechanistic Actions of microRNAs in Diabetic Wound Healing. Cells 2020; 9:E2228. [PMID: 33023156 PMCID: PMC7601058 DOI: 10.3390/cells9102228] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex biological process that is impaired under diabetes conditions. Chronic non-healing wounds in diabetes are some of the most expensive healthcare expenditures worldwide. Early diagnosis and efficacious treatment strategies are needed. microRNAs (miRNAs), a class of 18-25 nucleotide long RNAs, are important regulatory molecules involved in gene expression regulation and in the repression of translation, controlling protein expression in health and disease. Recently, miRNAs have emerged as critical players in impaired wound healing and could be targets for potential therapies for non-healing wounds. Here, we review and discuss the mechanistic background of miRNA actions in chronic wounds that can shed the light on their utilization as specific wound healing biomarkers.
Collapse
Affiliation(s)
- Marija Petkovic
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| | - Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| |
Collapse
|
11
|
Role of microRNA-21 and Its Underlying Mechanisms in Inflammatory Responses in Diabetic Wounds. Int J Mol Sci 2020; 21:ijms21093328. [PMID: 32397166 PMCID: PMC7247578 DOI: 10.3390/ijms21093328] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
A central feature of diabetic wounds is the persistence of chronic inflammation, which is partly due to the prolonged presence of pro-inflammatory (M1) macrophages in diabetic wounds. Persistence of the M1 macrophage phenotype and failure to transition to the regenerative or pro-remodeling (M2) macrophage phenotype plays an indispensable role in diabetic wound impairment; however, the mechanism underlying this relationship remains unclear. Recently, microRNAs have been shown to provide an additional layer of regulation of gene expression. In particular, microRNA-21 (miR-21) is essential for an inflammatory immune response. We hypothesize that miR-21 plays a role in regulating inflammation by promoting M1 macrophage polarization and the production of reactive oxygen species (ROS). To test our hypothesis, we employed an in vivo mouse skin wound model in conjunction with an in vitro mouse model to assess miR-21 expression and macrophage polarization. First, we found that miR-21 exhibits a distinct expression pattern in each phase of healing in diabetic wounds. MiR-21 abundance was higher during early and late phases of wound repair in diabetic wounds, while it was significantly lower in the middle phase of wounding (at days 3 and 7 following wounding). In macrophage cells, M1 polarized macrophages exhibited an upregulation of miR-21, as well as the M1 and pro-inflammatory markers IL-1b, TNFa, iNos, IL-6, and IL-8. Overexpression of miR-21 in macrophage cells resulted in an upregulation of miR-21 and also increased expression of the M1 markers IL-1b, TNFa, iNos, and IL-6. Furthermore, hyperglycemia induced NOX2 expression and ROS production through the HG/miR-21/PI3K/NOX2/ROS signaling cascade. These findings provide evidence that miR-21 is involved in the regulation of inflammation. Dysregulation of miR-21 may explain the abnormal inflammation and persistent M1 macrophage polarization seen in diabetic wounds.
Collapse
|
12
|
Sener G, Hilton SA, Osmond MJ, Zgheib C, Newsom JP, Dewberry L, Singh S, Sakthivel TS, Seal S, Liechty KW, Krebs MD. Injectable, self-healable zwitterionic cryogels with sustained microRNA - cerium oxide nanoparticle release promote accelerated wound healing. Acta Biomater 2020; 101:262-272. [PMID: 31726250 DOI: 10.1016/j.actbio.2019.11.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Diabetics are prone to chronic wounds that have slower healing, and methods of accelerating the wound closure and to ensure protection from infections are critically needed. MicroRNA-146a gets dysregulated in diabetic wounds and injection of this microRNA combined with reactive oxygen species-scavenging cerium oxide nanoparticles (CNPs) can reduce inflammation and improve wound healing; however, a better delivery method than intradermal injections is needed. Here we demonstrate a biomaterial system of zwitterionic cryogels (gels formed below freezing temperatures) laden with CNP-miR146a that are topically applicable, injectable, self-healable, and provide sustained release of the therapeutic molecules. These cryogels are comprised of CBMA or SBMA and HEMA, and do not contain chemical crosslinkers. Properties of the gels can be manipulated by changing monomer type and ratio. These materials have demonstrated efficacy and viability in vivo with a diabetic mouse wound healing model. Overall, these materials have a high potential for application in wound treatments due to their ease of production, antifouling characteristics, durability, topical application, and sustained release mechanics. STATEMENT OF SIGNIFICANCE: This work presents the development of zwitterionic cryogels with unique physical properties including injectability and self-healing, that also offer highly sustained release of nanoparticles over time to improve wound healing in a diabetic mouse model. The nanoparticles are made of cerium oxide, which is known to scavenge reactive oxygen species and reduce oxidative stress, and these particles have been further tagged with a microRNA146a that has been shown to reduce inflammation. Zwitterionic materials are known for their superior antifouling properties and good biocompatibility and ability to incorporate bioactive factors. Given these properties, the use of these materials as wound healing dressings would be exciting, yet to date it has been difficult to prolong the release of bioactive factors from them due to their hydrophilicity. Previously we developed zwitterionic cyrogels with very sustained protein release over time, but those materials were quite brittle and difficult to handle. Here, we demonstrate for the first time that by removing the crosslinker molecule from our reaction and polymerizing gels under cryo-conditions, we are able to form zwitterionic cryogels that are injectable, self-healing, and with sustained release profiles. The sustained release of miRNA146a-tagged cerium oxide nanoparticles from these gels is demonstrated to speed up diabetic wound healing time and significantly reduce inflammation.
Collapse
|
13
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Deduction of Novel Genes Potentially Involved in Keratinocytes of Type 2 Diabetes Using Next-Generation Sequencing and Bioinformatics Approaches. J Clin Med 2019; 8:jcm8010073. [PMID: 30634634 PMCID: PMC6352191 DOI: 10.3390/jcm8010073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 02/06/2023] Open
Abstract
Keratinocytes constitute the major cell type of epidermis, which participates in re-epithelialization during wound repair and the immune defense response to pathogens. The aim of the current study was to explore the differentially expressed genes and novel microRNA (miRNA) regulations that are potentially involved in diabetic keratinocytes through next-generation sequencing (NGS) and bioinformatics approaches. A total of 420 differentially expressed genes between normal and diabetic keratinocytes were identified, and systematic bioinformatics analyses indicated that these differentially expressed genes were functionally enriched in interferon-alpha signaling, viral defense response, and immune response. Additionally, the potential miR-340-3p-DTX3L interaction that has been systematically validated in miRNA prediction databases was proposed to participate in the disrupted skin homeostasis, altering the defense and immune response of diabetic skin. The findings may provide new insights into understanding the pathogenesis of epidermal pathologies in diabetic patients and targeting novel molecules to advance diabetic skin care in clinical practice.
Collapse
|
15
|
Use of Cerium Oxide Nanoparticles Conjugated with MicroRNA-146a to Correct the Diabetic Wound Healing Impairment. J Am Coll Surg 2018; 228:107-115. [PMID: 30359833 DOI: 10.1016/j.jamcollsurg.2018.09.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/23/2018] [Accepted: 09/14/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Diabetic wounds have become one of the most challenging public health issues of the 21st century, yet there is no effective treatment available. We have previously shown that the diabetic wound healing impairment is associated with increased inflammation and decreased expression of the regulatory microRNA miR-146a. We have conjugated miR-146a to cerium oxide nanoparticles (CNP-miR146a) to target reactive oxygen species (ROS) and inflammation. This study aimed to evaluate the consequences of CNP-miR146a treatment of diabetic wounds. STUDY DESIGN Eight-millimeter wounds were created on the dorsal skin of Db/Db mice and treated with PBS or differing concentrations of CNP-mir146a (1; 10; 100; or 1,000 ng) at the time of wounding. Rate of wound closure was measured until the wounds were fully healed. At 4 weeks post-healing, a dumbbell-shaped skin sample was collected, with the healed wound in the center, and an Instron 5942 testing unit was used to measure the maximum load and modulus. RESULTS Our data showed that diabetic wounds treated with PBS or 1 ng CNP-miR146a took 18 days to heal. Treatment with 10, 100, or 1,000 ng of CNP+miR-146a effectively enhanced healing, and wounds were fully closed at day 14 post-wounding. The healed skin from the CNP-miR146a-treated group showed a trend of improved biomechanical properties (increased maximum load and modulus), however it did not reach significance. CONCLUSIONS We found that a 100-ng dose of CNP-miR146a improved diabetic wound healing and did not impair the biomechanical properties of the skin post-healing. This nanotechnology-based therapy is promising, and future studies are warranted to transfer this therapy to clinical application.
Collapse
|
16
|
Textor JA, Clark KC, Walker NJ, Aristizobal FA, Kol A, LeJeune SS, Bledsoe A, Davidyan A, Gray SN, Bohannon-Worsley LK, Woolard KD, Borjesson DL. Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses. Stem Cells Transl Med 2017; 7:98-108. [PMID: 29063737 PMCID: PMC5746157 DOI: 10.1002/sctm.17-0071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/25/2017] [Indexed: 12/27/2022] Open
Abstract
Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full-thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord-blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic- or (b) hypoxic-preconditioned cells injected into wound margins, or (c) normoxic- or (d) hypoxic-preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel-treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic-preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase-2 expression at week 1. Histologically, significantly more MSC-treated wounds were categorized as pro-healing than pro-inflammatory. Wound area was significantly affected by treatment: MSC-injected wounds were consistently smaller than gel-treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. Stem Cells Translational Medicine 2018;7:98-108.
Collapse
Affiliation(s)
- Jamie A Textor
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Kaitlin C Clark
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Naomi J Walker
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Fabio A Aristizobal
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Amir Kol
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Sarah S LeJeune
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Andrea Bledsoe
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Arik Davidyan
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Sarah N Gray
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Laurie K Bohannon-Worsley
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
17
|
Konstantinow A, Arnold A, Djabali K, Kempf W, Gutermuth J, Fischer T, Biedermann T. Therapy of ulcus cruris of venous and mixed venous arterial origin with autologous, adult, native progenitor cells from subcutaneous adipose tissue: a prospective clinical pilot study. J Eur Acad Dermatol Venereol 2017; 31:2104-2118. [PMID: 28750144 DOI: 10.1111/jdv.14489] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The stromal vascular fraction (SVF) of adipose tissue consists of cellular subpopulations with distinct regenerative potential. OBJECTIVE To investigate the regenerative capacities of autologous SVF cells in the treatment of chronic leg ulcers of venous (VLU) and arterial-venous (AVLU) origin. METHODS Multimorbid ulcer patients received a singular topical treatment with 9-15 × 106 SVF cells, separated from abdominal lipoaspirates by digestion with collagenase and neutral protease and applied immediately after isolation. The primary endpoints were the change in wound size 12 weeks after treatment and evaluation of adverse events. Secondary endpoints included the time to complete wound epithelialization and change in pain levels. Postoperative wound treatment modalities and treatment of comorbidities were not intensified compared with pre-operative management. Follow-up period was at least 6 months. RESULTS Sixteen elderly ulcer patients (seven with VLU, nine with AVLU) were treated as described. All VLU patients (median ulcer size: 48.25 cm2 ) and four of nine AVLU patients showed complete epithelialization of the ulcers within 71-174 days. In three patients with large ulcerations on both legs, ulcerations on the non-treated, contralateral leg also epithelialized. Patients reported a considerable rapid decrease in pain intensity by 2.5 points on average on a visual scale from 1 to 5 within the first 2 weeks after treatment. The patients were followed up for 9-44 months (median: 30 months). No severe side-effects were observed. CONCLUSIONS The use of SVF cells presents an effective, minimally invasive option for the treatment of VLU and AVLU even in multimorbid patients. In patients with larger predominantly ischaemic AVLU and comorbidities, one-time application of the used amounts of SVF cells was not sufficient in the majority of cases.
Collapse
Affiliation(s)
- A Konstantinow
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - A Arnold
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - K Djabali
- School of Medicine, Epigenetic of Aging, Technical University Munich, Garching, Germany
| | - W Kempf
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - J Gutermuth
- Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - T Fischer
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - T Biedermann
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| |
Collapse
|
18
|
Xu J, Zgheib C, Hodges MM, Caskey RC, Hu J, Liechty KW. Mesenchymal stem cells correct impaired diabetic wound healing by decreasing ECM proteolysis. Physiol Genomics 2017; 49:541-548. [PMID: 28842435 DOI: 10.1152/physiolgenomics.00090.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
Impaired diabetic wound healing is associated with a dermal extracellular matrix protein profile favoring proteolysis; within the healing diabetic wound, this is represented by an increase in activated matrix metalloproteinase (MMPs). Treatment of diabetic wounds with mesenchymal stem cells (MSCs) has been shown to improve wound healing; however, there has not yet been an assessment of their ability to correct dysregulation of MMPs in diabetic wounds. Furthermore, there has been no prior assessment of the role of microRNA29b (miR-29b), an inhibitory regulatory molecule that targets MMP-9 mRNA. Using in vitro models of fibroblast coculture with MSCs and in vivo murine wound healing models, we tested the hypothesis that MSCs correct dysregulation of MMPs in a microRNA-29b-dependent mechanism. In this study, we first demonstrated that collagen I and III protein content is significantly reduced in diabetic wounds, and treatment with MSCs significantly improves collagen I content in both nondiabetic and diabetic wounds. We then found that MMP-9 gene expression and protein content were significantly upregulated in diabetic wounds, indicating elevated proteolysis. Treatment with MSCs resulted in a decrease in MMP-9 gene expression and protein content level in diabetic wounds 3 and 7 days after wounding. Zymographic analysis indicated that MSC treatment also decreased the amount of activated MMP-9 present in diabetic wounds. Furthermore, miR-29b expression was inversely associated with MMP-9 gene expression; miR-29b expression was decreased in diabetic wounds and diabetic fibroblast. Following treatment of diabetic wounds with MSCs, as well as in diabetic fibroblasts cocultured with MSCs, miR-29b was significantly increased. These findings suggest a potential mechanism through which MSCs enhance diabetic wound healing by improving collagen I content in diabetic wounds through decreasing MMP-9 expression and increasing miR-29b expression.
Collapse
Affiliation(s)
- Junwang Xu
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver - Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado.,Department of Surgery, Children's Hospital Colorado, Aurora, Colorado; and
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver - Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado.,Department of Surgery, Children's Hospital Colorado, Aurora, Colorado; and
| | - Maggie M Hodges
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver - Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado.,Department of Surgery, Children's Hospital Colorado, Aurora, Colorado; and
| | - Robert C Caskey
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Junyi Hu
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver - Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado.,Department of Surgery, Children's Hospital Colorado, Aurora, Colorado; and
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver - Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado; .,Department of Surgery, Children's Hospital Colorado, Aurora, Colorado; and
| |
Collapse
|