1
|
Hemingway HW, Richey RE, Moore AM, Saul BM, Shokraeifard AM, Cope HL, Olivencia-Yurvati AH, Cunningham RL, Smith ML, Romero SA. Effect of acute heat exposure on the pressor response to a voluntary hypoxic apnea. J Appl Physiol (1985) 2023; 135:542-548. [PMID: 37439242 PMCID: PMC10538993 DOI: 10.1152/japplphysiol.00245.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023] Open
Abstract
The pressor response induced by a voluntary hypoxic apnea is mediated largely by increased sympathetic outflow. The neural control of blood pressure is altered in recovery from acute heat exposure, but its effect on the pressor response to a voluntary hypoxic apnea has never been explored. Therefore, we tested the hypothesis that prior heat exposure would attenuate the pressor response induced by a voluntary hypoxic apnea. Eleven healthy adults (five women) were exposed to whole body passive heating (water-perfused suit) sufficient to increase body core temperature by 1.2°C. Voluntary hypoxic apneas were performed at baseline and in recovery when body core temperature returned to ≤ 0.3°C of baseline. Participants breathed gas mixtures of varying [Formula: see text] (21%, 16%, and 12%; randomized) for 1 min followed by a 15-s end-expiratory apnea. The change in arterial oxygen saturation during each apnea did not differ from baseline to recovery (P = 0.6 for interaction), whereas the pressor response induced by a voluntary hypoxia apnea was reduced ([Formula: see text] 21%, baseline 17 ± 7 mmHg vs. recovery 14 ± 7 mmHg; [Formula: see text] 16%, baseline 24 ± 8 mmHg vs. recovery 18 ± 7 mmHg; [Formula: see text] 12%, baseline 28 ± 11 mmHg vs. recovery 24 ± 11 mmHg; P = 0.01 for main effect of time). These data suggest that prior heat exposure induces a cross-stressor effect such that the pressor response to a voluntary hypoxic apnea is attenuated.NEW & NOTEWORTHY The pressor response induced by a voluntary hypoxic apnea is mediated by increased sympathetic outflow. The neural control of blood pressure is altered in recovery from acute heat exposure, but its effect on the pressor response to a voluntary hypoxic apnea has never been explored. Our data suggest that prior heat exposure induces a cross-stressor effect such that the pressor response to a voluntary hypoxic apnea is attenuated.
Collapse
Affiliation(s)
- Holden W Hemingway
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Rauchelle E Richey
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Amy M Moore
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Benjamin M Saul
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Austin M Shokraeifard
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Heidi L Cope
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Albert H Olivencia-Yurvati
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Michael L Smith
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Steven A Romero
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
2
|
Martin ZT, Akins JD, Merlau ER, Kolade JO, Al-Daas IO, Cardenas N, Vu JK, Brown KK, Brothers RM. The acute effect of whole-body heat therapy on peripheral and cerebral vascular reactivity in Black and White females. Microvasc Res 2023; 148:104536. [PMID: 37024072 PMCID: PMC10908357 DOI: 10.1016/j.mvr.2023.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Among females in the U.S., Black females suffer the most from cardiovascular disease and stroke. While the reasons for this disparity are multifactorial, vascular dysfunction likely contributes. Chronic whole-body heat therapy (WBHT) improves vascular function, but few studies have examined its acute effect on peripheral or cerebral vascular function, which may help elucidate chronic adaptative mechanisms. Furthermore, no studies have investigated this effect in Black females. We hypothesized that Black females would have lower peripheral and cerebral vascular function relative to White females and that one session of WBHT would mitigate these differences. Eighteen young, healthy Black (n = 9; 21 ± 3 yr; BMI: 24.7 ± 4.5 kg/m2) and White (n = 9; 27 ± 3 yr; BMI: 24.8 ± 4.1 kg/m2) females underwent one 60 min session of WBHT (49 °C water via a tube-lined suit). Pre- and 45 min post-testing measures included post-occlusive forearm reactive hyperemia (peripheral microvascular function, RH), brachial artery flow-mediated dilation (peripheral macrovascular function, FMD), and cerebrovascular reactivity (CVR) to hypercapnia. Prior to WBHT, there were no differences in RH, FMD, or CVR (p > 0.05 for all). WBHT improved peak RH in both groups (main effect of WBHT: 79.6 ± 20.1 cm/s to 95.9 ± 30.0 cm/s; p = 0.004, g = 0.787) but not Δ blood velocity (p > 0.05 for both groups). WBHT improved FMD in both groups (6.2 ± 3.4 % to 8.8 ± 3.7 %; p = 0.016, g = 0.618) but had no effect on CVR in either group (p = 0.077). These data indicate that one session of WBHT acutely improves peripheral micro- and macrovascular but not cerebral vascular function in Black and White females.
Collapse
Affiliation(s)
- Zachary T Martin
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - John D Akins
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Emily R Merlau
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - John O Kolade
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Iman O Al-Daas
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Natalia Cardenas
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Joshua K Vu
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Kyrah K Brown
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
3
|
Saveko A, Bekreneva M, Ponomarev I, Zelenskaya I, Riabova A, Shigueva T, Kitov V, Abu Sheli N, Nosikova I, Rukavishnikov I, Sayenko D, Tomilovskaya E. Impact of different ground-based microgravity models on human sensorimotor system. Front Physiol 2023; 14:1085545. [PMID: 36875039 PMCID: PMC9974674 DOI: 10.3389/fphys.2023.1085545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
This review includes current and updated information about various ground-based microgravity models and their impact on the human sensorimotor system. All known models of microgravity are imperfect in a simulation of the physiological effects of microgravity but have their advantages and disadvantages. This review points out that understanding the role of gravity in motion control requires consideration of data from different environments and in various contexts. The compiled information can be helpful to researchers to effectively plan experiments using ground-based models of the effects of space flight, depending on the problem posed.
Collapse
Affiliation(s)
- Alina Saveko
- Russian Federation State Scientific Center—Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Chaseling GK, Debray A, Gravel H, Ravanelli N, Bartlett A, Gagnon D. The acute effect of heat exposure on forearm macro- and microvascular function: Impact of measurement timing, heating modality and biological sex. Exp Physiol 2023; 108:221-239. [PMID: 36533971 PMCID: PMC10103856 DOI: 10.1113/ep090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do measurement timing, heating modality and biological sex modulate the acute effect of heat exposure on brachial artery flow-mediated dilatation and postocclusion reactive hyperaemia? What is the main finding and its importance? The acute effect of heat exposure on brachial artery flow-mediated dilatation and postocclusion reactive hyperaemia is: (1) transient and short lasting; (2) different between forearm and whole-body heating; (3) unaffected by forearm heating during whole-body heating; and (4) not different but not always equivalent between males and females. These findings provide a useful basis for future studies to investigate the acute effect of heat exposure on vascular function. ABSTRACT The aim of this study was to gain a better understanding of the acute effect of heat exposure on brachial artery flow-mediated dilatation (FMD) and postocclusion reactive hyperaemia (PORH) by: characterizing the time course of changes post-heating; comparing forearm and whole-body heating; determining the impact of forearm heating during whole-body heating; and comparing males and females. Twenty adults (11 males and nine females; 28 ± 6 years of age) underwent two forearm [10 min electric blanket (EB) or 30 min hot water immersion (WI)] and two whole-body [60 min water-perfused suit with forearm covered (WBH-C) or uncovered (WBH-U)] heating modalities. The FMD and PORH were measured before and after (≤5, 30, 60, 90 and 120 min) heating. The FMD increased from baseline 30 min after EB, and 30 and 90 min after WI. In contrast, FMD decreased from baseline immediately after both WBH modalities. Peak PORH increased immediately after WI and both WBH modalities. Total PORH did not differ after WI, whereas it decreased immediately after both WBH modalities. Covering the forearm during WBH did not alter acute changes in FMD or PORH. Changes in FMD and PORH did not differ statistically between males and females during each heating modality, although the observed differences could not always be considered equivalent. These results demonstrate that the acute effect of heat exposure on brachial artery FMD and PORH is: (1) transient and short lasting; (2) different between forearm heating and WBH; (3) unaffected by direct forearm heating during WBH; and (4) not different but not always equivalent between males and females.
Collapse
Affiliation(s)
- Georgia K. Chaseling
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
| | - Amélie Debray
- Montreal Heart InstituteMontréalQuébecCanada
- Department of MedicineFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
| | - Hugo Gravel
- School of Kinesiology and Exercise ScienceFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
| | | | - Audrey‐Ann Bartlett
- Montreal Heart InstituteMontréalQuébecCanada
- School of Kinesiology and Exercise ScienceFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
| | - Daniel Gagnon
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
- School of Kinesiology and Exercise ScienceFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
5
|
Hemingway HW, Richey RE, Moore AM, Olivencia-Yurvati AH, Kline GP, Romero SA. Acute heat exposure protects against endothelial ischemia-reperfusion injury in aged humans. Am J Physiol Regul Integr Comp Physiol 2022; 322:R360-R367. [PMID: 35200050 PMCID: PMC8993535 DOI: 10.1152/ajpregu.00336.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
Nonpharmacological therapies that protect against endothelial ischemia-reperfusion injury (I/R) remain limited in aged adults. Acute heat exposure protects against endothelial I/R injury in young adults, but its efficacy has never been explored in aged adults. Therefore, we tested the hypothesis that acute heat exposure would prevent the attenuation of endothelium-dependent vasodilation after I/R injury in aged adults. Nine (2 men, 69 ± 8 yr) aged adults were exposed to a thermoneutral control condition or whole body passive heating (water-perfused suit) sufficient to increase body core temperature by 1.2°C. Experiments were separated by at least 7 days. Heat exposure was always performed first to time match the thermoneutral control condition. Endothelium-dependent vasodilation was assessed via flow-mediated dilation of the brachial artery before (pre-I/R) and after I/R injury (post-I/R), which was induced by 20 min of arm ischemia followed by 20 min of reperfusion. Flow-mediated dilation was reduced following I/R injury for the thermoneutral control condition (pre-I/R, 4.5 ± 2.9% vs. post-I/R, 0.9 ± 2.8%, P < 0.01), but was well maintained with prior heat exposure (pre-I/R, 4.4 ± 2.8% vs. post-I/R, 3.5 ± 2.8%, P = 0.5). Taken together, acute heat exposure protects against endothelial I/R injury in aged adults. These results highlight the therapeutic potential of heat therapy to prevent endothelial dysfunction associated with I/R injury in aged adults who are most at risk for an ischemic event.
Collapse
Affiliation(s)
- Holden W Hemingway
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rauchelle E Richey
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Amy M Moore
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H Olivencia-Yurvati
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
- Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Geoffrey P Kline
- Department of Internal Medicine and Geriatrics, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A Romero
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
6
|
Cho MJ, Choi HI, Kim HJ, Bunsawat K, Kunutsor SK, Jae SY. Comparison of the acute effects of ankle bathing versus moderate-intensity aerobic exercise on vascular function in young adults. Appl Physiol Nutr Metab 2022; 47:469-481. [PMID: 35380875 DOI: 10.1139/apnm-2021-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the efficacy of ankle bathing versus aerobic exercise to improve vascular function in young adults who were randomized to aerobic exercise (AE) (n = 13, 40%-60% of heart rate reserve), ankle bathing (AB) (n = 15, 43 °C), or a control condition (CON) (n = 14, ankle bathing, 36 °C) for 40 min. Conduit vessel function [brachial artery flow-mediated dilation (FMD)], carotid and femoral artery blood flow and shear rate (SR), and arterial stiffness [carotid-to-femoral pulse wave velocity (cf-PWV), augmentation index (AIx@75), β-stiffness index, and arterial compliance] were evaluated. Compared with CON, AE and AB increased FMD at 30 min and 90 min (interaction: p < 0.05); AB decreased carotid artery blood flow and SR at 30 min, while both AE and AB increased femoral artery blood flow and SR at 30 min and 90 min (interaction: p < 0.05); AE and AB decreased cf-PWV and AIx@75 at 30 min and 90 min (interaction: p < 0.05); and AE improved both carotid and femoral β-stiffness index and arterial compliance, while AB reduced β-stiffness index and increased arterial compliance only in the femoral artery (interaction: p < 0.05). These findings suggest that ankle bathing may serve as an alternative strategy for enhancing vascular function. Novelty: We observed similar improvements in conduit vessel function, femoral artery blood flow and shear rate, and arterial stiffness following ankle bathing and acute aerobic exercise in young adults. These findings have identified ankle bathing as a potential therapeutic strategy for enhancing vascular function, which may be particularly relevant for those with limited ability to engage in regular aerobic exercise.
Collapse
Affiliation(s)
- Min Jeong Cho
- Department of Sport Science, University of Seoul, Seoul, Republic of Korea
| | - Ho Il Choi
- Department of Sport Science, University of Seoul, Seoul, Republic of Korea
| | - Hyun Jeong Kim
- Department of Sport Science, University of Seoul, Seoul, Republic of Korea
| | - Kanokwan Bunsawat
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah, USA
| | - Setor K Kunutsor
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK.,Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Sae Young Jae
- Department of Sport Science, University of Seoul, Seoul, Republic of Korea.,Division of Urban Social Health, Graduate School of Urban Public Health, University of Seoul, Seoul, Republic of Korea
| |
Collapse
|
7
|
Hemingway HW, Richey RE, Moore AM, Shokraeifard AM, Thomas GC, Olivencia-Yurvati AH, Romero SA. Shear stress induced by acute heat exposure is not obligatory to protect against endothelial ischemia-reperfusion injury in humans. J Appl Physiol (1985) 2022; 132:199-208. [PMID: 34941435 PMCID: PMC8759960 DOI: 10.1152/japplphysiol.00748.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acute heat exposure protects against endothelial ischemia-reperfusion (I/R) injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We tested the hypothesis that inhibiting the increase in shear stress induced by acute heat exposure would attenuate the protection of endothelial function following I/R injury. Nine (3 women) young healthy participants were studied under three experimental conditions: 1) thermoneutral control; 2) whole body heat exposure to increase body core temperature by 1.2°C; and 3) heat exposure + brachial artery compression to inhibit the temperature-dependent increase in shear stress. Endothelial function was assessed via brachial artery flow-mediated dilatation before (pre-I/R) and after (post-I/R) 20 min of arm ischemia followed by 20 min of reperfusion. Brachial artery shear rate was increased during heat exposure (681 ± 359 s-1), but not for thermoneutral control (140 ± 63 s-1; P < 0.01 vs. heat exposure) nor for heat + brachial artery compression (139 ± 60 s-1; P < 0.01 vs. heat exposure). Ischemia-reperfusion injury reduced flow-mediated dilatation following thermoneutral control (pre-I/R, 5.5 ± 2.9% vs. post-I/R, 3.8 ± 2.9%; P = 0.06), but was protected following heat exposure (pre-I/R, 5.8 ± 2.9% vs. post-I/R, 6.1 ± 2.9%; P = 0.5) and heat + arterial compression (pre-I/R, 4.4 ± 2.8% vs. post-I/R, 5.8 ± 2.8%; P = 0.1). Contrary to our hypothesis, our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury in humans.NEW & NOTEWORTHY Acute heat exposure protects against endothelial ischemia-reperfusion injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We utilized arterial compression to inhibit the temperature-dependent increase in brachial artery blood velocity that occurs during acute heat exposure to isolate the contribution of shear stress to the protection of endothelial function following ischemia-reperfusion injury. Our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury.
Collapse
Affiliation(s)
- Holden W. Hemingway
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rauchelle E. Richey
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Amy M. Moore
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Austin M. Shokraeifard
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Gabriel C. Thomas
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H. Olivencia-Yurvati
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas,2Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A. Romero
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
8
|
Larson EA, Ely BR, Brunt VE, Francisco MA, Harris SM, Halliwill JR, Minson CT. Brachial and carotid hemodynamic response to hot water immersion in men and women. Am J Physiol Regul Integr Comp Physiol 2021; 321:R823-R832. [PMID: 34643115 DOI: 10.1152/ajpregu.00110.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study sought to compare the brachial and carotid hemodynamic response to hot water immersion (HWI) between healthy young men and women. Ten women (W) and 11 men (M) (24 ± 4 yr) completed a 60-min HWI session immersed to the level of the sternum in 40°C water. Brachial and carotid artery hemodynamics (Doppler ultrasound) were measured at baseline (seated rest) and every 15 min throughout HWI. Within the brachial artery, total shear rate was elevated to a greater extent in women [+479 (+364, +594) s-1] than in men [+292 (+222, +361) s-1] during HWI (P = 0.005). As shear rate is inversely proportional to blood vessel diameter and directly proportional to blood flow velocity, the sex difference in brachial shear response to HWI was the result of a smaller brachial diameter among women at baseline (P < 0.0001) and throughout HWI (main effect of sex, P < 0.0001) and a greater increase in brachial velocity seen in women [+48 (+36, +61) cm/s] compared with men [+35 (+27, +43) cm/s] with HWI (P = 0.047) which allowed for a similar increase in brachial blood flow between sexes [M: +369 (+287, +451) mL/min, W: +364 (+243, +486) mL/min, P = 0.943]. In contrast, no differences were seen between sexes in carotid total shear rate, flow, velocity, or diameter at baseline or throughout HWI. These data indicate the presence of an artery-specific sex difference in the hemodynamic response to a single bout of HWI.
Collapse
Affiliation(s)
- Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Brett R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - Sarianne M Harris
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
9
|
Lalande S, Hemingway HW, Jarrard CP, Moore AM, Olivencia-Yurvati AH, Richey RE, Romero SA. Influence of ischemia-reperfusion injury on endothelial function in men and women with similar serum estradiol concentrations. Am J Physiol Regul Integr Comp Physiol 2021; 321:R273-R278. [PMID: 34259042 DOI: 10.1152/ajpregu.00147.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior data suggest that, relative to the early follicular phase, women in the late follicular phase are protected against endothelial ischemia-reperfusion (I/R) injury when estradiol concentrations are highest. In addition, endothelial I/R injury is consistently observed in men with naturally low endogenous estradiol concentrations that are similar to those of women in the early follicular phase. Therefore, the purpose of this study was to determine whether the vasodeleterious effect of I/R injury differs between women in the early follicular phase of the menstrual cycle and age-matched men. We tested the hypothesis that I/R injury would attenuate endothelium-dependent vasodilation to the same extent in women and age-matched men with similar circulating estradiol concentrations. Endothelium-dependent vasodilation was assessed via brachial artery flow-mediated dilation (duplex ultrasound) in young healthy men (n = 22) and women (n = 12) before (pre-I/R) and immediately after (post-I/R) I/R injury, which was induced via 20 min of arm circulatory arrest followed by 20-min reperfusion. Serum estradiol concentrations did not differ between sexes (men 115.0 ± 33.9 pg·mL-1 vs. women 90.5 ± 40.8 pg·mL-1; P = 0.2). The magnitude by which I/R injury attenuated endothelium-dependent vasodilation did not differ between men (pre-I/R 5.4 ± 2.4% vs. post-I/R 3.0 ± 2.7%) and women (pre-I/R 6.1 ± 2.8% vs. post-I/R 3.7 ± 2.7%; P = 0.9). Our data demonstrate that I/R injury similarly reduces endothelial function in women in the early follicular phase of the menstrual cycle and age-matched men with similar estradiol concentrations.
Collapse
Affiliation(s)
- Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Holden W Hemingway
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Caitlin P Jarrard
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Amy M Moore
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H Olivencia-Yurvati
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rauchelle E Richey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A Romero
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
10
|
Cheng JL, Williams JS, Hoekstra SP, MacDonald MJ. Improvements in vascular function in response to acute lower limb heating in young healthy males and females. J Appl Physiol (1985) 2021; 131:277-289. [PMID: 34013754 DOI: 10.1152/japplphysiol.00630.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Regular exposure to passive heat stress improves vascular function, but the optimal heating prescription remains undefined. Local limb heating is more feasible than whole body heating, but the evidence demonstrating its efficacy is lacking. The purpose of this study was to determine whether acute improvements in vascular function can be achieved with lower limb heating in 16 young healthy individuals (8 female, 8 male). In separate visits, participants underwent 45 min of ankle- and knee-level hot water immersion (45°C). A subset of seven participants also participated in a time-control visit. Endothelial function was assessed through simultaneous brachial and superficial femoral artery flow-mediated dilation (FMD) tests. Macrovascular function was quantified by %FMD, whereas microvascular function was quantified by vascular conductance during reactive hyperemia. Arterial stiffness was assessed through carotid-femoral and femoral-foot pulse wave velocity (PWV). Plasma concentrations of interleukin-6 and extracellular heat shock protein-72 (eHSP72) were used as indicators of inflammation. Our findings showed that 45 min of lower limb heating-regardless of condition-acutely improved upper limb macrovascular endothelial function (i.e., brachial %FMD; Pre: 4.6 ± 1.7 vs. Post: 5.4 ± 2.0%; P = 0.004) and lower limb arterial stiffness (i.e., femoral-foot PWV; Pre: 8.4 ± 1.2 vs. Post: 7.7 ± 1.1 m/s; P = 0.011). However, only knee-level heating increased upper limb microvascular function (i.e., brachial peak vascular conductance; Pre: 6.3 ± 2.7 vs. Post: 7.8 ± 3.5 mL/min ⋅ mmHg; P ≤ 0.050) and plasma eHSP72 concentration (Pre: 12.4 ± 9.4 vs. Post: 14.8 ± 9.8 ng/mL; P ≤ 0.050). These findings show that local lower limb heating acutely improves vascular function in younger individuals, with knee-level heating improving more outcome measures.NEW & NOTEWORTHY This study demonstrates that lower limb hot water immersion is an effective strategy for acutely improving vascular function in young, healthy males and females, thereby encouraging the development of accessible modes of heat therapy for vascular health.
Collapse
Affiliation(s)
- Jem L Cheng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Sven P Hoekstra
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | | |
Collapse
|
11
|
Pizzey FK, Smith EC, Ruediger SL, Keating SE, Askew CD, Coombes JS, Bailey TG. The effect of heat therapy on blood pressure and peripheral vascular function: A systematic review and meta-analysis. Exp Physiol 2021; 106:1317-1334. [PMID: 33866630 DOI: 10.1113/ep089424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
NEW FINDINGS What is the topic of this review? We have conducted a systematic review and meta-analysis on the current evidence for the effect of heat therapy on blood pressure and vascular function. What advances does it highlight? We found that heat therapy reduced mean arterial, systolic and diastolic blood pressure. We also observed that heat therapy improved vascular function, as assessed via brachial artery flow-mediated dilatation. Our results suggest that heat therapy is a promising therapeutic tool that should be optimized further, via mode and dose, for the prevention and treatment of cardiovascular disease risk factors. ABSTRACT Lifelong sauna exposure is associated with reduced cardiovascular disease risk. Recent studies have investigated the effect of heat therapy on markers of cardiovascular health. We aimed to conduct a systematic review with meta-analysis to determine the effects of heat therapy on blood pressure and indices of vascular function in healthy and clinical populations. Four databases were searched up to September 2020 for studies investigating heat therapy on outcomes including blood pressure and vascular function. Grading of Recommendations, Assessment, Development and Evaluations (GRADE) was used to assess the certainty of evidence. A total of 4522 titles were screened, and 15 studies were included. Healthy and clinical populations were included. Heat exposure was for 30-90 min, over 10-36 sessions. Compared with control conditions, heat therapy reduced mean arterial pressure [n = 4 studies; mean difference (MD): -5.86 mmHg, 95% confidence interval (CI): -8.63, -3.10; P < 0.0001], systolic blood pressure (n = 10; MD: -3.94 mmHg, 95% CI: -7.22, -0.67; P = 0.02) and diastolic blood pressure (n = 9; MD: -3.88 mmHg, 95% CI: -6.13, -1.63; P = 0.0007) and improved flow-mediated dilatation (n = 5; MD: 1.95%, 95% CI: 0.14, 3.76; P = 0.03). Resting heart rate was unchanged (n = 10; MD: -1.25 beats/min; 95% CI: -3.20, 0.70; P = 0.21). Early evidence also suggests benefits for arterial stiffness and cutaneous microvascular function. The certainty of evidence was moderate for the effect of heat therapy on systolic and diastolic blood pressure and heart rate and low for the effect of heat therapy on mean arterial pressure and flow-mediated dilatation. Heat therapy is an effective therapeutic tool to reduce blood pressure and improve macrovascular function. Future research should aim to optimize heat therapy, including the mode and dose, for the prevention and management of cardiovascular disease.
Collapse
Affiliation(s)
- Faith K Pizzey
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Emily C Smith
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Stefanie L Ruediger
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Shelley E Keating
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Queensland, Australia
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia.,School of Nursing Midwifery and Social Work, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
12
|
Hemingway HW, Moore AM, Olivencia-Yurvati AH, Romero SA. Effect of endoplasmic reticulum stress on endothelial ischemia-reperfusion injury in humans. Am J Physiol Regul Integr Comp Physiol 2020; 319:R666-R672. [PMID: 33074709 DOI: 10.1152/ajpregu.00257.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Endoplasmic reticulum stress contributes to ischemia-reperfusion (I/R) injury in rodent and cell models. However, the contribution of endoplasmic reticulum stress in the pathogenesis of endothelial I/R injury in humans is unknown. We tested the hypothesis that compared with placebo, inhibition of endoplasmic reticulum stress via ingestion of tauroursodeoxycholic acid would prevent the attenuation of endothelium-dependent vasodilation following I/R injury. Twelve young adults (6 women) were studied following ingestion of a placebo or 1,500 mg tauroursodeoxycholic acid (TUDCA). Endothelium-dependent vasodilation was assessed via brachial artery flow-mediated dilation (duplex ultrasonography) before and after I/R injury, which was induced by 20 min of arm ischemia followed by 20 min of reperfusion. Endothelium-independent vasodilation (glyceryl trinitrate-mediated vasodilation) was also assessed after I/R injury. Compared with placebo, TUDCA ingestion increased circulating plasma concentrations by 145 ± 90 ng/ml and increased concentrations of the taurine unconjugated form, ursodeoxycholic acid, by 560 ± 156 ng/ml (both P < 0.01). Ischemia-reperfusion injury attenuated endothelium-dependent vasodilation, an effect that did not differ between placebo (pre-I/R, 5.0 ± 2.1% vs. post-I/R, 3.5 ± 2.2%) and TUDCA (pre-I/R, 5.6 ± 2.1% vs. post-I/R, 3.9 ± 2.1%; P = 0.8) conditions. Similarly, endothelium-independent vasodilation did not differ between conditions (placebo, 19.6 ± 4.8% vs. TUDCA, 19.7 ± 6.1%; P = 0.9). Taken together, endoplasmic reticulum stress does not appear to contribute to endothelial I/R injury in healthy young adults.
Collapse
Affiliation(s)
- Holden W Hemingway
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Amy M Moore
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H Olivencia-Yurvati
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A Romero
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
13
|
Engelland RE, Hemingway HW, Tomasco OG, Olivencia-Yurvati AH, Romero SA. Neural control of blood pressure is altered following isolated leg heating in aged humans. Am J Physiol Heart Circ Physiol 2020; 318:H976-H984. [PMID: 32142377 DOI: 10.1152/ajpheart.00019.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is a sustained reduction in arterial blood pressure that occurs in aged adults following exposure to acute leg heating. We tested the hypothesis that acute leg heating would decrease arterial blood pressure in aged adults secondary to sympathoinhibition. We exposed 13 young and 10 aged adults to 45 min of leg heating. Muscle sympathetic nerve activity (radial nerve) was measured before leg heating (preheat) and 30 min after (recovery) and is expressed as burst frequency. Neurovascular transduction was examined by assessing the slope of the relation between muscle sympathetic nerve activity and leg vascular conductance measured at rest and during isometric handgrip exercise performed to fatigue. Arterial blood pressure was well maintained in young adults (preheat, 86 ± 6 mmHg vs. recovery, 88 ± 7 mmHg; P = 0.4) due to increased sympathetic nerve activity (preheat, 16 ± 7 bursts/min vs. recovery, 22 ± 10 bursts/min; P < 0.01). However, in aged adults, sympathetic nerve activity did not differ from preheat (37 ± 5 bursts/min) to recovery (33 ± 6 bursts/min, P = 0.1), despite a marked reduction in arterial blood pressure (preheat, 101 ± 7 mmHg vs. recovery, 94 ± 6 mmHg; P < 0.01). Neurovascular transduction did not differ from preheat to recovery for either age group (P ≥ 0.1). The reduction in arterial blood pressure that occurs in aged adults following exposure to acute leg heating is mediated, in part, by a sympathoinhibitory effect that alters the compensatory neural response to hypotension.NEW & NOTEWORTHY There is a sustained reduction in arterial blood pressure that occurs in aged adults following exposure to acute leg heating. However, the neurovascular mechanisms mediating this response remain unknown. Our findings demonstrate for the first time that this reduction in arterial blood pressure is mediated, in part, by a sympathoinhibitory effect that alters the compensatory neural response to hypotension in aged adults.
Collapse
Affiliation(s)
- Rachel E Engelland
- Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Ft. Worth, Texas
| | - Holden W Hemingway
- Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Ft. Worth, Texas
| | - Olivia G Tomasco
- Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Ft. Worth, Texas
| | - Albert H Olivencia-Yurvati
- Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Ft. Worth, Texas.,Department of Surgery, University of North Texas Health Science Center, Ft. Worth, Texas
| | - Steven A Romero
- Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Ft. Worth, Texas
| |
Collapse
|