1
|
Bourgeois H, Paradis-Deschênes P, Billaut F. High-intensity interval training with blood-flow restriction enhances sprint and maximal aerobic power in male endurance athletes. Appl Physiol Nutr Metab 2025; 50:1-11. [PMID: 39642351 DOI: 10.1139/apnm-2024-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
High-intensity interval training (HIIT) can improve endurance performance. We investigated the concurrent impact of HIIT and blood-flow restriction (BFR) as a novel approach to further enhance maximal aerobic and anaerobic physiology and performances in trained athletes. In a randomized controlled trial, eighteen endurance-trained males ( V ˙ O2peak 65.6 ± 5.1 mL.min-1.kg-1) included three sessions of HIIT per week (sets of 15 s efforts at 100% maximal aerobic power, interspersed by 15 s recovery) into their usual training for 3 weeks, either with restriction imposed on both lower limbs at 50%-70% of arterial occlusion pressure (BFR group, n = 10) or without (CTL group, n = 8), and were tested for sprint and endurance exercise performance. The total mechanical work developed during a 30 s Wingate test increased only in BFR (3.6%, P = 0.02). During the Wingate, changes in near-infrared spectroscopy-derived vastus lateralis muscle oxygenation (Δ(deoxy[Hb + Mb]), % arterial occlusion) were attenuated after BFR training (-8.8%, P = 0.04). The maximal aerobic power measured during an incremental cycling test increased only in BFR (4.5%, P = 0.0004), but there was no change in V ˙ O2peak among groups. Both groups improved 5 km cycling time trial performance, but BFR displayed a concomitant greater elevation in [H+] (11%, P = 0.02). Changes in other blood variables (e.g., pH, lactate, bicarbonate and potassium ion concentration, and hemoglobin) were not different between groups. Combining short-duration HIIT performed at 100% aerobic power with BFR elicited greater changes in sprint performance and maximal aerobic power in endurance athletes, associated with locomotor muscle metabolic adaptations but no meaningful effect on cardiorespiratory fitness.
Collapse
Affiliation(s)
- Hubert Bourgeois
- Département de kinésiologie, Université Laval, Québec, QC, Canada
| | | | - François Billaut
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Excellence Sportive Québec-Lévis, Québec, QC, Canada
| |
Collapse
|
2
|
Breese BC, Bailey SJ, Ferguson RA. Combined effect of sprint interval training and post-exercise blood flow restriction on muscle deoxygenation responses during ramp incremental cycling. Eur J Appl Physiol 2024:10.1007/s00421-024-05645-6. [PMID: 39438313 DOI: 10.1007/s00421-024-05645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study investigated the effect of sprint-interval training combined with post-exercise blood flow restriction (i.e., SIT + BFR) on pulmonary gas exchange and microvascular deoxygenation responses during ramp incremental (RI) cycling. METHODS Nineteen healthy, untrained males (mean ± SD age: 24 ± 5 years; height: 178 ± 6 cm; body mass: 77.0 ± 10.7 kg) were assigned to receive 4 weeks of SIT or SIT + BFR. Before and after the intervention period, each participant completed a RI cycling test for determination of peak oxygen uptake (V ˙ O 2peak ) and the gas exchange threshold (GET) with deoxygenated heme (Δdeoxy[heme]) and tissue oxygenation index (TOI) measured by near-infrared spectroscopy (NIRS) in vastus lateralis (VL) muscle. RESULTS RelativeV ˙ O 2peak increased by 7% following both interventions (P ≤ 0.03). SIT + BFR increased peak Δdeoxy[heme] when normalized relative to leg arterial occlusion (PRE: 57.3 ± 13.0 vs. POST: 62.0 ± 13.2%; P = 0.009) whereas there was no significant difference following SIT (PRE: 64.9 ± 14.3 vs. POST: 71.4 ± 11.7%; P = 0.17). Likewise, TOI nadir decreased at exhaustion following SIT + BFR (PRE: 56.9 ± 9.1 vs. POST: 51.4 ± 9.2%; P = 0.002) but not after SIT (PRE: 58.5 ± 7.1 vs. POST: 56.3 ± 8.2%; P = 0.29). The absolute cycling power at the GET increased following SIT + BFR (PRE: 108 ± 13 vs. POST: 125 ± 17 W, P = 0.001) but was not significantly different following SIT (PRE: 112 ± 7 VS. POST: 116 ± 11 W, P = 0.54). CONCLUSION The addition of post-exercise BFR to SIT alters the mechanism underlying the enhancement inV ˙ O 2peak by increasing the peak rate of muscle fractional O2 extraction in previously untrained males.
Collapse
Affiliation(s)
- Brynmor C Breese
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| |
Collapse
|
3
|
Lavigne C, Mons V, Grange M, Blain GM. Acute neuromuscular, cardiovascular, and muscle oxygenation responses to low-intensity aerobic interval exercises with blood flow restriction. Exp Physiol 2024; 109:1353-1369. [PMID: 38875101 PMCID: PMC11291873 DOI: 10.1113/ep091742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
We investigated the influence of short- and long-interval cycling exercise with blood flow restriction (BFR) on neuromuscular fatigue, shear stress and muscle oxygenation, potent stimuli to BFR-training adaptations. During separate sessions, eight individuals performed short- (24 × 60 s/30 s; SI) or long-interval (12 × 120 s/60 s; LI) trials on a cycle ergometer, matched for total work. One leg exercised with (BFR-leg) and the other without (CTRL-leg) BFR. Quadriceps fatigue was quantified using pre- to post-interval changes in maximal voluntary contraction (MVC), potentiated twitch force (QT) and voluntary activation (VA). Shear rate was measured by Doppler ultrasound at cuff release post-intervals. Vastus lateralis tissue oxygenation was measured by near-infrared spectroscopy during exercise. Following the initial interval, significant (P < 0.05) declines in MVC and QT were found in both SI and LI, which were more pronounced in the BFR-leg, and accounted for approximately two-thirds of the total reduction at exercise termination. In the BFR-leg, reductions in MVC (-28 ± 15%), QT (-42 ± 17%), and VA (-15 ± 17%) were maximal at exercise termination and persisted up to 8 min post-exercise. Exercise-induced muscle deoxygenation was greater (P < 0.001) in the BFR-leg than CTRL-leg and perceived pain was more in LI than SI (P < 0.014). Cuff release triggered a significant (P < 0.001) shear rate increase which was consistent across trials. Exercise-induced neuromuscular fatigue in the BFR-leg exceeded that in the CTRL-leg and was predominantly of peripheral origin. BFR also resulted in diminished muscle oxygenation and elevated shear stress. Finally, short-interval trials resulted in comparable neuromuscular and haemodynamic responses with reduced perceived pain compared to long-intervals.
Collapse
|
4
|
Pugh CF, Paton CD, Ferguson RA, Driller MW, Martyn Beaven C. Acute physiological responses of blood flow restriction between high-intensity interval repetitions in trained cyclists. Eur J Sport Sci 2024; 24:777-787. [PMID: 38874956 PMCID: PMC11235839 DOI: 10.1002/ejsc.12107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 06/15/2024]
Abstract
Blood flow restriction (BFR) is increasingly being used to enhance aerobic performance in endurance athletes. This study examined physiological responses to BFR applied in recovery phases within a high-intensity interval training (HIIT) session in trained cyclists. Eleven competitive road cyclists (mean ± SD, age: 28 ± 7 years, body mass: 69 ± 6 kg, peak oxygen uptake: 65 ± 9 mL · kg-1 · min-1) completed two randomised crossover conditions: HIIT with (BFR) and without (CON) BFR applied during recovery phases. HIIT consisted of six 30-s cycling bouts at an intensity equivalent to 85% of maximal 30-s power (523 ± 93 W), interspersed with 4.5-min recovery. BFR (200 mmHg, 12 cm cuff width) was applied for 2-min in the early recovery phase between each interval. Pulmonary gas exchange (V̇O2, V̇CO2, and V̇E), tissue oxygen saturation index (TSI), heart rate (HR), and serum vascular endothelial growth factor concentration (VEGF) were measured. Compared to CON, BFR increased V̇CO2 and V̇E during work bouts (both p < 0.05, dz < 0.5), but there was no effect on V̇O2, TSI, or HR (p > 0.05). In early recovery, BFR decreased TSI, V̇O2, V̇CO2, and V̇E (all p < 0.05, dz > 0.8) versus CON, with no change in HR (p > 0.05). In late recovery, when BFR was released, V̇O2, V̇CO2, V̇E, and HR increased, but TSI decreased versus CON (all p < 0.05, dz > 0.8). There was a greater increase in VEGF at 3-h post-exercise in BFR compared to CON (p < 0.05, dz > 0.8). Incorporating BFR into HIIT recovery phases altered physiological responses compared to exercise alone.
Collapse
Affiliation(s)
- Charles F. Pugh
- Te Huataki Waiora School of HealthUniversity of WaikatoHamiltonNew Zealand
| | - Carl D. Paton
- School of Health and Sport ScienceTe PukengaThe Eastern Institute of TechnologyNapierNew Zealand
| | - Richard A. Ferguson
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Matthew W. Driller
- Sport, Performance and Nutrition Research GroupSchool of Allied Health, Human Services and SportLa Trobe UniversityMelbourneVictoriaAustralia
| | - C. Martyn Beaven
- Te Huataki Waiora School of HealthUniversity of WaikatoHamiltonNew Zealand
| |
Collapse
|
5
|
Sarfabadi P, Rizvi MR, Sharma A, Sami W, Sajid MR, Arora S, Anand A, bin Ab Hamid MR. Elevating athletic performance: Maximizing strength and power in long jumpers through combined low-intensity blood flow restriction and high-intensity resistance training. Heliyon 2023; 9:e19068. [PMID: 37636460 PMCID: PMC10457511 DOI: 10.1016/j.heliyon.2023.e19068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose This study aimed to evaluate the effects of low-intensity blood flow restriction (BFR) training and high-intensity resistance training (HI-RT) on the leaping performance of long-jumpers. Materials and methods Long jump players were divided into two groups; one group (group A) receiving HI-RT (n = 8) and the other group (group B) receiving combined low-intensity BFR training plus HI-RT (n = 8). Muscle power and knee muscle strength was assessed at baseline, 3 weeks and 6 weeks of intervention. Results 1-RM was found to be significantly different between Group A and Group B at 3 and 6 weeks. Further, IKDQR, IKDHR and IKDQL was significantly improved in group B as compared to group A both at 3 and 6 weeks. There was significant time effect, group effect and time-group interaction in the strength of quadriceps and hamstring of both left and right leg measured through isokinetic device. Post-hoc analysis for 1-RM in group B showed a significant improvement at baseline and 6 weeks and the broad jump was significant at baseline and 3 weeks and at baseline and 6 weeks. Conclusion The combined effects of low-intensity BFR training and HI-RT is effective in improving the muscle strength and power of lower limbs in long jumpers.
Collapse
Affiliation(s)
- Pehzaan Sarfabadi
- Department of Physiotherapy, Faculty of Allied Health Sciences, Manav Rachna International Institute and Studies (MRIIRS), Faridabad, 121001, India
| | - Moattar Raza Rizvi
- Faculty of Allied Health Sciences, Manav Rachna International Institute and Studies (MRIIRS), Faridabad, 121001, India
| | - Ankita Sharma
- Department of Physiotherapy, Faculty of Allied Health Sciences, Manav Rachna International Institute and Studies (MRIIRS), Faridabad, 121001, India
| | - Waqas Sami
- Department of Pre-Clinical Affairs, College of Nursing, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | | | - Sumit Arora
- Manav Rachna Sport Science Centre, Manav Rachna International Institute and Studies (MRIIRS), Faridabad, 121001 India
| | - Akshay Anand
- Sultan Qaboos Comprehensive Cancer Care and Research Centre, Al Khoud, Muscat, Oman
| | - Mohd Rashid bin Ab Hamid
- Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| |
Collapse
|
6
|
Maga M, Wachsmann-Maga A, Batko K, Włodarczyk A, Kłapacz P, Krężel J, Szopa N, Sliwka A. Impact of Blood-Flow-Restricted Training on Arterial Functions and Angiogenesis-A Systematic Review with Meta-Analysis. Biomedicines 2023; 11:1601. [PMID: 37371696 PMCID: PMC10295844 DOI: 10.3390/biomedicines11061601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Despite growing evidence of the significant influence of blood-flow-restricted (BFR) training on different body functions, its impact on the vascular system, especially the arteries, is controversial. Therefore, the objective of our study was to analyze how BFR exercise, compared to other types of exercise without the restriction of blood flow, influences arterial functions and angiogenesis in adults. Studies comparing the effect of BFR versus non-BFR training on arterial parameters were divided into three categories: endothelial function, angiogenesis, and other vasculature functions. The search was based on Cochrane Library, PubMed®, and Embase, and 38 studies were included. The meta-analysis revealed a more significant improvement in flow-mediated dilatation (FMD) (p = 0.002) and the production of the primary angiogenesis biomarker vascular endothelial growth factor (VEGF) (p = 0.009) after BFR compared to non-BFR training (p = 0.002). The analysis of the pulse wave velocity, ankle-brachial index, systolic blood pressure, and heart rate did not show significant differences in changes between BFR and non-BFR training. The other parameters examined did not have sufficient data to be included in the meta-analysis. The results obtained present trends that suggest significant impacts of BFR training on endothelial functions and angiogenesis. There is still a lack of multicenter randomized clinical trials including many participants, and such studies are necessary to confirm the advantage of BFR over non-BFR activity.
Collapse
Affiliation(s)
- Mikołaj Maga
- Department of Rehabilitation in Internal Diseases, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland;
- Clinical Department of Angiology, University Hospital in Krakow, 30-688 Krakow, Poland; (A.W.-M.); (P.K.); (J.K.)
| | - Agnieszka Wachsmann-Maga
- Clinical Department of Angiology, University Hospital in Krakow, 30-688 Krakow, Poland; (A.W.-M.); (P.K.); (J.K.)
- Department of Angiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.W.); (N.S.)
| | - Krzysztof Batko
- Department of Research and Design, Medicine Economy Law Society (MELS) Foundation, 30-040 Krakow, Poland;
| | - Aleksandra Włodarczyk
- Department of Angiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.W.); (N.S.)
| | - Paulina Kłapacz
- Clinical Department of Angiology, University Hospital in Krakow, 30-688 Krakow, Poland; (A.W.-M.); (P.K.); (J.K.)
- Department of Angiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.W.); (N.S.)
| | - Jakub Krężel
- Clinical Department of Angiology, University Hospital in Krakow, 30-688 Krakow, Poland; (A.W.-M.); (P.K.); (J.K.)
| | - Natalia Szopa
- Department of Angiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.W.); (N.S.)
| | - Agnieszka Sliwka
- Department of Rehabilitation in Internal Diseases, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| |
Collapse
|
7
|
Ross M, Kargl CK, Ferguson R, Gavin TP, Hellsten Y. Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol 2023:10.1007/s00421-022-05128-6. [PMID: 36715739 DOI: 10.1007/s00421-022-05128-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/25/2022] [Indexed: 01/31/2023]
Abstract
Exercise-induced skeletal muscle angiogenesis is a well-known physiological adaptation that occurs in humans in response to exercise training and can lead to endurance performance benefits, as well as improvements in cardiovascular and skeletal tissue health. An increase in capillary density in skeletal muscle improves diffusive oxygen exchange and waste extraction, and thus greater fatigue resistance, which has application to athletes but also to the general population. Exercise-induced angiogenesis can significantly contribute to improvements in cardiovascular and metabolic health, such as the increase in muscle glucose uptake, important for the prevention of diabetes. Recently, our understanding of the mechanisms by which angiogenesis occurs with exercise has grown substantially. This review will detail the biochemical, cellular and biomechanical signals for exercise-induced skeletal muscle angiogenesis, including recent work on extracellular vesicles and circulating angiogenic cells. In addition, the influence of age, sex, exercise intensity/duration, as well as recent observations with the use of blood flow restricted exercise, will also be discussed in detail. This review will provide academics and practitioners with mechanistic and applied evidence for optimising training interventions to promote physical performance through manipulating capillarisation in skeletal muscle.
Collapse
Affiliation(s)
- Mark Ross
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, Scotland, UK.
| | - Christopher K Kargl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, USA.,Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Richard Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Timothy P Gavin
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Mckee JR, Girard O, Peiffer JJ, Scott BR. Repeated-Sprint Training With Blood Flow Restriction: A Novel Approach to Improve Repeated-Sprint Ability? Strength Cond J 2023. [DOI: 10.1519/ssc.0000000000000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
de Queiros VS, Rolnick N, de Alcântara Varela PW, Cabral BGDAT, Silva Dantas PM. Physiological adaptations and myocellular stress in short-term, high-frequency blood flow restriction training: A scoping review. PLoS One 2022; 17:e0279811. [PMID: 36584157 PMCID: PMC9803189 DOI: 10.1371/journal.pone.0279811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND High frequency (1-2 times per day) low-intensity blood flow restriction (BFR) training has been recommended as a prescription approach for short durations of time to maximize relevant physiological adaptations. However, some studies demonstrate negative physiological changes after short periods of high-frequency BFR training, including prolonged strength decline and muscle fiber atrophy. OBJECTIVES To provide a comprehensive overview of short-term, high-frequency blood flow restriction training, including main adaptations, myocellular stress, limitations in the literature, and future perspectives. METHODS A systematic search of electronic databases (Scopus, PubMed®, and Web of Science) was performed from the earliest record to April 23, 2022. Two independent reviewers selected experimental studies that analyzed physical training protocols (aerobic or resistance) of high weekly frequency (>4 days/week) and short durations (≤3 weeks). RESULTS In total, 22 studies were included in this review. The samples were composed exclusively of young predominantly male individuals. Muscle strength and hypertrophy were the main outcomes analyzed in the studies. In general, studies have demonstrated increases in strength and muscle size after short term (1-3 weeks), high-frequency low-intensity BFR training, non-failure, but not after control conditions (non-BFR; equalized training volume). Under failure conditions, some studies have demonstrated strength decline and muscle fiber atrophy after BFR conditions, accompanying increases in muscle damage markers. Significant limitations exist in the current HF-BFR literature due to large heterogeneities in methodologies. CONCLUSION The synthesis presented indicates that short-term, high-frequency BFR training programs can generate significant neuromuscular adaptations. However, in resistance training to failure, strength declines and muscle fiber atrophy were reported. Currently, there are no studies analyzing low-frequency vs. high-frequency in short-term BFR training. Comparisons between resistance exercises of similar intensities (e.g., combined effort) are lacking, limiting conclusions on whether the effect is a product of proximity to failure or a specific effect of BFR.
Collapse
Affiliation(s)
- Victor Sabino de Queiros
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Nicholas Rolnick
- The Human Performance Mechanic, CUNY Lehman College, The Bronx, New York, United States of America
| | | | | | - Paulo Moreira Silva Dantas
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
10
|
Chua MT, Sim A, Burns SF. Acute and Chronic Effects of Blood Flow Restricted High-Intensity Interval Training: A Systematic Review. SPORTS MEDICINE - OPEN 2022; 8:122. [PMID: 36178530 PMCID: PMC9525532 DOI: 10.1186/s40798-022-00506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
Abstract
Background The implementation of blood flow restriction (BFR) during exercise is becoming an increasingly useful adjunct method in both athletic and rehabilitative settings. Advantages in pairing BFR with training can be observed in two scenarios: (1) training at lower absolute intensities (e.g. walking) elicits adaptations akin to high-intensity sessions (e.g. running intervals); (2) when performing exercise at moderate to high intensities, higher physiological stimulus may be attained, leading to larger improvements in aerobic, anaerobic, and muscular parameters. The former has been well documented in recent systematic reviews, but consensus on BFR (concomitant or post-exercise) combined with high-intensity interval training (HIIT) protocols is not well established. Therefore, this systematic review evaluates the acute and chronic effects of BFR + HIIT. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to identify relevant studies. A systematic search on 1 February 2022, was conducted on four key databases: ScienceDirect, PubMed, Scopus and SPORTDiscus. Quality of each individual study was assessed using the Physiotherapy Evidence Database (PEDro) scale. Extraction of data from included studies was conducted using an adapted version of the 'Population, Intervention, Comparison, Outcome' (PICO) framework. Results A total of 208 articles were identified, 18 of which met inclusion criteria. Of the 18 BFR + HIIT studies (244 subjects), 1 reported both acute and chronic effects, 5 examined acute responses and 12 investigated chronic effects. Acutely, BFR challenges the metabolic processes (vascular and oxygenation responses) during high-intensity repeated sprint exercise—which accelerates central and peripheral neuromuscular fatigue mechanisms resulting in performance impairments. Analysis of the literature exploring the chronic effects of BFR + HIIT suggests that BFR does provide an additive physiological training stimulus to HIIT protocols, especially for measured aerobic, muscular, and, to some extent, anaerobic parameters. Conclusion Presently, it appears that the addition of BFR into HIIT enhances physiological improvements in aerobic, muscular, and, to some extent, anaerobic performance. However due to large variability in permutations of BFR + HIIT methodologies, it is necessary for future research to explore and recommend standardised BFR guidelines for each HIIT exercise type.
Collapse
|
11
|
Santos IF, Lemos LK, Biral TM, de Souza Cavina AP, Junior EP, Toledo Teixeira Filho CA, Vendrame JW, Vanderlei FM. Relationship between heart rate variability and performance in eccentric training with blood flow restriction. Clin Physiol Funct Imaging 2022; 42:333-347. [DOI: 10.1111/cpf.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Igor Fernandes Santos
- Graduate in PhysiotherapyUniversidade Estadual Paulista (FCT/UNESP)Presidente PrudenteSPBrazil
| | - Leonardo Kesrouani Lemos
- Postgraduate Program in PhysiotherapyUniversidade Estadual Paulista (FCT/UNESP)Presidente PrudenteSPBrazil
| | - Taíse Mendes Biral
- Postgraduate Program in Movement SciencesUniversidade Estadual Paulista (FCT/UNESP)Presidente PrudenteSPBrazil
| | | | - Eduardo Pizzo Junior
- Postgraduate Program in Movement SciencesUniversidade Estadual Paulista (FCT/UNESP)Presidente PrudenteSPBrazil
| | | | - Julia Waszczuk Vendrame
- Graduate in PhysiotherapyUniversidade Estadual Paulista (FCT/UNESP)Presidente PrudenteSPBrazil
| | - Franciele Marques Vanderlei
- Postgraduate Program in Movement SciencesUniversidade Estadual Paulista (FCT/UNESP)Presidente PrudenteSPBrazil
- Department of PhysiotherapyUniversidade Estadual Paulista (FCT/UNESP)Presidente PrudenteSPBrazil
| |
Collapse
|
12
|
Mang ZA, Realzola RA, Ducharme J, Bellissimo GF, Beam JR, Mermier C, de Castro Magalhaes F, Kravitz L, Amorim FT. The effect of repetition tempo on cardiovascular and metabolic stress when time under tension is matched during lower body exercise. Eur J Appl Physiol 2022; 122:1485-1495. [PMID: 35394146 DOI: 10.1007/s00421-022-04941-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/22/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the effect of repetition tempo on cardiovascular and metabolic stress when time under tension (TUT) and effort are matched during sessions of lower body resistance training (RT). METHODS In a repeated-measures, cross-over design, 11 recreationally trained females (n = 5) and males (n = 6) performed 5 sets of belt squats under the following conditions: slow-repetition tempo (SLOW; 10 reps with 4-s eccentric and 2-s concentric) and traditional-repetition tempo (TRAD; 20 reps with 2-s eccentric and 1-s concentric). TUT (60 s) was matched between conditions and external load was adjusted so that lifters were close to concentric muscular failure at the end of each set. External load, total volume load (TVL), impulse (IMP), blood lactate, ratings of perceived exertion (RPE), HR, and muscle oxygenation were measured. RESULTS Data indicated that TVL (p < 0.001), blood lactate (p = 0.017), RPE (p = 0.015), and HR (p < 0.001) were significantly greater during TRAD while external load (p = 0.030) and IMP (p = 0.002) were significantly greater during SLOW. Whether it was expressed as minimal values or change scores, muscle oxygenation was not different between protocols. CONCLUSION When TUT is matched, TVL, cardiovascular stress, metabolic stress, and perceived exertion are greater when faster repetition tempos are used. In contrast, IMP and external load are greater when slower repetition tempos are used.
Collapse
Affiliation(s)
- Zachary A Mang
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, Albuquerque, NM, USA.
| | - Rogelio A Realzola
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, Albuquerque, NM, USA
| | - Jeremy Ducharme
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, Albuquerque, NM, USA
| | | | - Jason R Beam
- School of Fitness Education, Santa Fe Community College, Santa Fe, NM, 87508, USA
| | - Christine Mermier
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, Albuquerque, NM, USA
| | - Flavio de Castro Magalhaes
- Department of Physical Education, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Len Kravitz
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, Albuquerque, NM, USA
| | - Fabiano T Amorim
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, Albuquerque, NM, USA
| |
Collapse
|
13
|
Muscle Fatigue Is Attenuated When Applying Intermittent Compared With Continuous Blood Flow Restriction During Endurance Cycling. Int J Sports Physiol Perform 2022; 17:1126-1131. [PMID: 35551112 DOI: 10.1123/ijspp.2021-0523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE The aim of this study was to identify a blood-flow-restriction (BFR) endurance exercise protocol that maximizes metabolic strain and minimizes muscle fatigue. METHODS Twelve healthy participants accomplished 5 different interval cycling endurance exercises (2-min work, 1-min rest) in a randomized order: (1) control, low intensity with unrestricted blood flow (CON30); (2) low intensity with intermittent BFR (i-BFR30, ∼150 mm Hg); (3) low intensity with continuous BFR (c-BFR, ∼100 mm Hg); (4) unloaded cycling with i-BFR0 (∼150 mm Hg); and (5) high intensity (HI) with unrestricted blood flow. Force production, creatine kinase activity, antioxidant markers, blood pH, and potassium (K+) were measured in a range of 5 minutes before and after each cycling exercise protocol. RESULTS HI showed the highest reduction (Δ = -0.26 [0.05], d = 5.6) on blood pH. Delta pH for c-BRF30 (Δ = -0.02 [0.03], d = 0.8) and Δ pH for i-BRF30 (Δ = -0.04 [0.03], d = 1.6) were different from each other, and both were higher compared with CON30 (Δ = 0.03 [0.03]). There was significant before-to-after force loss following HI (Δ = 55 [40] N·m-1, d = 1.5) and c-BFR30 (Δ = 27 [21] N·m-1, d = 0.7) protocols only, which were accompanied by significant increases in K+ (HI: Δ = 0.94 [0.65] mmol·L-1, d = 1.8; c-BFR30: Δ = 0.72 [0.85] mmol·L-1, d = 1.2). Moreover, all BFR conditions elicited slight increases in plasma creatine kinase, but not for HI and CON30. Glutathione changes from before to after were significant for all BFR conditions and HI, but not for CON30. CONCLUSIONS The attenuation in fatigue-induced reductions in maximal force suggests that i-BFR exercise could be preferable to c-BFR in improving exercise capacity, with considerably less biologic stress elicited from HI exercises.
Collapse
|
14
|
Castilla-López C, Molina-Mula J, Romero-Franco N. Blood flow restriction during training for improving the aerobic capacity and sport performance of trained athletes: A systematic review and meta-analysis. J Exerc Sci Fit 2022; 20:190-197. [PMID: 35401767 PMCID: PMC8965159 DOI: 10.1016/j.jesf.2022.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Background /Objective: Combining blood flow restriction (BFR) with endurance training is exponentially increasing although the benefits are unclear in trained athletes. We aimed to describe the effects of aerobic and/or anaerobic training programmes combined with BFR on the aerobic capacity and related sport performance of trained athletes. Methods Databases used were MEDLINE, SPORTDiscus, LILACS, IBECS, CINHAL, COCHRANE, SCIELO and PEDro, through October 2021. For study selection, criteria included (a) clinical trials that recruited trained healthy athletes, that (b) proposed BFR in combination with aerobic/anaerobic training programmes (≥8 sessions) and that (c) evaluated either aerobic capacity or related sport performance. For data extraction, a reviewer extracted the data, and another reviewer independently verified it. The tool RoB 2 (Risk of bias 2) was used to assess risk of bias. Results Ten studies met the eligibility criteria, capturing a total of 207 participants. Although it did not reveal any significant effects from training with BFR on aerobic capacity compared to the same training without BFR, effect sizes were extremely high. Subgroup analyses according to the intensity of the training programmes found similar results for low-to-moderate or high-intensity training compared to the same sessions without BFR. Conclusion Although adding BFR to training sessions always produce benefits from baseline in aerobic capacity and sport performance of trained athletes, these results are not better than those observed after the same training sessions without BFR. The reduced number of studies, small sample sizes and some concerns regarding risk of bias should be highlighted as limitations. Registration number CRD42021248212.
Collapse
Affiliation(s)
| | - Jesús Molina-Mula
- Nursing and Physiotherapy Department, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
| | - Natalia Romero-Franco
- Nursing and Physiotherapy Department, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), E-07010, Palma de Mallorca, Spain
| |
Collapse
|
15
|
The Effect of Low-intensity Aerobic Training Combined with Blood Flow Restriction on Maximal Strength, Muscle Mass, and Cycling Performance in a Cyclist with Knee Displacement. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052993. [PMID: 35270686 PMCID: PMC8910006 DOI: 10.3390/ijerph19052993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
Low-intensity aerobic training combined with blood flow restriction (LI + BFR) has resulted in increases in aerobic and neuromuscular capacities in untrained individuals. This strategy may help cyclists incapable of training with high intensity bouts or during a rehabilitation program. However, there is a lack of evidence about the use of LI + BFR in injured trained cyclists. Thus, we investigated the effects of LI + BFR on aerobic capacity, maximal isometric strength, cross-sectional area of vastus lateralis (CSAVL), time to exhaustion test (TTE), and 20 km cycling time-trial performance (TT20 km) in a male cyclist with knee osteoarthritis (OA). After a 4-week control period, a 9-week (2 days/week) intervention period started. Pre- and post-intervention TT20 km, peak oxygen consumption (VO2peak), power output of the 1st and 2nd ventilatory thresholds (1st WVT and 2nd WVT), maximum power output (Wmax), TTE, muscle strength and CSAVL of both legs were measured. Training intensity was fixed at 30% of Wmax while the duration was progressively increased from 12 min to 24 min. There was a reduction in time to complete TT20 km (−1%) with increases in TT20 km mean power output (3.9%), VO2peak (11.4%), 2nd WVT (8.3%), Wmax (3.8%), TTE (15.5%), right and left legs maximal strength (1.3% and 8.5%, respectively) and CSAVL (3.3% and 3.7%, respectively). There was no alteration in 1st WVT. Based on the results, we suggest that LI + BFR may be a promising training strategy to improve the performance of knee-injured cyclists with knee OA.
Collapse
|
16
|
Mang ZA, Ducharme JB, Mermier C, Kravitz L, de Castro Magalhaes F, Amorim F. Aerobic Adaptations to Resistance Training: The Role of Time under Tension. Int J Sports Med 2022; 43:829-839. [PMID: 35088396 DOI: 10.1055/a-1664-8701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Generally, skeletal muscle adaptations to exercise are perceived through a dichotomous lens where the metabolic stress imposed by aerobic training leads to increased mitochondrial adaptations while the mechanical tension from resistance training leads to myofibrillar adaptations. However, there is emerging evidence for cross over between modalities where aerobic training stimulates traditional adaptations to resistance training (e.g., hypertrophy) and resistance training stimulates traditional adaptations to aerobic training (e.g., mitochondrial biogenesis). The latter is the focus of the current review in which we propose high-volume resistance training (i.e., high time under tension) leads to aerobic adaptations such as angiogenesis, mitochondrial biogenesis, and increased oxidative capacity. As time under tension increases, skeletal muscle energy turnover, metabolic stress, and ischemia also increase, which act as signals to activate the peroxisome proliferator-activated receptor gamma coactivator 1-alpha, which is the master regulator of mitochondrial biogenesis. For practical application, the acute stress and chronic adaptations to three specific forms of high-time under tension are also discussed: Slow-tempo, low-intensity resistance training, and drop-set resistance training. These modalities of high-time under tension lead to hallmark adaptations to resistance training such as muscle endurance, hypertrophy, and strength, but little is known about their effect on traditional aerobic training adaptations.
Collapse
Affiliation(s)
- Zachary Aaron Mang
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| | - Jeremy B Ducharme
- Health, Exercise, and Sports Science, University of New Mexico - Albuquerque, Albuquerque, United States
| | - Christine Mermier
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| | - Len Kravitz
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| | - Flavio de Castro Magalhaes
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Fabiano Amorim
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| |
Collapse
|
17
|
Self-Paced Cycling at the Highest Sustainable Intensity With Blood Flow Restriction Reduces External but Not Internal Training Loads. Int J Sports Physiol Perform 2022; 17:1272-1279. [DOI: 10.1123/ijspp.2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Purpose: This study compared training loads and internal:external load ratios from an aerobic interval session at the highest perceptually sustainable intensity with and without blood flow restriction (BFR). Methods: On separate days, 14 endurance cyclists/triathletes completed four 4-minute self-paced aerobic cycling intervals at their highest sustainable intensity, with and without BFR (60% of arterial occlusion pressure). Internal training load was quantified using 3 training impulses (TRIMP; Banister, Lucia, and Edwards) and sessional ratings of perceived exertion. External load was assessed using total work done (TWD). Training load ratios between all internal loads were calculated relative to TWD. Results: Lucia TRIMP was lower for the BFR compared with non-BFR session (49 [9] vs 53 [8] arbitrary units [au], P = .020, dz = −0.71). No between-conditions differences were observed for Banister TRIMP (P = .068), Edwards TRIMP (P = .072), and training load in sessional ratings of perceived exertion (P = .134). The TWD was lower for the BFR compared with non-BFR session (223 [52] vs 271 [58] kJ, P < .001, dz = −1.27). Ratios were greater for the BFR session compared with non-BFR for Lucia TRIMP:TWD (0.229 [0.056] vs 0.206 [0.056] au, P < .001, dz = 1.21), Edwards TRIMP:TWD (0.396 [0.105] vs 0.370 [0.088] au, P = .031, dz = 0.66), and training load in sessional ratings of perceived exertion:TWD (1.000 [0.266] vs 0.890 [0.275] au, P = .044, dz = 0.60), but not Banister TRIMP:TWD (P = .306). Conclusions: Practitioners should consider both internal and external loads when monitoring BFR exercise to ensure the demands are appropriately captured. These BFR-induced changes were reflected by the Lucia TRIMP:TWD and Edwards TRIMP:TWD ratio, which could be used to monitor aerobic BFR training loads. The Lucia TRIMP:TWD ratio likely represents BFR-induced changes more appropriately compared with ratios involving either Edwards or Banister TRIMP.
Collapse
|
18
|
Rolnick N, Kimbrell K, Cerqueira MS, Weatherford B, Brandner C. Perceived Barriers to Blood Flow Restriction Training. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:697082. [PMID: 36188864 PMCID: PMC9397924 DOI: 10.3389/fresc.2021.697082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Blood flow restriction (BFR) training is increasing in popularity in the fitness and rehabilitation settings due to its role in optimizing muscle mass and strength as well as cardiovascular capacity, function, and a host of other benefits. However, despite the interest in this area of research, there are likely some perceived barriers that practitioners must overcome to effectively implement this modality into practice. These barriers include determining BFR training pressures, access to appropriate BFR training technologies for relevant demographics based on the current evidence, a comprehensive and systematic approach to medical screening for safe practice and strategies to mitigate excessive perceptual demands of BFR training to foster long-term compliance. This manuscript attempts to discuss each of these barriers and provides evidence-based strategies and direction to guide clinical practice and future research.
Collapse
Affiliation(s)
- Nicholas Rolnick
- The Human Performance Mechanic, Lehman College, New York, NY, United States
- *Correspondence: Nicholas Rolnick
| | - Kyle Kimbrell
- Owens Recovery Science, San Antonio, TX, United States
| | - Mikhail Santos Cerqueira
- Neuromuscular Performance Analysis Laboratory, Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | |
Collapse
|
19
|
Preobrazenski N, Islam H, Gurd BJ. Molecular regulation of skeletal muscle mitochondrial biogenesis following blood flow-restricted aerobic exercise: a call to action. Eur J Appl Physiol 2021; 121:1835-1847. [PMID: 33830325 DOI: 10.1007/s00421-021-04669-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Blood flow-restricted (BFR) exercise can induce training adaptations comparable to those observed following training in free flow conditions. However, little is known about the acute responses within skeletal muscle following BFR aerobic exercise (AE). Moreover, although preliminary evidence suggests chronic BFR AE may augment certain training adaptations in skeletal muscle mitochondria more than non-BFR AE, the underlying mechanisms are poorly understood. In this review, we summarise the acute BFR AE literature examining mitochondrial biogenic signalling pathways and provide insight into mechanisms linked to skeletal muscle remodelling following BFR AE. Specifically, we focus on signalling pathways potentially contributing to augmented peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA following work-rate-matched BFR AE compared with non-BFR AE. We present evidence suggesting reductions in muscle oxygenation during acute BFR AE lead to increased intracellular energetic stress, AMP-activated protein kinase (AMPK) activation and PGC-1α mRNA. In addition, we briefly discuss mitochondrial adaptations to BFR aerobic training, and we assess the risk of bias using the Cochrane Collaboration risk of bias assessment tool. We ultimately call for several straightforward modifications to help minimise bias in future BFR AE studies.
Collapse
Affiliation(s)
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|