1
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
2
|
Chendke GS, Kharbikar BN, Ashe S, Faleo G, Sneddon JB, Tang Q, Hebrok M, Desai TA. Replenishable prevascularized cell encapsulation devices increase graft survival and function in the subcutaneous space. Bioeng Transl Med 2023; 8:e10520. [PMID: 37476069 PMCID: PMC10354771 DOI: 10.1002/btm2.10520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 07/22/2023] Open
Abstract
Beta cell replacement therapy (BCRT) for patients with type 1 diabetes (T1D) improves blood glucose regulation by replenishing the endogenous beta cells destroyed by autoimmune attack. Several limitations, including immune isolation, prevent this therapy from reaching its full potential. Cell encapsulation devices used for BCRT provide a protective physical barrier for insulin-producing beta cells, thereby protecting transplanted cells from immune attack. However, poor device engraftment posttransplantation leads to nutrient deprivation and hypoxia, causing metabolic strain on transplanted beta cells. Prevascularization of encapsulation devices at the transplantation site can help establish a host vascular network around the implant, increasing solute transport to the encapsulated cells. Here, we present a replenishable prevascularized implantation methodology (RPVIM) that allows for the vascular integration of replenishable encapsulation devices in the subcutaneous space. Empty encapsulation devices were vascularized for 14 days, after which insulin-producing cells were inserted without disrupting the surrounding vasculature. The RPVIM devices were compared with nonprevascularized devices (Standard Implantation Methodology [SIM]) and previously established prevascularized devices (Standard Prevascularization Implantation Methodology [SPVIM]). Results show that over 75% of RPVIM devices containing stem cell-derived insulin-producing beta cell clusters showed a signal after 28 days of implantation in subcutaneous space. Notably, not only was the percent of RPVIM devices showing signal significantly greater than SIM and SPVIM devices, but the intraperitoneal glucose tolerance tests and histological analyses showed that encapsulated stem-cell derived insulin-producing beta cell clusters retained their function in the RPVIM devices, which is crucial for the successful management of T1D.
Collapse
Affiliation(s)
- Gauree S. Chendke
- UC Berkeley ‐ UCSF Graduate Program in BioengineeringSan FranciscoCaliforniaUSA
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bhushan N. Kharbikar
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sudipta Ashe
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Gaetano Faleo
- Department of SurgeryUCSF Gladstone Institute of Genome ImmunologySan FranciscoCaliforniaUSA
| | - Julie B. Sneddon
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Cell and Tissue BiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchSan FranciscoCaliforniaUSA
| | - Qizhi Tang
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of SurgeryUCSF Gladstone Institute of Genome ImmunologySan FranciscoCaliforniaUSA
| | - Matthias Hebrok
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- Center for Organoid Systems, Technical University MunichGarchingGermany
- Institute for Diabetes Organoid Technology, Helmholtz Munich, Helmholtz Diabetes CenterNeuherbergGermany
| | - Tejal A. Desai
- UC Berkeley ‐ UCSF Graduate Program in BioengineeringSan FranciscoCaliforniaUSA
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- School of Engineering, Brown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
3
|
Polishevska K, Kelly S, Kuppan P, Seeberger KL, Aggarwal S, Paramor J, Unsworth LD, Tse HM, Korbutt GS, Pepper AR. Nanothin Conformal Coating with Poly(N-vinylpyrrolidone) and Tannic Acid (PVPON/TA) Preserves Murine and Human Pancreatic Islets Function. Pharmaceutics 2023; 15:pharmaceutics15041137. [PMID: 37111623 PMCID: PMC10143619 DOI: 10.3390/pharmaceutics15041137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Beta cell replacement therapies can restore glycemic control to select individuals living with type 1 diabetes. However, the obligation of lifelong immunosuppression restricts cell therapies from replacing exogenous insulin administration. Encapsulation strategies can reduce the inherent adaptive immune response; however, few are successfully translated into clinical testing. Herein, we evaluated if the conformal coating of islets with poly(N-vinylpyrrolidone) (PVPON) and tannic acid (TA) (PVPON/TA) could preserve murine and human islet function while conferring islet allograft protection. In vitro function was evaluated using static glucose-stimulated insulin secretion, oxygen consumption rates, and islet membrane integrity. In vivo function was evaluated by transplanting human islets into diabetic immunodeficient B6.129S7-Rag1tm1Mom/J (Rag-/-) mice. The immunoprotective capacity of the PVPON/TA-coating was assessed by transplanting BALB/c islets into diabetic C57BL/6 mice. Graft function was evaluated by non-fasting blood glucose measurements and glucose tolerance testing. Both coated and non-coated murine and human islets exhibited indistinguishable in vitro potency. PVPON/TA-coated and control human islets were able to restore euglycemia post-transplant. The PVPON/TA-coating as monotherapy and adjuvant to systemic immunosuppression reduced intragraft inflammation and delayed murine allograft rejection. This study demonstrates that PVPON/TA-coated islets may be clinically relevant as they retain their in vitro and in vivo function while modulating post-transplant immune responses.
Collapse
Affiliation(s)
- Kateryna Polishevska
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Karen L. Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Saloni Aggarwal
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Joy Paramor
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Hubert M. Tse
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
4
|
Barra JM, Kozlovskaya V, Burnette KS, Banerjee RR, Fraker CA, Kharlampieva E, Tse HM. Localized cytotoxic T cell-associated antigen 4 and antioxidant islet encapsulation alters macrophage signaling and induces regulatory and anergic T cells to enhance allograft survival. Am J Transplant 2023; 23:498-511. [PMID: 36731781 PMCID: PMC10291560 DOI: 10.1016/j.ajt.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
The loss of functional β-cell mass is a hallmark of type 1 diabetes. Islet transplantation represents a promising alternative approach, but immune-mediated graft destruction remains a major challenge. We sought to use islet encapsulation technologies to improve graft survival and function without systemic immunosuppression. We hypothesized islet encapsulation with nanothin coatings consisting of tannic acid (TA), an antioxidant; poly(N-vinylpyrrolidone) (PVPON), a biocompatible polymer; and cytotoxic T cell-associated antigen 4 immunoglobulin (CTLA-4-Ig), an inhibitory immune receptor, will elicit localized immunosuppression to prolong islet allograft function and suppress effector T cell responses. In the absence of systemic immunosuppression, we demonstrated (PVPON/TA/CTLA-4-Ig)-encapsulated NOD.Rag islet grafts maintain function significantly longer than control IgG-containing (PVPON/TA/IgG) and nonencapsulated controls after transplantation into diabetic C57BL/6 mice. This protection coincided with diminished proinflammatory macrophage responses mediated by signal transducer and activator of transcription 1 signaling, decreased proinflammatory T cell effector responses, and CTLA-4-Ig-specific concomitant increases in anergic CD4+ T cells and regulatory T cells. Our results provide evidence that conjugation of CTLA-4-Ig to (PVPON/TA) coatings can suppress T cell activation, enhance regulatory T cell populations, prolong islet allograft survival, and induce localized immunosuppression after transplantation.
Collapse
Affiliation(s)
- Jessie M Barra
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - KaLia S Burnette
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ronadip R Banerjee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher A Fraker
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, Florida, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA; Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
5
|
Lei X, Hu Q, Ge H, Zhang X, Ru X, Chen Y, Hu R, Feng H, Deng J, Huang Y, Li W. A redox-reactive delivery system via neural stem cell nanoencapsulation enhances white matter regeneration in intracerebral hemorrhage mice. Bioeng Transl Med 2023; 8:e10451. [PMID: 36925711 PMCID: PMC10013746 DOI: 10.1002/btm2.10451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/25/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) poses a great threat to human health because of its high mortality and morbidity. Neural stem cell (NSC) transplantation is promising for treating white matter injury following ICH to promote functional recovery. However, reactive oxygen species (ROS)-induced NSC apoptosis and uncontrolled differentiation hindered the effectiveness of the therapy. Herein, we developed a single-cell nanogel system by layer-by-layer (LbL) hydrogen bonding of gelatin and tannic acid (TA), which was modified with a boronic ester-based compound linking triiodothyronine (T3). In vitro, NSCs in nanogel were protected from ROS-induced apoptosis, with apoptotic signaling pathways downregulated. This process of ROS elimination by material shell synergistically triggered T3 release to induce NSC differentiation into oligodendrocytes. Furthermore, in animal studies, ICH mice receiving nanogels performed better in behavioral evaluation, neurological scaling, and open field tests. These animals exhibited enhanced differentiation of NSCs into oligodendrocytes and promoted white matter tract regeneration on Day 21 through activation of the αvβ3/PI3K/THRA pathway. Consequently, transplantation of LbL(T3) nanogels largely resolved two obstacles in NSC therapy synergistically: low survival and uncontrolled differentiation, enhancing white matter regeneration and behavioral performance of ICH mice. As expected, nanoencapsulation with synergistic effects would efficiently provide hosts with various biological benefits and minimize the difficulty in material fabrication, inspiring next-generation material design for tackling complicated pathological conditions.
Collapse
Affiliation(s)
- Xuejiao Lei
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Quan Hu
- Department of EmergencyAffiliated Hospital, Zunyi Medical UniversityZunyiGuizhouChina
| | - Hongfei Ge
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xuyang Zhang
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xufang Ru
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Yujie Chen
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Rong Hu
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Hua Feng
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Jun Deng
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease ProteomicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Yan Huang
- Institute of Materia Medica and Department of PharmaceuticsCollege of Pharmacy, Third Military Medical University (Army Medical University)ChongqingChina
| | - Wenyan Li
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
6
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
7
|
Zhang Q, Gonelle-Gispert C, Li Y, Geng Z, Gerber-Lemaire S, Wang Y, Buhler L. Islet Encapsulation: New Developments for the Treatment of Type 1 Diabetes. Front Immunol 2022; 13:869984. [PMID: 35493496 PMCID: PMC9046662 DOI: 10.3389/fimmu.2022.869984] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Islet transplantation is a promising approach for the treatment of type 1 diabetes (T1D). Currently, clinical islet transplantation is limited by allo - and autoimmunity that may cause partial or complete loss of islet function within a short period of time, and long-term immunosuppression is required to prevent rejection. Encapsulation into semipermeable biomaterials provides a strategy that allows nutrients, oxygen and secreted hormones to diffuse through the membrane while blocking immune cells and the like out of the capsule, allowing long-term graft survival and avoiding long-term use of immunosuppression. In recent years, a variety of engineering strategies have been developed to improve the composition and properties of encapsulation materials and to explore the clinical practicality of islet cell transplantation from different sources. In particular, the encapsulation of porcine islet and the co-encapsulation of islet cells with other by-standing cells or active ingredients for promoting long-term functionality, attracted significant research efforts. Hydrogels have been widely used for cell encapsulation as well as other therapeutic applications including tissue engineering, cell carriers or drug delivery. Here, we review the current status of various hydrogel biomaterials, natural and synthetic, with particular focus on islet transplantation applications. Natural hydrophilic polymers include polysaccharides (starch, cellulose, alginic acid, hyaluronic acid, chitosan) and peptides (collagen, poly-L-lysine, poly-L-glutamic acid). Synthetic hydrophilic polymers include alcohol, acrylic acid and their derivatives [poly (acrylic acid), poly (methacrylic acid), poly(acrylamide)]. By understanding the advantages and disadvantages of materials from different sources and types, appropriate materials and encapsuling methods can be designed and selected as needed to improve the efficacy and duration of islet. Islet capsule transplantation is emerging as a promising future treatment for T1D.
Collapse
Affiliation(s)
- Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Yanjiao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Geng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| | - Leo Buhler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| |
Collapse
|
8
|
Kuppan P, Kelly S, Seeberger K, Castro C, Rosko M, Pepper AR, Korbutt GS. Bioabsorption of Subcutaneous Nanofibrous Scaffolds Influences the Engraftment and Function of Neonatal Porcine Islets. Polymers (Basel) 2022; 14:polym14061120. [PMID: 35335450 PMCID: PMC8954444 DOI: 10.3390/polym14061120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The subcutaneous space is currently being pursued as an alternative transplant site for ß-cell replacement therapies due to its retrievability, minimally invasive procedure and potential for graft imaging. However, implantation of ß-cells into an unmodified subcutaneous niche fails to reverse diabetes due to a lack of adequate blood supply. Herein, poly (ε-caprolactone) (PCL) and poly (lactic-co-glycolic acid) (PLGA) polymers were used to make scaffolds and were functionalized with peptides (RGD (Arginine-glycine-aspartate), VEGF (Vascular endothelial growth factor), laminin) or gelatin to augment engraftment. PCL, PCL + RGD + VEGF (PCL + R + V), PCL + RGD + Laminin (PCL + R + L), PLGA and PLGA + Gelatin (PLGA + G) scaffolds were implanted into the subcutaneous space of immunodeficient Rag mice. After four weeks, neonatal porcine islets (NPIs) were transplanted within the lumen of the scaffolds or under the kidney capsule (KC). Graft function was evaluated by blood glucose, serum porcine insulin, glucose tolerance tests, graft cellular insulin content and histologically. PLGA and PLGA + G scaffold recipients achieved significantly superior euglycemia rates (86% and 100%, respectively) compared to PCL scaffold recipients (0% euglycemic) (* p < 0.05, ** p < 0.01, respectively). PLGA scaffolds exhibited superior glucose tolerance (* p < 0.05) and serum porcine insulin secretion (* p < 0.05) compared to PCL scaffolds. Functionalized PLGA + G scaffold recipients exhibited higher total cellular insulin contents compared to PLGA-only recipients (* p < 0.05). This study demonstrates that the bioabsorption of PLGA-based fibrous scaffolds is a key factor that facilitates the function of NPIs transplanted subcutaneously in diabetic mice.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Chelsea Castro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mandy Rosko
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (A.R.P.); (G.S.K.)
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (A.R.P.); (G.S.K.)
| |
Collapse
|
9
|
Kepple JD, Barra JM, Young ME, Hunter CS, Tse HM. Islet transplantation into brown adipose tissue can delay immune rejection. JCI Insight 2022; 7:152800. [PMID: 35015736 PMCID: PMC8876467 DOI: 10.1172/jci.insight.152800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease characterized by insulin-producing β cell destruction. Although islet transplantation restores euglycemia and improves patient outcomes, an ideal transplant site remains elusive. Brown adipose tissue (BAT) has a highly vascularized and antiinflammatory microenvironment. Because these tissue features can promote islet graft survival, we hypothesized that islets transplanted into BAT will maintain islet graft and BAT function while delaying immune-mediated rejection. We transplanted syngeneic and allogeneic islets into BAT or under the kidney capsule of streptozotocin-induced diabetic NOD.Rag and NOD mice to investigate islet graft function, BAT function, metabolism, and immune-mediated rejection. Islet grafts within BAT restored euglycemia similarly to kidney capsule controls. Islets transplanted in BAT maintained expression of islet hormones and transcription factors and were vascularized. Compared with those in kidney capsule and euglycemic mock-surgery controls, no differences in glucose or insulin tolerance, thermogenic regulation, or energy expenditure were observed with islet grafts in BAT. Immune profiling of BAT revealed enriched antiinflammatory macrophages and T cells. Compared with the kidney capsule control, there were significant delays in autoimmune and allograft rejection of islets transplanted in BAT, possibly due to increased antiinflammatory immune populations. Our data support BAT as an alternative islet transplant site that may improve graft survival.
Collapse
Affiliation(s)
- Jessica D Kepple
- Department of Medicine, University of Alabama at Birmingham, Birmingham, United States of America
| | - Jessie M Barra
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, United States of America
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, United States of America
| | - Chad S Hunter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, United States of America
| | - Hubert M Tse
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, United States of America
| |
Collapse
|