1
|
Phillips WT, Schwartz JG. Nasal turbinate lymphatic obstruction: a proposed new paradigm in the etiology of essential hypertension. Front Med (Lausanne) 2024; 11:1380632. [PMID: 39219790 PMCID: PMC11362006 DOI: 10.3389/fmed.2024.1380632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Hypertension affects an estimated 1.3 billion people worldwide and is considered the number one contributor to mortality via stroke, heart failure, renal failure, and dementia. Although the physiologic mechanisms leading to the development of essential hypertension are poorly understood, the regulation of cerebral perfusion has been proposed as a primary cause. This article proposes a novel etiology for essential hypertension. Our hypothesis developed from a review of nuclear medicine scans, where the authors observed a significantly abnormal increase in nasal turbinate vasodilation in hypertensive patients using quantitative region of interest analysis. The authors propose that nasal turbinate vasodilation and resultant blood pooling obstruct the flow of cerebrospinal fluid passing through nasal turbinate lymphatics, thereby increasing intracranial pressure. The authors discuss the glymphatic/lymphatic clearance system which is impaired with age, and at which time hypertension also develops. The increased intracranial pressure leads to compensatory hypertension via Cushing's mechanism, i.e., the selfish brain hypothesis. The nasal turbinate vasodilation, due to increased parasympathetic activity, occurs simultaneously along with the well-established increased sympathetic activity of the cardiovascular system. The increased parasympathetic activity is likely due to an autonomic imbalance secondary to the increase in worldwide consumption of processed food. This hypothesis explains the rapid worldwide rise in essential hypertension in the last 50 years and offers a novel mechanism and a new paradigm for the etiology of essential hypertension. This new paradigm offers compelling evidence for the modulation of parasympathetic nervous system activity as a novel treatment strategy, specifically targeting nasal turbinate regulation, to treat diseases such as hypertension, idiopathic intracranial hypertension, and degenerative brain diseases. The proposed mechanism of essential hypertension presented in this paper is a working hypothesis and confirmatory studies will be needed.
Collapse
|
2
|
Lear CA, Westgate JA, Bennet L, Ugwumadu A, Stone PR, Tournier A, Gunn AJ. Fetal defenses against intrapartum head compression-implications for intrapartum decelerations and hypoxic-ischemic injury. Am J Obstet Gynecol 2023; 228:S1117-S1128. [PMID: 34801443 DOI: 10.1016/j.ajog.2021.11.1352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 01/27/2023]
Abstract
Uterine contractions during labor and engagement of the fetus in the birth canal can compress the fetal head. Its impact on the fetus is unclear and still controversial. In this integrative physiological review, we highlight evidence that decelerations are uncommonly associated with fetal head compression. Next, the fetus has an impressive ability to adapt to increased intracranial pressure through activation of the intracranial baroreflex, such that fetal cerebral perfusion is well-maintained during labor, except in the setting of prolonged systemic hypoxemia leading to secondary cardiovascular compromise. Thus, when it occurs, fetal head compression is not necessarily benign but does not seem to be a common contributor to intrapartum decelerations. Finally, the intracranial baroreflex and the peripheral chemoreflex (the response to acute hypoxemia) have overlapping efferent effects. We propose the hypothesis that these reflexes may work synergistically to promote fetal adaptation to labor.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St. George's University of London, London, United Kingdom
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alexane Tournier
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Paediatrics, Starship Children's Hospital, Auckland, New Zealand.
| |
Collapse
|
3
|
Sethuraman M, Hrishi AP, Prathapadas U, Ajayan N. Electrocardiographic changes in patients with raised intracranial pressure from supratentorial brain tumors. J Neurosci Rural Pract 2023; 14:55-61. [PMID: 36891090 PMCID: PMC9945380 DOI: 10.25259/jnrp-2022-2-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Objectives A wide variety of electrocardiographic (ECG) changes has been described in the context of neurological catastrophe. There has been diverse and plentiful literature emphasizing the cardiac changes in acute cerebrovascular events and traumatic brain injury. In stark contrast, there is scarce literature on the incidence of cardiac dysfunction caused by raised intracranial pressure (ICP) resulting from brain tumors. The study aimed to observe the ECG changes concurrent with intracranial hypertension resulting from supratentorial brain tumors. Materials and Methods This is a pre-specified subgroup analysis of a prospective and observational study on cardiac function in patients presenting for neurosurgery. Data of 100 consecutive patients of either sex between 18 and 60 years who presented with primary supratentorial brain tumors were analyzed. The patients were divided into two groups: Group 1 consisted of patients without clinical and radiological features of raised ICP and Group 2 consisted of patients with clinical and radiological features of raised ICP. A 12-lead ECG was obtained for every patient on the day before the neurosurgical procedure as part of the pre-anesthetic assessment. The cardiologist and the neuroanesthetist independently examined the ECG, and it was then classified and coded as per the standardized Minnesota code. Statistical analysis was performed with IBM SPSS (release 22.0; IBM Corp., Armonk, NY, USA). The normality of the distribution of continuous variables was tested using the Shapiro-Wilk test. Normally distributed variables were expressed as Mean ± SD. All nominal or categorical variables are described as frequencies and percentages. Categorical variables were compared using the Chi-square test or the Fisher's exact test. The normally distributed continuous variables were compared using Student's t-test. "P < 0.05" was considered statistically significant. Results About 6% in Group 1 and 32% in Group 2 had abnormal ECG. This was significantly different in Group 2 compared to Group 1 (P < 0.05). No patients in Group 1 had sinus bradycardia, whereas it was observed in 12% of the patients in Group 2 (P = 0.02). ST-segment depression was found in 12% of patients in Group 2, whereas none had it in Group 1 (P = 0.02). ST-segment elevation was noticed in 16 % in Group 2 and 2% in Group 1 (P = 0.01). T-wave abnormalities were found in 16% compared to 4% in Group 1 (P = 0.03). Conclusion In patients with supratentorial tumors, we observed that those with raised ICP had a higher incidence of ECG changes than those with normal ICP. In addition, repolarization abnormalities and arrhythmias were significantly higher in patients with raised ICP.
Collapse
Affiliation(s)
- Manikandan Sethuraman
- Division of Neuroanaesthesia, Department of Anaesthesia, Sree Chitra Tirunal Institute of Science and Technology, Trivandrum, Kerala, India
| | - Ajay Prasad Hrishi
- Division of Neuroanaesthesia, Department of Anaesthesia, Sree Chitra Tirunal Institute of Science and Technology, Trivandrum, Kerala, India
| | - Unnikrishnan Prathapadas
- Division of Neuroanaesthesia, Department of Anaesthesia, Sree Chitra Tirunal Institute of Science and Technology, Trivandrum, Kerala, India
| | - Neeraja Ajayan
- Department of Neurocritical Care, Cambridge University Hospitals, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
4
|
Ladthavorlaphatt K, Surti FBS, Beishon LC, Panerai RB, Robinson TG. Challenging neurovascular coupling through complex and variable duration cognitive paradigms: A subcomponent analysis. Med Eng Phys 2022; 110:103921. [PMID: 36564144 DOI: 10.1016/j.medengphy.2022.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
A similar pattern of cerebral blood velocity (CBv) response has been observed for neurovascular coupling (NVC) assessment with cognitive tasks of varying complexity and duration. This lack of specificity could result from parallel changes in arterial blood pressure (BP) and PaCO2, which could confound the estimates of NVC integrity. Healthy participants (n = 16) underwent recordings at rest (5 min sitting) and during randomized paradigms of different complexity (naming words (NW) beginning with P-, R-, V- words and serial subtractions (SS) of 100-2, 100-7, 1000-17, with durations of 5, 30 and 60 s). Bilateral CBv (middle cerebral arteries, transcranial Doppler), end-tidal CO2 (EtCO2, capnography), blood pressure (BP, Finapres) and heart rate (HR, ECG) were recorded continuously. The bilateral CBv response to all paradigms was classified under objective criteria to select only responders, then the repeated data were averaged between visits. Bilateral CBv change to tasks was decomposed into the relative contributions (subcomponents) of arterial BP (VBP; neurogenic), critical closing pressure (VCrCP; metabolic) and resistance area product (VRAP; myogenic). A temporal effect was demonstrated in bilateral VBP and VRAP during all tasks (p<0.002), increased VBP early (between 0 and 10 s) and followed by decreases of VRAP late (25-35 s) in the response. VCrCP varied by complexity and duration (p<0.046). The main contributions to CBv responses to cognitive tasks of different complexity and duration were VBP and VRAP, whilst a smaller contribution from VCrCP would suggest sensitivity to metabolic demands. Further studies are needed to assess the influence of different paradigms, ageing and cerebrovascular conditions.
Collapse
Affiliation(s)
- Kannaphob Ladthavorlaphatt
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; Medical Diagnostics Unit, Thammasat University Hospital, Thammasat University, Pathumthani, Thailand.
| | - Farhaana B S Surti
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
5
|
The effects of gravity and compression on interstitial fluid transport in the lower limb. Sci Rep 2022; 12:4890. [PMID: 35318426 PMCID: PMC8941011 DOI: 10.1038/s41598-022-09028-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Edema in the limbs can arise from pathologies such as elevated capillary pressures due to failure of venous valves, elevated capillary permeability from local inflammation, and insufficient fluid clearance by the lymphatic system. The most common treatments include elevation of the limb, compression wraps and manual lymphatic drainage therapy. To better understand these clinical situations, we have developed a comprehensive model of the solid and fluid mechanics of a lower limb that includes the effects of gravity. The local fluid balance in the interstitial space includes a source from the capillaries, a sink due to lymphatic clearance, and movement through the interstitial space due to both gravity and gradients in interstitial fluid pressure (IFP). From dimensional analysis and numerical solutions of the governing equations we have identified several parameter groups that determine the essential length and time scales involved. We find that gravity can have dramatic effects on the fluid balance in the limb with the possibility that a positive feedback loop can develop that facilitates chronic edema. This process involves localized tissue swelling which increases the hydraulic conductivity, thus allowing the movement of interstitial fluid vertically throughout the limb due to gravity and causing further swelling. The presence of a compression wrap can interrupt this feedback loop. We find that only by modeling the complex interplay between the solid and fluid mechanics can we adequately investigate edema development and treatment in a gravity dependent limb.
Collapse
|
6
|
Fan JL, Brassard P, Rickards CA, Nogueira RC, Nasr N, McBryde FD, Fisher JP, Tzeng YC. Integrative cerebral blood flow regulation in ischemic stroke. J Cereb Blood Flow Metab 2022; 42:387-403. [PMID: 34259070 PMCID: PMC8985438 DOI: 10.1177/0271678x211032029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optimizing cerebral perfusion is key to rescuing salvageable ischemic brain tissue. Despite being an important determinant of cerebral perfusion, there are no effective guidelines for blood pressure (BP) management in acute stroke. The control of cerebral blood flow (CBF) involves a myriad of complex pathways which are largely unaccounted for in stroke management. Due to its unique anatomy and physiology, the cerebrovascular circulation is often treated as a stand-alone system rather than an integral component of the cardiovascular system. In order to optimize the strategies for BP management in acute ischemic stroke, a critical reappraisal of the mechanisms involved in CBF control is needed. In this review, we highlight the important role of collateral circulation and re-examine the pathophysiology of CBF control, namely the determinants of cerebral perfusion pressure gradient and resistance, in the context of stroke. Finally, we summarize the state of our knowledge regarding cardiovascular and cerebrovascular interaction and explore some potential avenues for future research in ischemic stroke.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Fiona D McBryde
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Department of Surgery & Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
7
|
Fedriga M, Czigler A, Nasr N, Zeiler FA, Park S, Donnelly J, Papaioannou V, Frisvold SK, Wolf S, Rasulo F, Sykora M, Smielewski P, Czosnyka M. Autonomic Nervous System Activity during Refractory Rise in Intracranial Pressure. J Neurotrauma 2021; 38:1662-1669. [PMID: 33280491 PMCID: PMC8336253 DOI: 10.1089/neu.2020.7091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Refractory intracranial hypertension (RIH) is a dramatic increase in intracranial pressure (ICP) that cannot be controlled by treatment. Recent reports suggest that the autonomic nervous system (ANS) activity may be altered during changes in ICP. Our study aimed to assess ANS activity during RIH and the causal relationship between rising in ICP and autonomic activity. We reviewed retrospectively 24 multicenter (Cambridge, Tromso, Berlin) patients in whom RIH developed as a pre-terminal event after acute brain injury (ABI). They were monitored with ICP, arterial blood pressure (ABP), and electrocardiography (ECG) using ICM+ software. Parameters reflecting autonomic activity were computed in time and frequency domain through the measurement of heart rate variability (HRV) and baroreflex sensitivity (BRS). Our results demonstrated that a rise in ICP was associated to a significant rise in HRV and BRS with a higher significance level in the high-frequency HRV (p < 0.001). This increase was followed by a significant decrease in HRV and BRS above the upper-breakpoint of ICP where ICP pulse-amplitude starts to decrease whereas the mean ICP continues to rise. Temporality measured with a Granger test suggests a causal relationship from ICP to ANS. The above results suggest that a rise in ICP interacts with ANS activity, mainly interfacing with the parasympathetic-system. The ANS seems to react to the rise in ICP with a response possibly focused on maintaining the cerebrovascular homeostasis. This happens until the critical threshold of ICP is reached above which the ANS variables collapse, probably because of low perfusion of the brain and the central autonomic network.
Collapse
Affiliation(s)
- Marta Fedriga
- Brain Division of Neurosurgery, Department of Clinical Neurosciences, Physics Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Anaesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Andras Czigler
- Brain Division of Neurosurgery, Department of Clinical Neurosciences, Physics Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Nathalie Nasr
- Unitè de Neurologie Vasculaire, CHU de Toulouse, Universitè de Toulouse, Toulouse, France
| | - Frederick. A. Zeiler
- Department of Surgery, Faculty of Engineering, University of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Faculty of Engineering, University of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Soojin Park
- Department of Neurology, Division of Hospitalist and Critical Care Neurology, Columbia University, New York, New York, USA
| | - Joseph Donnelly
- Department of Anaesthesiology, University of Auckland, Aukland, New Zealand
| | - Vasilios Papaioannou
- University Hospital of Alexandroupolis, Intensive Care Unit, Democritus University of Thrace, Alexandroupolis, Greece
| | - Shirin K Frisvold
- Department of Intensive Care, University Hospital of North Norway, UiT The Arctic University of Norway, Tromso, Norway
| | - Stephan Wolf
- Department of Neurosurgery, Charite Hospital, Berlin, Germany
| | - Frank Rasulo
- Department of Anaesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Marek Sykora
- Department of Neurology, St. John's Hospital Vienna, Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Peter Smielewski
- Brain Division of Neurosurgery, Department of Clinical Neurosciences, Physics Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Division of Neurosurgery, Department of Clinical Neurosciences, Physics Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Intracranial baroreflex is attenuated in an ovine model of renovascular hypertension. Sci Rep 2021; 11:5816. [PMID: 33712655 PMCID: PMC7955074 DOI: 10.1038/s41598-021-85278-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
We have previously shown that elevations in intracranial pressure (ICP) within physiological ranges in normotensive animals increase arterial pressure; termed the intracranial baroreflex. Hypertension is associated with alterations in reflexes which maintain arterial pressure however, whether the intracranial baroreflex is altered is not known. Hence, in the present study, we tested the hypothesis that in hypertension, physiological increases in ICP would not be accompanied with an increase in arterial pressure. Renovascular hypertension was associated with no change in heart rate, renal blood flow or ICP levels compared to the normotensive group. ICV infusion of saline produced a ramped increase in ICP of 20 ± 1 mmHg. This was accompanied by an increase in arterial pressure (16 ± 2 mmHg) and a significant decrease in renal vascular conductance. ICV infusion of saline in the hypertensive group also increased ICP (19 ± 2 mmHg). However, the increase in arterial pressure was significantly attenuated in the hypertensive group (5 ± 2 mmHg). Ganglionic blockade abolished the increase in arterial pressure in both groups to increased ICP. Our data indicates that physiological increases in ICP lead to increases in arterial pressure in normotensive animals but this is severely attenuated in renovascular hypertension.
Collapse
|
9
|
Miyazaki C, Shimizu K, Nagasawa Y, Chiba T, Sakuma K, Aimoto M, Yamamoto T, Takahashi M, Sugo N, Takahara A, Shirai K. Effects of Enhanced Intracranial Pressure on Blood Pressure and the Cardio-Ankle Vascular Index in Rabbits. J Atheroscler Thromb 2021; 28:1241-1249. [PMID: 33473056 PMCID: PMC8592690 DOI: 10.5551/jat.59451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aim:
Stroke is well known to lead to hypertension; nevertheless, the role of vascular function in hypertension remains unclear. In this study, we aimed to clarify the mechanism underlying increased arterial stiffness following stroke.
Methods:
The cardio-ankle vascular index (CAVI) was measured in five New Zealand White rabbits. Under general anesthesia, intracranial pressure (ICP) was increased by injecting saline (15 mL) into the cisterna magna. ICP was monitored using a catheter inserted into the subarachnoid space via right frontal bone craniotomy. Blood pressure (BP), CAVI, and common carotid flow (CCF) were evaluated, and the responses of these parameters to increased ICP were analyzed.
Results:
Saline injection into the cisterna magna increased the ICP by over 20 mmHg. Both BP and CAVI increased from 63.2±4.84 to 128.8±14.68 mmHg and from 4.02±0.28 to 4.9±0.53, respectively. Similarly, BP and CCF increased. When hexamethonium was administered before the increase in ICP, the increase in BP (132.2±9.41 mmHg with 10 mg/kg hexamethonium vs. 105.6±11.01 mmHg with 100 mg/kg hexamethonium) and CAVI (5.02±0.64 with 10 mg/kg hexamethonium vs. 4.82±0.42 with 100 mg/kg hexamethonium) were suppressed in a dose-dependent manner.
Conclusion:
Increased ICP causes an increase in BP and CAVI, suggesting that enhanced stiffness of the muscular arteries contributes to high BP. Blocking the autonomic nervous system with hexamethonium suppresses the increase in BP and CAVI, indicating that these increases are mediated by activation of the autonomic nervous system.
Collapse
Affiliation(s)
- Chikao Miyazaki
- Department of Neurosurgery, JCHO Tokyo Kamata Medical Center
| | - Kazuhiro Shimizu
- Department of Internal Medicine, Toho University Sakura Medical Center
| | - Yoshinobu Nagasawa
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| | - Tatsuo Chiba
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| | - Kiyoshi Sakuma
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| | - Megumi Aimoto
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| | | | - Mao Takahashi
- Department of Internal Medicine, Toho University Sakura Medical Center
| | - Nobuo Sugo
- Department of Neurosurgery (Omori), School of Medicine, Faculty of Medicine, Toho University
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| | | |
Collapse
|
10
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
11
|
Ashton JL, Argent L, Smith JEG, Jin S, Sands GB, Smaill BH, Montgomery JM. Evidence of structural and functional plasticity occurring within the intracardiac nervous system of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2020; 318:H1387-H1400. [DOI: 10.1152/ajpheart.00020.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have developed intracardiac neuron whole cell recording techniques in atrial preparations from control and spontaneous hypertensive rats. This has enabled the identification of significant synaptic plasticity in the intracardiac nervous system, including enhanced postsynaptic current frequency, increased synaptic terminal density, and altered postsynaptic receptors. This increased synaptic drive together with altered cardiac neuron electrophysiology could increase intracardiac nervous system excitability and contribute to the substrate for atrial arrhythmia in hypertensive heart disease.
Collapse
Affiliation(s)
- Jesse L. Ashton
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Liam Argent
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Joscelin E. G. Smith
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Sangjun Jin
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Gregory B. Sands
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Bruce H. Smaill
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Johanna M. Montgomery
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Korhonen PE, Palmu S, Kautiainen H, Eriksson JG. Blood pressure load per body surface area is higher in women than in men. J Hum Hypertens 2020; 35:371-377. [PMID: 32366928 DOI: 10.1038/s41371-020-0339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 04/02/2020] [Indexed: 11/09/2022]
Abstract
Many unexplained sex differences have been observed in blood pressure (BP) related morbidity. However, there has been little research about the most obvious difference between men and women-body size. Given that blood vessels are organs of tubular shape, we hypothesized that correction of BP for body surface area (BSA), a two-dimensional measurement of body size, would allow comparison of BP load between men and women. We assessed the relationship of 24-h ambulatory BP measurements and BSA in 534 participants (mean age 61 ± 3 years, 51% women) from the Helsinki Birth Cohort Study. The study subjects had no previous medication affecting vasculature or BP. When BP values were adjusted for age, smoking, physical activity, and body fat percentage, males had higher ambulatory daytime mean systolic BP (131 mmHg vs. 127 mmHg, p < 0.001), diastolic BP (83 mmHg vs. 78 mmHg, p < 0.001), and mean arterial pressure (100 mmHg vs. 96 mmHg, p < 0.001) than females. However, all BP components per unit of BSA were significantly lower in males: daytime mean systolic BP (65 mmHg vs. 71 mmHg, p < 0.001), diastolic BP (41 mmHg vs. 44 mmHg, p < 0.001), pulse pressure (24 mmHg vs. 28 mmHg, p = 0.013), and mean arterial pressure (49 mmHg vs. 54 mmHg, p < 0.001). The same phenomenon was observed in night-time BP values. BP load per BSA is higher in women than in men, which may explain many reported sex differences in cardiovascular morbidity. Relatively small-sized individuals might benefit from a more aggressive therapeutic strategy.
Collapse
Affiliation(s)
- Päivi E Korhonen
- Department of General Practice, Turku University and Turku University Hospital, Turku, Finland.
| | - Samuel Palmu
- Department of General Practice, Turku University and Turku University Hospital, Turku, Finland.,Central Satakunta Health Federation of Municipalities, Harjavalta, Finland
| | - Hannu Kautiainen
- Folkhälsan Research Center, Helsinki, Finland.,Unit of Primary Health Care, Kuopio University Hospital, Kuopio, Finland
| | - Johan G Eriksson
- Folkhälsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore, Singapore.,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
de Goederen R, Cuperus IE, Tasker RC, den Ottelander BK, Dremmen MHG, van Veelen MLC, Spoor JKH, Joosten KFM, Mathijssen IMJ. Dural sinus volume in children with syndromic craniosynostosis and intracranial hypertension. J Neurosurg Pediatr 2020; 25:506-513. [PMID: 32005014 DOI: 10.3171/2019.12.peds19562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/03/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intracranial hypertension is a major concern in children with syndromic craniosynostosis (sCS). Cerebral venous hypertension caused by cerebral venous outflow obstruction is believed to contribute to intracranial hypertension. The authors therefore hypothesized that cerebral venous volume would be increased in those children with sCS and intracranial hypertension. METHODS In a case series of 105 children with sCS, of whom 32 had intracranial hypertension, cerebral MRI techniques were used to quantify the volume of the superior sagittal sinus, straight sinus (StrS), and both transverse sinuses. RESULTS Linear regression showed that total cerebral venous volume increased by 580.8 mm3 per cm increase in occipitofrontal head circumference (p < 0.001). No significant difference was found between the intracranial hypertension group and the nonintracranial hypertension group (p = 0.470). Multivariate ANOVA showed increased StrS volume (as a proportion of total volume) in the intracranial hypertension group (8.5% vs 5.1% in the nonintracranial hypertension group, p < 0.001). Multivariate logistic regression showed that a 100-mm3 increase in StrS volume is associated with increased odds of having intracranial hypertension by 60% (OR 1.60, 95% CI 1.24-2.08). CONCLUSIONS Although intracranial hypertension was not associated with total cerebral venous volume increase, it was associated with an isolated increase in StrS volume. Hence, it is unlikely that general cerebral venous outflow obstruction is the mechanism of intracranial hypertension in sCS. Rather, these findings indicate either a central cerebral vulnerability to intracranial hypertension or a mechanism involving venous blood redistribution.
Collapse
Affiliation(s)
| | - Iris E Cuperus
- Departments of1Plastic and Reconstructive Surgery, and Hand Surgery
| | - Robert C Tasker
- 2Departments of Neurology and Anesthesia (Pediatrics), Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts
| | | | | | | | | | - Koen F M Joosten
- 5Pediatrics, Intensive Care Unit, Erasmus MC, Rotterdam, The Netherlands; and
| | | |
Collapse
|
14
|
Che W, Dong H, Jiang X, Xiong H, Chen Y, Zou Y, Xu B, Gao R. The effect of stenting on blood pressure in hypertensive patients with symptomatic proximal subclavian or vertebral artery stenosis. Catheter Cardiovasc Interv 2019; 95 Suppl 1:633-640. [PMID: 31868309 DOI: 10.1002/ccd.28650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/08/2019] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effect of stenting on blood pressure in hypertensive patients with symptomatic proximal subclavian or vertebral artery stenosis. BACKGROUND Whether posterior circulation revascularization could reduce blood pressure in hypertensive patients with posterior circulation hypoperfusion has not been investigated in humans. METHODS A total of 48 patients with essential hypertension (33 males; mean age 63.0 ± 8.7 years) with symptomatic proximal subclavian or vertebral artery stenosis who underwent stenting successfully at the Fuwai Hospital were prospectively enrolled between January 2014 and December 2015. All 48 patients were followed up at 1, 3, and 6 months after the procedure. Blood pressure, use of antihypertensive agents, and complications were investigated. RESULTS Baseline values included office blood pressure of 132/77 ± 10/8 mmHg, mean 24-hr blood pressure of 127/75 ± 12/9 mmHg, and mean antihypertensive agents used of 1.6 ± 0.8. Stenosis of the subclavian and vertebral arteries decreased from 88.9 ± 9.5% and 85.8 ± 7.4% to 5.5 ± 3.5% and 4.6 ± 3.7%, respectively, immediately after the procedure. Reductions in office blood pressure were - 7/-3 (SD 3/2), -9/-4 (5/3), and - 10/-5 (7/5) mmHg at 1, 3, and 6 months, respectively. While 24-hr blood pressures after the procedure reduced by -5/-3 mmHg at 6 months, the total number of antihypertensive agents used at the aforementioned time points was unchanged. CONCLUSION This first prospective cohort study in humans showed that posterior circulation stenting is apparently effective in reducing blood pressure in hypertensive patients with symptomatic proximal subclavian or vertebral artery stenosis.
Collapse
Affiliation(s)
- Wuqiang Che
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Hui Dong
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiongjing Jiang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Xiong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yubao Zou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Xu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Kobuch S, Macefield VG, Henderson LA. Resting regional brain activity and connectivity vary with resting blood pressure but not muscle sympathetic nerve activity in normotensive humans: An exploratory study. J Cereb Blood Flow Metab 2019; 39:2433-2444. [PMID: 30182800 PMCID: PMC6893974 DOI: 10.1177/0271678x18798442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood pressure is tightly controlled by the central nervous system, particularly the brainstem. The aim of this study was to investigate the relationship between mean blood pressure (MBP), muscle sympathetic nerve activity (MSNA) and resting regional brain activity in healthy human subjects. Pseudocontinuous arterial spin labeling and functional magnetic resonance imaging of the brain were performed immediately following a laboratory microneurography recording of MSNA and BP measurement in 31 young, healthy normotensive subjects. Regional cerebral blood flow (CBF) correlated significantly with resting MBP levels in the region encompassing the rostroventrolateral medulla (RVLM), dorsolateral pons, and insular, prefrontal and cingulate cortices. Functional connectivity analysis revealed that the ventrolateral prefrontal cortex displayed greater resting connectivity strength within the RVLM in the lower compared with the higher MBP group. No significant differences in CBF were found when subjects were divided based on their MSNA levels. These results suggest that even subtle differences in resting MBP are associated with significant differences in resting activity in brain regions, which are well known to play a role in cardiovascular function. These data raise the question of the potential long-term consequences of differences in regional brain activity levels and their relationship with systemic blood pressure.
Collapse
Affiliation(s)
- Sophie Kobuch
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia.,Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Winklewski PJ, Wolf J, Gruszecki M, Wszedybyl-Winklewska M, Narkiewicz K. Current understanding of the effects of inspiratory resistance on the interactions between systemic blood pressure, cerebral perfusion, intracranial pressure, and cerebrospinal fluid dynamics. J Appl Physiol (1985) 2019; 127:1206-1214. [DOI: 10.1152/japplphysiol.00058.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Negative intrathoracic pressure (nITP) is generated by the respiratory muscles during inspiration to overcome inspiratory resistance, thus enabling lung ventilation. Recently developed noninvasive techniques have made it possible to assess the effects of nITP in real time in several physiological aspects such as systemic blood pressure (BP), intracranial pressure (ICP), and cerebral blood flow (CBF). It has been shown that nITP from 0 to −20 cmH2O elevates BP and diminishes ICP, which facilitates brain perfusion. The effects of nITP from −20 to −40 cmH2O on BP, ICP, and CBF remain largely unrecognized, yet even nITP at −40 cmH2O may facilitate CBF by diminishing ICP. Importantly, nITP from −20 to −40 cmH2O has been documented in adults in commonly encountered obstructive sleep apnea, which justifies research in this area. Recent revelations about interactions between ICP and BP have opened up new fields of research in physiological regulation and the pathophysiology of common diseases, such as hypertension, brain injury, and respiratory disorders. A better understanding of these interactions may translate directly into new therapies in various fields of clinical medicine.
Collapse
Affiliation(s)
- Pawel J. Winklewski
- Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland
- Department of Clinical Anatomy and Physiology, Pomeranian University of Slupsk, Slupsk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Gruszecki
- Department of Radiology Informatics and Statistics, Medical University of Gdansk, Gdansk, Poland
| | | | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
17
|
Neumann S, Burchell AE, Rodrigues JC, Lawton CB, Burden D, Underhill M, Kobetić MD, Adams ZH, Brooks JC, Nightingale AK, Paton JFR, Hamilton MC, Hart EC. Cerebral Blood Flow Response to Simulated Hypovolemia in Essential Hypertension: A Magnetic Resonance Imaging Study. Hypertension 2019; 74:1391-1398. [PMID: 31656098 PMCID: PMC7069391 DOI: 10.1161/hypertensionaha.119.13229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Hypertension is associated with raised cerebral vascular resistance and cerebrovascular remodeling. It is currently unclear whether the cerebral circulation can maintain cerebral blood flow (CBF) during reductions in cardiac output (CO) in hypertensive patients thereby avoiding hypoperfusion of the brain. We hypothesized that hypertension would impair the ability to effectively regulate CBF during simulated hypovolemia. In the present study, 39 participants (13 normotensive, 13 controlled, and 13 uncontrolled hypertensives; mean age±SD, 55±10 years) underwent lower body negative pressure (LBNP) at −20, −40, and −50 mmHg to decrease central blood volume. Phase-contrast MR angiography was used to measure flow in the basilar and internal carotid arteries, as well as the ascending aorta. CBF and CO decreased during LBNP (P<0.0001). Heart rate increased during LBNP, reaching significance at −50 mmHg (P<0.0001). There was no change in mean arterial pressure during LBNP (P=0.3). All participants showed similar reductions in CBF (P=0.3, between groups) and CO (P=0.7, between groups) during LBNP. There was no difference in resting CBF between the groups (P=0.36). In summary, during reductions in CO induced by hypovolemic stress, mean arterial pressure is maintained but CBF declines indicating that CBF is dependent on CO in middle-aged normotensive and hypertensive volunteers. Hypertension is not associated with impairments in the CBF response to reduced CO.
Collapse
Affiliation(s)
- Sandra Neumann
- From the Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience (S.N., Z.H.A., J.B., A.K.N., J.P., E.C.H.), University of Bristol, United Kingdom
- Faculty of Health Sciences, Bristol Medical School (S.N., M.K.), University of Bristol, United Kingdom
| | - Amy E. Burchell
- University Hospitals Bristol NHS Foundation Trust, United Kingdom (A.E.B., J.R., C.B.L., D.B., M.U., A.K.N., M.H.)
| | - Jonathan C.L. Rodrigues
- University Hospitals Bristol NHS Foundation Trust, United Kingdom (A.E.B., J.R., C.B.L., D.B., M.U., A.K.N., M.H.)
- Department of Radiology, Royal United Hospitals Bath NHS Foundation Trust, United Kingdom (J.R.)
| | - Christopher B. Lawton
- University Hospitals Bristol NHS Foundation Trust, United Kingdom (A.E.B., J.R., C.B.L., D.B., M.U., A.K.N., M.H.)
| | - Daniel Burden
- University Hospitals Bristol NHS Foundation Trust, United Kingdom (A.E.B., J.R., C.B.L., D.B., M.U., A.K.N., M.H.)
| | - Melissa Underhill
- University Hospitals Bristol NHS Foundation Trust, United Kingdom (A.E.B., J.R., C.B.L., D.B., M.U., A.K.N., M.H.)
| | - Matthew D. Kobetić
- Faculty of Health Sciences, Bristol Medical School (S.N., M.K.), University of Bristol, United Kingdom
| | - Zoe H. Adams
- From the Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience (S.N., Z.H.A., J.B., A.K.N., J.P., E.C.H.), University of Bristol, United Kingdom
| | - Jonathan C.W. Brooks
- From the Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience (S.N., Z.H.A., J.B., A.K.N., J.P., E.C.H.), University of Bristol, United Kingdom
| | - Angus K. Nightingale
- From the Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience (S.N., Z.H.A., J.B., A.K.N., J.P., E.C.H.), University of Bristol, United Kingdom
- University Hospitals Bristol NHS Foundation Trust, United Kingdom (A.E.B., J.R., C.B.L., D.B., M.U., A.K.N., M.H.)
| | - Julian F. R. Paton
- From the Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience (S.N., Z.H.A., J.B., A.K.N., J.P., E.C.H.), University of Bristol, United Kingdom
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand (J.P.)
| | - Mark C.K. Hamilton
- University Hospitals Bristol NHS Foundation Trust, United Kingdom (A.E.B., J.R., C.B.L., D.B., M.U., A.K.N., M.H.)
| | - Emma C. Hart
- From the Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience (S.N., Z.H.A., J.B., A.K.N., J.P., E.C.H.), University of Bristol, United Kingdom
| |
Collapse
|
18
|
Walas D, Nowicki-Osuch K, Alibhai D, von Linstow Roloff E, Coghill J, Waterfall C, Paton JF. Inflammatory pathways are central to posterior cerebrovascular artery remodelling prior to the onset of congenital hypertension. J Cereb Blood Flow Metab 2019; 39:1803-1817. [PMID: 29651914 PMCID: PMC6724458 DOI: 10.1177/0271678x18769180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral artery hypoperfusion may provide the basis for linking ischemic stroke with hypertension. Brain hypoperfusion may induce hypertension that may serve as an auto-protective mechanism to prevent ischemic stroke. We hypothesised that hypertension is caused by remodelling of the cerebral arteries, which is triggered by inflammation. We used a congenital rat model of hypertension and examined age-related changes in gene expression of the cerebral arteries using RNA sequencing. Prior to hypertension, we found changes in signalling pathways associated with the immune system and fibrosis. Validation studies using second harmonics generation microscopy revealed upregulation of collagen type I and IV in both tunica externa and media. These changes in the extracellular matrix of cerebral arteries pre-empted hypertension accounting for their increased stiffness and resistance, both potentially conducive to stroke. These data indicate that inflammatory driven cerebral artery remodelling occurs prior to the onset of hypertension and may be a trigger elevating systemic blood pressure in genetically programmed hypertension.
Collapse
Affiliation(s)
- Dawid Walas
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | | | - Dominic Alibhai
- 3 Wolfson Bioimaging Facility, School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Eva von Linstow Roloff
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Jane Coghill
- 4 Genomics Facility, School of Biological Sciences, Bristol, UK
| | | | - Julian Fr Paton
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK.,5 Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| |
Collapse
|
19
|
Thakkar P, McGregor A, Barber PA, Paton JF, Barrett C, McBryde F. Hypertensive Response to Ischemic Stroke in the Normotensive Wistar Rat. Stroke 2019; 50:2522-2530. [DOI: 10.1161/strokeaha.119.026459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Over 80% of ischemic stroke patients show an abrupt increase in arterial blood pressure in the hours and days following ischemic stroke. Whether this poststroke hypertension is beneficial or harmful remains controversial and the underlying physiological basis is unclear.
Methods—
To investigate the dynamic cardiovascular response to stroke, adult Wistar rats (n=5–8 per group, 393±34 g) were instrumented with telemeters to blood pressure, intracranial pressure, renal sympathetic nerve activity, and brain tissue oxygen in the predicted penumbra (P
o
2
). After 2 weeks of recovery, cardiovascular signals were recorded for a 3-day baseline period, then ischemic stroke was induced via transient middle cerebral artery occlusion, or sham surgery. Cardiovascular signals were then recorded for a further 10 days, and the functional sensorimotor recovery assessed using the cylinder and sticky dot tests.
Results—
Baseline values of all variables were similar between groups. Compared to sham, in the 2 days following stroke middle cerebral artery occlusion produced an immediate, transient rise above baseline in mean blood pressure (21±3 versus 2±4 mm Hg;
P
<0.001), renal sympathetic nerve activity (54±11% versus 7±4%;
P
=0.006), and cerebral perfusion pressure (12±5 versus 1±4;
P
≤0.001). Intracranial pressure increased more slowly, peaking 3 days after middle cerebral artery occlusion (14±6 versus −1±1 mm Hg;
P
<0.001). Treating with the antihypertensive agent nifedipine after stroke (1.5–0.75 mg/kg per hour SC) ameliorated poststroke hypertension (12±3 mm Hg on day 1;
P
=0.041), abolished the intracranial pressure increase (3±1;
P
<0.001) and reduced cerebral perfusion pressure (10±3 mm Hg;
P
=0.017). Preventing poststroke hypertension affected neither the recovery of sensorimotor function nor infarct size.
Conclusions—
These findings suggest that poststroke hypertension is immediate, temporally matched to an increase in sympathetic outflow, and elevates cerebral perfusion pressure for several days after stroke, which may enhance cerebral perfusion. Preventing poststroke hypertension does not appear to worsen prognosis after stroke in young, normotensive, and otherwise healthy rats.
Visual Overview—
An online
visual overview
is available for this article.
Collapse
Affiliation(s)
- Pratik Thakkar
- From the Department of Physiology (P.T., J.F.R.P., C.B., F.M.), School of Medical Sciences, University of Auckland, New Zealand
| | - Ailsa McGregor
- School of Pharmacy, University of Otago, Dunedin, New Zealand (A.M.)
| | - Paul Alan Barber
- Centre for Brain Research (P.A.B.), School of Medical Sciences, University of Auckland, New Zealand
| | - Julian F.R. Paton
- From the Department of Physiology (P.T., J.F.R.P., C.B., F.M.), School of Medical Sciences, University of Auckland, New Zealand
| | - Carolyn Barrett
- From the Department of Physiology (P.T., J.F.R.P., C.B., F.M.), School of Medical Sciences, University of Auckland, New Zealand
| | - Fiona McBryde
- From the Department of Physiology (P.T., J.F.R.P., C.B., F.M.), School of Medical Sciences, University of Auckland, New Zealand
| |
Collapse
|
20
|
Zoccal DB, Colombari DSA, Colombari E, Flor KC, da Silva MP, Costa-Silva JH, Machado BH, Moraes DJA, Murphy D, Paton JFR. Centrally acting adrenomedullin in the long-term potentiation of sympathetic vasoconstrictor activity induced by intermittent hypoxia in rats. Exp Physiol 2019; 104:1371-1383. [PMID: 31328309 DOI: 10.1113/ep087613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Adrenomedullin in the rostral ventrolateral medulla (RVLM) increases sympathetic activity; given that adrenomedullin is released during hypoxia, what are the effects of its agonism and antagonism in the RVLM after chronic intermitent hypoxia (CIH) exposure? What is the main finding and its importance? CIH exposure sensitizes adrenomedullin-dependent mechanisms in the RVLM, supporting its role as a sympathoexcitatory neuromodulator. A novel mechanism was identified for the generation of sympathetic overdrive and hypertension associated with hypoxia, providing potential guidance on new therapeutic approaches for controlling sympathetic hyperactivity in diseases such as sleep apnoea and neurogenic hypertension. ABSTRACT Adrenomedullin in the rostral ventrolateral medulla (RVLM) has been shown to increase sympathetic activity whereas the antagonism of its receptors inhibited this autonomic activity lowering blood pressure in conditions of hypertension. Given that hypoxia is a stimulant for releasing adrenomedullin, we hypothesized that the presence of this peptide in the RVLM associated with chronic intermittent hypoxia (CIH) would cause sympathetic overdrive. Juvenile male rats (50-55 g) submitted to CIH (6% oxygen every 9 min, 8 h day-1 for 10 days) were studied in an arterially perfused in situ preparation where sympathetic activity was recorded. In control rats (n = 6), exogenously applied adrenomedullin in the RVLM raised baseline sympathetic activity when combined with episodic activation of peripheral chemoreceptors (KCN 0.05%, 5 times every 5 min). This sympathoexcitatory response was markedly amplified in rats previously exposed to CIH (n = 6). The antagonism of adrenomedullin receptors in the RVLM caused a significant reduction in sympathetic activity in the CIH group (n = 7), but not in controls (n = 8). The transient reflex-evoked sympathoexcitatory response to peripheral chemoreceptor stimulation was not affected by either adrenomedullin or adrenomedullin receptor antagonism in the RVLM of control and CIH rats. Our findings indicate that CIH sensitizes the sympathoexcitatory networks within the RVLM to adrenomedullin, supporting its role as an excitatory neuromodulator when intermittent hypoxia is present. These data reveal novel state-dependent mechanistic insights into the generation of sympathetic overdrive and provide potential guidance on possible unique approaches for controlling sympathetic discharge in diseases such as sleep apnoea and neurogenic hypertension.
Collapse
Affiliation(s)
- Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Debora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Karine C Flor
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - João H Costa-Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.,Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
21
|
AMPK breathing and oxygen supply. Respir Physiol Neurobiol 2019; 265:112-120. [DOI: 10.1016/j.resp.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/06/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023]
|
22
|
Saleem S, Sarafis ZK, Lee AHX, Squair JW, Barak OF, Sober-Williams E, Suraj R, Coombs GB, Mijacika T, West CR, Krassioukov AV, Ainslie PN, Dujic Z, Tzeng YC, Phillips AA. Spinal Cord Disruption Is Associated with a Loss of Cushing-Like Blood Pressure Interactions. J Neurotrauma 2019; 36:1487-1490. [PMID: 30458117 DOI: 10.1089/neu.2018.5931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The capacity of the cerebrovasculature to buffer changes in blood pressure (BP) likely plays an important role in the prevention of stroke, which is three- to fourfold more common after spinal cord injury (SCI). Although the directional relationship between BP and cerebral blood flow (CBF) has traditionally been thought to travel solely from BP to CBF, a Cushing-like mechanism functioning in the inverse direction, in which changes in CBF influence BP, has recently been revealed using Granger causality analysis. Although both CBF buffering of BP and the Cushing-like mechanism are influenced by the sympathetic nervous system, we do not understand the impact of disruption of descending sympathetic pathways within the spinal cord, caused by cervical SCI on these regulatory systems. We hypothesized that people with cervical SCI would have greater BP to CBF transmission, as well as a reduced Cushing-like mechanism. The directional relationships between mean arterial BP (MAP; Finometer® PRO) and middle cerebral artery blood velocity (MCAv; transcranial Doppler) were assessed at rest in 14 cervical SCI subjects and 16 uninjured individuals using Granger causality analysis, while also accounting for end-tidal CO2 tension. Those with SCI exhibited 66% increased forward MAP→MCAv information transmission as compared with the uninjured group (p = 0.0003), indicating reduced cerebrovascular buffering of BP, and did not have a predominant backward Cushing-like MCAv→MAP phenotype. These results indicate that both forward and backward communication between BP and CBF are influenced by SCI, which may be associated with impaired cerebrovascular BP buffering after SCI as well as widespread BP instability.
Collapse
Affiliation(s)
- Saqib Saleem
- 1 Department of Electrical & Computer Engineering, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Zoe K Sarafis
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda H X Lee
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,3 Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,3 Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,5 MD/PhD Training Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| | - Otto F Barak
- 6 Faculty of Medicine, University of Novi Sad, Novi Sad, Republic of Serbia.,7 Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Republic of Serbia
| | - Elin Sober-Williams
- 4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| | - Rejitha Suraj
- 4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| | - Geoff B Coombs
- 8 Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Tanja Mijacika
- 9 Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Christopher R West
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- 8 Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Zeljko Dujic
- 9 Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Yu-Chieh Tzeng
- 10 Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| | - Aaron A Phillips
- 4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| |
Collapse
|
23
|
Tayler HM, Palmer JC, Thomas TL, Kehoe PG, Paton JF, Love S. Cerebral Aβ 40 and systemic hypertension. J Cereb Blood Flow Metab 2018; 38:1993-2005. [PMID: 28782443 PMCID: PMC6259324 DOI: 10.1177/0271678x17724930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mid-life hypertension and cerebral hypoperfusion may be preclinical abnormalities in people who later develop Alzheimer's disease. Although accumulation of amyloid-beta (Aβ) is characteristic of Alzheimer's disease and is associated with upregulation of the vasoconstrictor peptide endothelin-1 within the brain, it is unclear how this affects systemic arterial pressure. We have investigated whether infusion of Aβ40 into ventricular cerebrospinal fluid modulates blood pressure in the Dahl salt-sensitive rat. The Dahl salt-sensitive rat develops hypertension if given a high-salt diet. Intracerebroventricular infusion of Aβ induced a progressive rise in blood pressure in rats with pre-existing hypertension produced by a high-salt diet ( p < 0.0001), but no change in blood pressure in normotensive rats. The elevation in arterial pressure in high-salt rats was associated with an increase in low frequency spectral density in systolic blood pressure, suggesting autonomic imbalance, and reduced cardiac baroreflex gain. Our results demonstrate the potential for intracerebral Aβ to exacerbate hypertension, through modulation of autonomic activity. Present findings raise the possibility that mid-life hypertension in people who subsequently develop Alzheimer's disease may in some cases be a physiological response to reduced cerebral perfusion complicating the accumulation of Aβ within the brain.
Collapse
Affiliation(s)
- Hannah M Tayler
- 1 School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | - Taya L Thomas
- 1 School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Patrick G Kehoe
- 1 School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Julian Fr Paton
- 2 School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Seth Love
- 1 School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
24
|
Murray ML. Optimizing a Woman’s Capacity to Give Birth. INTERNATIONAL JOURNAL OF CHILDBIRTH 2018. [DOI: 10.1891/2156-5287.8.2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Guild SJ, Saxena UA, McBryde FD, Malpas SC, Ramchandra R. Intracranial pressure influences the level of sympathetic tone. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1049-R1053. [PMID: 30207755 DOI: 10.1152/ajpregu.00183.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic overdrive is associated with many diseases, but its origin remains an enigma. An emerging hypothesis in the development of cardiovascular disease is that the brain puts the utmost priority on maintaining its own blood supply; even if this comes at the "cost" of high blood pressure to the rest of the body. A critical step in making a causative link between reduced brain blood flow and cardiovascular disease is how changes in cerebral perfusion affect the sympathetic nervous system. A direct link between decreases in cerebral perfusion pressure and sympathetic tone generation in a conscious large animal has not been shown. We hypothesized that there is a novel control pathway between physiological levels of intracranial pressure (ICP) and blood pressure via the sympathetic nervous system. Intracerebroventricular infusion of saline produced a ramped increase in ICP of up to 20 mmHg over a 30-min infusion period (baseline 4.0 ± 1.1 mmHg). The ICP increase was matched by an increase in mean arterial pressure such that cerebral perfusion pressure remained constant. Direct recordings of renal sympathetic nerve activity indicated that sympathetic drive increased with increasing ICP. Ganglionic blockade, by hexamethonium, preventing sympathetic transmission, abolished the increase in arterial pressure in response to increased ICP and was associated with a significant decrease in cerebral perfusion pressure. This is the first study to show that physiological elevations in ICP regulate renal sympathetic activity in conscious animals. We have demonstrated a novel physiological mechanism linking ICP levels with sympathetic discharge via a possible novel intracranial baroreflex.
Collapse
Affiliation(s)
- Sarah-Jane Guild
- Cardiovascular Autonomic Research Cluster, Department of Physiology, University of Auckland , Auckland , New Zealand.,Auckland Bioengineering Institute , Auckland , New Zealand
| | | | - Fiona D McBryde
- Cardiovascular Autonomic Research Cluster, Department of Physiology, University of Auckland , Auckland , New Zealand
| | - Simon C Malpas
- Cardiovascular Autonomic Research Cluster, Department of Physiology, University of Auckland , Auckland , New Zealand.,Auckland Bioengineering Institute , Auckland , New Zealand
| | - Rohit Ramchandra
- Cardiovascular Autonomic Research Cluster, Department of Physiology, University of Auckland , Auckland , New Zealand
| |
Collapse
|
26
|
Roloff EVL, Walas D, Moraes DJA, Kasparov S, Paton JFR. Differences in autonomic innervation to the vertebrobasilar arteries in spontaneously hypertensive and Wistar rats. J Physiol 2018; 596:3505-3529. [PMID: 29797726 PMCID: PMC6092310 DOI: 10.1113/jp275973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/03/2018] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Essential hypertension is associated with hyperactivity of the sympathetic nervous system and hypoperfusion of the brainstem area controlling arterial pressure. Sympathetic and parasympathetic innervation of vertebrobasilar arteries may regulate blood perfusion to the brainstem. We examined the autonomic innervation of these arteries in pre-hypertensive (PHSH) and hypertensive spontaneously hypertensive (SH) rats relative to age-matched Wistar rats. Our main findings were: (1) an unexpected decrease in noradrenergic sympathetic innervation in PHSH and SH compared to Wistar rats despite elevated sympathetic drive in PHSH rats; (2) a dramatic deficit in cholinergic and peptidergic parasympathetic innervation in PHSH and SH compared to Wistar rats; and (3) denervation of sympathetic fibres did not alter vertebrobasilar artery morphology or arterial pressure. Our results support a compromised vasodilatory capacity in PHSH and SH rats compared to Wistar rats, which may explain their hypoperfused brainstem. ABSTRACT Neurogenic hypertension may result from brainstem hypoperfusion. We previously found remodelling (decreased lumen, increased wall thickness) in vertebrobasilar arteries of juvenile, pre-hypertensive spontaneously hypertensive (PHSH) and adult spontaneously hypertensive (SH) rats compared to age-matched normotensive rats. We tested the hypothesis that there would be a greater density of sympathetic to parasympathetic innervation of vertebrobasilar arteries in SH versus Wistar rats irrespective of the stage of development and that sympathetic denervation (ablation of the superior cervical ganglia bilaterally) would reverse the remodelling and lower blood pressure. Contrary to our hypothesis, immunohistochemistry revealed a decrease in the innervation density of noradrenergic sympathetic fibres in adult SH rats (P < 0.01) compared to Wistar rats. Unexpectedly, there was a 65% deficit in parasympathetic fibres, as assessed by both vesicular acetylcholine transporter (α-VAChT) and vasoactive intestinal peptide (α-VIP) immunofluorescence (P < 0.002) in PHSH rats compared to age-matched Wistar rats. Although the neural activity of the internal cervical sympathetic branch, which innervates the vertebrobasilar arteries, was higher in PHSH relative to Wistar rats, its denervation had no effect on the vertebrobasilar artery morphology or persistent effect on arterial pressure in SH rats. Our neuroanatomic and functional data do not support a role for sympathetic nerves in remodelling of the vertebrobasilar artery wall in PHSH or SH rats. The remodelling of vertebrobasilar arteries and the elevated activity in the internal cervical sympathetic nerve coupled with their reduced parasympathetic innervation suggests a compromised vasodilatory capacity in PHSH and SH rats that could explain their brainstem hypoperfusion.
Collapse
Affiliation(s)
- Eva v. L. Roloff
- School of PhysiologyPharmacology and NeuroscienceBiomedical SciencesUniversity of BristolBristol BS8 1TDUK
| | - Dawid Walas
- School of PhysiologyPharmacology and NeuroscienceBiomedical SciencesUniversity of BristolBristol BS8 1TDUK
| | - Davi J. A. Moraes
- Department of PhysiologySchool of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoSP 14049–900Brazil
| | - Sergey Kasparov
- School of PhysiologyPharmacology and NeuroscienceBiomedical SciencesUniversity of BristolBristol BS8 1TDUK
| | - Julian F. R. Paton
- School of PhysiologyPharmacology and NeuroscienceBiomedical SciencesUniversity of BristolBristol BS8 1TDUK
- Department of PhysiologyFaculty of Medical and Health SciencesThe University of Auckland85 Park RoadGraftonAuckland1142New Zealand
| |
Collapse
|
27
|
Fan JL, Bourdillon N, Meyer P, Kayser B. Oral Nitrate Supplementation Differentially Modulates Cerebral Artery Blood Velocity and Prefrontal Tissue Oxygenation During 15 km Time-Trial Cycling in Normoxia but Not in Hypoxia. Front Physiol 2018; 9:869. [PMID: 30061839 PMCID: PMC6054990 DOI: 10.3389/fphys.2018.00869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Nitrate is a precursor of nitric oxide (NO), an important regulator of cerebral perfusion in normoxic and hypoxic conditions. Nitrate supplementation could be used to improve cerebral perfusion and oxygenation during exercise in hypoxia. The effects of dietary nitrate supplementation on cerebral haemodynamics during exercise in severe hypoxia (arterial O2 saturation < 70%) have not been explored. Methods: In twelve trained male cyclists, we measured blood pressure (BP), middle cerebral artery blood velocity (MCAv), cerebrovascular resistance (CVR) and prefrontal oxyhaemoglobin and deoxyhaemoglobin concentration (O2Hb and HHb, respectively) during 15 km cycling time trials (TT) in normoxia and severe hypoxia (11% inspired O2, peripheral O2 saturation ∼66%) following 3-day oral supplementation with placebo or sodium nitrate (0.1 mmol/kg/day) in a randomised, double-blinded manner. We tested the hypothesis that dietary nitrate supplementation increases MCAv and cerebral O2Hb during TT in severe hypoxia. Results: During TT in normoxia, nitrate supplementation lowered MCAv by ∼2.3 cm/s and increased cerebral O2Hb by ∼6.8 μM and HHb by ∼2.1 μM compared to normoxia placebo (p ≤ 0.01 for all), while BP tended to be lowered (p = 0.06). During TT in severe hypoxia, nitrate supplementation elevated MCAv (by ∼2.5 cm/s) and BP (by ∼5 mmHg) compared to hypoxia placebo (p < 0.01 for both), while it had no effect on cerebral O2Hb (p = 0.98), HHb (p = 0.07) or PETCO2 (p = 0.12). Dietary nitrate had no effect of CVR during TT in normoxia or hypoxia (p = 0.19). Conclusion: Our findings indicate that during normoxic TT, the modulatory effect of dietary nitrate on regional and global cerebral perfusion is heterogeneous. Meanwhile, the lack of major changes in cerebral perfusion with dietary nitrate during hypoxic TT alludes to an exhausted cerebrovascular reserve.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Nicolas Bourdillon
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| | - Philippe Meyer
- Cardiology Service, Geneva University Hospital, Geneva, Switzerland
| | - Bengt Kayser
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
MacMillan S, Evans AM. AMPK-α1 or AMPK-α2 Deletion in Smooth Muscles Does Not Affect the Hypoxic Ventilatory Response or Systemic Arterial Blood Pressure Regulation During Hypoxia. Front Physiol 2018; 9:655. [PMID: 29928235 PMCID: PMC5997817 DOI: 10.3389/fphys.2018.00655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
The hypoxic ventilatory response (HVR) is markedly attenuated by AMPK-α1 deletion conditional on the expression of Cre-recombinase in tyrosine hydroxylase (TH) expressing cells, precipitating marked increases in apnea frequency and duration. It was concluded that ventilatory dysfunction caused by AMPK deficiency was driven by neurogenic mechanisms. However, TH is transiently expressed in other cell types during development, and it is evident that central respiratory depression can also be triggered by myogenic mechanisms that impact blood supply to the brain. We therefore assessed the effect on the HVR and systemic arterial blood pressure of AMPK deletion in vascular smooth muscles. There was no difference in minute ventilation during normoxia. However, increases in minute ventilation during severe hypoxia (8% O2) were, if affected at all, augmented by AMPK-α1 and AMPK-α2 deletion in smooth muscles; despite the fact that hypoxia (8% O2) evoked falls in arterial SpO2 comparable with controls. Surprisingly, these mice exhibited no difference in systolic, diastolic or mean arterial blood pressure during normoxia or hypoxia. We conclude that neither AMPK-α1 nor AMPK-α2 are required in smooth muscle for the regulation of systemic arterial blood pressure during hypoxia, and that AMPK-α1 deficiency does not impact the HVR by myogenic mechanisms.
Collapse
Affiliation(s)
- Sandy MacMillan
- Centre for Discovery Brain Sciences and Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - A Mark Evans
- Centre for Discovery Brain Sciences and Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Schmidt EA, Despas F, Pavy-Le Traon A, Czosnyka Z, Pickard JD, Rahmouni K, Pathak A, Senard JM. Intracranial Pressure Is a Determinant of Sympathetic Activity. Front Physiol 2018; 9:11. [PMID: 29472865 PMCID: PMC5809772 DOI: 10.3389/fphys.2018.00011] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/05/2018] [Indexed: 11/17/2022] Open
Abstract
Intracranial pressure (ICP) is the pressure within the cranium. ICP rise compresses brain vessels and reduces cerebral blood delivery. Massive ICP rise leads to cerebral ischemia, but it is also known to produce hypertension, bradycardia and respiratory irregularities due to a sympatho-adrenal mechanism termed Cushing response. One still unresolved question is whether the Cushing response is a non-synaptic acute brainstem ischemic mechanism or part of a larger physiological reflex for arterial blood pressure control and homeostasis regulation. We hypothesize that changes in ICP modulates sympathetic activity. Thus, modest ICP increase and decrease were achieved in mice and patients with respectively intra-ventricular and lumbar fluid infusion. Sympathetic activity was gauged directly by microneurography, recording renal sympathetic nerve activity in mice and muscle sympathetic nerve activity in patients, and gauged indirectly in both species by heart-rate variability analysis. In mice (n = 15), renal sympathetic activity increased from 29.9 ± 4.0 bursts.s−1 (baseline ICP 6.6 ± 0.7 mmHg) to 45.7 ± 6.4 bursts.s−1 (plateau ICP 38.6 ± 1.0 mmHg) and decreased to 34.8 ± 5.6 bursts.s−1 (post-infusion ICP 9.1 ± 0.8 mmHg). In patients (n = 10), muscle sympathetic activity increased from 51.2 ± 2.5 bursts.min−1 (baseline ICP 8.3 ± 1.0 mmHg) to 66.7 ± 2.9 bursts.min−1 (plateau ICP 25 ± 0.3 mmHg) and decreased to 58.8 ± 2.6 bursts.min−1 (post-infusion ICP 14.8 ± 0.9 mmHg). In patients 7 mmHg ICP rise significantly increases sympathetic activity by 17%. Heart-rate variability analysis demonstrated a significant vagal withdrawal during the ICP rise, in accordance with the microneurography findings. Mice and human results are alike. We demonstrate in animal and human that ICP is a reversible determinant of efferent sympathetic outflow, even at relatively low ICP levels. ICP is a biophysical stress related to the forces within the brain. But ICP has also to be considered as a physiological stressor, driving sympathetic activity. The results suggest a novel physiological ICP-mediated sympathetic modulation circuit and the existence of a possible intracranial (i.e., central) baroreflex. Modest ICP rise might participate to the pathophysiology of cardio-metabolic homeostasis imbalance with sympathetic over-activity, and to the pathogenesis of sympathetically-driven diseases.
Collapse
Affiliation(s)
- Eric A Schmidt
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Toulouse, France.,Department of Neurosurgery, University Hospital of Toulouse, Toulouse, France
| | - Fabien Despas
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Toulouse, France.,Department of Clinical Pharmacology, University Hospital of Toulouse, Toulouse, France
| | - Anne Pavy-Le Traon
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Toulouse, France.,Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Zofia Czosnyka
- Brain Physics Lab, Academic Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - John D Pickard
- Brain Physics Lab, Academic Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Kamal Rahmouni
- Departments of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Atul Pathak
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Toulouse, France.,Department of Clinical Pharmacology, University Hospital of Toulouse, Toulouse, France
| | - Jean M Senard
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Toulouse, France.,Department of Clinical Pharmacology, University Hospital of Toulouse, Toulouse, France
| |
Collapse
|
30
|
Hart EC. Human hypertension, sympathetic activity and the selfish brain. Exp Physiol 2018; 101:1451-1462. [PMID: 27519960 DOI: 10.1113/ep085775] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review article revisits an historical hypothesis that cerebral hypoperfusion, caused by elevated cerebral vascular resistances, causes the onset of high sympathetic nerve activity and hypertension in humans. What advances does it highlight? The review article highlights new evidence indicating that congenital cerebrovascular abnormalities, namely vertebral artery hypoplasia and an incomplete posterior circle of Willis, may play a role in the onset of hypertension. Despite the harmful consequences of high blood pressure (hypertension; e.g. stroke, renal failure, dementia and even death), the underlying physiological mechanisms that cause the onset of hypertension are poorly understood. The most established finding is that hypertension occurs alongside activation of the sympathetic nervous system, yet exactly what triggers this in humans is ambiguous. This review discusses evidence for elevated sympathetic nerve activity, particularly in human hypertension, and revisits an historical theory regarding the aetiology underlying human hypertension that was proposed by Seymour Kety and John Dickinson in the 1940s-1950s. My research group hypothesizes that elevated sympathetic nerve activity and hypertension develop as a fundamental mechanism to maintain adequate cerebral blood flow, which is now termed Cushing's mechanism or the selfish brain hypothesis. Moreover, it goes against the traditional belief that high cerebrovascular resistance is a consequence of hypertension; we propose that this elevated resistance drives hypertension. This review discusses historical and new evidence in animals and humans supporting this hypothesis. In particular, unique human data indicating a higher prevalence of congenital cerebral vascular abnormalities in hypertension are considered.
Collapse
Affiliation(s)
- Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, Clinical Research and Imaging Centre, University of Bristol, Bristol, UK
| |
Collapse
|
31
|
Love S, Miners JS. Small vessel disease, neurovascular regulation and cognitive impairment: post-mortem studies reveal a complex relationship, still poorly understood. Clin Sci (Lond) 2017; 131:1579-1589. [PMID: 28667060 DOI: 10.1042/cs20170148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/08/2023]
Abstract
The contribution of vascular disease to cognitive impairment is under-recognized and the pathogenesis is poorly understood. This information gap has multiple causes, including a lack of post-mortem validation of clinical diagnoses of vascular cognitive impairment (VCI) or vascular dementia (VaD), the exclusion of cases with concomitant neurodegenerative disease when diagnosing VCI/VaD, and a lack of standardization of neuropathological assessment protocols for vascular disease. Other contributors include a focus on end-stage destructive lesions to the exclusion of more subtle types of diffuse brain injury, on structural abnormalities of arteries and arterioles to the exclusion of non-structural abnormalities and capillary damage, and the use of post-mortem sampling strategies that are biased towards the identification of neurodegenerative pathologies. Recent studies have demonstrated the value of detailed neuropathology in characterizing vascular contributions to cognitive impairment (e.g. in diabetes), and highlight the importance of diffuse white matter changes, capillary damage and vasoregulatory abnormalities in VCI/VaD. The use of standardized, evidence-based post-mortem assessment protocols and the inclusion of biochemical as well as morphological methods in neuropathological studies should improve the accuracy of determination of the contribution of vascular disease to cognitive impairment and clarify the relative contribution of different pathogenic processes to the tissue damage.
Collapse
Affiliation(s)
- Seth Love
- Dementia Research Group, School of Clinical Sciences, University of Bristol, Learning and Research Level 1, Southmead Hospital, Bristol BS10 5NB, U.K.
| | - J Scott Miners
- Dementia Research Group, School of Clinical Sciences, University of Bristol, Learning and Research Level 1, Southmead Hospital, Bristol BS10 5NB, U.K
| |
Collapse
|
32
|
Mahmoud AD, Lewis S, Juričić L, Udoh UA, Hartmann S, Jansen MA, Ogunbayo OA, Puggioni P, Holmes AP, Kumar P, Navarro-Dorado J, Foretz M, Viollet B, Dutia MB, Marshall I, Evans AM. AMP-activated Protein Kinase Deficiency Blocks the Hypoxic Ventilatory Response and Thus Precipitates Hypoventilation and Apnea. Am J Respir Crit Care Med 2017; 193:1032-43. [PMID: 26669206 DOI: 10.1164/rccm.201508-1667oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Modulation of breathing by hypoxia accommodates variations in oxygen demand and supply during, for example, sleep and ascent to altitude, but the precise molecular mechanisms of this phenomenon remain controversial. Among the genes influenced by natural selection in high-altitude populations is one for the adenosine monophosphate-activated protein kinase (AMPK) α1-catalytic subunit, which governs cell-autonomous adaptations during metabolic stress. OBJECTIVES We investigated whether AMPK-α1 and/or AMPK-α2 are required for the hypoxic ventilatory response and the mechanism of ventilatory dysfunctions arising from AMPK deficiency. METHODS We used plethysmography, electrophysiology, functional magnetic resonance imaging, and immediate early gene (c-fos) expression to assess the hypoxic ventilatory response of mice with conditional deletion of the AMPK-α1 and/or AMPK-α2 genes in catecholaminergic cells, which compose the hypoxia-responsive respiratory network from carotid body to brainstem. MEASUREMENTS AND MAIN RESULTS AMPK-α1 and AMPK-α2 deletion virtually abolished the hypoxic ventilatory response, and ventilatory depression during hypoxia was exacerbated under anesthesia. Rather than hyperventilating, mice lacking AMPK-α1 and AMPK-α2 exhibited hypoventilation and apnea during hypoxia, with the primary precipitant being loss of AMPK-α1 expression. However, the carotid bodies of AMPK-knockout mice remained exquisitely sensitive to hypoxia, contrary to the view that the hypoxic ventilatory response is determined solely by increased carotid body afferent input to the brainstem. Regardless, functional magnetic resonance imaging and c-fos expression revealed reduced activation by hypoxia of well-defined dorsal and ventral brainstem nuclei. CONCLUSIONS AMPK is required to coordinate the activation by hypoxia of brainstem respiratory networks, and deficiencies in AMPK expression precipitate hypoventilation and apnea, even when carotid body afferent input is normal.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrew P Holmes
- 3 Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Prem Kumar
- 3 Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Marc Foretz
- 4 Institut Cochin, INSERM U1016, Paris, France.,5 CNRS UMR8104, Paris, France; and.,6 Université Paris Descartes, Paris, France
| | - Benoit Viollet
- 4 Institut Cochin, INSERM U1016, Paris, France.,5 CNRS UMR8104, Paris, France; and.,6 Université Paris Descartes, Paris, France
| | | | - Ian Marshall
- 7 Centre for Clinical Brain Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
33
|
Abstract
The objective of this review is to provide an in-depth evaluation of how renal nerves regulate renal and cardiovascular function with a focus on long-term control of arterial pressure. We begin by reviewing the anatomy of renal nerves and then briefly discuss how the activity of renal nerves affects renal function. Current methods for measurement and quantification of efferent renal-nerve activity (ERNA) in animals and humans are discussed. Acute regulation of ERNA by classical neural reflexes as well and hormonal inputs to the brain is reviewed. The role of renal nerves in long-term control of arterial pressure in normotensive and hypertensive animals (and humans) is then reviewed with a focus on studies utilizing continuous long-term monitoring of arterial pressure. This includes a review of the effect of renal-nerve ablation on long-term control of arterial pressure in experimental animals as well as humans with drug-resistant hypertension. The extent to which changes in arterial pressure are due to ablation of renal afferent or efferent nerves are reviewed. We conclude by discussing the importance of renal nerves, relative to sympathetic activity to other vascular beds, in long-term control of arterial pressure and hypertension and propose directions for future research in this field. © 2017 American Physiological Society. Compr Physiol 7:263-320, 2017.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason D Foss
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
34
|
McBryde FD, Malpas SC, Paton JFR. Intracranial mechanisms for preserving brain blood flow in health and disease. Acta Physiol (Oxf) 2017; 219:274-287. [PMID: 27172364 DOI: 10.1111/apha.12706] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 05/06/2016] [Indexed: 12/19/2022]
Abstract
The brain is an exceptionally energetically demanding organ with little metabolic reserve, and multiple systems operate to protect and preserve the brain blood supply. But how does the brain sense its own perfusion? In this review, we discuss how the brain may harness the cardiovascular system to counter threats to cerebral perfusion sensed via intracranial pressure (ICP), cerebral oxygenation and ischaemia. Since the work of Cushing over 100 years ago, the existence of brain baroreceptors capable of eliciting increases in sympathetic outflow and blood pressure has been hypothesized. In the clinic, this response has generally been thought to occur only in extremis, to perfuse the severely ischaemic brain as cerebral autoregulation fails. We review evidence that pressor responses may also occur with smaller, physiologically relevant increases in ICP. The incoming brain oxygen supply is closely monitored by the carotid chemoreceptors; however, hypoxia and other markers of ischaemia are also sensed intrinsically by astrocytes or other support cells within brain tissue itself and elicit reactive hyperaemia. Recent studies suggest that astrocytic oxygen signalling within the brainstem may directly affect sympathetic nerve activity and blood pressure. We speculate that local cerebral oxygen tension is a major determinant of the mean level of arterial pressure and discuss recent evidence that this may be the case. We conclude that intrinsic intra- and extra-cranial mechanisms sense and integrate information about hypoxia/ischaemia and ICP and play a major role in determining the long-term level of sympathetic outflow and arterial pressure, to optimize cerebral perfusion.
Collapse
Affiliation(s)
- F. D. McBryde
- Department of Physiology; Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
- School of Physiology, Pharmacology & Neuroscience; Biomedical Sciences; University of Bristol; Bristol UK
| | - S. C. Malpas
- Department of Physiology; Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - J. F. R. Paton
- Department of Physiology; Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
- School of Physiology, Pharmacology & Neuroscience; Biomedical Sciences; University of Bristol; Bristol UK
| |
Collapse
|
35
|
Roloff EVL, Tomiak‐Baquero AM, Kasparov S, Paton JFR. Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 2016; 594:6463-6485. [PMID: 27357059 PMCID: PMC5108906 DOI: 10.1113/jp272450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/18/2016] [Indexed: 12/25/2022] Open
Abstract
This review aims to summarise the contemporary evidence for the presence and function of the parasympathetic innervation of the cerebral circulation with emphasis on the vertebral and basilar arteries (the posterior cerebral circulation). We consider whether the parasympathetic innervation of blood vessels could be used as a means to increase cerebral blood flow. This may have clinical implications for pathologies associated with cerebral hypoperfusion such as stroke, dementia and hypertension. Relative to the anterior cerebral circulation little is known of the origins and neurochemical phenotypes of the parasympathetic innervation of the vertebrobasilar arteries. These vessels normally provide blood flow to the brainstem and cerebellum but can, via the Circle of Willis upon stenosis of the internal carotid arteries, supply blood to the anterior cerebral circulation too. We review the multiple types of parasympathetic fibres and their distinct transmitter mechanisms and how these vary with age, disease and species. We highlight the importance of parasympathetic fibres for mediating the vasodilatory response to sympathetic activation. Current trials are investigating the possibility of electrically stimulating the postganglionic parasympathetic ganglia to improve cerebal blood flow to reduce the penumbra following stroke. We conclude that although there are substantial gaps in our understanding of the origins of parasympathetic innervation of the vertebrobasilar arteries, activation of this system under some conditions might bring therapeutic benefits.
Collapse
Affiliation(s)
- Eva v. L. Roloff
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Ana M. Tomiak‐Baquero
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Julian F. R. Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
36
|
Accorsi-Mendonça D, da Silva MP, Souza GMPR, Lima-Silveira L, Karlen-Amarante M, Amorim MR, Almado CEL, Moraes DJA, Machado BH. Pacemaking Property of RVLM Presympathetic Neurons. Front Physiol 2016; 7:424. [PMID: 27713705 PMCID: PMC5031694 DOI: 10.3389/fphys.2016.00424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Despite several studies describing the electrophysiological properties of RVLM presympathetic neurons, there is no consensus in the literature about their pacemaking property, mainly due to different experimental approaches used for recordings of neuronal intrinsic properties. In this review we are presenting a historical retrospective about the pioneering studies and their controversies on the intrinsic electrophysiological property of auto-depolarization of these cells in conjunction with recent studies from our laboratory documenting that RVLM presympathetic neurons present pacemaking capacity. We also discuss whether increased sympathetic activity observed in animal models of neurogenic hypertension (CIH and SHR) are dependent on changes in the intrinsic electrophysiological properties of these cells or due to changes in modulatory inputs from neurons of the respiratory network. We also highlight the key role of INaP as the major current contributing to the pacemaking property of RVLM presympathetic neurons.
Collapse
Affiliation(s)
- Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - George M P R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Marlusa Karlen-Amarante
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Mateus R Amorim
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Carlos E L Almado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| |
Collapse
|
37
|
Turlejski T, Humoud I, Desai R, Smith KJ, Marina N. Immunohistochemical evidence of tissue hypoxia and astrogliosis in the rostral ventrolateral medulla of spontaneously hypertensive rats. Brain Res 2016; 1650:178-183. [PMID: 27616338 PMCID: PMC5069925 DOI: 10.1016/j.brainres.2016.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022]
Abstract
Increased activity of the sympathetic nervous system has been highlighted as a key factor that contributes to the development and maintenance of arterial hypertension. However, the factors that precipitate sustained increases in sympathetic activity remain poorly understood. Resting tissue oxygen partial pressure (PtO2) in the brainstem of anesthetized spontaneously hypertensive rats (SHRs) has been shown to be lower than in normotensive rats despite normal levels of arterial PO2. A hypoxic environment in the brainstem has been postulated to activate astroglial signalling mechanisms in the rostral ventrolateral medulla (RVLM) which in turn increase the excitability of presympathetic neuronal networks. In this study, we assessed the expression of indirect markers of tissue hypoxia and astroglial cell activation in the RVLM of SHRs and age-matched normotensive Wistar rats. Immunohistochemical labelling for hypoxia-induced factor-1α (HIF-1α) and bound pimonidazole adducts revealed the presence of tissue hypoxia in the RVLM of SHRs. Double immunostaining showed co-localization of bound pimonidazole labelling in putative presympathetic C1 neurons and in astroglial cells. Quantification of glial fibrillary acidic protein (GFAP) immunofluorescence showed relatively higher number of astrocytes and increased GFAP mean grey value density, whilst semi-quantitative analysis of skeletonized GFAP-immunoreactive processes revealed greater % area covered by astrocytic processes in the RVLM of adult SHRs. In conclusion, the morphological findings of tissue hypoxia and astrogliosis within brainstem presympathetic neuronal networks in the SHR support previous observations, showing that low brainstem PtO2 and increased astroglial signalling in the RVLM play an important role in pathological sympathoexcitation associated with the development of arterial hypertension. The rostral ventrolateral medulla of spontaneously hypertensive rats is hypoxic. Indirect markers of hypoxia were found in pre-sympathetic neurons and astrocytes. Astrogliosis is present in the rostral ventrolateral medulla of hypertensive rats.
Collapse
Affiliation(s)
- Tymoteusz Turlejski
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK; UCL Centre for Cardiovascular and Metabolic Neuroscience University College London, Gower Street, London WC1E 6BT, UK
| | - Ibrahim Humoud
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK; UCL Centre for Cardiovascular and Metabolic Neuroscience University College London, Gower Street, London WC1E 6BT, UK
| | - Roshni Desai
- Department of Neuroinflammation, Institute of Neurology, University College London, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, Institute of Neurology, University College London, UK
| | - Nephtali Marina
- Clinical Pharmacology and Experimental Therapeutics, Division of Medicine, University College London, UK; UCL Centre for Cardiovascular and Metabolic Neuroscience University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
38
|
Evans AM, Mahmoud AD, Moral-Sanz J, Hartmann S. The emerging role of AMPK in the regulation of breathing and oxygen supply. Biochem J 2016; 473:2561-72. [PMID: 27574022 PMCID: PMC5003690 DOI: 10.1042/bcj20160002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 01/25/2023]
Abstract
Regulation of breathing is critical to our capacity to accommodate deficits in oxygen availability and demand during, for example, sleep and ascent to altitude. It is generally accepted that a fall in arterial oxygen increases afferent discharge from the carotid bodies to the brainstem and thus delivers increased ventilatory drive, which restores oxygen supply and protects against hypoventilation and apnoea. However, the precise molecular mechanisms involved remain unclear. We recently identified as critical to this process the AMP-activated protein kinase (AMPK), which is key to the cell-autonomous regulation of metabolic homoeostasis. This observation is significant for many reasons, not least because recent studies suggest that the gene for the AMPK-α1 catalytic subunit has been subjected to natural selection in high-altitude populations. It would appear, therefore, that evolutionary pressures have led to AMPK being utilized to regulate oxygen delivery and thus energy supply to the body in the short, medium and longer term. Contrary to current consensus, however, our findings suggest that AMPK regulates ventilation at the level of the caudal brainstem, even when afferent input responses from the carotid body are normal. We therefore hypothesize that AMPK integrates local hypoxic stress at defined loci within the brainstem respiratory network with an index of peripheral hypoxic status, namely afferent chemosensory inputs. Allied to this, AMPK is critical to the control of hypoxic pulmonary vasoconstriction and thus ventilation-perfusion matching at the lungs and may also determine oxygen supply to the foetus by, for example, modulating utero-placental blood flow.
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Amira D Mahmoud
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K
| | - Javier Moral-Sanz
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K
| | - Sandy Hartmann
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K
| |
Collapse
|
39
|
Agaba M, Ishengoma E, Miller WC, McGrath BC, Hudson CN, Bedoya Reina OC, Ratan A, Burhans R, Chikhi R, Medvedev P, Praul CA, Wu-Cavener L, Wood B, Robertson H, Penfold L, Cavener DR. Giraffe genome sequence reveals clues to its unique morphology and physiology. Nat Commun 2016; 7:11519. [PMID: 27187213 PMCID: PMC4873664 DOI: 10.1038/ncomms11519] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Abstract
The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. Giraffe's unique anatomy and physiology include its stature and associated cardiovascular adaptation. Here, Douglas Cavener and colleagues provide de novo genome assemblies of giraffe and its closest relative okapi and provide comparative analyses to infer insights into evolution and adaptation.
Collapse
Affiliation(s)
- Morris Agaba
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania.,Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi GPO00100, Kenya.,Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Edson Ishengoma
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania
| | - Webb C Miller
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Barbara C McGrath
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chelsea N Hudson
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Oscar C Bedoya Reina
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Aakrosh Ratan
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for Public Health Genomics, Department of Computer Science, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Rico Burhans
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rayan Chikhi
- Center for Genomics and Bioinformatics, Department of Computer Science and Engineering, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Medvedev
- Center for Genomics and Bioinformatics, Department of Computer Science and Engineering, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig A Praul
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lan Wu-Cavener
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Brendan Wood
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | - Douglas R Cavener
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania.,Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
40
|
Koeners MP, Lewis KE, Ford AP, Paton JF. Hypertension: a problem of organ blood flow supply-demand mismatch. Future Cardiol 2016; 12:339-49. [PMID: 27091483 PMCID: PMC4926521 DOI: 10.2217/fca.16.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review introduces a new hypothesis that sympathetically mediated hypertensive diseases are caused, in the most part, by the activation of visceral afferent systems that are connected to neural circuits generating sympathetic activity. We consider how organ hypoperfusion and blood flow supply–demand mismatch might lead to both sensory hyper-reflexia and aberrant afferent tonicity. We discuss how this may drive sympatho-excitatory-positive feedback and extend across multiple organs initiating, or at least amplifying, sympathetic hyperactivity. The latter, in turn, compounds the challenge to sufficient organ blood flow through heightened vasoconstriction that both maintains and exacerbates hypertension.
Collapse
Affiliation(s)
- Maarten P Koeners
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Kirsty E Lewis
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Anthony P Ford
- Afferent Pharmaceuticals, 2929 Campus Drive, San Mateo, CA, USA
| | - Julian Fr Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
41
|
Guyenet PG, Bayliss DA, Stornetta RL, Ludwig MG, Kumar NN, Shi Y, Burke PGR, Kanbar R, Basting TM, Holloway BB, Wenker IC. Proton detection and breathing regulation by the retrotrapezoid nucleus. J Physiol 2016; 594:1529-51. [PMID: 26748771 PMCID: PMC4799966 DOI: 10.1113/jp271480] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/04/2016] [Indexed: 01/26/2023] Open
Abstract
We discuss recent evidence which suggests that the principal central respiratory chemoreceptors are located within the retrotrapezoid nucleus (RTN) and that RTN neurons are directly sensitive to [H(+) ]. RTN neurons are glutamatergic. In vitro, their activation by [H(+) ] requires expression of a proton-activated G protein-coupled receptor (GPR4) and a proton-modulated potassium channel (TASK-2) whose transcripts are undetectable in astrocytes and the rest of the lower brainstem respiratory network. The pH response of RTN neurons is modulated by surrounding astrocytes but genetic deletion of RTN neurons or deletion of both GPR4 and TASK-2 virtually eliminates the central respiratory chemoreflex. Thus, although this reflex is regulated by innumerable brain pathways, it seems to operate predominantly by modulating the discharge rate of RTN neurons, and the activation of RTN neurons by hypercapnia may ultimately derive from their intrinsic pH sensitivity. RTN neurons increase lung ventilation by stimulating multiple aspects of breathing simultaneously. They stimulate breathing about equally during quiet wake and non-rapid eye movement (REM) sleep, and to a lesser degree during REM sleep. The activity of RTN neurons is regulated by inhibitory feedback and by excitatory inputs, notably from the carotid bodies. The latter input operates during normo- or hypercapnia but fails to activate RTN neurons under hypocapnic conditions. RTN inhibition probably limits the degree of hyperventilation produced by hypocapnic hypoxia. RTN neurons are also activated by inputs from serotonergic neurons and hypothalamic neurons. The absence of RTN neurons probably underlies the sleep apnoea and lack of chemoreflex that characterize congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Natasha N Kumar
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Peter G R Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Tyler M Basting
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Benjamin B Holloway
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ian C Wenker
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
42
|
Basting TM, Abe C, Viar KE, Stornetta RL, Guyenet PG. Is plasticity within the retrotrapezoid nucleus responsible for the recovery of the PCO2 set-point after carotid body denervation in rats? J Physiol 2016; 594:3371-90. [PMID: 26842799 DOI: 10.1113/jp272046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Arterial PCO2 is kept constant via breathing adjustments elicited, at least partly, by central chemoreceptors (CCRs) and the carotid bodies (CBs). The CBs may be active in a normal oxygen environment because their removal reduces breathing. Thereafter, breathing slowly returns to normal. In the present study, we investigated whether an increase in the activity of CCRs accounts for this return. One week after CB excision, the hypoxic ventilatory reflex was greatly reduced as expected, whereas ventilation and blood gases at rest under normoxia were normal. Optogenetic inhibition of Phox2b-expressing neurons including the retrotrapezoid nucleus, a cluster of CCRs, reduced breathing proportionally to arterial pH. The hypopnoea was greater after CB excision but only in a normal or hypoxic environment. The difference could be simply explained by the loss of fast feedback from the CBs. We conclude that, in rats, CB denervation may not produce CCR plasticity. We also question whether the transient hypoventilation elicited by CB denervation means that these afferents are active under normoxia. ABSTRACT Carotid body denervation (CBD) causes hypoventilation and increases the arterial PCO2 set-point; these effects eventually subside. The hypoventilation is attributed to reduced CB afferent activity and the PCO2 set-point recovery to CNS plasticity. In the present study, we investigated whether the retrotrapezoid nucleus (RTN), a group of non-catecholaminergic Phox2b-expressing central respiratory chemoreceptors (CCRs), is the site of such plasticity. We evaluated the contribution of the RTN to breathing frequency (FR ), tidal volume (VT ) and minute volume (VE ) by inhibiting this nucleus optogenetically for 10 s (archaerhodopsinT3.0) in unanaesthetized rats breathing various levels of O2 and/or CO2 . The measurements were made in seven rats before and 6-7 days after CBD and were repeated in seven sham-operated rats. Seven days post-CBD, blood gases and ventilation in 21% O2 were normal, whereas the hypoxic ventilatory reflex was still depressed (95.3%) and hypoxia no longer evoked sighs. Sham surgery had no effect. In normoxia or hypoxia, RTN inhibition produced a more sustained hypopnoea post-CBD than before; in hyperoxia, the responses were identical. Post-CBD, RTN inhibition reduced FR and VE in proportion to arterial pH or PCO2 (ΔVE : 3.3 ± 1.5% resting VE /0.01 pHa). In these rats, 20.7 ± 8.9% of RTN neurons expressed archaerhodopsinT3.0. Hypercapnia (3-6% FiCO2 ) increased FR and VT in CBD rats (n = 4). In conclusion, RTN regulates FR and VE in a pH-dependent manner after CBD, consistent with its postulated CCR function. RTN inhibition produces a more sustained hypopnoea after CBD than before, although this change may simply result from the loss of the fast feedback action of the CBs.
Collapse
Affiliation(s)
- Tyler M Basting
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Chikara Abe
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Kenneth E Viar
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
43
|
Gross JB, Stahl BA, Powers AK, Carlson BM. Natural bone fragmentation in the blind cave-dwelling fish, Astyanax mexicanus: candidate gene identification through integrative comparative genomics. Evol Dev 2016; 18:7-18. [PMID: 26153732 PMCID: PMC5226847 DOI: 10.1111/ede.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animals that colonize dark and nutrient-poor subterranean environments evolve numerous extreme phenotypes. These include dramatic changes to the craniofacial complex, many of which are under genetic control. These phenotypes can demonstrate asymmetric genetic signals wherein a QTL is detected on one side of the face but not the other. The causative gene(s) underlying QTL are difficult to identify with limited genomic resources. We approached this task by searching for candidate genes mediating fragmentation of the third suborbital bone (SO3) directly inferior to the orbit of the eye. We integrated positional genomic information using emerging Astyanax resources, and linked these intervals to homologous (syntenic) regions of the Danio rerio genome. We identified a discrete, approximately 6 Mb, conserved region wherein the gene causing SO3 fragmentation likely resides. We interrogated this interval for genes demonstrating significant differential expression using mRNA-seq analysis of cave and surface morphs across life history. We then assessed genes with known roles in craniofacial evolution and development based on GO term annotation. Finally, we screened coding sequence alterations in this region, identifying two key genes: transforming growth factor β3 (tgfb3) and bone morphogenetic protein 4 (bmp4). Of these candidates, tgfb3 is most promising as it demonstrates significant differential expression across multiple stages of development, maps close (<1 Mb) to the fragmentation critical locus, and is implicated in a variety of other animal systems (including humans) in non-syndromic clefting and malformations of the cranial sutures. Both abnormalities are analogous to the failure-to-fuse phenotype that we observe in SO3 fragmentation. This integrative approach will enable discovery of the causative genetic lesions leading to complex craniofacial features analogous to human craniofacial disorders. This work underscores the value of cave-dwelling fish as a powerful evolutionary model of craniofacial disease, and demonstrates the power of integrative system-level studies for informing the genetic basis of craniofacial aberrations in nature.
Collapse
Affiliation(s)
- Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Brian M. Carlson
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| |
Collapse
|
44
|
Danowitz M, Domalski R, Solounias N. The cervical anatomy of Samotherium, an intermediate-necked giraffid. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150521. [PMID: 26716010 PMCID: PMC4680625 DOI: 10.1098/rsos.150521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Giraffidae are represented by many extinct species. The only two extant taxa possess diametrically contrasting cervical morphology, as the okapi is short-necked and the giraffe is exceptionally long-necked. Samotherium major, known from the Late Miocene of Samos in Greece and other Eurasian localities, is a key extinct giraffid; it possesses cervical vertebrae that are intermediate in the evolutionary elongation of the neck. We describe detailed anatomical features of the cervicals of S. major, and compare these characteristics with the vertebrae of the two extant giraffid taxa. Based on qualitative morphological characters and a quantitative analysis of cervical dimensions, we find that the S. major neck is intermediate between that of the okapi and the giraffe. Specifically, the more cranial (C2-C3) vertebrae of S. major represent a mosaic of features shared either with the giraffe or with the okapi. The more caudal (C5-C7) S. major vertebrae, however, appear transitional between the two extant taxa, and hence are more unique. Notably, the C6 of S. major exhibits a partially excavated ventral lamina that is strong cranially but completely absent on the caudal half of the ventral vertebral body, features between those seen in the giraffe and the okapi. Comprehensive anatomical descriptions and measurements of the almost-complete cervical column reveal that S. major is a truly intermediate-necked giraffid. Reconstructions of the neck display our findings.
Collapse
Affiliation(s)
- Melinda Danowitz
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, 8000 Northern Boulevard, Old Westbury, NY 11568, USA
| | - Rebecca Domalski
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, 8000 Northern Boulevard, Old Westbury, NY 11568, USA
| | - Nikos Solounias
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, 8000 Northern Boulevard, Old Westbury, NY 11568, USA
- Department of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| |
Collapse
|
45
|
Danowitz M, Vasilyev A, Kortlandt V, Solounias N. Fossil evidence and stages of elongation of the Giraffa camelopardalis neck. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150393. [PMID: 26587249 PMCID: PMC4632521 DOI: 10.1098/rsos.150393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Several evolutionary theories have been proposed to explain the adaptation of the long giraffe neck; however, few studies examine the fossil cervical vertebrae. We incorporate extinct giraffids, and the okapi and giraffe cervical vertebral specimens in a comprehensive analysis of the anatomy and elongation of the neck. We establish and evaluate 20 character states that relate to general, cranial and caudal vertebral lengthening, and calculate a length-to-width ratio to measure the relative slenderness of the vertebrae. Our sample includes cervical vertebrae (n=71) of 11 taxa representing all seven subfamilies. We also perform a computational comparison of the C3 of Samotherium and Giraffa camelopardalis, which demonstrates that cervical elongation occurs disproportionately along the cranial-caudal vertebral axis. Using the morphological characters and calculated ratios, we propose stages in cervical lengthening, which are supported by the mathematical transformations using fossil and extant specimens. We find that cervical elongation is anisometric and unexpectedly precedes Giraffidae. Within the family, cranial vertebral elongation is the first lengthening stage observed followed by caudal vertebral elongation, which accounts for the extremely long neck of the giraffe.
Collapse
Affiliation(s)
- Melinda Danowitz
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Aleksandr Vasilyev
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Victoria Kortlandt
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Nikos Solounias
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| |
Collapse
|
46
|
Guild SJ, McBryde FD, Malpas SC. Recording of intracranial pressure in conscious rats via telemetry. J Appl Physiol (1985) 2015; 119:576-81. [DOI: 10.1152/japplphysiol.00165.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Although cerebral perfusion pressure (CPP) is known to be fundamental in the control of normal brain function, there have been no previous long-term measurements in animal models. The aim of this study was to explore the stability and viability of long-term recordings of intracranial pressure (ICP) in freely moving rats via a telemetry device. We also developed a repeatable surgical approach with a solid-state pressure sensor at the tip of the catheter placed under the dura and in combination with arterial pressure (AP) measurement to enable the calculation of CPP. Telemeters with dual pressure catheters were implanted in Wistar rats to measure ICP and AP. We found that the signals were stable throughout the 28-day recording period with an average ICP value of 6 ± 0.8 mmHg. Significant light-dark differences were found in AP (3.1 ± 2.7 mmHg, P = 0.02) and HR (58 ± 12 beats/min, P = 0.003), but not ICP (0.3 ± 0.2 mmHg, P >0.05) or CPP (2.6 ± 2.8 mmHg, P > 0.05). Use of kaolin to induce hydrocephalus in several rats demonstrates the ability to measure changes in ICP throughout disease progression, validating this new solution for chronic measurement of ICP, CPP, and AP in conscious rats.
Collapse
Affiliation(s)
| | | | - Simon C. Malpas
- Department of Physiology and
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; and
- Millar Ltd, Auckland, New Zealand
| |
Collapse
|
47
|
Chen TC, Napolitano GR, Adell F, Schönthal AH, Shachar Y. Development of the Metronomic Biofeedback Pump for leptomeningeal carcinomatosis: technical note. J Neurosurg 2015; 123:362-72. [DOI: 10.3171/2014.10.jns14343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patients with leptomeningeal carcinomatosis face a particularly grim prognosis. Current treatment consists of intrathecal delivery of methotrexate (MTX) or cytosine arabinoside (Ara-C) via Ommaya reservoir or lumbar puncture. Yet despite these interventions, the median survival after diagnosis is only 4–7 months. To address inherent shortcomings of current treatments and provide a more effective therapeutic approach, the Pharmaco-Kinesis Corporation has developed a novel type of implantable pump capable of delivering intrathecal chemotherapy (i.e., MTX) in a metronomic fashion with electronic feedback. The Metronomic Biofeedback Pump (MBP) consists of 3 components: 1) a 2-lumen catheter; 2) a microfluidic delivery pump with 2 reservoirs; and 3) a spectrophotometer monitoring MTX concentrations in the CSF. Using an animal model of intraventricular drug delivery, the authors demonstrate that the MBP can reliably deliver volumes of 500 μl/min, consistently measure real-time intrathecal MTX concentrations via CSF aspiration, and provide biofeedback with the possibility of instant control and delivery adjustments. Therefore, this novel approach to chemotherapy minimizes toxic drug levels and ensures continuous exposure at precisely adjusted, individualized therapeutic levels. Altogether, application of the MBP is expected to increase survival of patients with leptomeningeal carcinomatosis, and appropriate Phase I and II trials are pending.
Collapse
Affiliation(s)
| | | | - Frank Adell
- 2Pharmaco-Kinesis Corporation, Inglewood; and
| | - Axel H. Schönthal
- 3Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Yehoshua Shachar
- 2Pharmaco-Kinesis Corporation, Inglewood; and
- 4Magnetecs Corporation, Inglewood, California
| |
Collapse
|
48
|
Field TS, McClure LA, White CL, Pergola PE, Hart RG, Benavente OR, Hill MD. Should Blood Pressure Targets After Lacunar Stroke Vary by Body Size? The SPS3 Trial. Am J Hypertens 2015; 28:756-64. [PMID: 25452300 DOI: 10.1093/ajh/hpu228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/21/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND It is unknown whether the physiological impact of a given blood pressure (BP) varies by body size. We explored interactions between higher vs. lower systolic BP (SBP) targets and anthropometric measures (body mass index (BMI), body surface area (BSA), height, weight) and recurrent stroke and death in the Secondary Prevention of Small Subcortical Strokes (SPS3) Trial. METHODS Patients with recent magnetic resonance imaging-proven lacunar infarcts were randomized to 2 BP targets (130-149 mm Hg vs. <130) in a prospective, open-label, blinded end-point design. Time to outcome was evaluated with Cox proportional hazard models and compared between targets. We examined multiplicative interactions between each anthropometric measure and target and mean difference in achieved BP 1 year after randomization between BP groups by quartile. We also computed rates of recurrent stroke and death by quartiles of anthropometrics. RESULTS Three thousand and twenty patients were followed over a mean of 3.7 (SD 2.0) years. Mean age was 63; 63% were male. Mean height was 167 (SD 11) cm, weight 81 (18) kg, BMI 29 (5.9) kg/m(2), and BSA 1.9 (0.25) m(2). Achieved BP at 1 year was comparable between quartiles for each anthropometric measurement. We found no consistent interactions between BP target and anthropometrics for either outcome, nor were there any significant associations between hazard of stroke or death when assessed by BMI, BSA, height, or weight. CONCLUSIONS We found no interactions between BP target groups and quartiles of anthropometrics for rates of stroke and death in SPS3. There is no evidence at this time supporting body size-based modifications to current BP targets for secondary prevention after lacunar stroke. CLINICAL TRIALS REGISTRATION Trial Number NCT00059306.
Collapse
Affiliation(s)
- Thalia S Field
- Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Leslie A McClure
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carole L White
- University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Pablo E Pergola
- University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Robert G Hart
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Oscar R Benavente
- Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael D Hill
- Hotchkiss Brain Center, Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
49
|
Marina N, Ang R, Machhada A, Kasymov V, Karagiannis A, Hosford PS, Mosienko V, Teschemacher AG, Vihko P, Paton JFR, Kasparov S, Gourine AV. Brainstem hypoxia contributes to the development of hypertension in the spontaneously hypertensive rat. Hypertension 2015; 65:775-83. [PMID: 25712724 PMCID: PMC4354460 DOI: 10.1161/hypertensionaha.114.04683] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023]
Abstract
Systemic arterial hypertension has been previously suggested to develop as a compensatory condition when central nervous perfusion/oxygenation is compromised. Principal sympathoexcitatory C1 neurons of the rostral ventrolateral medulla oblongata (whose activation increases sympathetic drive and the arterial blood pressure) are highly sensitive to hypoxia, but the mechanisms of this O2 sensitivity remain unknown. Here, we investigated potential mechanisms linking brainstem hypoxia and high systemic arterial blood pressure in the spontaneously hypertensive rat. Brainstem parenchymal PO2 in the spontaneously hypertensive rat was found to be ≈15 mm Hg lower than in the normotensive Wistar rat at the same level of arterial oxygenation and systemic arterial blood pressure. Hypoxia-induced activation of rostral ventrolateral medulla oblongata neurons was suppressed in the presence of either an ATP receptor antagonist MRS2179 or a glycogenolysis inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol, suggesting that sensitivity of these neurons to low PO2 is mediated by actions of extracellular ATP and lactate. Brainstem hypoxia triggers release of lactate and ATP which produce excitation of C1 neurons in vitro and increases sympathetic nerve activity and arterial blood pressure in vivo. Facilitated breakdown of extracellular ATP in the rostral ventrolateral medulla oblongata by virally-driven overexpression of a potent ectonucleotidase transmembrane prostatic acid phosphatase results in a significant reduction in the arterial blood pressure in the spontaneously hypertensive rats (but not in normotensive animals). These results suggest that in the spontaneously hypertensive rat, lower PO2 of brainstem parenchyma may be associated with higher levels of ambient ATP and l-lactate within the presympathetic circuits, leading to increased central sympathetic drive and concomitant sustained increases in systemic arterial blood pressure.
Collapse
Affiliation(s)
- Nephtali Marina
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.).
| | - Richard Ang
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.)
| | - Asif Machhada
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.)
| | - Vitaliy Kasymov
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.)
| | - Anastassios Karagiannis
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.)
| | - Patrick S Hosford
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.)
| | - Valentina Mosienko
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.)
| | - Anja G Teschemacher
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.)
| | - Pirkko Vihko
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.)
| | - Julian F R Paton
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.)
| | - Sergey Kasparov
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.)
| | - Alexander V Gourine
- From the Centre for Cardiovascular and Metabolic Neuroscience (N.M., R.A., A.M., V.K., A.K., P.S.H., A.V.G.), Department of Clinical Pharmacology and Experimental Therapeutics (N.M., P.S.H.), and Neuroscience, Physiology and Pharmacology (R.A., A.M., V.K., A.K., A.V.G.), University College London, London, United Kingdom; School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (V.M., A.G.T., J.F.R.P., S.K.); and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland (P.V.).
| |
Collapse
|
50
|
Correlation between baseline blood pressure and the brainstem FMRI response to isometric forearm contraction in human volunteers: a pilot study. J Hum Hypertens 2014; 29:449-55. [PMID: 25391759 DOI: 10.1038/jhh.2014.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/20/2014] [Accepted: 10/08/2014] [Indexed: 02/07/2023]
Abstract
It has been shown previously that changes in brainstem neural activity correlate with changes in both mean arterial pressure (MAP) and muscle sympathetic nerve activity (MSNA) during static handgrip (SHG). However, the relationship between baseline MAP and brainstem neural activity is unclear. We investigated changes in blood oxygen level-dependent (BOLD) signal induced by SHG in 12 young adults using BOLD functional magnetic resonance imaging (FMRI). An estimation of the blood pressure response to SHG was obtained in seven subjects during a session outside the MRI scanner and was used to model the blood pressure response to SHG inside the scanner. SHG at 40% of maximum grip increased MAP (mean ± s.d.) at the end of the 180-s squeeze from 85 ± 6 mm Hg to 108 ± 15 mm Hg, P = 0.0001. The brainstem BOLD signal change associated with SHG was localised to the ventrolateral medulla. This regional BOLD signal change negatively correlated with baseline MAP, r = -0.61, P = 0.01. This relationship between baseline MAP and brainstem FMRI responses to forearm contraction is suggestive of a possible role for brainstem activity in the control of MAP and may provide mechanistic insights into neurogenic hypertension.
Collapse
|