1
|
Zhu Z, Zhou S, Li S, Gong S, Zhang Q. Neutrophil extracellular traps in wound healing. Trends Pharmacol Sci 2024:S0165-6147(24)00205-0. [PMID: 39419742 DOI: 10.1016/j.tips.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Wound healing is a complex and orchestrated process that involves hemostasis, inflammation, proliferation, and tissue remodeling. Neutrophil extracellular traps (NETs) are intricate web-like structures released by neutrophils, comprising decondensed chromatin, myeloperoxidase (MPO), and neutrophil elastase (NE), which play vital roles in regulating neutrophil-mediated immune regulation. While NETs contribute to wound healing, excessive activation induced by dysregulated inflammation can hinder the healing process. Understanding the pivotal role of NETs in wound healing and tissue remodeling, as well as their intricate interactions within the wound microenvironment, presents opportunities for innovative wound healing strategies. In this review we discuss the process of NET formation, explore the interactions between NETs and skin cells, and examine therapeutic strategies targeting NETs and drug delivery platforms to accelerate wound healing. Additionally, we discuss current clinical investigations and research challenges towards advancing wound care practices.
Collapse
Affiliation(s)
- Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shengzhi Zhou
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| |
Collapse
|
2
|
van der Leeden B, Korkmaz HI, Vlig M, Waas ISE, Boekema BKHL, Hassan C, van Zuijlen PPM, Niessen HWM, Gibbs S, Krijnen PAJ. Intraluminal release of citrullinated histone 3 from various cellular origins coincides with microvascular thrombosis in burn wounds. Eur J Immunol 2024; 54:e2350792. [PMID: 38727188 DOI: 10.1002/eji.202350792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 08/09/2024]
Abstract
Loss of perfusion in the burn wound might cause wound deepening and impaired healing. We previously showed persistent microvascular thrombosis coinciding with intraluminal neutrophils extracellular traps in human burned skin. This study investigates the presence of intraluminal citrullinated histone 3 (H3cit) from different cellular origins (neutrophils, monocytes, and lymphocytes) in relation to microvascular thrombosis of burn wounds. Eschar was obtained from burn patients (n = 18) 6-40 days postburn with a mean total burned body surface area of 23%. Microvascular presence of tissue factor (TF), factor XII (FXII) and thrombi was assessed by immunohistochemistry. Intramicrovascular cell death was analyzed via immunofluorescent microscopy, combining antibodies for neutrophils (MPO), monocytes (CD14), and lymphocytes (CD45) with endothelial cell markers CD31 and H3cit. Significantly increased microvascular expression of TF, FXII, and thrombi (CD31+) was found in all eschar samples compared with control uninjured skin. Release of H3cit from different cellular origins was observed in the lumen of the dermal microvasculature in the eschar tissue 7-40 days postburn, with release from neutrophilic origin being 2.7 times more abundant. Intraluminal presence of extracellular H3cit colocalizing with either MPO, CD14, or CD45 is correlated to increased microvascular thrombosis in eschar of burn patients.
Collapse
Affiliation(s)
- Britt van der Leeden
- Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Inflammatory Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - H Ibrahim Korkmaz
- Association of Dutch Burn Centers, Beverwijk, the Netherlands
- Molecular cell biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Burn Center and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universtiteit Amsterdam, Amsterdam, the Netherlands
| | - Marcel Vlig
- Association of Dutch Burn Centers, Beverwijk, the Netherlands
| | - Ingeborg S E Waas
- Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bouke K H L Boekema
- Association of Dutch Burn Centers, Beverwijk, the Netherlands
- Burn Center and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk, the Netherlands
| | | | - Paul P M van Zuijlen
- Burn Center and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universtiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Pediatric Surgical Centre, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Hans W M Niessen
- Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Cardiac Surgery, AUMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, AUMC, Amsterdam, the Netherlands
| | - Susan Gibbs
- Molecular cell biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands
| | - Paul A J Krijnen
- Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, AUMC, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Zang T, Fear MW, Parker TJ, Holland AJA, Martin L, Langley D, Kimble R, Wood FM, Cuttle L. Inflammatory proteins and neutrophil extracellular traps increase in burn blister fluid 24h after burn. Burns 2024; 50:1180-1191. [PMID: 38490838 DOI: 10.1016/j.burns.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Burn wound blister fluid is a valuable matrix for understanding the biological pathways associated with burn injury. In this study, 152 blister fluid samples collected from paediatric burn wounds at three different hospitals were analysed using mass spectrometry proteomic techniques. The protein abundance profile at different days after burn indicated more proteins were associated with cellular damage/repair in the first 24 h, whereas after this point more proteins were associated with antimicrobial defence. The inflammatory proteins persisted at a high level in the blister fluid for more than 7 days. This may indicate that removal of burn blisters prior to two days after burn is optimal to prevent excessive or prolonged inflammation in the wound environment. Additionally, many proteins associated with the neutrophil extracellular trap (NET) pathway were increased after burn, further implicating NETs in the post-burn inflammatory response. NET inhibitors may therefore be a potential treatment to reduce post-burn inflammation and coagulation pathology and enhance burn wound healing outcomes.
Collapse
Affiliation(s)
- Tuo Zang
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Tony J Parker
- Queensland University of Technology (QUT), School of Biomedical Sciences, Faculty of Health, Kelvin Grove, Queensland, Australia
| | - Andrew J A Holland
- The Children's Hospital at Westmead Burns Unit, Kids Research Institute, Department of Paediatrics and Child Health, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Lisa Martin
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Donna Langley
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Roy Kimble
- Children's Health Queensland, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital and Fiona Stanley Hospital, Perth, WA, Australia
| | - Leila Cuttle
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Zhao X, Chen Y, Lin Z, Jin X, Su B, Liu X, Yang M, Chen K, Zhu M, Wang L, Zhu YZ. H 2S donor S-propargyl-cysteine for skin wound healing improvement via smart transdermal delivery. MedComm (Beijing) 2024; 5:e485. [PMID: 38434762 PMCID: PMC10908363 DOI: 10.1002/mco2.485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Hydrogen sulfide for wound healing has drawn a lot of attention recently. In this research, the S-propargyl-cysteine (SPRC), an endogenous H2S donor, was loaded on carbomer hydrogel, and a copper sheet rat burn model was developed. Pathological changes in rat skin tissue were examined using hematoxylin-eosin (HE) and Masson staining. The immunohistochemistry (IHC) staining was performed to detect the expression of Collagen I (Col I) and Collagen III (Col III). The mRNA levels of interleukin (IL)-6, Col Iα2, Col IIIα1, tissue inhibitors of metalloproteinase (TIMP)-1, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β1 were examined by quantitative real-time chain polymerase reaction. The findings demonstrated that the collagen layer was thicker in the SPRC group during the proliferative phase, SPRC hydrogel promoted VEGF expression. In the late stage of wound healing, the expression of IL-6, TIMP-1, MMP-9, and TGF-β1 was inhibited, and the Col I content was closer to that of normal tissue. These results surface that SPRC hydrogel can promote wound healing and play a positive role in reducing scar formation. Our results imply that SPRC can facilitate wound healing and play a positive role in reducing scar formation.
Collapse
Affiliation(s)
- Xiaoqing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina
- Department of Medical CosmetologyAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Zhongxiao Lin
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Xinyang Jin
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Bolun Su
- School of MedicineMacau University of Science and TechnologyMacauChina
| | - Xiaotong Liu
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Mao Yang
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Keyuan Chen
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Menglin Zhu
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Lei Wang
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina
- School of PharmacyMacau University of Science and TechnologyMacauChina
| |
Collapse
|
5
|
Ho JW, Quan C, Gauger MA, Alam HB, Li Y. ROLE OF PEPTIDYLARGININE DEIMINASE AND NEUTROPHIL EXTRACELLULAR TRAPS IN INJURIES: FUTURE NOVEL DIAGNOSTICS AND THERAPEUTIC TARGETS. Shock 2023; 59:247-255. [PMID: 36597759 PMCID: PMC9957939 DOI: 10.1097/shk.0000000000002052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT Injuries lead to an early systemic inflammatory state with innate immune system activation. Neutrophil extracellular traps (NETs) are a complex of chromatin and proteins released from the activated neutrophils. Although initially described as a response to bacterial infections, NETs have also been identified in the sterile postinjury inflammatory state. Peptidylarginine deiminases (PADs) are a group of isoenzymes that catalyze the conversion of arginine to citrulline, termed citrullination or deimination. PAD2 and PAD4 have been demonstrated to play a role in NET formation through citrullinated histone 3. PAD2 and PAD4 have a variety of substrates with variable organ distribution. Preclinical and clinical studies have evaluated the role of PADs and NETs in major trauma, hemorrhage, burns, and traumatic brain injury. Neutrophil extracellular trap formation and PAD activation have been shown to contribute to the postinjury inflammatory state leading to a detrimental effect on organ systems. This review describes our current understanding of the role of PAD and NET formation following injury and burn. This is a new field of study, and the emerging data appear promising for the future development of targeted biomarkers and therapies in trauma.
Collapse
Affiliation(s)
- Jessie W. Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Chao Quan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Megan A. Gauger
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hasan B. Alam
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yongqing Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
6
|
Korkmaz HI, Flokstra G, Waasdorp M, Pijpe A, Papendorp SG, de Jong E, Rustemeyer T, Gibbs S, van Zuijlen PPM. The Complexity of the Post-Burn Immune Response: An Overview of the Associated Local and Systemic Complications. Cells 2023; 12:345. [PMID: 36766687 PMCID: PMC9913402 DOI: 10.3390/cells12030345] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Burn injury induces a complex inflammatory response, both locally and systemically, and is not yet completely unravelled and understood. In order to enable the development of accurate treatment options, it is of paramount importance to fully understand post-burn immunology. Research in the last decades describes insights into the prolonged and excessive inflammatory response that could exist after both severe and milder burn trauma and that this response differs from that of none-burn acute trauma. Persistent activity of complement, acute phase proteins and pro- and anti-inflammatory mediators, changes in lymphocyte activity, activation of the stress response and infiltration of immune cells have all been related to post-burn local and systemic pathology. This "narrative" review explores the current state of knowledge, focusing on both the local and systemic immunology post-burn, and further questions how it is linked to the clinical outcome. Moreover, it illustrates the complexity of post-burn immunology and the existing gaps in knowledge on underlying mechanisms of burn pathology.
Collapse
Affiliation(s)
- H. Ibrahim Korkmaz
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity (AII) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
- Association of Dutch Burn Centres (ADBC), 1941 AJ Beverwijk, The Netherlands
| | - Gwendolien Flokstra
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity (AII) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Maaike Waasdorp
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity (AII) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Anouk Pijpe
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
- Association of Dutch Burn Centres (ADBC), 1941 AJ Beverwijk, The Netherlands
| | - Stephan G. Papendorp
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
- Intensive Care Unit, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
| | - Evelien de Jong
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
- Intensive Care Unit, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
| | - Thomas Rustemeyer
- Department of Dermatology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity (AII) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Paul P. M. van Zuijlen
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
- Association of Dutch Burn Centres (ADBC), 1941 AJ Beverwijk, The Netherlands
- Paediatric Surgical Centre, Emma Children’s Hospital, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
Korkmaz HI, Niessen FB, Pijpe A, Sheraton VM, Vermolen FJ, Krijnen PA, Niessen HW, Sloot PM, Middelkoop E, Gibbs S, van Zuijlen PP. Scar formation from the perspective of complexity science: a new look at the biological system as a whole. J Wound Care 2022; 31:178-184. [PMID: 35148632 DOI: 10.12968/jowc.2022.31.2.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A burn wound is a complex systemic disease at multiple levels. Current knowledge of scar formation after burn injury has come from traditional biological and clinical studies. These are normally focused on just a small part of the entire process, which has limited our ability to sufficiently understand the underlying mechanisms and to predict systems behaviour. Scar formation after burn injury is a result of a complex biological system-wound healing. It is a part of a larger whole. In this self-organising system, many components form networks of interactions with each other. These networks of interactions are typically non-linear and change their states dynamically, responding to the environment and showing emergent long-term behaviour. How molecular and cellular data relate to clinical phenomena, especially regarding effective therapies of burn wounds to achieve minimal scarring, is difficult to unravel and comprehend. Complexity science can help bridge this gap by integrating small parts into a larger whole, such that relevant biological mechanisms and data are combined in a computational model to better understand the complexity of the entire biological system. A better understanding of the complex biological system of post-burn scar formation could bring research and treatment regimens to the next level. The aim of this review/position paper is to create more awareness of complexity in scar formation after burn injury by describing the basic principles of complexity science and its potential for burn care professionals.
Collapse
Affiliation(s)
- H Ibrahim Korkmaz
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, The Netherlands.,Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Frank B Niessen
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Anouk Pijpe
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, The Netherlands
| | - Vivek M Sheraton
- Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands
| | - Fred J Vermolen
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.,Computational Mathematics, Hasselt University, Diepenbeek, Belgium
| | - Paul Aj Krijnen
- Department of Pathology and Cardiac Surgery, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Hans Wm Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Peter Ma Sloot
- Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands.,Complexity Institute, Nanyang Technological University, Singapore.,ITMO University, Saint Petersburg, Russian Federation
| | - Esther Middelkoop
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, The Netherlands.,Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul Pm van Zuijlen
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, The Netherlands.,Paediatric Surgical Centre, Emma Children's Hospital, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Laggner M, Lingitz MT, Copic D, Direder M, Klas K, Bormann D, Gugerell A, Moser B, Radtke C, Hacker S, Mildner M, Ankersmit HJ, Haider T. Severity of thermal burn injury is associated with systemic neutrophil activation. Sci Rep 2022; 12:1654. [PMID: 35102298 PMCID: PMC8803945 DOI: 10.1038/s41598-022-05768-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Burn injuries elicit a unique and dynamic stress response which can lead to burn injury progression. Though neutrophils represent crucial players in the burn-induced immunological events, the dynamic secretion pattern and systemic levels of neutrophil-derived factors have not been investigated in detail so far. Serum levels of neutrophil elastase (NE), myeloperoxidase (MPO), citrullinated histone H3 (CitH3), and complement factor C3a were quantified in burn victims over 4 weeks post injury. Furthermore, the potential association with mortality, degree of burn injury, and inhalation trauma was evaluated. In addition, leukocyte, platelet, neutrophil, and lymphocyte counts were assessed. Lastly, we analyzed the association of neutrophil-derived factors with clinical severity scoring systems. Serum levels of NE, MPO, CitH3, and C3a were remarkably elevated in burn victims compared to healthy controls. Leukocyte and neutrophil counts were significantly increased on admission day and day 1, while relative lymphocytes were decreased in the first 7 days post burn trauma. Though neutrophil-derived factors did not predict mortality, patients suffering from 3rd degree burn injuries displayed increased CitH3 and NE levels. Accordingly, CitH3 and NE were elevated in cases with higher abbreviated burn severity indices (ABSI). Taken together, our data suggest a role for neutrophil activation and NETosis in burn injuries and burn injury progression. Targeting exacerbated neutrophil activation might represent a new therapeutic option for severe cases of burn injury.
Collapse
Affiliation(s)
- Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Marie-Therese Lingitz
- Division of General Anesthesia and Intensive Care Medicine, Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Dragan Copic
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Martin Direder
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Katharina Klas
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Daniel Bormann
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Alfred Gugerell
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Bernhard Moser
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Stefan Hacker
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Landesklinikum Wiener Neustadt, 2700, Wiener Neustadt, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria.
| | - Thomas Haider
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Zahn KB, Franz AM, Schaible T, Rafat N, Büttner S, Boettcher M, Wessel LM. Small Bowel Obstruction After Neonatal Repair of Congenital Diaphragmatic Hernia-Incidence and Risk-Factors Identified in a Large Longitudinal Cohort-Study. Front Pediatr 2022; 10:846630. [PMID: 35656380 PMCID: PMC9152166 DOI: 10.3389/fped.2022.846630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE In patients with a congenital diaphragmatic hernia (CDH), postoperative small bowel obstruction (SBO) is a life-threatening event. Literature reports an incidence of SBO of 20% and an association with patch repair and ECMO treatment. Adhesions develop due to peritoneal damage and underly various biochemical and cellular processes. This longitudinal cohort study is aimed at identifying the incidence of SBO and the risk factors of surgical, pre-, and postoperative treatment. METHODS We evaluated all consecutive CDH survivors born between January 2009 and December 2017 participating in our prospective long-term follow-up program with a standardized protocol. RESULTS A total of 337 patients were included, with a median follow-up of 4 years. SBO with various underlying causes was observed in 38 patients (11.3%) and significantly more often after open surgery (OS). The majority of SBOs required surgical intervention (92%). Adhesive SBO (ASBO) was detected as the leading cause in 17 of 28 patients, in whom surgical reports were available. Duration of chest tube insertion [odds ratio (OR) 1.22; 95% CI 1.01-1.46, p = 0.04] was identified as an independent predictor for ASBO in multivariate analysis. Beyond the cut-off value of 16 days, the incidence of serous effusion and chylothorax was higher in patients with ASBO (ASBO/non-SBO: 2/10 vs. 3/139 serous effusion, p = 0.04; 2/10 vs. 13/139 chylothorax, p = 0.27). Type of diaphragmatic reconstruction, abdominal wall closure, or ECMO treatment showed no significant association with ASBO. A protective effect of one or more re-operations has been detected (RR 0.16; 95% CI 0.02-1.17; p = 0.049). CONCLUSION Thoracoscopic CDH repair significantly lowers the risk of SBO; however, not every patient is suitable for this approach. GoreTex®-patches do not seem to affect the development of ASBO, while median laparotomy might be more favorable than a subcostal incision. Neonates produce more proinflammatory cytokines and have a reduced anti-inflammatory capacity, which may contribute to the higher incidence of ASBO in patients with a longer duration of chest tube insertion, serous effusion, chylothorax, and to the protective effect of re-operations. In the future, novel therapeutic strategies based on a better understanding of the biochemical and cellular processes involved in the pathophysiology of adhesion formation might contribute to a reduction of peritoneal adhesions and their associated morbidity and mortality.
Collapse
Affiliation(s)
- Katrin B Zahn
- Department of Pediatric Surgery, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany.,ERNICA Centre, Mannheim, Germany
| | - Anna-Maria Franz
- Department of Pediatric Surgery, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany.,ERNICA Centre, Mannheim, Germany
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Neysan Rafat
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sylvia Büttner
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany.,ERNICA Centre, Mannheim, Germany
| | - Lucas M Wessel
- Department of Pediatric Surgery, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany.,ERNICA Centre, Mannheim, Germany
| |
Collapse
|
10
|
Zhu S, Yu Y, Ren Y, Xu L, Wang H, Ling X, Jin L, Hu Y, Zhang H, Miao C, Guo K. The emerging roles of neutrophil extracellular traps in wound healing. Cell Death Dis 2021; 12:984. [PMID: 34686654 PMCID: PMC8536667 DOI: 10.1038/s41419-021-04294-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Delayed wound healing causes problems for many patients both physically and psychologically, contributing to pain, economic burden, loss of function, and even amputation. Although many factors affect the wound healing process, abnormally prolonged or augmented inflammation in the wound site is a common cause of poor wound healing. Excessive neutrophil extracellular trap (NET) formation during this phase may amplify inflammation and hinder wound healing. However, the roles of NETs in wound healing are still unclear. Herein, we briefly introduce NET formation and discuss the possible NET-related mechanisms in wound healing. We conclude with a discussion of current studies, focusing on the roles of NETs in diabetic and normoglycemic wounds and the effectiveness of NET-targeting treatments in wound healing.
Collapse
Affiliation(s)
- Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Ren
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liying Xu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomin Ling
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Clostridium Collagenase Impact on Zone of Stasis Stabilization and Transition to Healthy Tissue in Burns. Int J Mol Sci 2021; 22:ijms22168643. [PMID: 34445347 PMCID: PMC8395468 DOI: 10.3390/ijms22168643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Clostridium collagenase has provided superior clinical results in achieving digestion of immediate and accumulating devitalized collagen tissue. Recent studies suggest that debridement via Clostridium collagenase modulates a cellular response to foster an anti-inflammatory microenvironment milieu, allowing for a more coordinated healing response. In an effort to better understand its role in burn wounds, we evaluated Clostridium collagenase’s ability to effectively minimize burn progression using the classic burn comb model in pigs. Following burn injury, wounds were treated with Clostridium collagenase or control vehicle daily and biopsied at various time points. Biopsies were evaluated for factors associated with progressing necrosis as well as inflammatory response associated with treatment. Data presented herein showed that Clostridium collagenase treatment prevented destruction of dermal collagen. Additionally, treatment with collagenase reduced necrosis (HMGB1) and apoptosis (CC3a) early in burn injuries, allowing for increased infiltration of cells and protecting tissue from conversion. Furthermore, early epidermal separation and epidermal loss with a clearly defined basement membrane was observed in the treated wounds. We also show that collagenase treatment provided an early and improved inflammatory response followed by faster resolution in neutrophils. In assessing the inflammatory response, collagenase-treated wounds exhibited significantly greater neutrophil influx at day 1, with macrophage recruitment throughout days 2 and 4. In further evaluation, macrophage polarization to MHC II and vascular network maintenance were significantly increased in collagenase-treated wounds, indicative of a pro-resolving macrophage environment. Taken together, these data validate the impact of clostridial collagenases in the pathophysiology of burn wounds and that they complement patient outcomes in the clinical scenario.
Collapse
|
12
|
Gusev E, Sarapultsev A, Hu D, Chereshnev V. Problems of Pathogenesis and Pathogenetic Therapy of COVID-19 from the Perspective of the General Theory of Pathological Systems (General Pathological Processes). Int J Mol Sci 2021; 22:7582. [PMID: 34299201 PMCID: PMC8304657 DOI: 10.3390/ijms22147582] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
The COVID-19 pandemic examines not only the state of actual health care but also the state of fundamental medicine in various countries. Pro-inflammatory processes extend far beyond the classical concepts of inflammation. They manifest themselves in a variety of ways, beginning with extreme physiology, then allostasis at low-grade inflammation, and finally the shockogenic phenomenon of "inflammatory systemic microcirculation". The pathogenetic core of critical situations, including COVID-19, is this phenomenon. Microcirculatory abnormalities, on the other hand, lie at the heart of a specific type of general pathological process known as systemic inflammation (SI). Systemic inflammatory response, cytokine release, cytokine storm, and thrombo-inflammatory syndrome are all terms that refer to different aspects of SI. As a result, the metabolic syndrome model does not adequately reflect the pathophysiology of persistent low-grade systemic inflammation (ChSLGI). Diseases associated with ChSLGI, on the other hand, are risk factors for a severe COVID-19 course. The review examines the role of hypoxia, metabolic dysfunction, scavenger receptors, and pattern-recognition receptors, as well as the processes of the hemophagocytic syndrome, in the systemic alteration and development of SI in COVID-19.
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia; (E.G.); (V.C.)
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia; (E.G.); (V.C.)
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 200092, China;
| | - Valeriy Chereshnev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia; (E.G.); (V.C.)
| |
Collapse
|
13
|
Hao D, Nourbakhsh M. Recent Advances in Experimental Burn Models. BIOLOGY 2021; 10:526. [PMID: 34204763 PMCID: PMC8231482 DOI: 10.3390/biology10060526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Experimental burn models are essential tools for simulating human burn injuries and exploring the consequences of burns or new treatment strategies. Unlike clinical studies, experimental models allow a direct comparison of different aspects of burns under controlled conditions and thereby provide relevant information on the molecular mechanisms of tissue damage and wound healing, as well as potential therapeutic targets. While most comparative burn studies are performed in animal models, a few human or humanized models have been successfully employed to study local events at the injury site. However, the consensus between animal and human studies regarding the cellular and molecular nature of systemic inflammatory response syndrome (SIRS), scarring, and neovascularization is limited. The many interspecies differences prohibit the outcomes of animal model studies from being fully translated into the human system. Thus, the development of more targeted, individualized treatments for burn injuries remains a major challenge in this field. This review focuses on the latest progress in experimental burn models achieved since 2016, and summarizes the outcomes regarding potential methodological improvements, assessments of molecular responses to injury, and therapeutic advances.
Collapse
Affiliation(s)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
14
|
Heuer A, Stiel C, Elrod J, Königs I, Vincent D, Schlegel P, Trochimiuk M, Appl B, Reinshagen K, Raluy LP, Boettcher M. Therapeutic Targeting of Neutrophil Extracellular Traps Improves Primary and Secondary Intention Wound Healing in Mice. Front Immunol 2021; 12:614347. [PMID: 33717100 PMCID: PMC7947714 DOI: 10.3389/fimmu.2021.614347] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background Neutrophils are the first responders in wound healing after injury that mediate pro- and anti-inflammatory activities i.a. through the formation of extracellular traps (NETs). However, excessive NETs presence in wound tissue can cause local hyperinflammation and -coagulation resulting in delayed wound healing. To improve wound healing, we aimed to examine the role of NETs and DNase1 on primary and secondary wound healing. Methods The study included 93 C57BL/6 mice, with 3 different genotypes: wildtype, Pad4-, and DNase1-Knockout (KO). Pad4-KO mice show limited NETs formation, while DNase1-KO mice cannot disintegrate them. All 3 genotypes were included in (1) a laparotomy group and (2) a thermal injury group. Animals in both groups either received DNase1 or a vehicle i.p. post wound induction and wound assessment and euthanasia were conducted. Laparotomy and burn scars were assessed using the stony brook scar evaluation scale and modified Yeong scale respectively. Tissue was analyzed histologically using H&E staining. Ly6g, Collagen I and III, SMA, and Fibrinogen were visualized and neutrophils activation (NE, MPO) and NETs (H3cit) formation assessed. Results All animals survived with no complications. DNase1 treatment led to a significantly improved scar appearance in both groups, which was also seen in Pad4-KO mice. In the laparotomy group DNase1 improved collagen deposition and fibrin concentration was significantly reduced by DNase1 treatment. Markers of neutrophil activation were significantly reduced in the treatment and Pad4-KO group. In the thermal injury group wound closure time was significantly reduced after DNase1 treatment and in the Pad4-KO group. Even though inflammation remained high in the thermal injury model over time, neutrophil activation and NETs formation were significantly reduced by DNase1 treatment compared to controls. Discussion Primary and secondary intention wound healing is improved by targeting NETs through DNase1 treatment or genetic KO, as assessed by wound closure time and scar appearances. Additionally, wound stability was not affected by DNASE treatment. The results suggest that overall wound healing is accelerated and DNase1 appears to be a promising option to reduce scar formation; which should be evaluated in humans.
Collapse
Affiliation(s)
- Annika Heuer
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Stiel
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Königs
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Deirdre Vincent
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Schlegel
- Children's Medical Research Institute, Sydney University, Westmead, NSW, Australia
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Mulder PPG, Vlig M, Boekema BKHL, Stoop MM, Pijpe A, van Zuijlen PPM, de Jong E, van Cranenbroek B, Joosten I, Koenen HJPM, Ulrich MMW. Persistent Systemic Inflammation in Patients With Severe Burn Injury Is Accompanied by Influx of Immature Neutrophils and Shifts in T Cell Subsets and Cytokine Profiles. Front Immunol 2021; 11:621222. [PMID: 33584717 PMCID: PMC7879574 DOI: 10.3389/fimmu.2020.621222] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Severe burn injury causes local and systemic immune responses that can persist up to months, and can lead to systemic inflammatory response syndrome, organ damage and long-term sequalae such as hypertrophic scarring. To prevent these pathological conditions, a better understanding of the underlying mechanisms is essential. In this longitudinal study, we analyzed the temporal peripheral blood immune profile of 20 burn wound patients admitted to the intensive care by flow cytometry and secretome profiling, and compared this to data from 20 healthy subjects. The patient cohort showed signs of systemic inflammation and persistently high levels of pro-inflammatory soluble mediators, such as IL-6, IL-8, MCP-1, MIP-1β, and MIP-3α, were measured. Using both unsupervised and supervised flow cytometry techniques, we observed a continuous release of neutrophils and monocytes into the blood for at least 39 days. Increased numbers of immature neutrophils were present in peripheral blood in the first three weeks after injury (0.1–2.8 × 106/ml after burn vs. 5 × 103/ml in healthy controls). Total lymphocyte numbers did not increase, but numbers of effector T cells as well as regulatory T cells were increased from the second week onward. Within the CD4+ T cell population, elevated numbers of CCR4+CCR6- and CCR4+CCR6+ cells were found. Altogether, these data reveal that severe burn injury induced a persistent innate inflammatory response, including a release of immature neutrophils, and shifts in the T cell composition toward an overall more pro-inflammatory phenotype, thereby continuing systemic inflammation and increasing the risk of secondary complications.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands.,Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | | | - Anouk Pijpe
- Burn Center, Red Cross Hospital, Beverwijk, Netherlands
| | - Paul P M van Zuijlen
- Burn Center, Red Cross Hospital, Beverwijk, Netherlands.,Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences Amsterdam UMC, Location VUmc, Amsterdam, Netherlands.,Pediatric Surgical Centre, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Evelien de Jong
- Burn Center, Red Cross Hospital, Beverwijk, Netherlands.,Department of Intensive Care, Red Cross Hospital, Beverwijk, Netherlands
| | - Bram van Cranenbroek
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Magda M W Ulrich
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences Amsterdam UMC, Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
16
|
Burmeister DM, Smith SL, Muthumalaiappan K, Hill DM, Moffatt LT, Carlson DL, Kubasiak JC, Chung KK, Wade CE, Cancio LC, Shupp JW. An Assessment of Research Priorities to Dampen the Pendulum Swing of Burn Resuscitation. J Burn Care Res 2020; 42:113-125. [PMID: 33306095 DOI: 10.1093/jbcr/iraa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
On June 17 to 18, 2019, the American Burn Association, in conjunction with Underwriters Laboratories, convened a group of experts on burn resuscitation in Washington, DC. The goal of the meeting was to identify and discuss novel research and strategies to optimize the process of burn resuscitation. Patients who sustain a large thermal injury (involving >20% of the total body surface area [TBSA]) face a sequence of challenges, beginning with burn shock. Over the last century, research has helped elucidate much of the underlying pathophysiology of burn shock, which places multiple organ systems at risk of damage or dysfunction. These studies advanced the understanding of the need for fluids for resuscitation. The resultant practice of judicious and timely infusion of crystalloids has improved mortality after major thermal injury. However, much remains unclear about how to further improve and customize resuscitation practice to limit the morbidities associated with edema and volume overload. Herein, we review the history and pathophysiology of shock following thermal injury, and propose some of the priorities for resuscitation research. Recommendations include: studying the utility of alternative endpoints to resuscitation, reexamining plasma as a primary or adjunctive resuscitation fluid, and applying information about inflammation and endotheliopathy to target the underlying causes of burn shock. Undoubtedly, these future research efforts will require a concerted effort from the burn and research communities.
Collapse
Affiliation(s)
- David M Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Susan L Smith
- The Warden Burn Center, Orlando Regional Medical Center, Orlando, Florida
| | | | - David M Hill
- Firefighters' Burn Center, Regional One Health, Memphis, Tennessee
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,The Burn Center, MedStar Washington Hospital Center; Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| | - Deborah L Carlson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John C Kubasiak
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Charles E Wade
- Center for Translational Injury Research, and Department of Surgery, McGovern School of Medicine and The John S. Dunn Burn Center, Memorial Herman Hospital, Houston, Texas
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,The Burn Center, MedStar Washington Hospital Center; Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
17
|
Abstract
Hypertrophic cardiomyopathy (HCM) is a common cardiac condition caused primarily by sarcomeric protein mutations with several distinct phenotypes, ranging from asymmetric septal hypertrophy, either with or without left ventricular outflow tract obstruction, to moderate left ventricular dilation with or without apical aneurysm formation and marked, end-stage dilation with refractory heart failure. Sudden cardiac death can occur at any stage. The phenotypic variability observed in HCM is the end-result of many factors, including pre-load, after-load, wall stress and myocardial ischemia stemming from microvascular dysfunction and thrombosis; however, tissue level inflammation to include leukocyte-derived extracellular traps consisting of chromatin and histones, apoptosis, proliferation of matrix proteins and impaired or dysfunctional regulatory pathways contribute as well. Our current understanding of the pathobiology, developmental stages, transition from hypertrophy to dilation and natural history of HCM with emphasis on the role of tissue-level inflammation in myocardial fibrosis and ventricular remodeling is summarized.
Collapse
|
18
|
Jin Z, Sun J, Song Z, Chen K, Nicolas YSM, Kc R, Ma Q, Liu J, Zhang M. Neutrophil extracellular traps promote scar formation in post-epidural fibrosis. NPJ Regen Med 2020; 5:19. [PMID: 33298919 PMCID: PMC7599244 DOI: 10.1038/s41536-020-00103-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Low back pain following spine surgery is a major complication due to excessive epidural fibrosis, which compresses the lumbar nerve. The mechanisms of epidural fibrosis remain largely elusive. In the drainage samples from patients after spine operation, neutrophil extracellular traps (NETs) and NETs inducer high-mobility group box 1 were significantly increased. In a mouse model of laminectomy, NETs developed in the wound area post epidural operation, accompanied with macrophage infiltration. In vitro, macrophages ingested NETs and thereby increased the elastase from NETs via the receptor for advanced glycation end product. Moreover, NETs boosted the expression of fibronectin in macrophages, which was dependent on elastase and could be partially blocked by DNase. NF-κB p65 and Smad pathways contributed to the increased expression fibronectin in NETs-treated macrophages. In the mouse spine operation model, post-epidural fibrosis was significantly mitigated with the administration of DNase I, which degraded DNA and cleaved NETs. Our study shed light on the roles and mechanisms of NETs in the scar formation post spine operation.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Jinpeng Sun
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Zeyuan Song
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Kun Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yap San Min Nicolas
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Rupesh Kc
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
19
|
Jyoti K, Malik G, Chaudhary M, Sharma M, Goswami M, Katare OP, Singh SB, Madan J. Chitosan and phospholipid assisted topical fusidic acid drug delivery in burn wound: Strategies to conquer pharmaceutical and clinical challenges, opportunities and future panorama. Int J Biol Macromol 2020; 161:325-335. [PMID: 32485249 DOI: 10.1016/j.ijbiomac.2020.05.230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Burn is the immense public health issue globally. Low and middle income countries face extensive deaths owing to burn injuries. Availability of conventional therapies for burns has always been painful for patients as well as expensive for our health system. Pharmaceutical experts are still searching reliable, cheap, safe and effective treatment options for burn injuries. Fusidic acid is an antibiotic of choice for the management of burns. However, fusidic acid is encountering several pharmaceutical and clinical challenges like poor skin permeability and growing drug resistance against burn wound microbes like Methicillin resistant Staphylococcus aureus (MRSA). Therefore, an effort has been made to present a concise review about molecular pathway followed by fusidic acid in the treatment of burn wound infection in addition to associated pros and cons. Furthermore, we have also summarized chitosan and phospholipid based topical dermal delivery systems customized by our team for the delivery of fusidic acid in burn wound infections on case-to-case basis. However, every coin has two sides. We recommend the integration of in-silico docking techniques with natural biomacromolecules while designing stable, patient friendly and cost effective topical drug delivery systems of fusidic acid for the management of burn wound infection as future opportunities.
Collapse
Affiliation(s)
- Kiran Jyoti
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India; IKG Punjab Technical University, Jalandhar, Punjab, India
| | - Garima Malik
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | | | - Monika Sharma
- University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Manish Goswami
- University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh, India
| | - Shashi Bala Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
20
|
Sakuma M, Khan MAS, Yasuhara S, Martyn JA, Palaniyar N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation. FASEB J 2019; 33:13602-13616. [PMID: 31577450 PMCID: PMC6894048 DOI: 10.1096/fj.201901098r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Pulmonary immunosuppression often occurs after burn injury (BI). However, the reasons for BI-induced pulmonary immunosuppression are not clearly understood. Neutrophil recruitment and neutrophil extracellular trap (NET) formation (NETosis) are important components of a robust pulmonary immune response, and we hypothesized that pulmonary inflammation and NETosis are defective after BI. To test this hypothesis, we established a mouse model with intranasal LPS instillation in the presence or absence of BI (15% of body surface burn) and determined the degree of immune cell infiltration, NETosis, and the cytokine levels in the airways and blood on d 2. Presence of LPS recruited monocytes and large numbers of neutrophils to the airways and induced NETosis (citrullinated histone H3, DNA, myeloperoxidase). By contrast, BI significantly reduced LPS-mediated leukocyte recruitment and NETosis. This BI-induced immunosuppression is attributable to the reduction of chemokine (C-C motif) ligand (CCL) 2 (monocyte chemoattractant protein 1) and CCL3 (macrophage inflammatory protein 1α). BI also suppressed LPS-induced increase in IL-17A, IL-17C, and IL-17E/IL-25 levels in the airways. Therefore, BI-mediated reduction in leukocyte recruitment and NETosis in the lungs are attributable to these cytokines. Regulating the levels of some of these key cytokines represents a potential therapeutic option for mitigating BI-mediated pulmonary immunosuppression.-Sakuma, M., Khan, M. A. S., Yasuhara, S., Martyn, J. A., Palaniyar, N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation.
Collapse
Affiliation(s)
- Miyuki Sakuma
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohammed A. S. Khan
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Shingo Yasuhara
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeevendra A. Martyn
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Nades Palaniyar
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Ravindran M, Khan MA, Palaniyar N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules 2019; 9:biom9080365. [PMID: 31416173 PMCID: PMC6722781 DOI: 10.3390/biom9080365] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Neutrophil extracellular traps (NETs), a unique DNA framework decorated with antimicrobial peptides, have been in the scientific limelight for their role in a variety of pathologies ranging from cystic fibrosis to cancer. The formation of NETs, as well as relevant regulatory mechanisms, physiological factors, and pharmacological agents have not been systematically discussed in the context of their beneficial and pathological aspects. Novel forms of NET formation including vital NET formation continue to be uncovered, however, there remain fundamental questions around established mechanisms such as NADPH-oxidase (Nox)-dependent and Nox-independent NET formation. Whether NET formation takes place in the tissue versus the bloodstream, internal factors (e.g. reactive oxygen species (ROS) production and transcription factor activation), and external factors (e.g. alkaline pH and hypertonic conditions), have all been demonstrated to influence specific NET pathways. Elements of neutrophil biology such as transcription and mitochondria, which were previously of unknown significance, have been identified as critical mediators of NET formation through facilitating chromatin decondensation and generating ROS, respectively. While promising therapeutics inhibiting ROS, transcription, and gasdermin D are being investigated, neutrophil phagocytosis plays a critical role in host defense and any therapies targeting NET formation must avoid impairing the physiological functions of these cells. This review summarizes what is known in the many domains of NET research, highlights the most relevant challenges in the field, and inspires new questions that can bring us closer to a unified model of NET formation.
Collapse
Affiliation(s)
- Mithunan Ravindran
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Meraj A Khan
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S1A8, Canada.
| |
Collapse
|
22
|
Different Faces for Different Places: Heterogeneity of Neutrophil Phenotype and Function. J Immunol Res 2019; 2019:8016254. [PMID: 30944838 PMCID: PMC6421822 DOI: 10.1155/2019/8016254] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
As the most abundant leukocytes in the circulation, neutrophils are committed to innate and adaptive immune effector function to protect the human body. They are capable of killing intruding microbes through various ways including phagocytosis, release of granules, and formation of extracellular traps. Recent research has revealed that neutrophils are heterogeneous in phenotype and function and can display outstanding plasticity in both homeostatic and disease states. The great flexibility and elasticity arm neutrophils with important regulatory and controlling functions in various disease states such as autoimmunity and inflammation as well as cancer. Hence, this review will focus on recent literature describing neutrophils' variable and diverse phenotypes and functions in different contexts.
Collapse
|
23
|
Alhamdi Y, Toh CH. Recent advances in pathophysiology of disseminated intravascular coagulation: the role of circulating histones and neutrophil extracellular traps. F1000Res 2017; 6:2143. [PMID: 29399324 PMCID: PMC5785716 DOI: 10.12688/f1000research.12498.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is an acquired condition that develops as a complication of systemic and sustained cell injury in conditions such as sepsis and trauma. It represents major dysregulation and increased thrombin generation in vivo. A poor understanding and recognition of the complex interactions in the coagulation, fibrinolytic, inflammatory, and innate immune pathways have resulted in continued poor management and high mortality rates in DIC. This review focuses attention on significant recent advances in our understanding of DIC pathophysiology. In particular, circulating histones and neutrophil extracellular traps fulfil established criteria in DIC pathogenesis. Both are damaging to the vasculature and highly relevant to the cross talk between coagulation and inflammation processes, which can culminate in adverse clinical outcomes. These molecules have a strong potential to be novel biomarkers and therapeutic targets in DIC, which is still considered synonymous with 'death is coming'.
Collapse
Affiliation(s)
- Yasir Alhamdi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
24
|
Abstract
Neutrophil extraceullar traps (NETs) cause secondary expansion of tissue necrosis in local and remote tissues due to microvascular hypercoagulation.
Collapse
Affiliation(s)
- Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|