1
|
Peng Q. Challenges in the processing and preservation of adipose-derived stem cell subpopulations for clinical use. Regen Med 2024; 19:595-597. [PMID: 39703172 DOI: 10.1080/17460751.2024.2442843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Affiliation(s)
- Qiuyue Peng
- Department of Health Science and Technology, Aalborg University, Gistrup, Denmark
| |
Collapse
|
2
|
Peng Y, Xiong R, Wang B, Chen X, Ning Y, Zhao Y, Yang N, Zhang J, Li C, Zhou Y, Li P. The Essential Role of Angiogenesis in Adenosine 2A Receptor Deficiency-mediated Impairment of Wound Healing Involving c-Ski via the ERK/CREB Pathways. Int J Biol Sci 2024; 20:4532-4550. [PMID: 39247808 PMCID: PMC11380447 DOI: 10.7150/ijbs.98856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Adenosine receptor-mediated signaling, especially adenosine A2A receptor (A2AR) signaling, has been implicated in wound healing. However, the role of endothelial cells (ECs) in A2AR-mediated wound healing and the mechanism underlying this effect are still unclear. Here, we showed that the expression of A2AR substantially increased after wounding and was especially prominent in granulation tissue. The delaying effects of A2AR knockout (KO) on wound healing are due mainly to the effect of A2AR on endothelial cells, as shown with A2AR-KO and EC-A2AR-KO mice. Moreover, the expression of c-Ski, which is especially prominent in CD31-positive cells in granulation tissue, increased after wounding and was decreased by both EC-A2AR KO and A2AR KO. In human microvascular ECs (HMECs), A2AR activation induced EC proliferation, migration, tubule formation and c-Ski expression, whereas c-Ski depletion by RNAi abolished these effects. Mechanistically, A2AR activation promotes the expression of c-Ski through an ERK/CREB-dependent pathway. Thus, A2AR-mediated angiogenesis plays a critical role in wound healing, and c-Ski is involved mainly in the regulation of angiogenesis by A2AR via the ERK/CREB pathway. These findings identify A2AR as a therapeutic target in wound repair and other angiogenesis-dependent tissue repair processes.
Collapse
Affiliation(s)
- Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Renping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Bo Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yalei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Jing Zhang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Changhong Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yuanguo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| |
Collapse
|
3
|
Aghazadeh S, Peng Q, Dardmeh F, Hjortdal JØ, Zachar V, Alipour H. Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion. Int J Mol Sci 2024; 25:8684. [PMID: 39201371 PMCID: PMC11354999 DOI: 10.3390/ijms25168684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders.
Collapse
Affiliation(s)
- Sara Aghazadeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Qiuyue Peng
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | | | - Vladimir Zachar
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| |
Collapse
|
4
|
Berry CE, Abbas DB, Lintel HA, Churukian AA, Griffin M, Guo JL, Cotterell AC, Parker JBL, Downer MA, Longaker MT, Wan DC. Adipose-Derived Stromal Cell-Based Therapies for Radiation-Induced Fibrosis. Adv Wound Care (New Rochelle) 2024; 13:235-252. [PMID: 36345216 PMCID: PMC11304913 DOI: 10.1089/wound.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Significance: Half of all cancer patients receive radiation therapy as a component of their treatment regimen, and the most common resulting complication is radiation-induced fibrosis (RIF) of the skin and soft tissue. This thickening of the dermis paired with decreased vascularity results in functional limitations and esthetic concerns and poses unique challenges when considering surgical exploration or reconstruction. Existing therapeutic options for RIF of the skin are limited both in scope and efficacy. Cell-based therapies have emerged as a promising means of utilizing regenerative cell populations to improve both functional and esthetic outcomes, and even as prophylaxis for RIF. Recent Advances: As one of the leading areas of cell-based therapy research, adipose-derived stromal cells (ADSCs) demonstrate significant therapeutic potential in the treatment of RIF. The introduction of the ADSC-augmented fat graft has shown clinical utility. Recent research dedicated to characterizing specific ADSC subpopulations points toward further granularity in understanding of the mechanisms driving the well-established clinical outcomes seen with fat grafting therapy. Critical Issues: Various animal models of RIF demonstrated improved clinical outcomes following treatment with cell-based therapies, but the cellular and molecular basis underlying these effects remains poorly understood. Future Directions: Recent literature has focused on improving the efficacy of cell-based therapies, most notably through (1) augmentation of fat grafts with platelet-rich plasma and (2) the modification of expressed RNA through epitranscriptomics. For the latter, new and promising gene targets continue to be identified which have the potential to reverse the effects of fibrosis by increasing angiogenesis, decreasing inflammation, and promoting adipogenesis.
Collapse
Affiliation(s)
- Charlotte E. Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B. Abbas
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hendrik A. Lintel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew A. Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jason L. Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Asha C. Cotterell
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer B. Laufey Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Mauricio A. Downer
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Lu S, Gan L, Lu T, Zhang K, Zhang J, Wu X, Han D, Xu C, Liu S, Yang F, Qin W, Wen W. Endosialin in Cancer: Expression Patterns, Mechanistic Insights, and Therapeutic Approaches. Theranostics 2024; 14:379-391. [PMID: 38164138 PMCID: PMC10750205 DOI: 10.7150/thno.89495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
Endosialin, also known as tumor endothelial marker 1 (TEM1) or CD248, is a single transmembrane glycoprotein with a C-type lectin-like domain. Endosialin is mainly expressed in the stroma, especially in cancer-associated fibroblasts and pericytes, in most solid tumors. Endosialin is also expressed in tumor cells of most sarcomas. Endosialin can promote tumor progression through different mechanisms, such as promoting tumor cell proliferation, adhesion and migration, stimulating tumor angiogenesis, and inducing an immunosuppressive tumor microenvironment. Thus, it is considered an ideal target for cancer treatment. Several endosialin-targeted antibodies and therapeutic strategies have been developed and have shown preliminary antitumor effects. Here, we reviewed the endosialin expression pattern in different cancer types, discussed the mechanisms by which endosialin promotes tumor progression, and summarized current therapeutic strategies targeting endosialin.
Collapse
Affiliation(s)
- Shiqi Lu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lunbiao Gan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiayu Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xinjie Wu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
6
|
Benedet PO, Safikhan NS, Pereira MJ, Lum BM, Botezelli JD, Kuo CH, Wu HL, Craddock BP, Miller WT, Eriksson JW, Yue JTY, Conway EM. CD248 promotes insulin resistance by binding to the insulin receptor and dampening its insulin-induced autophosphorylation. EBioMedicine 2024; 99:104906. [PMID: 38061240 PMCID: PMC10750038 DOI: 10.1016/j.ebiom.2023.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND In spite of new treatments, the incidence of type 2 diabetes (T2D) and its morbidities continue to rise. The key feature of T2D is resistance of adipose tissue and other organs to insulin. Approaches to overcome insulin resistance are limited due to a poor understanding of the mechanisms and inaccessibility of drugs to relevant intracellular targets. We previously showed in mice and humans that CD248, a pre/adipocyte cell surface glycoprotein, acts as an adipose tissue sensor that mediates the transition from healthy to unhealthy adipose, thus promoting insulin resistance. METHODS Molecular mechanisms by which CD248 regulates insulin signaling were explored using in vivo insulin clamp studies and biochemical analyses of cells/tissues from CD248 knockout (KO) and wild-type (WT) mice with diet-induced insulin resistance. Findings were validated with human adipose tissue specimens. FINDINGS Genetic deletion of CD248 in mice, overcame diet-induced insulin resistance with improvements in glucose uptake and lipolysis in white adipose tissue depots, effects paralleled by increased adipose/adipocyte GLUT4, phosphorylated AKT and GSK3β, and reduced ATGL. The insulin resistance of the WT mice could be attributed to direct interaction of the extracellular domains of CD248 and the insulin receptor (IR), with CD248 acting to block insulin binding to the IR. This resulted in dampened insulin-mediated autophosphorylation of the IR, with reduced downstream signaling/activation of intracellular events necessary for glucose and lipid homeostasis. INTERPRETATION Our discovery of a cell-surface CD248-IR complex that is accessible to pharmacologic intervention, opens research avenues toward development of new agents to prevent/reverse insulin resistance. FUNDING Funded by Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundations for Innovation (CFI), the Swedish Diabetes Foundation, Family Ernfors Foundation and Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Patricia O Benedet
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Nooshin S Safikhan
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology & Metabolism, Uppsala University, Sweden
| | - Bryan M Lum
- Department of Physiology, Alberta Diabetes Institute and Group on Molecular and Cell Biology of Lipids, University of Alberta, Canada
| | - José Diego Botezelli
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Barbara P Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA; Veterans Affairs Medical Center, Northport, NY, USA
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology & Metabolism, Uppsala University, Sweden
| | - Jessica T Y Yue
- Department of Physiology, Alberta Diabetes Institute and Group on Molecular and Cell Biology of Lipids, University of Alberta, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
7
|
Chang TY, Hong YK, Kuo YL, Wu HL, Shieh SJ. CD248 Regulates Inflammation and Encapsulation in Silicone-Related Capsule Formation. Plast Reconstr Surg 2024; 153:109-120. [PMID: 36988436 DOI: 10.1097/prs.0000000000010464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND Capsular contracture is the most common reason for having a secondary breast implant operation. The failure of the implanted device and discomfort are related to foreign body response, which involves a pathologic encapsulation. An up-regulated expression of CD248 was previously demonstrated to modulate inflammation and fibrosis. The authors hypothesized that CD248 contributes to foreign body reaction and contracture during silicone-stimulated capsule formation. METHODS A murine capsular contracture model was established to correlate CD248 with capsular contracture. The timing and site of CD248 expression were characterized by protein analysis and histologic examination. The capsules between wild-type mice and CD248 knockout mice were compared in this model to verify the possible role of CD248 in silicone-related capsule formation. RESULTS CD248 was expressed in the peri-silicone implant capsule by stromal fibroblast and perivascular fibroblast. CD248 was overexpressed on day 4 and down to a constant level, but it was still up-regulated through day 21 to day 56 after silicone implantation. The CD248 knockout mice showed a prolonged inflammation period, whereas the wild-type mice developed a thinner but more collagenous capsule. CONCLUSIONS In conclusion, an effective murine capsular contracture model was established to study the relationship between CD248 and capsular contracture. CD248 may play a role in inflammation and encapsulation during silicone implantation. CD248 deletion in mice contributed to a loose and irregular collagen bundle in a capsule area, implying a decrease in contracture. Therefore, CD248 could be a potential therapeutic target in capsular contracture. CLINICAL RELEVANCE STATEMENT CD248 may play a role in inflammation and encapsulation during silicone implantation. It could be a potential therapeutic target in clinical capsular contracture.
Collapse
Affiliation(s)
- Tzu-Yen Chang
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital
- Institute of Clinical Medicine
| | - Yi-Kai Hong
- Institute of Basic Medical Sciences
- Department of Biochemistry and Molecular Biology, College of Medicine
| | - Yao-Lung Kuo
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital
| | - Hua-Lin Wu
- Institute of Basic Medical Sciences
- Department of Biochemistry and Molecular Biology, College of Medicine
| | - Shyh-Jou Shieh
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital
- International Center for Wound Repair and Regeneration (iWRR)
- School of Medicine, National Cheng Kung University
| |
Collapse
|
8
|
Prescher H, Froimson JR, Hanson SE. Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis. Bioengineering (Basel) 2023; 10:742. [PMID: 37370673 PMCID: PMC10295516 DOI: 10.3390/bioengineering10060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Adipose tissue is composed of a collection of cells with valuable structural and regenerative function. Taken as an autologous graft, these cells can be used to address soft tissue defects and irregularities, while also providing a reparative effect on the surrounding tissues. Adipose-derived stem or stromal cells are primarily responsible for this regenerative effect through direct differentiation into native cells and via secretion of numerous growth factors and cytokines that stimulate angiogenesis and disrupt pro-inflammatory pathways. Separating adipose tissue into its component parts, i.e., cells, scaffolds and proteins, has provided new regenerative therapies for skin and soft tissue pathology, including that resulting from radiation. Recent studies in both animal models and clinical trials have demonstrated the ability of autologous fat grafting to reverse radiation induced skin fibrosis. An improved understanding of the complex pathologic mechanism of RIF has allowed researchers to harness the specific function of the ASCs to engineer enriched fat graft constructs to improve the therapeutic effect of AFG.
Collapse
Affiliation(s)
| | | | - Summer E. Hanson
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| |
Collapse
|
9
|
Yu Y, Li H. Comparative characterization of frozen-thawed CD146+ and CD146- subsets of CD73+CD90+CD105+CD34+ human ASCs. J Stem Cells Regen Med 2022; 18:36-42. [PMID: 36713792 PMCID: PMC9837695 DOI: 10.46582/jsrm.1802007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023]
Abstract
Background Mesenchymal stem cells are currently used to treat several diseases. Populations of putative stem cells found in the adipose tissue (ASCs) have been shown to possess particularly enhanced functionalities. Nonetheless, there is lack of evidence that evaluates the effects of cryopreservation techniques on well-defined functional ASC populations characterized by immunophenotypical repertoire. Objective We therefore embarked a study to compare the frozen-thawed ASC subsets: CD73+CD90+CD105+CD34+CD146-(CD34+CD146), CD73+CD90+CD105+CD34+CD146+(CD34+CD146+), and CD73+CD90+CD105+CD34+(CD34+). We assessed their characterization in different functional assays. Method The ASC immunophenotypical subsets-purified by a flow cytometry sorting technique-were frozen in liquid nitrogen. After a period, they were thawed to examine their differentiation ability, colony-forming units, viability, and growth rate. Results We confirmed that inside the primary cell culture system, the proportion of CD34+, CD34+CD146-, and CD34+CD146+ took up 80%, 62%, and 19% on average, respectively. All populations could be frozen and stored in liquid nitrogen with retention of more than 85% of cell viability and displayed comparable stemness characteristics. Most importantly, the CD34+CD146+ subpopulation displayed a higher proliferation rate than other groups. Conclusion Our data demonstrated that the frozen-thawed CD34+CD146+ cells might represent a promising source for autologous cellular-based therapy. These findings set the basis for ASC subpopulations-based application in future potential clinical settings.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Haisong Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
High throughput screening of mesenchymal stem cell lines using deep learning. Sci Rep 2022; 12:17507. [PMID: 36266301 PMCID: PMC9584889 DOI: 10.1038/s41598-022-21653-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are increasingly used as regenerative therapies for patients in the preclinical and clinical phases of various diseases. However, the main limitations of such therapies include functional heterogeneity and the lack of appropriate quality control (QC) methods for functional screening of MSC lines; thus, clinical outcomes are inconsistent. Recently, machine learning (ML)-based methods, in conjunction with single-cell morphological profiling, have been proposed as alternatives to conventional in vitro/vivo assays that evaluate MSC functions. Such methods perform in silico analyses of MSC functions by training ML algorithms to find highly nonlinear connections between MSC functions and morphology. Although such approaches are promising, they are limited in that extensive, high-content single-cell imaging is required; moreover, manually identified morphological features cannot be generalized to other experimental settings. To address these limitations, we propose an end-to-end deep learning (DL) framework for functional screening of MSC lines using live-cell microscopic images of MSC populations. We quantitatively evaluate various convolutional neural network (CNN) models and demonstrate that our method accurately classifies in vitro MSC lines to high/low multilineage differentiating stress-enduring (MUSE) cells markers from multiple donors. A total of 6,120 cell images were obtained from 8 MSC lines, and they were classified into two groups according to MUSE cell markers analyzed by immunofluorescence staining and FACS. The optimized DenseNet121 model showed area under the curve (AUC) 0.975, accuracy 0.922, F1 0.922, sensitivity 0.905, specificity 0.942, positive predictive value 0.940, and negative predictive value 0.908. Therefore, our DL-based framework is a convenient high-throughput method that could serve as an effective QC strategy in future clinical biomanufacturing processes.
Collapse
|
11
|
Ren G, Peng Q, Emmersen J, Zachar V, Fink T, Porsborg SR. A Comparative Analysis of the Wound Healing-Related Heterogeneity of Adipose-Derived Stem Cells Donors. Pharmaceutics 2022; 14:2126. [PMID: 36297561 PMCID: PMC9608503 DOI: 10.3390/pharmaceutics14102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived Stem cells (ASCs) are on the verge of being available for large clinical trials in wound healing. However, for developing advanced therapy medicinal products (ATMPs), potency assays mimicking the mode of action are required to control the product consistency of the cells. Thus, greater effort should go into the design of product assays. Therefore, we analyzed three ASC-based ATMPs from three different donors with respect to their surface markers, tri-lineage differentiation, proliferation, colony-forming unit capacity, and effect on fibroblast proliferation and migration, endothelial proliferation, migration, and angiogenesis. Furthermore, the transcriptome of all three cell products was analyzed through RNA-sequencing. Even though all products met the criteria by the International Society for Cell and Gene Therapy and the International Federation for Adipose Therapeutics and Science, we found one product to be consistently superior to others when exploring their potency in the wound healing specific assays. Our results indicate that certain regulatory genes associated with extracellular matrix and angiogenesis could be used as markers of a superior ASC donor from which to use ASCs to treat chronic wounds. Having a panel of assays capable of predicting the potency of the product would ensure the patient receives the most potent product for a specific indication, which is paramount for successful patient treatment and acceptance from the healthcare system.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone R. Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark
| |
Collapse
|
12
|
Ren G, Peng Q, Fink T, Zachar V, Porsborg SR. Potency assays for human adipose-derived stem cells as a medicinal product toward wound healing. Stem Cell Res Ther 2022; 13:249. [PMID: 35690872 PMCID: PMC9188073 DOI: 10.1186/s13287-022-02928-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
In pre-clinical studies, human adipose-derived stem cells (hASCs) have shown great promise as a treatment modality for healing of cutaneous wounds. The advantages of hASCs are that they are relatively easy to obtain in large numbers from basic liposuctions, they maintain their characteristics after long-term in vitro culture, and they possess low immunogenicity, which enables the use of hASCs from random donors. It has been hypothesized that hASCs exert their wound healing properties by reducing inflammation, inducing angiogenesis, and promoting fibroblast and keratinocyte growth. Due to the inherent variability associated with the donor-dependent nature of ASC-based products, it appears necessary that the quality of the different products is prospectively certified using a set of most relevant potency assays. In this review, we present an overview of the available methodologies to assess the Mode and the Mechanism of Action of hASCs, specifically in the wound healing scenario. In conclusion, we propose a panel of potential potency assays to include in the future production of ASC-based medicinal products.
Collapse
Affiliation(s)
- Guoqiang Ren
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Qiuyue Peng
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Trine Fink
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Simone Riis Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
| |
Collapse
|
13
|
Peng Q, Ren G, Xuan Z, Duda M, Pennisi CP, Porsborg SR, Fink T, Zachar V. Distinct Dominant Lineage from In Vitro Expanded Adipose-Derived Stem Cells (ASCs) Exhibits Enhanced Wound Healing Properties. Cells 2022; 11:cells11071236. [PMID: 35406800 PMCID: PMC8998068 DOI: 10.3390/cells11071236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
It has been suggested that immunophenotypically defined lineages within the in vitro expanded adipose-derived stem cell (ASC) may play a beneficial role from the perspective of a personalized intervention. Therefore, to better understand the implications of different surface marker profiles for the functionality, we set out to examine the evolution of ASC-variants based on the co-expression of five bright or eight dim epitopes. At passages P1, P4, and P8, the co-localization of five bright markers (CD73, CD90, CD105, CD166, and CD201), or eight dim markers (CD34, CD36, CD200, CD248, CD271, CD274, CD146, and the Stro-1), was investigated by flow cytometry. Selected subpopulations were isolated using the fluorescence-activated cells sorting from the cryopreserved P4 and analyzed in terms of proliferative and clonogenic properties, trilineage differentiation, and wound healing potential. Only two of the dim epitopes were found in representative subpopulations (SP), and from the P4 onwards, two major combinations featuring the CD274+ (SP1) or the CD274+ CD146+ (SP2) emerged. Upon sorting and growth, both subpopulations assumed new but highly similar clonal profiles, consisting of the CD274+ CD146+ and the CD274+ CD146+ CD248+ phenotypes. The functional analysis revealed that the SP2 surpassed SP1 and the unfractionated cells regarding the growth rate, clonogenic activity, and the wound closure and endothelial tube formation potential. The surface epitopes may be considered a tool to enrich specific functionality and thus improve therapeutic outcomes in dedicated circumstances.
Collapse
|
14
|
Yu M, Chang S, Xu J, Zhang H, Jiang Y. Genome-wide identification of endosialin family of C-type lectins in common carp (Cyprinus carpio) and their response following Aeromonas hydrophila infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104338. [PMID: 34995551 DOI: 10.1016/j.dci.2021.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The endosialin family is the group XIV of C-type lectin, regulating several processes involved in innate immunity and inflammation. Endosialin family genes have been extensively studied in human and mammals, however, rarely reported in teleost. In the present study, a set of 8 endosialin family genes was identified across the entire common carp genome. Functional domain and motif prediction and phylogenetic analysis supported their annotation and orthologies. Through examining gene copy number across several vertebrates, endosialin family genes were found have undergone gene duplication. Most of the endosialin family genes were ubiquitously expressed during common carp early developmental stages, and presented tissue-specific expression patterns in various healthy tissues, with relatively high expression in intestine, liver, gill, spleen and kidney, indicating their likely essential roles in maintaining homeostasis and host immune response. After Aeromonas hydrophila infection, gene thbd-1, thbd-2 and cd93-2 were significantly up-regulated at one or more timepoints in spleen and kidney, while gene cd248a-1, cd248a-2, cd248b-1, cd248b-2, and cd93-1 were significantly down-regulated. Taken together, all these results suggested that endosialin family genes were involved in host immune response to A. hydrophila infection in common carp, and provided fundamental genomic resources for better understanding the critical roles of endosialin family on the primary innate immune processes in teleost.
Collapse
Affiliation(s)
- Minghui Yu
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Songhuan Chang
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|
15
|
Fan F, Saha S, Hanjaya-Putra D. Biomimetic Hydrogels to Promote Wound Healing. Front Bioeng Biotechnol 2021; 9:718377. [PMID: 34616718 PMCID: PMC8488380 DOI: 10.3389/fbioe.2021.718377] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a common physiological process which consists of a sequence of molecular and cellular events that occur following the onset of a tissue lesion in order to reconstitute barrier between body and external environment. The inherent properties of hydrogels allow the damaged tissue to heal by supporting a hydrated environment which has long been explored in wound management to aid in autolytic debridement. However, chronic non-healing wounds require added therapeutic features that can be achieved by incorporation of biomolecules and supporting cells to promote faster and better healing outcomes. In recent decades, numerous hydrogels have been developed and modified to match the time scale for distinct stages of wound healing. This review will discuss the effects of various types of hydrogels on wound pathophysiology, as well as the ideal characteristics of hydrogels for wound healing, crosslinking mechanism, fabrication techniques and design considerations of hydrogel engineering. Finally, several challenges related to adopting hydrogels to promote wound healing and future perspectives are discussed.
Collapse
Affiliation(s)
- Fei Fan
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sanjoy Saha
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
16
|
Nalbach L, Müller D, Wrublewsky S, Metzger W, Menger MD, Laschke MW, Ampofo E. Microvascular fragment spheroids: Three-dimensional vascularization units for tissue engineering and regeneration. J Tissue Eng 2021; 12:20417314211035593. [PMID: 34471514 PMCID: PMC8404660 DOI: 10.1177/20417314211035593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Adipose tissue-derived microvascular fragments (MVF) serve as vascularization units in tissue engineering and regenerative medicine. Because a three-dimensional cellular arrangement has been shown to improve cell function, we herein generated for the first time MVF spheroids to investigate whether this further increases their vascularization potential. These spheroids exhibited a morphology, size, and viability comparable to that of previously introduced stromal vascular fraction (SVF) spheroids. However, MVF spheroids contained a significantly higher number of CD31-positive endothelial cells and α-smooth muscle actin (SMA)-positive perivascular cells, resulting in an enhanced angiogenic sprouting activity. Accordingly, they also exhibited an improved in vivo vascularization and engraftment after transplantation into mouse dorsal skinfold chambers. These findings indicate that MVF spheroids are superior to SVF spheroids and, thus, may be highly suitable to improve the vascularization of tissue defects and implanted tissue constructs.
Collapse
Affiliation(s)
- Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Danièle Müller
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
17
|
Wu Z, Ma D, Yang H, Gao J, Zhang G, Xu K, Zhang L. Fibroblast-like synoviocytes in rheumatoid arthritis: Surface markers and phenotypes. Int Immunopharmacol 2021; 93:107392. [PMID: 33529910 DOI: 10.1016/j.intimp.2021.107392] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/27/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that mainly affects synovial joints. During the course of RA, the synovium transforms into hyperplastic invasive tissue, leading to cartilage and bone destruction. Fibroblast-like synoviocytes (FLS) in the synovial lining develop aggressive phenotypes and produce pathogenic mediators that lead to the occurrence and progression of disease, playing a major role in RA pathophysiology. Therefore, research on FLS has become the main focus within the RA field. With technical advances and the development of multi-omics comprehensive analysis approaches, it has become possible to identify different FLS subsets via high-throughput sequencing and investigate differences between FLS phenotypes, allowing for the detailed study of RA pathogenesis. This review summarizes recent works on FLS subtypes and the surface marker proteins identified for different subtypes, providing a theoretical basis and reference for future studies on FLS in RA. The current work also addresses the clinical potential of FLS surface markers in RA based on related research from other fields.
Collapse
Affiliation(s)
- Zewen Wu
- Bethune Hospital Affiliated to Shanxi Medical University, PR China.
| | - Dan Ma
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, PR China.
| | - Helin Yang
- Shanxi University of Chinese Medicine, PR China.
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, PR China.
| | - Gailian Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, PR China.
| | - Ke Xu
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, PR China.
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, PR China.
| |
Collapse
|
18
|
Multiplex Analysis of Adipose-Derived Stem Cell (ASC) Immunophenotype Adaption to In Vitro Expansion. Cells 2021; 10:cells10020218. [PMID: 33499095 PMCID: PMC7911224 DOI: 10.3390/cells10020218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
In order to enhance the therapeutic potential, it is important that sufficient knowledge regarding the dynamic changes of adipose-derived stem cell (ASC) immunophenotypical and biological properties during in vitro growth is available. Consequently, we embarked on a study to follow the evolution of highly defined cell subsets from three unrelated donors in the course of eight passages on tissue culture polystyrene. The co-expression patterns were defined by panels encompassing seven and five cell surface markers, including CD34, CD146, CD166, CD200, CD248, CD271, and CD274 and CD29, CD31, CD36, CD201, and Stro-1, respectively. The analysis was performed using multichromatic flow cytometry. We observed a major paradigm shift, where the CD166-CD34+ combination which was found across all cell subsets early in the culture was replaced by the CD166+ phenotype as the population homogeneity increased with time. At all analysis points, the cultures were dominated by a few major clones that were highly prevalent in most of the donors. The selection process resulted in two predominant clones in the larger panel (CD166+CD34-CD146-CD271- CD274-CD248-CD200- and CD166+CD34+ CD146-CD271-CD274-CD248-CD200-) and one clone in the smaller panel (CD29+CD201+CD36- Stro-1- CD31-). The minor subsets, including CD166+CD34-CD146-CD271+CD274-CD248-CD200- and CD166+CD34+CD146+CD271-CD274-CD248-CD200-, and CD29+CD201-CD36-Stro-1-CD31-, CD29+CD201+CD36-Stro-1+CD31-, and CD29+CD201+CD36+Stro-1-CD31-, in the seven and five marker panels, respectively, were, on the other, hand highly fluctuating and donor-dependent. The results demonstrate that only a limited number of phenotypical repertoires are possible in ASC cultures. Marked differences in their relative occurrence between distinct individuals underscore the need for potency standardization of different ASC preparation to improve the clinical outcome.
Collapse
|
19
|
Jossen V, Muoio F, Panella S, Harder Y, Tallone T, Eibl R. An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies. Bioengineering (Basel) 2020; 7:bioengineering7030077. [PMID: 32698363 PMCID: PMC7552624 DOI: 10.3390/bioengineering7030077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible and economic in-vitro expansion of hASCs for autologous therapies is more problematic because the cell material changes for each treatment. Moreover, cell material is normally isolated from non-healthy or older patients, which further complicates successful in-vitro expansion. Hence, the goal of this study was to perform cell expansion studies with hASCs isolated from two different patients/donors (i.e., different ages and health statuses) under xeno- and serum-free conditions in static, planar (2D) and dynamically mixed (3D) cultivation systems. Our primary aim was I) to compare donor variability under in-vitro conditions and II) to develop and establish an unstructured, segregated growth model as a proof-of-concept study. Maximum cell densities of between 0.49 and 0.65 × 105 hASCs/cm2 were achieved for both donors in 2D and 3D cultivation systems. Cell growth under static and dynamically mixed conditions was comparable, which demonstrated that hydrodynamic stresses (P/V = 0.63 W/m3, τnt = 4.96 × 10−3 Pa) acting at Ns1u (49 rpm for 10 g/L) did not negatively affect cell growth, even under serum-free conditions. However, donor-dependent differences in the cell size were found, which resulted in significantly different maximum cell densities for each of the two donors. In both cases, stemness was well maintained under static 2D and dynamic 3D conditions, as long as the cells were not hyperconfluent. The optimal point for cell harvesting was identified as between cell densities of 0.41 and 0.56 × 105 hASCs/cm2 (end of exponential growth phase). The growth model delivered reliable predictions for cell growth, substrate consumption and metabolite production in both types of cultivation systems. Therefore, the model can be used as a basis for future investigations in order to develop a robust MC-based hASC production process for autologous therapies.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
- Correspondence: or ; Tel.: +41-58-934-5334
| | - Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| |
Collapse
|
20
|
Hu C, Zaitseva TS, Alcazar C, Tabada P, Sawamura S, Yang G, Borrelli MR, Wan DC, Nguyen DH, Paukshto MV, Huang NF. Delivery of Human Stromal Vascular Fraction Cells on Nanofibrillar Scaffolds for Treatment of Peripheral Arterial Disease. Front Bioeng Biotechnol 2020; 8:689. [PMID: 32766213 PMCID: PMC7380169 DOI: 10.3389/fbioe.2020.00689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/02/2020] [Indexed: 01/14/2023] Open
Abstract
Cell therapy for treatment of peripheral arterial disease (PAD) is a promising approach but is limited by poor cell survival when cells are delivered using saline. The objective of this study was to examine the feasibility of aligned nanofibrillar scaffolds as a vehicle for the delivery of human stromal vascular fraction (SVF), and then to assess the efficacy of the cell-seeded scaffolds in a murine model of PAD. Flow cytometric analysis was performed to characterize the phenotype of SVF cells from freshly isolated lipoaspirate, as well as after attachment onto aligned nanofibrillar scaffolds. Flow cytometry results demonstrated that the SVF consisted of 33.1 ± 9.6% CD45+ cells, a small fraction of CD45–/CD31+ (4.5 ± 3.1%) and 45.4 ± 20.0% of CD45–/CD31–/CD34+ cells. Although the subpopulations of SVF did not change significantly after attachment to the aligned nanofibrillar scaffolds, protein secretion of vascular endothelial growth factor (VEGF) significantly increased by six-fold, compared to SVF cultured in suspension. Importantly, when SVF-seeded scaffolds were transplanted into immunodeficient mice with induced hindlimb ischemia, the cell-seeded scaffolds induced a significant higher mean perfusion ratio after 14 days, compared to cells delivered using saline. Together, these results show that aligned nanofibrillar scaffolds promoted cellular attachment, enhanced the secretion of VEGF from attached SVF cells, and their implantation with attached SVF cells stimulated blood perfusion recovery. These findings have important therapeutic implications for the treatment of PAD using SVF.
Collapse
Affiliation(s)
- Caroline Hu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | | | - Cynthia Alcazar
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peter Tabada
- Fibralign Corporation, Inc., Union City, CA, United States
| | - Steve Sawamura
- Fibralign Corporation, Inc., Union City, CA, United States
| | - Guang Yang
- The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, United States
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA, United States
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA, United States
| | - Dung H Nguyen
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA, United States
| | | | - Ngan F Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.,The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
21
|
Borrelli MR, Patel RA, Adem S, Diaz Deleon NM, Shen AH, Sokol J, Yen S, Chang EY, Nazerali R, Nguyen D, Momeni A, Wang KC, Longaker MT, Wan DC. The antifibrotic adipose-derived stromal cell: Grafted fat enriched with CD74+ adipose-derived stromal cells reduces chronic radiation-induced skin fibrosis. Stem Cells Transl Med 2020; 9:1401-1413. [PMID: 32563212 PMCID: PMC7581454 DOI: 10.1002/sctm.19-0317] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/04/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Fat grafting can reduce radiation‐induced fibrosis. Improved outcomes are found when fat grafts are enriched with adipose‐derived stromal cells (ASCs), implicating ASCs as key drivers of soft tissue regeneration. We have identified a subpopulation of ASCs positive for CD74 with enhanced antifibrotic effects. Compared to CD74− and unsorted (US) ASCs, CD74+ ASCs have increased expression of hepatocyte growth factor, fibroblast growth factor 2, and transforming growth factor β3 (TGF‐β3) and decreased levels of TGF‐β1. Dermal fibroblasts incubated with conditioned media from CD74+ ASCs produced less collagen upon stimulation, compared to fibroblasts incubated with media from CD74− or US ASCs. Upon transplantation, fat grafts enriched with CD74+ ASCs reduced the stiffness, dermal thickness, and collagen content of overlying skin, and decreased the relative proportions of more fibrotic dermal fibroblasts. Improvements in several extracellular matrix components were also appreciated on immunofluorescent staining. Together these findings indicate CD74+ ASCs have antifibrotic qualities and may play an important role in future strategies to address fibrotic remodeling following radiation‐induced fibrosis.
Collapse
Affiliation(s)
- Mimi R Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ronak A Patel
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sandeep Adem
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Nestor M Diaz Deleon
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Abra H Shen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jan Sokol
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sara Yen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Erin Y Chang
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rahim Nazerali
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dung Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kevin C Wang
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
22
|
Borrelli MR, Patel RA, Blackshear C, Vistnes S, Diaz Deleon NM, Adem S, Shen AH, Sokol J, Momeni A, Nguyen D, Longaker MT, Wan DC. CD34+CD146+ adipose-derived stromal cells enhance engraftment of transplanted fat. Stem Cells Transl Med 2020; 9:1389-1400. [PMID: 32543083 PMCID: PMC7581443 DOI: 10.1002/sctm.19-0195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022] Open
Abstract
Fat grafting is a surgical technique able to reconstruct and regenerate soft tissue. The adipose‐derived stromal cells (ASCs) within the stromal vascular fraction are believed to drive these beneficial effects. ASCs are increasingly recognized to be a heterogeneous group, comprised of multiple stem and progenitor subpopulations with distinct functions. We hypothesized the existence of an ASC subpopulation with enhanced angiogenic potential. Human ASCs that were CD34+CD146+, CD34+CD146−, or CD34+ unfractionated (UF) were isolated by flow cytometry for comparison of expression of proangiogenic factors and endothelial tube‐forming potential. Next, lipoaspirate was enriched with either CD34+CD146+, CD34+CD146−, CD34+ UF ASCs, or was not enriched, and grafted beneath the scalp skin of immunodeficient CD‐1 Nude mice (10 000 cells/200 μL/graft). Fat retention was monitored radiographically more than 8 weeks and fat grafts were harvested for histological assessment of quality and vascularization. The CD34+CD146+ subpopulation comprised ~30% of ASCs, and exhibited increased expression of vascular endothelial growth factor and angiopoietin‐1 compared to CD34+CD146− and CD34+ UF ASCs, and increased expression of fibroblast growth factor‐2 compared to CD34+CD146− ASCs. The CD34+CD146+ subpopulation exhibited enhanced induction of tube‐formation compared to CD34+CD146− ASCs. Upon transplantation, fat enriched CD34+CD146+ ASCs underwent less resorption and had improved histologic quality and vascularization. We have identified a subpopulation of CD34+ ASCs with enhanced angiogenic effects in vitro and in vivo, likely mediated by increased expression of potent proangiogenic factors. These findings suggest that enriching lipoaspirate with CD34+CD146+ ASCs may enhance fat graft vascularization and retention in the clinical setting.
Collapse
Affiliation(s)
- Mimi R Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ronak A Patel
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Charles Blackshear
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stephanie Vistnes
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Nestor M Diaz Deleon
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sandeep Adem
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Abra H Shen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jan Sokol
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dung Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Cui Q, Zhang D, Kong D, Tang J, Liao X, Yang Q, Ren J, Gong Y, Wu G. Co-transplantation with adipose-derived cells to improve parathyroid transplantation in a mice model. Stem Cell Res Ther 2020; 11:200. [PMID: 32456711 PMCID: PMC7249357 DOI: 10.1186/s13287-020-01733-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Accidentally removed parathyroid glands are still challenging in neck surgery, leading to hypoparathyroidism characterized with abnormally low levels of parathyroid hormone. Parathyroid auto-transplantation is usually applied in compensation. To improve the efficiency of parathyroid transplantation, we introduced a method by co-transplanting with adipose-derived cells, including stromal vascular fractions (SVFs) and adipose-derived stem cells (ADSCs), and investigated the underlying molecular mechanisms involved in parathyroid transplantation survival. Methods Rat and human parathyroid tissues were transplanted into nude mice as parathyroid transplantation model to examine the effects of SVFs and ADSCs on grafts angiogenesis and survival rates, including blood vessel assembly and parathyroid hormone levels. Several angiogenic factors, such as vascular endothelial growth factor (VEGF)-A and fibroblast growth factor (FGF) 2, were assessed in parathyroid grafts. The effects of hypoxia were investigated on ADSCs. The modulatory roles of the eyes absent homolog 1 (EYA1), which is vital in parathyroid development, was also investigated on angiogenic factor production and secretion by ADSCs. All experimental data were statistically processed. Student’s t test was used to assess significant differences between 2 groups. For multiple comparisons with additional interventions, two-way ANOVA followed by Tukey’s post hoc test was performed. P < 0.05 was considered as significant. Results SVFs improve rat parathyroid transplantation survival and blood vessel assembly, as well as FGF2 and VEGF-A expression levels in parathyroid transplantation mice. Functional human parathyroid grafts have higher microvessel density and increased VEGF-A expression. The supernatant of ADSCs induced tubule formation and migration of human endothelial cells in vitro. Hypoxia had no effect on proliferation and apoptosis of human ADSCs but induced higher angiogenic factor levels of VEGF-A and FGF2, modulated by EYA1, which was confirmed by parathyroid glands transplantation in mice. Conclusions Adipose-derived cells, including ADSCs and SVFs, improve parathyroid transplantation survival via promoting angiogenesis through EYA1-regulating angiogenetic factors in vitro and in vivo. Our studies proved an effective method to improve the parathyroid autotransplantation, which is promising for clinical patients with hypoparathyroidism when parathyroid glands were accidentally injured, removed, or devascularized.
Collapse
Affiliation(s)
- Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Dan Zhang
- Department of Anesthesiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Deguang Kong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China.
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China.
| |
Collapse
|
24
|
Yin S, Yang X, Bi H, Zhao Z. Combined Use of Autologous Stromal Vascular Fraction Cells and Platelet-Rich Plasma for Chronic Ulceration of the Diabetic Lower Limb Improves Wound Healing. INT J LOW EXTR WOUND 2020; 20:135-142. [PMID: 32131655 DOI: 10.1177/1534734620907978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of stromal vascular fraction cells and platelet-rich plasma in promoting tissue regeneration has prompted a new idea for the treatment of chronic diabetic ulcer of the lower limb. The study aim was to evaluate the clinical efficacy of a new method that applied stromal vascular fraction cells and platelet-rich plasma together in the treatment of recalcitrant chronic diabetic ulcer. We conducted a single-center, prospective, open, noncontrolled study. Four patients (5 ulcers in total) who had received standard treatment for diabetic ulcer for at least 3 months that failed to heal was enrolled. All patients were treated with surgical debridement, cell suspension (stromal vascular fraction cells suspended by platelet-rich plasma) injection into the wound, and platelet-rich plasma gel coverage. Wounds were measured every week after treatment using a 2-dimensional digital camera and a 3-dimensional wound measurement device. All patients were followed-up for 4 months after the treatment. Four of the 5 ulcers healed completely within a mean of 71.75 ± 29.57 days. The average proportion of granulation tissue achieved 100% within 4 weeks for all cases. The wound size decreased to less than half of the original size for all cases 4 weeks after the treatment. Findings revealed that the new treatment is efficient to achieve wound healing in patients with recalcitrant chronic diabetic ulcer of lower limb.
Collapse
Affiliation(s)
- Shilu Yin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Xin Yang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
25
|
Peng Q, Alipour H, Porsborg S, Fink T, Zachar V. Evolution of ASC Immunophenotypical Subsets During Expansion In Vitro. Int J Mol Sci 2020; 21:E1408. [PMID: 32093036 PMCID: PMC7073142 DOI: 10.3390/ijms21041408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) are currently being considered for clinical use for a number of indications. In order to develop standardized clinical protocols, it is paramount to have a full characterization of the stem cell preparations. The surface marker expression of ASCs has previously been characterized in multiple studies. However, most of these studies have provided a cross-sectional description of ASCs in either earlier or later passages. In this study, we evaluate the dynamic changes of 15 different surface molecules during culture. Using multichromatic flow cytometry, ASCs from three different donors each in passages 1, 2, 4, 6, and 8 were analyzed for their co-expression of markers associated with mesenchymal stem cells, wound healing, immune regulation, ASC markers, and differentiation capacity, respectively. We confirmed that at an early stage, ASC displayed a high heterogeneity with a plethora of subpopulations, which by culturing became more homogeneous. After a few passages, virtually all ASCs expressed CD29, CD166 and CD201, in addition to canonical markers CD73, CD90, and CD105. However, even at passage 8, there were several predominant lineages that differed with respect to the expression of CD34, CD200 and CD271. Although the significance of remaining subpopulations still needs to be elucidated, our results underscore the necessity to fully characterize ASCs prior to clinical use.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir Zachar
- Department of Health Science and Technology, Regenerative Medicine Group, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (Q.P.); (H.A.); (S.P.); (T.F.)
| |
Collapse
|
26
|
Borrelli MR, Shen AH, Lee GK, Momeni A, Longaker MT, Wan DC. Radiation-Induced Skin Fibrosis: Pathogenesis, Current Treatment Options, and Emerging Therapeutics. Ann Plast Surg 2019; 83:S59-S64. [PMID: 31513068 PMCID: PMC6746243 DOI: 10.1097/sap.0000000000002098] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiotherapy (RT) has become an indispensable part of oncologic treatment protocols for a range of malignancies. However, a serious adverse effect of RT is radiodermatitis; almost 95% of patients develop moderate to severe skin reactions following radiation treatment. In the acute setting, these can be erythema, desquamation, ulceration, and pain. Chronically, soft tissue atrophy, alopecia, and stiffness can be noted. Radiodermatitis can delay oncologic treatment protocols and significantly impair quality of life. There is currently a paucity of effective treatment options and prevention strategies for radiodermatitis. Importantly, recent preclinical and clinical studies have suggested that fat grafting may be of therapeutic benefit, reversing detrimental changes to soft tissue following RT. This review outlines the damaging effects of RT on the skin and soft tissue as well as discusses available treatment options for radiodermatitis. Emerging strategies to mitigate detrimental, chronic radiation-induced changes are also presented.
Collapse
Affiliation(s)
- Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Abra H. Shen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Gordon K. Lee
- Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Palo Alto, California
| | - Arash Momeni
- Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Palo Alto, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
27
|
Discussion: Adipose-Derived Stem Cells and Ceiling Culture-Derived Preadipocytes Cultured from Subcutaneous Fat Tissue Differ in Their Epigenetic Characteristics and Osteogenic Potential. Plast Reconstr Surg 2019; 144:656-657. [PMID: 31461021 DOI: 10.1097/prs.0000000000005914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Di Benedetto P, Ruscitti P, Liakouli V, Del Galdo F, Giacomelli R, Cipriani P. Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review). Mol Med Rep 2019; 20:1488-1498. [PMID: 31257535 DOI: 10.3892/mmr.2019.10429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is characterized by excessive extracellular matrix (ECM) deposition, and is the pathological outcome of tissue injury in a number of disorders. Accumulation of the ECM may disrupt the structure and function of native tissues and organs, including the lungs, heart, liver and skin, resulting in significant morbidity and mortality. On this basis, multiple lines of evidence have focused on the molecular pathways and cellular mechanisms involved in fibrosis, which has led to the development of novel antifibrotic therapies. CD248 is one of several proteins identified to be localized to the stromal compartment in cancers and fibroproliferative disease, and may serve a key role in myofibroblast generation and accumulation. Numerous studies have supported the contribution of CD248 to tumour growth and fibrosis, stimulating interest in this molecule as a therapeutic target. In addition, it has been revealed that CD248 may be involved in pathological angiogenesis. The present review describes the current understanding of the structure and function of CD248 during angiogenesis and fibrosis, supporting the hypothesis that blocking CD248 signalling may prevent both myofibroblast generation and microvascular alterations during tissue fibrosis.
Collapse
Affiliation(s)
- Paola Di Benedetto
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Vasiliki Liakouli
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Francesco Del Galdo
- Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Roberto Giacomelli
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| |
Collapse
|
29
|
da Silva LP, Reis RL, Correlo VM, Marques AP. Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annu Rev Biomed Eng 2019; 21:145-169. [DOI: 10.1146/annurev-bioeng-060418-052422] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic skin wounds are the leading cause of nontraumatic foot amputations worldwide and present a significant risk of morbidity and mortality due to the lack of efficient therapies. The intrinsic characteristics of hydrogels allow them to benefit cutaneous healing essentially by supporting a moist environment. This property has long been explored in wound management to aid in autolytic debridement. However, chronic wounds require additional therapeutic features that can be provided by a combination of hydrogels with biochemical mediators or cells, promoting faster and better healing. We survey hydrogel-based approaches with potential to improve the healing of chronic wounds by reviewing their effects as observed in preclinical models. Topics covered include strategies to ablate infection and resolve inflammation, the delivery of bioactive agents to accelerate healing, and tissue engineering approaches for skin regeneration. The article concludes by considering the relevance of treating chronic skin wounds using hydrogel-based strategies.
Collapse
Affiliation(s)
- Lucília P. da Silva
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Vitor M. Correlo
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Alexandra P. Marques
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
30
|
Long-Lasting Anti-Inflammatory Activity of Human Microfragmented Adipose Tissue. Stem Cells Int 2019; 2019:5901479. [PMID: 30915125 PMCID: PMC6399530 DOI: 10.1155/2019/5901479] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Over the last few years, human microfragmented adipose tissue (MFAT), containing significant levels of mesenchymal stromal cells (MSCs) and obtained from fat lipoaspirate (LP) through a minimal manipulation in a closed system device, has been successfully used in aesthetic medicine as well as in orthopedic and general surgery. Interestingly, in orthopedic diseases, this ready-to-use adipose tissue cell derivative seems to have a prolonged time efficacy even upon a single shot injection into osteoarthritic tissues. Here, we investigated the long-term survival and content of MSCs as well the anti-inflammatory activity of LP and its derived MFAT in vitro, with the aim to better understand a possible in vivo mechanism of action. MFAT and LP specimens from 17 human donors were investigated side by side. During a long-term culture in serum-free medium, we found that the total cell number as well the MSC content in MFAT decreased more slowly if compared to those from LP specimens. The analysis of cytokines and growth factors secreted into the conditioned medium (CM) was similar in MFAT and LP during the first week of culture, but the total amount of cytokines secreted by LP decreased much more rapidly than those produced by MFAT during prolonged culture (up to 28 days). Similarly, the addition of MFAT-CM recovered at early (3-7 days) and late stage (14-28 days) of culture strongly inhibited inflammatory function of U937 monocyte cell line, whereas the anti-inflammatory activity of LP-CM was drastically reduced after only 7 days of culture. We conclude that MFAT is an effective preparation with a long-lasting anti-inflammatory activity probably mediated by a long-term survival of their MSC content that releases a combination of cytokines that affect several mechanisms involved in inflammation processes.
Collapse
|
31
|
Teicher BA. CD248: A therapeutic target in cancer and fibrotic diseases. Oncotarget 2019; 10:993-1009. [PMID: 30847027 PMCID: PMC6398180 DOI: 10.18632/oncotarget.26590] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/22/2018] [Indexed: 01/07/2023] Open
Abstract
CD248/endosialin/TEM1 is a type 1 transmembrane glycoprotein found on the plasma membrane of activated mesenchymal cells. CD248 functions during embryo development and is either not expressed or found at very low levels in adult tissues. CD248 is expressed at high levels by malignant sarcoma cells, by the pericyte component of tumor vasculature and by mesenchymal cells in some fibrotic diseases. CD248 is being targeted by several experimental therapeutics including antibodies, antibody drug conjugates, as an antigen for CART cells and in therapeutic vaccines. Although the function of CD248 has yet to be fully elucidated, this protein is a potential broad scope therapeutic target.
Collapse
Affiliation(s)
- Beverly A Teicher
- Molecular Pharmacology Branch, Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda 20892, MD, USA
| |
Collapse
|
32
|
Marklein RA, Klinker MW, Drake KA, Polikowsky HG, Lessey-Morillon EC, Bauer SR. Morphological profiling using machine learning reveals emergent subpopulations of interferon-γ-stimulated mesenchymal stromal cells that predict immunosuppression. Cytotherapy 2018; 21:17-31. [PMID: 30503100 DOI: 10.1016/j.jcyt.2018.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although a preponderance of pre-clinical data demonstrates the immunosuppressive potential of mesenchymal stromal cells (MSCs), significant heterogeneity and lack of critical quality attributes (CQAs) based on immunosuppressive capacity likely have contributed to inconsistent clinical outcomes. This heterogeneity exists not only between MSC lots derived from different donors, tissues and manufacturing conditions, but also within a given MSC lot in the form of functional subpopulations. We therefore explored the potential of functionally relevant morphological profiling (FRMP) to identify morphological subpopulations predictive of the immunosuppressive capacity of MSCs derived from multiple donors, manufacturers and passages. METHODS We profiled the single-cell morphological response of MSCs from different donors and passages to the functionally relevant inflammatory cytokine interferon (IFN)-γ. We used the machine learning approach visual stochastic neighbor embedding (viSNE) to identify distinct morphological subpopulations that could predict suppression of activated CD4+ and CD8+ T cells in a multiplexed quantitative assay. RESULTS Multiple IFN-γ-stimulated subpopulations significantly correlated with the ability of MSCs to inhibit CD4+ and CD8+ T-cell activation and served as effective CQAs to predict the immunosuppressive capacity of additional manufactured MSC lots. We further characterized the emergence of morphological heterogeneity following IFN-γ stimulation, which provides a strategy for identifying functional subpopulations for future single-cell characterization and enrichment techniques. DISCUSSION This work provides a generalizable analytical platform for assessing functional heterogeneity based on single-cell morphological responses that could be used to identify novel CQAs and inform cell manufacturing decisions.
Collapse
Affiliation(s)
- Ross A Marklein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA; School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA.
| | - Matthew W Klinker
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | - Elizabeth C Lessey-Morillon
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
33
|
Panina YA, Yakimov AS, Komleva YK, Morgun AV, Lopatina OL, Malinovskaya NA, Shuvaev AN, Salmin VV, Taranushenko TE, Salmina AB. Plasticity of Adipose Tissue-Derived Stem Cells and Regulation of Angiogenesis. Front Physiol 2018; 9:1656. [PMID: 30534080 PMCID: PMC6275221 DOI: 10.3389/fphys.2018.01656] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue is recognized as an important organ with metabolic, regulatory, and plastic roles. Adipose tissue-derived stem cells (ASCs) with self-renewal properties localize in the stromal vascular fraction (SVF) being present in a vascular niche, thereby, contributing to local regulation of angiogenesis and vessel remodeling. In the past decades, ASCs have attracted much attention from biologists and bioengineers, particularly, because of their multilineage differentiation potential, strong proliferation, and migration abilities in vitro and high resistance to oxidative stress and senescence. Current data suggest that the SVF serves as an important source of endothelial progenitors, endothelial cells, and pericytes, thereby, contributing to vessel remodeling and growth. In addition, ASCs demonstrate intriguing metabolic and interlineage plasticity, which makes them good candidates for creating regenerative therapeutic protocols, in vitro tissue models and microphysiological systems, and tissue-on-chip devices for diagnostic and regeneration-supporting purposes. This review covers recent achievements in understanding the metabolic activity within the SVF niches (lactate and NAD+ metabolism), which is critical for maintaining the pool of ASCs, and discloses their pro-angiogenic potential, particularly, in the complex therapy of cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Yulia A Panina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Anton S Yakimov
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V Morgun
- Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Tatiana E Taranushenko
- Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
34
|
Hu MS, Longaker MT. Wound Healing Research at the Hagey Laboratory for Pediatric Regenerative Medicine at Stanford University School of Medicine. Adv Wound Care (New Rochelle) 2018; 7:257-261. [PMID: 30087801 DOI: 10.1089/wound.2018.0787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
35
|
Morselli PG, Giorgini FA, Pazzini C, Muscari C. Lull pgm system: A suitable technique to improve the regenerative potential of autologous fat grafting. Wound Repair Regen 2017; 25:722-729. [PMID: 28905449 DOI: 10.1111/wrr.12582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
Autologous fat grafting and methods of purification of harvested tissue have become one of the most current themes in regenerative medicine. The aim of this study was to evaluate the in vitro regenerative potential of abdomen lipoaspirates subjected to a combined washing-decantation purifying procedure, the Lull pgm System (Lull). Blood cells and stromal-vascular fraction (SVF) cells contained in the aspirates were investigated and compared with those obtained through more conventional fat-processing methods, that is, the decantation and Coleman's centrifugation techniques. The lowest number of erythrocytes, which are proinflammatory cells, was observed in the Lull samples, corresponding to about 50% of those isolated by decantation and centrifugation. The highest amount of SVF cells were isolated from the Lull samples whose number of colony forming units, representative of the amount of adipose-derived stem cells (ADSCs), was about fourfold and sixfold higher than in the decantation and centrifugation samples, respectively. Adipocyte and osteoblast commitment of SVF cells obtained from all the three procedures also confirmed that the subpopulation of ADSCs was actively represented in the processed aspirates. Moreover, the growth rate of the SVF cells was more accentuated in the samples obtained from decantation and Lull than centrifugation. In conclusion, Lull seems to be the best processing technique for adipose tissue graft with respect to decantation and centrifugation, because it clears more efficiently the fat from proinflammatory blood cells and provides the greatest number of proliferating SFV cells and ADSCs.
Collapse
Affiliation(s)
- Paolo G Morselli
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna, Italy
| | - Federico A Giorgini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna, Italy
| | - Claudia Pazzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Muscari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|