1
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
2
|
Kwisda K. Unaddressed regulatory issues in xenotransplantation: a hypothetical example. FRONTIERS IN TRANSPLANTATION 2023; 2:1222031. [PMID: 38993861 PMCID: PMC11235213 DOI: 10.3389/frtra.2023.1222031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/22/2023] [Indexed: 07/13/2024]
Abstract
The last few years have seen a significant increase in the use of technology to manipulate genetic sequences and generate animals as a source of xeno-organs. This has made the generation of genetically bespoke organisms a reality. This paper will analyze the regulatory and practical aspects of such an innovative approach to xenotransplantation on the basis of a hypothetical case study applied to Germany and highlight the gaps in the current regulation. This paper thus provides the basis for legal debate within a specific country. In addition, the identified gaps also pose a barrier toward the harmonization of international regulation. This publication therefore lays the groundwork for guiding the international debate regarding the regulatory framework for solid organ xenotransplantation toward specific issues.
Collapse
Affiliation(s)
- Koko Kwisda
- Centre for Ethics and Law in the Life Sciences, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
3
|
Miura S, Habibabady ZA, Pollok F, Connolly M, Pratts S, Dandro A, Sorrells L, Karavi K, Phelps C, Eyestone W, Ayares D, Burdorf L, Azimzadeh A, Pierson RN. Effects of human TFPI and CD47 expression and selectin and integrin inhibition during GalTKO.hCD46 pig lung perfusion with human blood. Xenotransplantation 2022; 29:e12725. [PMID: 35234315 PMCID: PMC10207735 DOI: 10.1111/xen.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Loss of barrier function when GalTKO.hCD46 porcine lungs are perfused with human blood is associated with coagulation pathway dysregulation, innate immune system activation, and rapid sequestration of human formed blood elements. Here, we evaluate whether genetic expression of human tissue factor pathway inhibitor (hTFPI) and human CD47 (hCD47), alone or with combined selectin and integrin adhesion pathway inhibitors, delays GalTKO.hCD46 porcine lung injury or modulates neutrophil and platelet sequestration. METHODS In a well-established paired ex vivo lung perfusion model, GalTKO.hCD46.hTFPI.hCD47 transgenic porcine lungs (hTFPI.hCD47, n = 7) were compared to GalTKO.hCD46 lungs (reference, n = 5). All lung donor pigs were treated with a thromboxane synthase inhibitor, anti-histamine, and anti-GPIb integrin-blocking Fab, and were pre-treated with Desmopressin. In both genotypes, one lung of each pair was additionally treated with PSGL-1 and GMI-1271 (P- and E-selectin) and IB4 (CD11b/18 integrin) adhesion inhibitors (n = 6 hTFPI.hCD47, n = 3 reference). RESULTS All except for two reference lungs did not fail within 480 min when experiments were electively terminated. Selectin and integrin adhesion inhibitors moderately attenuated initial pulmonary vascular resistance (PVR) elevation in hTFPI.hCD47 lungs. Neutrophil sequestration was significantly delayed during the early time points following reperfusion and terminal platelet activation was attenuated in association with lungs expressing hTFPI.hCD47, but additional adhesion pathway inhibitors did not show further effects with either lung genotype. CONCLUSION Expression of hTFPI.hCD47 on porcine lung may be useful as part of an integrated strategy to prevent neutrophil adhesion and platelet activation that are associated with xenograft injury. Additionally, targeting canonical selectin and integrin adhesion pathways reduced PVR elevation associated with hTFPI.hCD47 expression, but did not significantly attenuate neutrophil or platelet sequestration. We conclude that other adhesive mechanisms mediate the residual sequestration of human formed blood elements to pig endothelium that occurs even in the context of the multiple genetic modifications and drug treatments tested here.
Collapse
Affiliation(s)
- Shuhei Miura
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Cardiovascular Surgery, Teine Keijinkai Hospital, Sapporo, Japan
| | - Zahra A. Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Franziska Pollok
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Margaret Connolly
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon Pratts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | - Lars Burdorf
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Agnes Azimzadeh
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Yoon CH, Choi HJ, Kim MK. Corneal xenotransplantation: Where are we standing? Prog Retin Eye Res 2021; 80:100876. [PMID: 32755676 PMCID: PMC7396149 DOI: 10.1016/j.preteyeres.2020.100876] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
The search for alternatives to allotransplants is driven by the shortage of corneal donors and is demanding because of the limitations of the alternatives. Indeed, current progress in genetically engineered (GE) pigs, the introduction of gene-editing technology by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, and advanced immunosuppressants have made xenotransplantation a possible option for a human trial. Porcine corneal xenotransplantation is considered applicable because the eye is regarded as an immune-privileged site. Furthermore, recent non-human primate studies have shown long-term survival of porcine xenotransplants in keratoplasty. Herein, corneal immune privilege is briefly introduced, and xenogeneic reactions are compared with allogeneic reactions in corneal transplantation. This review describes the current knowledge on special issues of xenotransplantation, xenogeneic rejection mechanisms, current immunosuppressive regimens of corneal xenotransplantation, preclinical efficacy and safety data of corneal xenotransplantation, and updates of the regulatory framework to conduct a clinical trial on corneal xenotransplantation. We also discuss barriers that might prevent xenotransplantation from becoming common practice, such as ethical dilemmas, public concerns on xenotransplantation, and the possible risk of xenozoonosis. Given that the legal definition of decellularized porcine cornea (DPC) lies somewhere between a medical device and a xenotransplant, the preclinical efficacy and clinical trial data using DPC are included. The review finally provides perspectives on the current standpoint of corneal xenotransplantation in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Schuurman H, Hoogendoorn K. Solid organ xenotransplantation at the interface between research and clinical development: Regulatory aspects. Xenotransplantation 2020; 27:e12608. [DOI: 10.1111/xen.12608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Affiliation(s)
| | - Karin Hoogendoorn
- Interdivisional GMP Facility Hospital Pharmacy Leiden University Medical Center Leiden The Netherlands
| |
Collapse
|
6
|
Yoon CH, Choi SH, Choi HJ, Lee HJ, Kang HJ, Kim JM, Park CG, Choi K, Kim H, Ahn C, Kim MK. Long-term survival of full-thickness corneal xenografts from α1,3-galactosyltransferase gene-knockout miniature pigs in non-human primates. Xenotransplantation 2019; 27:e12559. [PMID: 31566261 DOI: 10.1111/xen.12559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/22/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND We aimed to investigate (a) the long-term survival of corneal grafts from α1,3-galactosyltransferase gene-knockout miniature (GTKOm) pigs in non-human primates as a primary outcome and (b) the effect of anti-CD20 antibody on the survival of corneal grafts from GTKOm pigs as a secondary outcome. METHODS Nine rhesus macaques undergoing full-thickness corneal xenotransplantation using GTKOm pigs were systemically administered steroid, basiliximab, intravenous immunoglobulin, and tacrolimus with (CD20 group) or without (control group) anti-CD20 antibody. RESULTS Graft survival was significantly longer (P = .008) in the CD20 group (>375, >187, >187, >83 days) than control group (165, 91, 72, 55, 37 days). When we compared the graft survival time between older (>7- month-old) and younger (≤7-month-old) aged donor recipients, there was no significant difference. Activated B cells were lower in the CD20 group than control group (P = .026). Aqueous humor complement C3a was increased in the control group at last examination (P = .043) and was higher than that in the CD20 group (P = .014). Anti-αGal IgG/M levels were unchanged in both groups. At last examination, anti-non-Gal IgG was increased in the control group alone (P = .013). CONCLUSIONS The GTKOm pig corneal graft achieved long-term survival when combined with anti-CD20 antibody treatment. Inhibition of activated B cells and complement is imperative even when using GTKO pig corneas.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, Korea
| | - Jong Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Curie Ahn
- Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Yoon CH, Choi SH, Lee HJ, Kang HJ, Kim MK. Predictive biomarkers for graft rejection in pig-to-non-human primate corneal xenotransplantation. Xenotransplantation 2019; 26:e12515. [PMID: 30983050 DOI: 10.1111/xen.12515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Abstract
We investigated the predictive biomarkers for graft rejection in pig-to-non-human primate (NHP) full-thickness corneal xenotransplantation (n = 34). The graft score (0-12) was calculated based on opacity, edema, and vascularization. Scores ≥ 6 were defined as rejection. NHPs were divided into two groups: (a) graft rejection within 6 months; and (b) graft survival until 6 months. In the evaluation of 2-week biomarkers, none of the NHPs showed rejection within 2 weeks and the 34 NHPs were divided into two groups: (a) entire rejection group (n = 16); and (b) survival group (n = 18). In the evaluation of 4-week biomarkers, four NHPs showing rejection within 4 weeks were excluded and the remaining 30 NHPs were divided into two groups: (a) late rejection group (n = 12); and (b) survival group (n = 18). Analysis of biomarker candidates included T/B-cell subsets, levels of anti-αGal IgG/M, donor-specific IgG/M from blood, and C3a from plasma and aqueous humor (AH). CD8+ IFNγ+ cells at week 2 and AH C3a at week 4 were significantly elevated in the rejection group. Receiver operating characteristic areas under the curve was highest for AH C3a (0.847) followed by CD8+ IFNγ+ cells (both the concentration and percentage: 0.715), indicating excellent or acceptable discrimination ability, which suggests that CD8+ IFNγ+ cells at week 2 and AH C3a at week 4 are reliable biomarkers for predicting rejection in pig-to-NHP corneal xenotransplantation.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang-si, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
8
|
|
9
|
Girani L, Xie X, Lei T, Wei L, Wang Y, Deng S. Xenotransplantation in Asia. Xenotransplantation 2019; 26:e12493. [PMID: 30710388 DOI: 10.1111/xen.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Lea Girani
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province Sichuan Academy of an Transplant Science & Sichuan Provincial People’s Hospital Chengdu China
| | - Xiaofang Xie
- School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Tiantian Lei
- School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Liang Wei
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province Sichuan Academy of an Transplant Science & Sichuan Provincial People’s Hospital Chengdu China
| | - Yi Wang
- Health Management Center Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital Chengdu China
- Department of Pharmacy Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital Chengdu China
| | - Shaoping Deng
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province Sichuan Academy of an Transplant Science & Sichuan Provincial People’s Hospital Chengdu China
- School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
10
|
Park CG, Shin JS, Min BH, Kim H, Yeom SC, Ahn C. Current status of xenotransplantation in South Korea. Xenotransplantation 2019; 26:e12488. [PMID: 30697818 DOI: 10.1111/xen.12488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Seop Shin
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Byoung-Hoon Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | - Su-Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Daewha, Pyeongchang, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Burdorf L, Harris D, Dahi S, Laird C, Zhang T, Ali F, Shah A, Thompson M, Braileanu G, Cheng X, Sievert E, Schwartz E, Sendil S, Parsell DM, Redding E, Phelps CJ, Ayares DL, Azimzadeh AM, Pierson RN. Thromboxane and histamine mediate PVR elevation during xenogeneic pig lung perfusion with human blood. Xenotransplantation 2018; 26:e12458. [PMID: 30175863 DOI: 10.1111/xen.12458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/29/2018] [Accepted: 07/20/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Elevated pulmonary vascular resistance (PVR), platelet adhesion, coagulation activation, and inflammation are prominent features of xenolung rejection. Here, we evaluate the role of thromboxane and histamine on PVR, and their contribution to other lung xenograft injury mechanisms. METHODS GalTKO.hCD46 single pig lungs were perfused ex vivo with fresh heparinized human blood: lungs were either treated with 1-Benzylimidazole (1-BIA) combined with histamine receptor blocker famotidine (n = 4) or diphenhydramine (n = 6), 1-BIA alone (n = 6) or were left untreated (n = 9). RESULTS Six of the nine control experiments (GalTKO.hCD46 untreated), "survived" until elective termination at 4 hours. Without treatment, initial PVR elevation within the first 30 minutes resolved partially over the following hour, and increased progressively during the final 2 hours of perfusion. In contrast, 1-BIA, alone or in addition to either antihistamine treatment, was associated with low stable PVR. Combined treatments significantly lowered the airway pressure when compared to untreated reference. Although platelet and neutrophil sequestration and coagulation cascade activation were not consistently altered by any intervention, increased terminal wet/dry weight ratio in untreated lungs was significantly blunted by combined treatments. CONCLUSION Combined thromboxane and histamine pathway blockade prevents PVR elevation and significantly inhibits loss of vascular barrier function when GalTKO.hCD46 lungs are perfused with human blood. Platelet activation and platelet and neutrophil sequestration persist in all groups despite efficient complement regulation, and appear to occur independent of thromboxane and histamine antagonism. Our work identifies thromboxane and histamine as key mediators of xenolung injury and defines those pathways as therapeutic targets to achieve successful xenolung transplantation.
Collapse
Affiliation(s)
- Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland.,Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Donald Harris
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Siamak Dahi
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Christopher Laird
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Tianshu Zhang
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Franchesca Ali
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Aakash Shah
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Mercedes Thompson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Gheorghe Braileanu
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Xiangfei Cheng
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Evelyn Sievert
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Evan Schwartz
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Selin Sendil
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Dawn M Parsell
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Emily Redding
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Carol J Phelps
- Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Agnes M Azimzadeh
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland.,Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Richard N Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland.,Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
12
|
Choi HJ, Hyon JY, Lee HK, Song JS, Chung TY, Mo H, Kim J, Kim JE, Yoo H, Lee SH, Kwon I, Kim MK. Standardization of the proceedings for preparing clinical trials of corneal xenotransplantation in South Korea. Xenotransplantation 2018; 26:e12448. [PMID: 30076640 DOI: 10.1111/xen.12448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul, Korea
| | - Hyung Keun Lee
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Suk Song
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Tae-Young Chung
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyojung Mo
- Center for Public Healthcare Education & Training, National Medical Center, Seoul, Korea
| | - Jaeyoung Kim
- Inje University Seoul Paik Hospital, Seoul, Korea
| | | | - Hyounggyoon Yoo
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Seung Hwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Ivo Kwon
- Department of Medical Education, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Executive Council, Korean External Eye Disease Society, Seoul, Korea
| |
Collapse
|
13
|
Choi HJ, Yoon CH, Hyon JY, Lee HK, Song JS, Chung TY, Mo H, Kim J, Kim JE, Hahm BJ, Yang J, Park WB, Kim MK. Protocol for the first clinical trial to investigate safety and efficacy of corneal xenotransplantation in patients with corneal opacity, corneal perforation, or impending corneal perforation. Xenotransplantation 2018; 26:e12446. [PMID: 30063072 DOI: 10.1111/xen.12446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/16/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Xenotransplantation using fresh porcine corneas has been suggested as a feasible alternative to overcome the shortage of human donor corneas. Successful long-term survival of grafts without evidence of xenozoonosis in clinically applicable pig-to-non-human primate corneal transplantation model has brought researchers close to human clinical trials. Accordingly, we aimed to prepare a clinical trial protocol to conduct the first corneal xenotransplantation. METHODS We developed the clinical trial protocol based on international consensus statement on conditions for undertaking clinical trials of corneal xenotransplantation developed by the International Xenotransplantation Society. Detailed contents of the protocol have been modified with reference to comments provided by ophthalmologists and multidisciplinary experts, including an infectionist, an organ transplantation specialist, a clinical pharmacologist, a neuropsychiatrist, a laboratory medicine doctor, and a microbiologist. RESULTS Two patients with bilateral legal corneal blindness (best-corrected visual acuity ≤20/200 in the better eye and ≤20/1000 in the candidate eye) or with (impending) corneal perforation will be enrolled. During the screening period, participants and their family members will have two separate deep consideration periods before signing informed consent forms. Each patient will undergo corneal xenotransplantation using fresh corneas from Seoul National University miniature pigs. Commercially available immunosuppressants will be administered and systemic infection prophylaxis will be performed according to the program schedule. After transplantation, each patient will be monitored at a specialized clinic to investigate safety up to 2 years and efficacy up to 1 year. CONCLUSIONS A detailed clinical trial protocol for the first corneal xenotransplantation reflecting the global guidelines is provided.
Collapse
Affiliation(s)
- Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul, Korea
| | - Hyung Keun Lee
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Suk Song
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Tae-Young Chung
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyojung Mo
- Center for Public Healthcare Education & Training, National Medical Center, Seoul, Korea.,Executive Ethical Committee of the Xenotransplantation Research Center, Seoul, Korea
| | - Jaeyoung Kim
- Inje University Seoul Paik Hospital, Seoul, Korea
| | | | - Bong-Jin Hahm
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- Department of Surgery, Transplantation Center, Seoul National University Hospital and Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Executive Council, Korean External Eye Disease Society, Seoul, Korea
| |
Collapse
|
14
|
Choi SH, Yoon CH, Lee HJ, Kim HP, Kim JM, Che JH, Roh KM, Choi HJ, Kim J, Hwang ES, Park CG, Kim MK. Long-term safety outcome of systemic immunosuppression in pig-to-nonhuman primate corneal xenotransplantation. Xenotransplantation 2018; 25:e12442. [PMID: 30264877 PMCID: PMC6166667 DOI: 10.1111/xen.12442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Safety concerns exist for corneal recipients under immunosuppression. We report long-term safety results of porcine corneal xenotransplantation under immunosuppression in nonhuman primates. METHODS Systemic monitoring data from 49 Chinese rhesus macaques that received pig corneal transplant between 2009 and 2018 were retrospectively reviewed. The recipients were divided into 4 groups depending on the systemic immunosuppressants used: (a) conventional steroid group; costimulation blockade groups ([b] anti-CD154 antibody, [c] anti-CD40 antibody); and (d) commercially available immunosuppressants (anti-CD20 antibody, tacrolimus, basiliximab) group. We compared results of general condition monitoring; hematologic, biochemical, and electrolyte tests; and Rhesus Cytomegalovirus infection monitoring. RESULTS All recipients recovered from early weight loss. White blood cell counts significantly decreased at 6 months in the steroid and anti-CD154 groups. Abnormal liver and kidney function and electrolyte imbalance were not observed in all groups. The mean value of Rhesus Cytomegalovirus DNA copies was consistently lower than 200 copies/mL, and antibody titers did not change over time in all groups. Tacrolimus-associated thrombotic microangiopathy was developed in one case, which resolved after discontinuation of tacrolimus. In 2017, a simian varicella virus outbreak led to clinical signs in 5 that received immunosuppressive therapies, of which 3 died. CONCLUSION Costimulatory blockade-based and anti-CD20 antibody/tacrolimus-based immunosuppressive therapies seem to be comparably safe with steroid therapy in nonhuman primates receiving corneal xenotransplantation, as they did not reactivate Rhesus Cytomegalovirus and maintained manageable systemic status. Although reactivation is rare, antiviral prophylaxis for simian varicella virus should be considered in immunocompromised hosts.
Collapse
Affiliation(s)
- Se Hyun Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Chang Ho Yoon
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hong Pyo Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Jong Min Kim
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Jeong-Hwan Che
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Kyoung Min Roh
- Department of Experimental Animal Research, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Jiyeon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eung-Soo Hwang
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chung-Gyu Park
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee Kum Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
15
|
Nie W, Ma X, Yang C, Chen Z, Rong P, Wu M, Jiang J, Tan M, Yi S, Wang W. Human mesenchymal-stem-cells-derived exosomes are important in enhancing porcine islet resistance to hypoxia. Xenotransplantation 2018; 25:e12405. [PMID: 29932262 DOI: 10.1111/xen.12405] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/25/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hypoxia-induced damage is one of the key factors associated with islet graft dysfunction. Mesenchymal stem cells (MSCs) could be used to enhance the therapeutic effect of islet transplantation due to their paracrine potential such as exosomes. In this study, we investigated whether exosomes from human umbilical cord-derived MSC-conditioned medium (hu-MSC-CM) could increase the survival and function of neonatal porcine islet cell clusters (NICCs) exposed to hypoxia. METHODS Neonatal porcine islet cell clusters were cultured with hu-MSC-CM, with or without exosomes, and native medium RPMI-1640 (Control) under hypoxic conditions (1% O2 ). The effects of exosomes on NICCs viability and function in vitro were examined by FACS, the Loops system, and the Extracellular Flux assay, respectively. RESULTS Compared with NICCs cultured in RPMI-1640 medium and hu-MSC-CM without exosomes, the survival ratio, viability, and function increased in NICCs cultured in hu-MSC-CM with exosomes. CONCLUSIONS This study found that hu-MSC-CM could protect NICCs from hypoxia-induced dysfunction, and exosomes played an important role in hypoxic resistance, suggesting a potential strategy to improve islet transplantation outcomes.
Collapse
Affiliation(s)
- Wei Nie
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Xiaoqian Ma
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Cejun Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Zeyi Chen
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Mengqun Tan
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Shounan Yi
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China.,Center for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| |
Collapse
|
16
|
Cooper DK, Wijkstrom M, Hariharan S, Chan JL, Singh A, Horvath K, Mohiuddin M, Cimeno A, Barth RN, LaMattina JC, Pierson RN. Selection of Patients for Initial Clinical Trials of Solid Organ Xenotransplantation. Transplantation 2017; 101:1551-1558. [PMID: 27906824 PMCID: PMC5453852 DOI: 10.1097/tp.0000000000001582] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several groups have reported extended survival of genetically engineered pig organs in nonhuman primates, varying from almost 10 months for life-supporting kidney grafts and more than 2 years for non-life-supporting heart grafts to less than 1 month for life-supporting liver and lung grafts. We have attempted to define groups of patients who may not have an option to wait for an allograft. These include kidney, heart, and lung candidates who are highly-allosensitized. In addition, some kidney candidates (who have previously lost at least 2 allografts from rapid recurrence of native kidney disease) have a high risk of further recurrence and will not be offered a repeat allotransplant. Patients with complex congenital heart disease, who may have undergone previous palliative surgical procedures, may be unsuitable for ventricular assist device implantation. Patients dying of fulminant hepatic failure, for whom no alternative therapy is available, may be candidates for a pig liver, even if only as a bridge until an allograft becomes available. When the results of pig organ xenotransplantation in nonhuman primates suggest a realistic potential for success of a pilot clinical trial, highly selected patients should be offered participation.
Collapse
Affiliation(s)
- David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Sundaram Hariharan
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Joshua L. Chan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Avneesh Singh
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Keith Horvath
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Muhammad Mohiuddin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Arielle Cimeno
- Division of Transplantation Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - Rolf N. Barth
- Division of Transplantation Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - John C. LaMattina
- Division of Transplantation Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - Richard N. Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD, USA
| |
Collapse
|
17
|
Choi HJ, Kim J, Kim JY, Lee HJ, Wee WR, Kim MK, Hwang ES. Long-term safety from transmission of porcine endogenous retrovirus after pig-to-non-human primate corneal transplantation. Xenotransplantation 2017; 24. [PMID: 28503733 DOI: 10.1111/xen.12314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The risk of xenozoonosis mainly by porcine endogenous retrovirus (PERV) has been considered as one of the main hurdles in xenotransplantation and therefore should be elucidated prior to the clinical use of porcine corneal grafts. Accordingly, an investigation was performed to analyze the infectivity of PERVs from porcine keratocytes to human cells, and the long-term risk of transmission of PERVs was determined using pig-to-non-human primate (NHP) corneal transplantation models. METHODS The infectivity of PERVs from the SNU miniature pig keratocytes was investigated by coculture with a human embryonic kidney cell line. Twenty-two rhesus macaques underwent xenocorneal transplantation as follows: (i) group 1 (n=4): anterior lamellar keratoplasty (LKP) with freshly preserved porcine corneas, (ii) group 2 (n=5): anterior LKP with decellularized porcine corneas followed by penetrating keratoplasty (PKP) with allografts, (iii) group 3 (n=3): PKP under steroid-based immunosuppression, (iv) group 4 (n=4): PKP under anti-CD154 antibody-based immunosuppression, (v) group 5 (n=4): deep anterior LKP with freshly preserved porcine corneas under anti-CD40 antibody-based immunosuppression, and (vi) group 6 (n=2): PKP under anti-CD40 antibody-based immunosuppression. Postoperative blood samples were serially collected, and tissue samples were obtained from thirteen different organs at the end of each experiment. The existence of PERV DNA and RNA was investigated using PCR and RT-PCR. RESULTS Using two independent in vitro infectivity tests, neither PERV pol nor pig mitochondrial cytochrome oxidase II was detected after 41 and 92 days of coculture, respectively. After xenocorneal transplantation, a total of 257 serial peripheral blood mononuclear cell samples, 34 serial plasma samples, and 282 tissue samples were obtained from the NHP recipients up to 1176 days post-transplantation. No PERV transmission was evident in any samples. CONCLUSIONS Within the limits of this study, there is no evidence to support any risk of PERV transmission from porcine corneal tissues to NHP recipients, despite the existence of PERV-expressing cells in porcine corneas.
Collapse
Affiliation(s)
- Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | - Jiyeon Kim
- Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Young Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | - Won Ryang Wee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | - Eung Soo Hwang
- Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Kim J, Kim DH, Choi HJ, Lee HJ, Kang HJ, Park CG, Hwang ES, Kim MK, Wee WR. Anti-CD40 antibody-mediated costimulation blockade promotes long-term survival of deep-lamellar porcine corneal grafts in non-human primates. Xenotransplantation 2017; 24:10.1111/xen.12298. [PMID: 28393447 PMCID: PMC5464973 DOI: 10.1111/xen.12298] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/26/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Corneal xenotransplantation is an effective solution for the shortage of human donor corneas, and the porcine cornea may be a suitable candidate for the donor cornea because of its optical similarity with humans. However, it is necessary to administer additional immunosuppressants to overcome antigenic differences. We aimed to investigate the feasibility of porcine corneas with anti-CD40 antibody-mediated costimulation blockade in a clinically applicable pig-to-non-human primate corneal xenotransplantation model. METHODS Five Chinese rhesus macaques underwent deep-lamellar corneal transplantation using clinically acceptable sized (7.5 mm diameter) porcine corneal grafts. The anti-CD40 antibody was intravenously administered on a programmed schedule. Graft survival, central corneal thickness, and intraocular pressure were evaluated. Changes in effector and memory T and B cell subsets and anti-αGal and donor-specific antibodies were investigated in the blood, and the changes in complement levels in the aqueous humor and blood were evaluated. Memory cell profiles in the anti-CD40 antibody-treated group were compared with those from the anti-CD154 antibody-treated group or rejected controls presented in our previous report. The changes in anti-αGal, non-αGal, and donor-specific antibodies after 6 months were compared with baseline values. RESULTS Anti-CD40 antibody-mediated costimulation blockade resulted in the successful survival of xenocorneal grafts (>389, >382, >236, >201, and >61 days), with 80% reaching 6 months of survival. Injection of anti-CD40 antibody considerably reduced the infiltration of inflammatory cells into the grafts and significantly blocked the complement response in the aqueous humor (P=.0159, Mann-Whitney U test). Systemic expansion of central or effector memory T cells was abrogated in the anti-CD40 antibody-treated primates compared with those in the rejected controls (P<.05, Mann-Whitney U test) or those in the anti-CD154 antibody-treated primates (P>.05, Mann-Whitney U test). The levels of anti-αGal, non-αGal, and donor-specific antibodies at 6 months were not significantly increased compared with baseline levels (P>.05, Wilcoxon signed rank test). CONCLUSIONS An anti-CD40 antibody-mediated blockade appears to be effective immunosuppressive approach for porcine corneal deep-lamellar xenotransplantation in primates.
Collapse
Affiliation(s)
- Jaeyoung Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Dong Hyun Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Hyuk Jin Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Chung-Gyu Park
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eung-Soo Hwang
- Department of Microbiology and Immunology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Won Ryang Wee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
19
|
Ubiquitous LEA29Y Expression Blocks T Cell Co-Stimulation but Permits Sexual Reproduction in Genetically Modified Pigs. PLoS One 2016; 11:e0155676. [PMID: 27175998 PMCID: PMC4866763 DOI: 10.1371/journal.pone.0155676] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022] Open
Abstract
We have successfully established and characterized a genetically modified pig line with ubiquitous expression of LEA29Y, a human CTLA4-Ig derivate. LEA29Y binds human B7.1/CD80 and B7.2/CD86 with high affinity and is thus a potent inhibitor of T cell co-stimulation via this pathway. We have characterized the expression pattern and the biological function of the transgene as well as its impact on the porcine immune system and have evaluated the potential of these transgenic pigs to propagate via assisted breeding methods. The analysis of LEA29Y expression in serum and multiple organs of CAG-LEA transgenic pigs revealed that these animals produce a biologically active transgenic product at a considerable level. They present with an immune system affected by transgene expression, but can be maintained until sexual maturity and propagated by assisted reproduction techniques. Based on previous experience with pancreatic islets expressing LEA29Y, tissues from CAG-LEA29Y transgenic pigs should be protected against rejection by human T cells. Furthermore, their immune-compromised phenotype makes CAG-LEA29Y transgenic pigs an interesting large animal model for testing human cell therapies and will provide an important tool for further clarifying the LEA29Y mode of action.
Collapse
|
20
|
Kim DH, Kim J, Jeong HJ, Lee HJ, Kim MK, Wee WR. Biophysico-functional compatibility of Seoul National University (SNU) miniature pig cornea as xenocorneal graft for the use of human clinical trial. Xenotransplantation 2016; 23:202-10. [PMID: 27170205 DOI: 10.1111/xen.12234] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/17/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Xenocorneal transplantation is one of the solutions for shortage of donor cornea, and remarkable advances have been made in pig-to-rhesus studies from the immunological perspective. Most successful preclinical trials have been carried out with corneas of the Seoul National University (SNU) miniature pig (SNU pig, genetically unmodified) as donor tissues; however, there has been no biophysico-functional evaluation of the SNU pig cornea as a substitute for human cornea. The purpose of this study was to investigate the biophysical and functional compatibility of SNU pig cornea for use in human clinical trials. METHODS Ninety-three eyeballs obtained from 51 SNU pigs were used to evaluate the physical properties and changes in porcine corneal endothelial cells (PCECs) depending on preservation time and storage condition before surgery, proliferative and functional characteristics of PCECs, and the microbiologic safety of porcine cornea. Corneal diameters and curvatures, axial length, anterior chamber depth, and central corneal thickness were measured and compared with previously reported human data. Corneal endothelial cell density (ECD) was serially measured with a confocal microscope during 7 days of preservation in the same storage solution used for human corneas. Corneal endothelial cell proliferation and immunofluorescence staining of Na- and K-dependent ATPase in PCECs were evaluated after 7 days of preservation. The corneoscleral rims of SNU pigs were cultured for gram-positive bacteria, gram-negative bacteria, and fungi to evaluate their microbiological safety. RESULTS Corneal diameter and thickness in SNU pigs was larger than human and corneal curvature was flatter; however, they were within surgically operable ranges. Mean ECD (day 0) and ECD loss after 7 days of preservation were 2625 ± 81 cells/mm(2) and 7.60 ± 1.53%, respectively, which is comparable to human ECD and ECD loss in the same conditions. The ECD of SNU pigs was inversely decreased with aging (R(2) = 0.4034, P = 0.001), and the estimated ages of pigs whose mean ECD would be more than 2500 and 2200 cells/mm(2) or more were 48 and 72 months or less, respectively. Mean doubling time of the endothelial cells was 52 to 96 h depending on the method used. The Na- and K-dependent ATPase pump in SNU pig cornea was well maintained for 7 days. No cultured microorganisms were found upon using the modified European Eye Bank Association protocol, which included additional antiseptic management during the enucleation procedure. CONCLUSIONS In conclusion, SNU pig cornea is feasible for xenocorneal transplantation using the same preservation protocol as human with respect to biophysical and functional properties and can be stored for up to 7 days for transplantation in human clinical trials. An age limitation of donor pigs may be required for qualified corneal products to be used in human trials.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Ophthalmology, Gachon University Gil Medical Center, Incheon, Korea.,Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Jaeyoung Kim
- Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jeong Jeong
- Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Mee Kum Kim
- Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Won Ryang Wee
- Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Kim MK, Hara H. Current status of corneal xenotransplantation. Int J Surg 2015; 23:255-260. [DOI: 10.1016/j.ijsu.2015.07.685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 02/09/2023]
|
22
|
Regulatory aspects of clinical xenotransplantation. Int J Surg 2015; 23:312-321. [DOI: 10.1016/j.ijsu.2015.09.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/29/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023]
|
23
|
Zhou H, Liu H, Ezzelarab M, Schmelzer E, Wang Y, Gerlach J, Gridelli B, Cooper DKC. Experimental hepatocyte xenotransplantation--a comprehensive review of the literature. Xenotransplantation 2015; 22:239-48. [PMID: 25950141 PMCID: PMC4519403 DOI: 10.1111/xen.12170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
Hepatocyte transplantation (Tx) is a potential therapy for certain diseases of the liver, including hepatic failure. However, there is a limited supply of human livers as a source of cells and, after isolation, human hepatocytes can be difficult to expand in culture, limiting the number available for Tx. Hepatocytes from other species, for example, the pig, have therefore emerged as a potential alternative source. We searched the literature through the end of 2014 to assess the current status of experimental research into hepatocyte xenoTx. The literature search identified 51 reports of in vivo cross-species Tx of hepatocytes in a variety of experimental models. Most studies investigated the Tx of human (n = 23) or pig (n = 19) hepatocytes. No studies explored hepatocytes from genetically engineered pigs. The spleen was the most common site of Tx (n = 23), followed by the liver (through the portal vein [n = 6]) and peritoneal cavity (n = 19). In 47 studies (92%), there was evidence of hepatocyte engraftment and function across a species barrier. The data provided by this literature search strengthen the hypothesis that xenoTx of hepatocytes is feasible and potentially successful as a clinical therapy for certain liver diseases, including hepatic failure. By excluding vascular structures, hepatocytes isolated from genetically engineered pig livers may address some of the immunological problems of xenoTx.
Collapse
Affiliation(s)
- Huidong Zhou
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, First Hospital of Shanxi Medical University, ShanXi, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eva Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Jörg Gerlach
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruno Gridelli
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Sautermeister J. Xenotransplantation from the perspective of moral theology. Xenotransplantation 2015; 22:183-91. [DOI: 10.1111/xen.12157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/12/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Jochen Sautermeister
- Professorship of Moral Theology with special consideration of Moral Psychology; Faculty of Catholic Theology; Ludwig Maximilian University; Munich Germany
| |
Collapse
|
25
|
Reichart B, Guethoff S, Brenner P, Poettinger T, Wolf E, Ludwig B, Kind A, Mayr T, Abicht JM. Xenotransplantation of Cells, Tissues, Organs and the German Research Foundation Transregio Collaborative Research Centre 127. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:143-55. [PMID: 26306448 DOI: 10.1007/978-3-319-18603-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human organ transplantation is the therapy of choice for end-stage organ failure. However, the demand for organs far exceeds the donation rate, and many patients die while waiting for a donor. Clinical xenotransplantation using discordant species, particularly pigs, offers a possible solution to this critical shortfall. Xenotransplantation can also increase the availability of cells, such as neurons, and tissues such as cornea, insulin producing pancreatic islets and heart valves. However, the immunological barriers and biochemical disparities between pigs and primates (human) lead to rejection reactions despite the use of common immunosuppressive drugs. These result in graft vessel destruction, haemorrhage, oedema, thrombus formation, and transplant loss. Our consortium is pursuing a broad range of strategies to overcome these obstacles. These include genetic modification of the donor animals to knock out genes responsible for xenoreactive surface epitopes and to express multiple xenoprotective molecules such as the human complement regulators CD46, 55, 59, thrombomodulin and others. We are using (new) drugs including complement inhibitors (e.g. to inhibit C3 binding), anti-CD20, 40, 40L, and also employing physical protection methods such as macro-encapsulation of pancreatic islets. Regarding safety, a major objective is to assure that possible infections are not transmitted to recipients. While the aims are ambitious, recent successes in preclinical studies suggest that xenotransplantation is soon to become a clinical reality.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU), Munich, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schuurman HJ. Commentary on “Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts” (by Barone et al.): bioprosthetic products from animal origin are xenotransplantation produc. Xenotransplantation 2014; 21:507-9. [DOI: 10.1111/xen.12146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Burlak C, Wilhelm JJ. Xenotransplantation literature update, September-October 2014. Xenotransplantation 2014; 21:584-7. [PMID: 25382197 DOI: 10.1111/xen.12147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|