1
|
Liu C, Guo G, Li X, Shen Y, Xu X, Chen Y, Li H, Hao J, He K. Identification of novel urine proteomic biomarkers for high stamina in high-altitude adaptation. Front Physiol 2023; 14:1153166. [PMID: 37250129 PMCID: PMC10214468 DOI: 10.3389/fphys.2023.1153166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: We aimed to identify urine biomarkers for screening individuals with adaptability to high-altitude hypoxia with high stamina levels. Although most non-high-altitude natives experience rapid decline in physical ability when ascending to high altitudes, some individuals with high-altitude adaptability continue to maintain high endurance levels. Methods: We divided the study population into two groups: the LC group (low change in endurance from low to high altitude) and HC group (high change in endurance from low to high altitude). We performed blood biochemistry testing for individuals at high altitudes and sea level. We used urine peptidome profiling to compare the HH (high-altitude with high stamina) and HL (high-altitude with low stamina) groups and the LC and HC groups to identify urine biomarkers. Results: Routine blood tests revealed that the concentration of white blood cells, lymphocytes and platelets were significantly higher in the HH group than in the HL group. Urine peptidome profiling showed that the proteins ITIH1, PDCD1LG2, NME1-NME2, and CSPG4 were significantly differentially expressed between the HH and HL groups, which was tested using ELISA. Urine proteomic analysis showed that LRG1, NID1, VASN, GPX3, ACP2, and PRSS8 were urine proteomic biomarkers of high stamina during high-altitude adaptation. Conclusion: This study provides a novel approach for identifying potential biomarkers for screening individuals who can adapt to high altitudes with high stamina.
Collapse
Affiliation(s)
- Chunlei Liu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Ge Guo
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yanying Shen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiang Xu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yibing Chen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Hanlu Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Jianxiu Hao
- Clinical Sample Bank, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Miglani M, Rain M, Pasha Q, Raj VS, Thinlas T, Mohammad G, Gupta A, Pandey RP, Vibhuti A. Shorter telomere length, higher telomerase activity in association with tankyrase gene polymorphism contribute to high-altitude pulmonary edema. Hum Mol Genet 2021; 29:3094-3106. [PMID: 32916703 DOI: 10.1093/hmg/ddaa205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
High-altitude pulmonary edema (HAPE) is a noncardiogenic form of pulmonary edema, which is induced upon exposure to hypobaric hypoxia at high altitude (HA). Hypobaric hypoxia generates reactive oxygen species that may damage telomeres and disturb normal physiological processes. Telomere complex comprises of multiple proteins, of which, tankyrase (TNKS) is actively involved in DNA damage repairs. We hence investigated the association of TNKS and telomeres with HAPE to delineate their potential role at HA. The study was performed in three groups, High-altitude pulmonary edema patients (HAPE-p, n = 200), HAPE-resistant sojourners (HAPE-r, n = 200) and highland permanent healthy residents (HLs, n = 200). Variants of TNKS were genotyped using polymerase chain reaction-restriction fragment length polymorphism. Plasma TNKS level was estimated using enzyme-linked immunosorbent assay, expression of TNKS and relative telomere length were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and telomerase activity was assessed by the telomere repeat amplification protocol assay. TNKS poly-ADP ribosylates the telomere-repeat factor (TRF), which is a negative regulator of telomere length. Consequently, TRF expression was also measured by RT-qPCR. The TNKS heterozygotes rs7015700GA were prevalent in HLs compared to the HAPE-p and HAPE-r. The plasma TNKS was significantly decreased in HAPE-p than HAPE-r (P = 0.006). TNKS was upregulated 9.27 folds in HAPE-p (P = 1.01E-06) and downregulated in HLs by 3.3 folds (P = 0.02). The telomere length was shorter in HAPE-p compared to HAPE-r (P = 0.03) and HLs (P = 4.25E-4). The telomerase activity was significantly higher in HAPE-p compared to both HAPE-r (P = 0.01) and HLs (P = 0.001). HAPE-p had the lowest TNKS levels (0.186 ± 0.031 ng/μl) and the highest telomerase activity (0.0268 amoles/μl). The findings of the study indicate the association of TNKS and telomeres with HA adaptation/maladaptation.
Collapse
Affiliation(s)
- Manjula Miglani
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India.,Functional Genomics Unit, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, 110007, India
| | - Manjari Rain
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, 110007, India
| | - Qadar Pasha
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, 110007, India
| | - V Samuel Raj
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh-Ladakh 194101, India
| | - Ghulam Mohammad
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh-Ladakh 194101, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Ramendra Pati Pandey
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| |
Collapse
|
3
|
Beall CM, Childs G, Craig SR, Strohl KP, Quinn E, Basnyat B. Repeatability of adaptive traits among ethnic Tibetan highlanders. Am J Hum Biol 2021; 34:e23670. [PMID: 34424596 DOI: 10.1002/ajhb.23670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Connecting traits to biological pathways and genes relies on stable observations. Researchers typically determine traits once, expecting careful study protocols to yield measurements free of noise. This report examines that expectation with test-retest repeatability analyses for traits used regularly in research on adaptation to high-altitude hypoxia, often in settings without climate control. METHODS Two hundred ninety-one ethnic Tibetan women residing from 3500 to 4200 m in Upper Mustang District, Nepal, provided three observations of hemoglobin concentration, percent of oxygen saturation of hemoglobin, and pulse by noninvasive pulse oximetry under conditions designed to minimize environmental noise. RESULTS High-intraclass correlation coefficients and low within-subject coefficients of variation reflected consistent measurements. Percent of oxygen saturation had the highest intraclass correlation coefficient and the smallest within-subject coefficient of variability; measurement noise occurred mainly in the lower values. Hemoglobin concentration and pulse presented slightly higher within-subject coefficients of variation; measurement noise occurred across the range of values. The women had performed the same measurements 7 years earlier using the same devices and protocol. The sample means and SD observed across 7 years differed little. Hemoglobin concentration increased substantially after menopause. CONCLUSIONS Analyzing repeatability features of traits may improve our interpretation of statistical analyses and detection of variation from measurement or biology. The high levels of measurement repeatability and biological stability support the continued use of these robust traits for investigating human adaptation in this altitude range.
Collapse
Affiliation(s)
- Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Geoff Childs
- Department of Anthropology, Washington University, St. Louis, Missouri, USA
| | - Sienna R Craig
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - Kingman P Strohl
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elizabeth Quinn
- Department of Anthropology, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
4
|
Lei Y, Yang L, Zhou Y, Wang C, Lv W, Li L, He S. Hb adaptation to hypoxia in high-altitude fishes: Fresh evidence from schizothoracinae fishes in the Qinghai-Tibetan Plateau. Int J Biol Macromol 2021; 185:471-484. [PMID: 34214574 DOI: 10.1016/j.ijbiomac.2021.06.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Uncovering the genetic basis of hypoxic adaptation is one of the most active research areas in evolutionary biology. Among air-breathing vertebrates, modifications of hemoglobin (Hb) play a pivotal role in mediating an adaptive response to high-altitude hypoxia. However, the relative contributions in water-breathing organisms are still unclear. Here, we tested the Hb concentration of fish at different altitudes. All species showed species-specific Hb concentration, which has a non-positive correlation with altitude. Moreover, we investigated the expression of Hb genes by the RNA-seq and quantitative real-time PCR (qRT-PCR), and Hb composition by two-dimensional electrophoresis (2-DE). The results showed that the multiple Hb genes and isoforms are co-expressed in schizothoracinae fishes endemic to the Qinghai-Tibetan Plateau (QTP). Phylogenetic analyses of Hb genes indicated that the evolutionary relationships are not easily reconciled with the organismal phylogeny. Furthermore, evidence of positive selection was found in the Hb genes of schizothoracinae fishes through the selection pressure analysis. We demonstrated that positively selected sites likely facilitated the functional divergence of Hb isoforms. Taken together, this study indicated that the long-term maintenance of high Hb concentration may be a disadvantage for physiologically acclimating to high altitude hypoxia. Meanwhile, the genetically based modification of Hb-O2 affinity in schizothoracinae fishes might facilitate the evolutionary adaptation to Tibetan aqueous environments.
Collapse
Affiliation(s)
- Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
5
|
Basak N, Norboo T, Mustak MS, Thangaraj K. Heterogeneity in Hematological Parameters of High and Low Altitude Tibetan Populations. J Blood Med 2021; 12:287-298. [PMID: 34040473 PMCID: PMC8139737 DOI: 10.2147/jbm.s294564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction High altitude hypoxia is believed to be experienced at elevations of more than 2500 meters above sea level. Several studies have shed light on the biochemical aspects of high altitude acclimatization, where participants were sojourners to the high altitude from low altitude areas. However, information regarding the difference between the high altitude adapted Tibetans living at high altitude and their counterparts who reside at low altitude are lacking. To understand this, we have measured various hematological parameters in the Tibetan populations, who are residing in both high and low altitudes in India. Methods A total of 168 individuals (79 from high altitude (≥4500 meters) and 89 from low altitude (~850 meters) were recruited for this study. Hematological parameters such as red blood cells (RBC) count, hematocrit (HCT), hemoglobin concentration (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were measured from the individuals from high and low altitudes. Serum erythropoietin (EPO) was measured by ELISA. Statistical analyses were performed to compare data from both of the altitudes. Gender-wise comparison of data was reported. Correlation analysis was performed within relevant parameters. Results Highly significant differences (p <0.0001) between high and low altitude Tibetans were detected in RBC count, HCT, Hb, MCHC in both males and females and in MCV in females. In the case of MCHC, however, age and BMI were potential confounders. Nominally significant differences (p <0.05) were detected in MCV and MCH within males. No significant difference in serum EPO level was found between altitude groups, in any gender. No significant correlation was found between serum EPO with Hb as well as serum EPO with HCT. Discussion Our study explores significantly lower RBC count, HCT, Hb, MCH, MCHC and higher MCV in long-term Tibetan residents living at low altitude compared to their high altitude counterparts, which is likely due to the outcome of hematological adaptation to a relatively hyperoxic environment in low altitude areas.
Collapse
Affiliation(s)
- Nipa Basak
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | | | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,DBT-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
6
|
Sarna K, Brittenham GM, Beall CM. Detecting anaemia at high altitude. Evol Med Public Health 2020; 2020:68-69. [PMID: 32382420 PMCID: PMC7196337 DOI: 10.1093/emph/eoaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/12/2020] [Accepted: 04/07/2020] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kaylee Sarna
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary M Brittenham
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | - Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude. Proc Natl Acad Sci U S A 2019; 116:24006-24011. [PMID: 31712437 DOI: 10.1073/pnas.1906171116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Highland native Andeans have resided at altitude for millennia. They display high aerobic capacity (VO2max) at altitude, which may be a reflection of genetic adaptation to hypoxia. Previous genomewide (GW) scans for natural selection have nominated Egl-9 homolog 1 gene (EGLN1) as a candidate gene. The encoded protein, EGLN1/PHD2, is an O2 sensor that controls levels of the Hypoxia Inducible Factor-α (HIF-α), which regulates the cellular response to hypoxia. From GW association and analysis of covariance performed on a total sample of 429 Peruvian Quechua and 94 US lowland referents, we identified 5 EGLN1 SNPs associated with higher VO2max (L⋅min-1 and mL⋅min-1⋅kg-1) in hypoxia (rs1769793, rs2064766, rs2437150, rs2491403, rs479200). For 4 of these SNPs, Quechua had the highest frequency of the advantageous (high VO2max) allele compared with 25 diverse lowland comparison populations from the 1000 Genomes Project. Genotype effects were substantial, with high versus low VO2max genotype categories differing by ∼11% (e.g., for rs1769793 SNP genotype TT = 34.2 mL⋅min-1⋅kg-1 vs. CC = 30.5 mL⋅min-1⋅kg-1). To guard against spurious association, we controlled for population stratification. Findings were replicated for EGLN1 SNP rs1769793 in an independent Andean sample collected in 2002. These findings contextualize previous reports of natural selection at EGLN1 in Andeans, and support the hypothesis that natural selection has increased the frequency of an EGLN1 causal variant that enhances O2 delivery or use during exercise at altitude in Peruvian Quechua.
Collapse
|
8
|
Storz JF, Scott GR. Life Ascending: Mechanism and Process in Physiological Adaptation to High-Altitude Hypoxia. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019; 50:503-526. [PMID: 33033467 DOI: 10.1146/annurev-ecolsys-110218-025014] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To cope with the reduced availability of O2 at high altitude, air-breathing vertebrates have evolved myriad adjustments in the cardiorespiratory system to match tissue O2 delivery with metabolic O2 demand. We explain how changes at interacting steps of the O2 transport pathway contribute to plastic and evolved changes in whole-animal aerobic performance under hypoxia. In vertebrates native to high altitude, enhancements of aerobic performance under hypoxia are attributable to a combination of environmentally induced and evolved changes in multiple steps of the pathway. Additionally, evidence suggests that many high-altitude natives have evolved mechanisms for attenuating maladaptive acclimatization responses to hypoxia, resulting in counter-gradient patterns of altitudinal variation for key physiological phenotypes. For traits that exhibit counteracting environmental and genetic effects, evolved changes in phenotype may be cryptic under field conditions and can only be revealed by rearing representatives of high-and low-altitude populations under standardized environmental conditions to control for plasticity.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
9
|
Cade BE, Chen H, Stilp AM, Louie T, Ancoli-Israel S, Arens R, Barfield R, Below JE, Cai J, Conomos MP, Evans DS, Frazier-Wood AC, Gharib SA, Gleason KJ, Gottlieb DJ, Hillman DR, Johnson WC, Lederer DJ, Lee J, Loredo JS, Mei H, Mukherjee S, Patel SR, Post WS, Purcell SM, Ramos AR, Reid KJ, Rice K, Shah NA, Sofer T, Taylor KD, Thornton TA, Wang H, Yaffe K, Zee PC, Hanis CL, Palmer LJ, Rotter JI, Stone KL, Tranah GJ, Wilson JG, Sunyaev SR, Laurie CC, Zhu X, Saxena R, Lin X, Redline S. Associations of variants In the hexokinase 1 and interleukin 18 receptor regions with oxyhemoglobin saturation during sleep. PLoS Genet 2019; 15:e1007739. [PMID: 30990817 PMCID: PMC6467367 DOI: 10.1371/journal.pgen.1007739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Sleep disordered breathing (SDB)-related overnight hypoxemia is associated with cardiometabolic disease and other comorbidities. Understanding the genetic bases for variations in nocturnal hypoxemia may help understand mechanisms influencing oxygenation and SDB-related mortality. We conducted genome-wide association tests across 10 cohorts and 4 populations to identify genetic variants associated with three correlated measures of overnight oxyhemoglobin saturation: average and minimum oxyhemoglobin saturation during sleep and the percent of sleep with oxyhemoglobin saturation under 90%. The discovery sample consisted of 8,326 individuals. Variants with p < 1 × 10(-6) were analyzed in a replication group of 14,410 individuals. We identified 3 significantly associated regions, including 2 regions in multi-ethnic analyses (2q12, 10q22). SNPs in the 2q12 region associated with minimum SpO2 (rs78136548 p = 2.70 × 10(-10)). SNPs at 10q22 were associated with all three traits including average SpO2 (rs72805692 p = 4.58 × 10(-8)). SNPs in both regions were associated in over 20,000 individuals and are supported by prior associations or functional evidence. Four additional significant regions were detected in secondary sex-stratified and combined discovery and replication analyses, including a region overlapping Reelin, a known marker of respiratory complex neurons.These are the first genome-wide significant findings reported for oxyhemoglobin saturation during sleep, a phenotype of high clinical interest. Our replicated associations with HK1 and IL18R1 suggest that variants in inflammatory pathways, such as the biologically-plausible NLRP3 inflammasome, may contribute to nocturnal hypoxemia.
Collapse
Affiliation(s)
- Brian E. Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States of America
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX United States of America
- Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX United States of America
| | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Sonia Ancoli-Israel
- Department of Psychiatry, University of California, San Diego, CA, United States of America
| | - Raanan Arens
- The Children’s Hospital at Montefiore, Division of Respiratory and Sleep Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Richard Barfield
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Jennifer E. Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jianwen Cai
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States of America
| | - Matthew P. Conomos
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Alexis C. Frazier-Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Sina A. Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle WA, United States of America
| | - Kevin J. Gleason
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Department of Public Health Sciences, University of Chicago, Chicago, IL, United States of America
| | - Daniel J. Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- VA Boston Healthcare System, Boston, MA, United States of America
| | - David R. Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - David J. Lederer
- Departments of Medicine and Epidemiology, Columbia University, New York, NY, United States of America
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Jose S. Loredo
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, UC San Diego School of Medicine, La Jolla, CA, United States of America
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, South Australia
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia
| | - Sanjay R. Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Wendy S. Post
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Shaun M. Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States of America
| | - Alberto R. Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Kathryn J. Reid
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Neomi A. Shah
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Timothy A. Thornton
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States of America
| | - Kristine Yaffe
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, United States of America
- San Francisco VA Medical Center, San Francisco, CA, United States of America
| | - Phyllis C. Zee
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Craig L. Hanis
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX United States of America
| | - Lyle J. Palmer
- School of Public Health, University of Adelaide, South Australia, Australia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson MS, United States of America
| | - Shamil R. Sunyaev
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States of America
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, United States of America
- Division of Medical Sciences, Harvard Medical School, Boston, MA, United States of America
| | - Cathy C. Laurie
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States of America
- Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| |
Collapse
|
10
|
Simonson TS, Wagner PD. Oxygen transport adaptations to exercise in native highland populations. Exp Physiol 2016; 100:1231-2. [PMID: 26575339 DOI: 10.1113/ep085073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/06/2015] [Indexed: 11/08/2022]
|
11
|
Simonson TS, Huff CD, Witherspoon DJ, Prchal JT, Jorde LB. Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans. Exp Physiol 2016; 100:1263-8. [PMID: 26454145 DOI: 10.1113/ep085035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the topic of this review? Tibetans have genetic adaptations that are hypothesized to underlie the distinct set of traits they exhibit at altitude. What advances does it highlight? Several adaptive signatures in the same genomic regions have been identified among Tibetan populations resident throughout the Qinghai-Tibetan Plateau. Many highland Tibetans exhibit a haemoglobin concentration within the range expected at sea level, and this trait is associated with putatively adaptive regions harbouring the hypoxia-inducible factor pathway genes EGLN1, EPAS1 and PPARA. Precise functional variants at adaptive loci and relationships to physiological traits, beyond haemoglobin concentration, are currently being examined in this population. Some native Tibetan, Andean and Ethiopian populations have lived at altitudes ranging from 3000 to >4000 m above sea level for hundreds of generations and exhibit distinct combinations of traits at altitude. It was long hypothesized that genetic factors contribute to adaptive differences in these populations, and recent advances in genomics provide evidence that some of the strongest signatures of positive selection in humans are those identified in Tibetans. Many of the top adaptive genomic regions highlighted thus far harbour genes related to hypoxia sensing and response. Putatively adaptive copies of three hypoxia-inducible factor pathway genes, EPAS1, EGLN1 and PPARA, are associated with sea-level range, rather than elevated, haemoglobin concentration observed in many Tibetans at high altitude, and recent studies provide insight into some of the precise adaptive variants, timing of adaptive events and functional roles. While several studies in highland Tibetans have converged on a few hypoxia-inducible factor pathway genes, additional candidates have been reported in independent studies of Tibetans located throughout the Qinghai-Tibetan Plateau. Various aspects of adaptive significance have yet to be identified, integrated, and fully explored. Given the rapid technological advances and interdisciplinary efforts in genomics, physiology and molecular biology, careful examination of Tibetans and comparisons with other distinctively adapted highland populations will provide valuable insight into evolutionary processes and models for both basic and clinical research.
Collapse
Affiliation(s)
- T S Simonson
- Department of Medicine, Division of Physiology, University of California San Diego, La Jolla, CA, USA
| | - C D Huff
- Department of Epidemiology, University of Texas, MD Anderson, Houston, TX, USA
| | - D J Witherspoon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - J T Prchal
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - L B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Stembridge M, Ainslie PN, Donnelly J, MacLeod NT, Joshi S, Hughes MG, Sherpa K, Shave R. Cardiac structure and function in adolescent Sherpa; effect of habitual altitude and developmental stage. Am J Physiol Heart Circ Physiol 2016; 310:H740-6. [PMID: 26801313 DOI: 10.1152/ajpheart.00938.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/16/2016] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to examine ventricular structure and function in Sherpa adolescents to determine whether age-specific differences in oxygen saturation (SpO2 ) and pulmonary artery systolic pressure (PASP) influence cardiac adaptation to chronic hypoxia early in life. Two-dimensional, Doppler, and speckle-tracking echocardiography were performed on adolescent (9-16 yr) highland Sherpa (HLS; 3,840 m; n = 26) and compared with age-matched lowland Sherpa (LLS; 1,400 m; n = 10) and lowland Caucasian controls (LLC; sea level; n = 30). The HLS were subdivided into pre- and postadolescence; SpO2 was also recorded. Only HLS exhibited a smaller relative left ventricular (LV) end-diastolic volume; however, both HLS and LLS demonstrated a lower peak LV untwisting velocity compared with LLC (92 ± 26 and 100 ± 45 vs. 130 ± 43°/s, P < 0.05). Although SpO2 was similar between groups, PASP was higher in post- vs. preadolescent HLS (30 ± 5 vs. 25 ± 5 mmHg, P < 0.05), which negatively correlated with right ventricular strain rate (r = 0.50, P < 0.01). Much like their adult counterparts, HLS and LLS adolescents exhibit slower LV diastolic relaxation, despite residing at different altitudes. These findings suggest fundamental differences exist in the diastolic function of Sherpa that are present at an early age and may be retained after migration to lower altitudes. The higher PASP in postadolescent Sherpa is in contrast to previous reports of lowland children at high altitude and, unlike that in lowlanders, was not explained by differences in SpO2 ; thus different regulatory mechanisms seem to exist between these two distinct populations.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom;
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada
| | - Joseph Donnelly
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Suchita Joshi
- Patan Academy of Health Sciences, Kathmandu, Nepal; and
| | - Michael G Hughes
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| | | | - Rob Shave
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|