1
|
Hu W, Zhang W, Zhang K, Al-Moubarak E, Zhang Y, Harmer SC, Hancox JC, Zhang H. Evaluating pro-arrhythmogenic effects of the T634S-hERG mutation: insights from a simulation study. Interface Focus 2023; 13:20230035. [PMID: 38106919 PMCID: PMC10722218 DOI: 10.1098/rsfs.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
A mutation to serine of a conserved threonine (T634S) in the hERG K+ channel S6 pore region has been identified as a variant of uncertain significance, showing a loss-of-function effect. However, its potential consequences for ventricular excitation and arrhythmogenesis have not been reported. This study evaluated possible functional effects of the T634S-hERG mutation on ventricular excitation and arrhythmogenesis by using multi-scale computer models of the human ventricle. A Markov chain model of the rapid delayed rectifier potassium current (IKr) was reconstructed for wild-type and T634S-hERG mutant conditions and incorporated into the ten Tusscher et al. models of human ventricles at cell and tissue (1D, 2D and 3D) levels. Possible functional impacts of the T634S-hERG mutation were evaluated by its effects on action potential durations (APDs) and their rate-dependence (APDr) at the cell level; and on the QT interval of pseudo-ECGs, tissue vulnerability to unidirectional conduction block (VW), spiral wave dynamics and repolarization dispersion at the tissue level. It was found that the T634S-hERG mutation prolonged cellular APDs, steepened APDr, prolonged the QT interval, increased VW, destablized re-entry and augmented repolarization dispersion across the ventricle. Collectively, these results imply potential pro-arrhythmic effects of the T634S-hERG mutation, consistent with LQT2.
Collapse
Affiliation(s)
- Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Wenfeng Zhang
- College of Computer and Information Science, Chongqing Normal University, Chongqing, People's Republic of China
| | - Kevin Zhang
- Southmead Hospital, North Bristol Trust, Bristol, UK
| | - Ehab Al-Moubarak
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Stephen C. Harmer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, People's Republic of China
- Beijing Academy of Artificial Intelligence, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Bernal Oñate CP, Melgarejo Meseguer FM, Carrera EV, Sánchez Muñoz JJ, García Alberola A, Rojo Álvarez JL. Different Ventricular Fibrillation Types in Low-Dimensional Latent Spaces. SENSORS (BASEL, SWITZERLAND) 2023; 23:2527. [PMID: 36904731 PMCID: PMC10006875 DOI: 10.3390/s23052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The causes of ventricular fibrillation (VF) are not yet elucidated, and it has been proposed that different mechanisms might exist. Moreover, conventional analysis methods do not seem to provide time or frequency domain features that allow for recognition of different VF patterns in electrode-recorded biopotentials. The present work aims to determine whether low-dimensional latent spaces could exhibit discriminative features for different mechanisms or conditions during VF episodes. For this purpose, manifold learning using autoencoder neural networks was analyzed based on surface ECG recordings. The recordings covered the onset of the VF episode as well as the next 6 min, and comprised an experimental database based on an animal model with five situations, including control, drug intervention (amiodarone, diltiazem, and flecainide), and autonomic nervous system blockade. The results show that latent spaces from unsupervised and supervised learning schemes yielded moderate though quite noticeable separability among the different types of VF according to their type or intervention. In particular, unsupervised schemes reached a multi-class classification accuracy of 66%, while supervised schemes improved the separability of the generated latent spaces, providing a classification accuracy of up to 74%. Thus, we conclude that manifold learning schemes can provide a valuable tool for studying different types of VF while working in low-dimensional latent spaces, as the machine-learning generated features exhibit separability among different VF types. This study confirms that latent variables are better VF descriptors than conventional time or domain features, making this technique useful in current VF research on elucidation of the underlying VF mechanisms.
Collapse
Affiliation(s)
- Carlos Paúl Bernal Oñate
- Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas—ESPE, Sangolqui 171103, Ecuador
| | | | - Enrique V. Carrera
- Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas—ESPE, Sangolqui 171103, Ecuador
| | | | | | - José Luis Rojo Álvarez
- Department of Signal Theory and Communications, Telematics and Computing Systems, Universidad Rey Juan Carlos, 28943 Madrid, Spain
| |
Collapse
|
3
|
Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics. Comput Biol Med 2022; 146:105586. [DOI: 10.1016/j.compbiomed.2022.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
|
4
|
On the Role of Ionic Modeling on the Signature of Cardiac Arrhythmias for Healthy and Diseased Hearts. MATHEMATICS 2020. [DOI: 10.3390/math8122242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Computational cardiology is rapidly becoming the gold standard for innovative medical treatments and device development. Despite a worldwide effort in mathematical and computational modeling research, the complexity and intrinsic multiscale nature of the heart still limit our predictability power raising the question of the optimal modeling choice for large-scale whole-heart numerical investigations. We propose an extended numerical analysis among two different electrophysiological modeling approaches: a simplified phenomenological one and a detailed biophysical one. To achieve this, we considered three-dimensional healthy and infarcted swine heart geometries. Heterogeneous electrophysiological properties, fine-tuned DT-MRI -based anisotropy features, and non-conductive ischemic regions were included in a custom-built finite element code. We provide a quantitative comparison of the electrical behaviors during steady pacing and sustained ventricular fibrillation for healthy and diseased cases analyzing cardiac arrhythmias dynamics. Action potential duration (APD) restitution distributions, vortex filament counting, and pseudo-electrocardiography (ECG) signals were numerically quantified, introducing a novel statistical description of restitution patterns and ventricular fibrillation sustainability. Computational cost and scalability associated with the two modeling choices suggests that ventricular fibrillation signatures are mainly controlled by anatomy and structural parameters, rather than by regional restitution properties. Finally, we discuss limitations and translational perspectives of the different modeling approaches in view of large-scale whole-heart in silico studies.
Collapse
|
5
|
Jeong DU, Lim KM. Prediction of Cardiac Mechanical Performance From Electrical Features During Ventricular Tachyarrhythmia Simulation Using Machine Learning Algorithms. Front Physiol 2020; 11:591681. [PMID: 33329041 PMCID: PMC7732497 DOI: 10.3389/fphys.2020.591681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
In ventricular tachyarrhythmia, electrical instability features including action potential duration, dominant frequency, phase singularity, and filaments are associated with mechanical contractility. However, there are insufficient studies on estimated mechanical contractility based on electrical features during ventricular tachyarrhythmia using a stochastic model. In this study, we predicted cardiac mechanical performance from features of electrical instability during ventricular tachyarrhythmia simulation using machine learning algorithms, including support vector regression (SVR) and artificial neural network (ANN) models. We performed an electromechanical tachyarrhythmia simulation and extracted 12 electrical instability features and two mechanical properties, including stroke volume and the amplitude of myocardial tension (ampTens). We compared predictive performance according to kernel types of the SVR model and the number of hidden layers of the ANN model. In the SVR model, the prediction accuracies of stroke volume and ampTens were the highest when using the polynomial kernel and linear kernel, respectively. The predictive performance of the ANN model was better than that of the SVR model. The prediction accuracies were the highest when the ANN model consisted of three hidden layers. Accordingly, we propose the ANN model with three hidden layers as an optimal model for predicting cardiac mechanical contractility in ventricular tachyarrhythmia. The results of this study are expected to be used to indirectly estimate the hemodynamic response from the electrical cardiac map measured by the optical mapping system during cardiac surgery, as well as cardiac contractility under normal sinus rhythm conditions.
Collapse
Affiliation(s)
- Da Un Jeong
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Ki Moo Lim
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea.,Computational Medicine Lab, Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| |
Collapse
|
6
|
Integration of activation maps of epicardial veins in computational cardiac electrophysiology. Comput Biol Med 2020; 127:104047. [PMID: 33099220 DOI: 10.1016/j.compbiomed.2020.104047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022]
Abstract
In this work we address the issue of validating the monodomain equation used in combination with the Bueno-Orovio ionic model for the prediction of the activation times in cardiac electro-physiology of the left ventricle. To this aim, we consider four patients who suffered from Left Bundle Branch Block (LBBB). We use activation maps performed at the septum as input data for the model and maps at the epicardial veins for the validation. In particular, a first set (half) of the latter are used to estimate the conductivities of the patient and a second set (the remaining half) to compute the errors of the numerical simulations. We find an excellent agreement between measures and numerical results. Our validated computational tool could be used to accurately predict activation times at the epicardial veins with a short mapping, i.e. by using only a part (the most proximal) of the standard acquisition points, thus reducing the invasive procedure and exposure to radiation.
Collapse
|
7
|
Hoffman MJ, Cherry EM. Sensitivity of a data-assimilation system for reconstructing three-dimensional cardiac electrical dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190388. [PMID: 32448069 PMCID: PMC7287341 DOI: 10.1098/rsta.2019.0388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
Modelling of cardiac electrical behaviour has led to important mechanistic insights, but important challenges, including uncertainty in model formulations and parameter values, make it difficult to obtain quantitatively accurate results. An alternative approach is combining models with observations from experiments to produce a data-informed reconstruction of system states over time. Here, we extend our earlier data-assimilation studies using an ensemble Kalman filter to reconstruct a three-dimensional time series of states with complex spatio-temporal dynamics using only surface observations of voltage. We consider the effects of several algorithmic and model parameters on the accuracy of reconstructions of known scroll-wave truth states using synthetic observations. In particular, we study the algorithm's sensitivity to parameters governing different parts of the process and its robustness to several model-error conditions. We find that the algorithm can achieve an acceptable level of error in many cases, with the weakest performance occurring for model-error cases and more extreme parameter regimes with more complex dynamics. Analysis of the poorest-performing cases indicates an initial decrease in error followed by an increase when the ensemble spread is reduced. Our results suggest avenues for further improvement through increasing ensemble spread by incorporating additive inflation or using a parameter or multi-model ensemble. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Matthew J. Hoffman
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | | |
Collapse
|
8
|
Majumder R, De Coster T, Kudryashova N, Verkerk AO, Kazbanov IV, Ördög B, Harlaar N, Wilders R, de Vries AA, Ypey DL, Panfilov AV, Pijnappels DA. Self-restoration of cardiac excitation rhythm by anti-arrhythmic ion channel gating. eLife 2020; 9:55921. [PMID: 32510321 PMCID: PMC7316504 DOI: 10.7554/elife.55921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Homeostatic regulation protects organisms against hazardous physiological changes. However, such regulation is limited in certain organs and associated biological processes. For example, the heart fails to self-restore its normal electrical activity once disturbed, as with sustained arrhythmias. Here we present proof-of-concept of a biological self-restoring system that allows automatic detection and correction of such abnormal excitation rhythms. For the heart, its realization involves the integration of ion channels with newly designed gating properties into cardiomyocytes. This allows cardiac tissue to i) discriminate between normal rhythm and arrhythmia based on frequency-dependent gating and ii) generate an ionic current for termination of the detected arrhythmia. We show in silico, that for both human atrial and ventricular arrhythmias, activation of these channels leads to rapid and repeated restoration of normal excitation rhythm. Experimental validation is provided by injecting the designed channel current for arrhythmia termination in human atrial myocytes using dynamic clamp.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tim De Coster
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Nina Kudryashova
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, Netherlands
| | - Ivan V Kazbanov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Balázs Ördög
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Niels Harlaar
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
| | - Antoine Af de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk L Ypey
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexander V Panfilov
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russian Federation
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Jeong DU, Lim KM. Relationship Between Electrical Instability and Pumping Performance During Ventricular Tachyarrhythmia: Computational Study. Front Physiol 2020; 11:220. [PMID: 32265731 PMCID: PMC7105731 DOI: 10.3389/fphys.2020.00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/26/2020] [Indexed: 11/18/2022] Open
Abstract
There are representative electrical parameters for understanding the mechanism of reentrant waves in studies on tachyarrhythmia, namely the action potential duration (APD), dominant frequency, phase singularity, and filament. However, there are no studies that have directly identified the correlation between these electrophysiological parameters and cardiac contractility. Therefore, we have identified individual and integrative correlations between these electrical phenomena and contractility during tachyarrhythmia by deriving regression equations and also investigated the electrophysiological parameters affecting cardiac contractility during tachyarrhythmia. We simulated ventricular tachyarrhythmia with 48 types of electrical patterns by applying four reentry generation methods and changing the electrical conductivity of the potassium channel, which has the greatest effect on ventricular tissue. The mechanical responses reflecting electrical complexity were obtained through deterministic simulations of excitation-contraction coupling. We used the stroke volume and amplitude of myocardial tension (ampTens) as the variables representing contractility. We derived stochastic models through single- and multivariable regression analyses to identify the electrical parameters affecting contractility during tachyarrhythmia. In single-variable regression analysis, the APD, dominant frequency, and filament, excluding phase singularity, have statistically significant correlations with the stroke volume and ampTens. Among them, the APD has the maximum influence on these two mechanical parameters (standard beta coefficient: 0.859 for stroke volume, 0.930 for ampTens). The stochastic model using all four electrical parameters fails to accurately predict contractility owing to the multicollinearity between the APD and dominant frequency. We have rederived the multi-variable stochastic model using three electrical parameters without the APD. The filament has the greatest effect on the stroke volume stochastically (standard beta coefficient: 0.853 and 0.752). The dominant frequency has the greatest effect on ampTens statistically (standard beta coefficient: -0.813). We conclude that among the electrical parameters, the APD has the highest individual influence on mechanical contraction, and the filament has the highest integrative influence in both statistical terms.
Collapse
Affiliation(s)
| | - Ki Moo Lim
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| |
Collapse
|
10
|
Holden AV, Begg GA, Bounford K, Stegemann B, Tayebjee MH. Phase Entrainment of Induced Ventricular Fibrillation: A Human Feasibility and Proof of Concept Study. J Atr Fibrillation 2019; 12:2217. [PMID: 32435345 DOI: 10.4022/jafib.2217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/19/2019] [Accepted: 09/21/2019] [Indexed: 11/10/2022]
Abstract
Cardioversion and defibrillation by a single high energy shock applied by myocardial or body surface electrodes is painful, causes long term tissue damage, and is associated with worsening long term outcomes, but is almost always required for treatment of ventricular fibrillation . As a initial step towards developing methods that can terminate ventricular arrhythmias painlessly, we aim to determine if pacing stimuli at a rate of 5/s applied via an implantable cardiac defibrillator (ICD) can modify human ventricular fibrillation. In 8 patients undergoing defibrillation testing of a new/exchanged intracardiac defibrillator, five seconds of pacing at five stimuli per second was applied during the 10-20 seconds of induced ventricular fibrillation before the defibrillation shock was automatically applied, and the cardiac electrograms recorded and analyzed. The high frequency pacing did not entrain the ventricular fibrillation, but altered the dominant frequency in all 8 patients, and modulated the phase computed via the Hilbert Transform, in four of the patients. In this pilot study we demonstrate that high frequency pacing applied via ICD electrodes during VF can alter the dominant frequency and modulate the probability density of the phase of the electrogram of the ventricular fibrillation.
Collapse
Affiliation(s)
- Arun V Holden
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT; UK
| | - Gordon A Begg
- West Yorkshire Arrhythmia Service, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK
| | - Katrina Bounford
- West Yorkshire Arrhythmia Service, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK
| | - Berthold Stegemann
- Medtronic Plc, Bakken Research Center, Endepolsdomein 5, 6229 GW Maastricht, The Netherlands
| | - Muzahir H Tayebjee
- West Yorkshire Arrhythmia Service, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK
| |
Collapse
|
11
|
Galappaththige SK, Pathmanathan P, Bishop MJ, Gray RA. Effect of Heart Structure on Ventricular Fibrillation in the Rabbit: A Simulation Study. Front Physiol 2019; 10:564. [PMID: 31164829 PMCID: PMC6536150 DOI: 10.3389/fphys.2019.00564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/24/2019] [Indexed: 01/07/2023] Open
Abstract
Ventricular fibrillation (VF) is a lethal condition that affects millions worldwide. The mechanism underlying VF is unstable reentrant electrical waves rotating around lines called filaments. These complex spatio-temporal patterns can be studied using both experimental and numerical methods. Computer simulations provide unique insights including high resolution dynamics throughout the heart and systematic control of quantities such as fiber orientation and cellular kinetics that are not feasible experimentally. Here we study filament dynamics using two bi-ventricular 3-D high-resolution rabbit heart geometries, one with detailed fine structure and another without fine structure. We studied filament dynamics using anisotropic and isotropic conductivities, and with four cellular action potential models with different recovery kinetics. Spiral wave dynamics observed in isotropic two-dimensional sheets were not predictive of the behavior in the whole heart. In 2-D the four cell models exhibited stable reentry, meandering spiral waves, and spiral-wave breakup. In the whole heart with fine structure, all simulation results exhibited complex dynamics reminiscent of fibrillation observed experimentally. In the whole heart without fine structure, anisotropy acted to destabilize filament dynamics although the number of filaments was reduced compared to the heart with structure. In addition, in isotropic hearts without structure the two cell models that exhibited meandering spiral waves in 2-D, stabilized into figure-of-eight surface patterns. We also studied the sensitivity of filament dynamics to computer system configuration and initial conditions. After large simulation times, different macroscopic results sometimes occurred across different system configurations, likely due to a lack of bitwise reproducibility. The study conclusions were insensitive to initial condition perturbations, however, the exact number of filaments over time and their trends were altered by these changes. In summary, we present the following new results. First, we provide a new cell model that resembles the surface patterns of VF in the rabbit heart both qualitatively and quantitatively. Second, filament dynamics in the whole heart cannot be predicted from spiral wave dynamics in 2-D and we identified anisotropy as one destabilizing factor. Third, the exact dynamics of filaments are sensitive to a variety of factors, so we suggest caution in their interpretation and their quantitative analyses.
Collapse
Affiliation(s)
- Suran K Galappaththige
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Pras Pathmanathan
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Martin J Bishop
- Division of Imaging Sciences, Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Richard A Gray
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
12
|
Pathmanathan P, Gray RA. Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology. Front Physiol 2018; 9:106. [PMID: 29497385 PMCID: PMC5818422 DOI: 10.3389/fphys.2018.00106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Computational models of cardiac electrophysiology have a long history in basic science applications and device design and evaluation, but have significant potential for clinical applications in all areas of cardiovascular medicine, including functional imaging and mapping, drug safety evaluation, disease diagnosis, patient selection, and therapy optimisation or personalisation. For all stakeholders to be confident in model-based clinical decisions, cardiac electrophysiological (CEP) models must be demonstrated to be trustworthy and reliable. Credibility, that is, the belief in the predictive capability, of a computational model is primarily established by performing validation, in which model predictions are compared to experimental or clinical data. However, there are numerous challenges to performing validation for highly complex multi-scale physiological models such as CEP models. As a result, credibility of CEP model predictions is usually founded upon a wide range of distinct factors, including various types of validation results, underlying theory, evidence supporting model assumptions, evidence from model calibration, all at a variety of scales from ion channel to cell to organ. Consequently, it is often unclear, or a matter for debate, the extent to which a CEP model can be trusted for a given application. The aim of this article is to clarify potential rationale for the trustworthiness of CEP models by reviewing evidence that has been (or could be) presented to support their credibility. We specifically address the complexity and multi-scale nature of CEP models which makes traditional model evaluation difficult. In addition, we make explicit some of the credibility justification that we believe is implicitly embedded in the CEP modeling literature. Overall, we provide a fresh perspective to CEP model credibility, and build a depiction and categorisation of the wide-ranging body of credibility evidence for CEP models. This paper also represents a step toward the extension of model evaluation methodologies that are currently being developed by the medical device community, to physiological models.
Collapse
Affiliation(s)
- Pras Pathmanathan
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | |
Collapse
|
13
|
Bai J, Wang K, Liu Y, Li Y, Liang C, Luo G, Dong S, Yuan Y, Zhang H. Computational Cardiac Modeling Reveals Mechanisms of Ventricular Arrhythmogenesis in Long QT Syndrome Type 8: CACNA1C R858H Mutation Linked to Ventricular Fibrillation. Front Physiol 2017; 8:771. [PMID: 29046645 PMCID: PMC5632762 DOI: 10.3389/fphys.2017.00771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Functional analysis of the L-type calcium channel has shown that the CACNA1C R858H mutation associated with severe QT interval prolongation may lead to ventricular fibrillation (VF). This study investigated multiple potential mechanisms by which the CACNA1C R858H mutation facilitates and perpetuates VF. The Ten Tusscher-Panfilov (TP06) human ventricular cell models incorporating the experimental data on the kinetic properties of L-type calcium channels were integrated into one-dimensional (1D) fiber, 2D sheet, and 3D ventricular models to investigate the pro-arrhythmic effects of CACNA1C mutations by quantifying changes in intracellular calcium handling, action potential profiles, action potential duration restitution (APDR) curves, dispersion of repolarization (DOR), QT interval and spiral wave dynamics. R858H “mutant” L-type calcium current (ICaL) augmented sarcoplasmic reticulum calcium content, leading to the development of afterdepolarizations at the single cell level and focal activities at the tissue level. It also produced inhomogeneous APD prolongation, causing QT prolongation and repolarization dispersion amplification, rendering R858H “mutant” tissue more vulnerable to the induction of reentry compared with other conditions. In conclusion, altered ICaL due to the CACNA1C R858H mutation increases arrhythmia risk due to afterdepolarizations and increased tissue vulnerability to unidirectional conduction block. However, the observed reentry is not due to afterdepolarizations (not present in our model), but rather to a novel blocking mechanism.
Collapse
Affiliation(s)
- Jieyun Bai
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yashu Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Cuiping Liang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Gongning Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Suyu Dong
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yongfeng Yuan
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.,Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
14
|
Watanabe M, Feola I, Majumder R, Jangsangthong W, Teplenin AS, Ypey DL, Schalij MJ, Zeppenfeld K, de Vries AAF, Pijnappels DA. Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block. Cardiovasc Res 2017; 113:354-366. [PMID: 28395022 DOI: 10.1093/cvr/cvx003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 01/10/2017] [Indexed: 01/03/2023] Open
Abstract
Aims Anatomical re-entry is an important mechanism of ventricular tachycardia, characterized by circular electrical propagation in a fixed pathway. It's current investigative and therapeutic approaches are non-biological, rather unspecific (drugs), traumatizing (electrical shocks), or irreversible (ablation). Optogenetics is a new biological technique that allows reversible modulation of electrical function with unmatched spatiotemporal precision using light-gated ion channels. We therefore investigated optogenetic manipulation of anatomical re-entry in ventricular cardiac tissue. Methods and results Transverse, 150-μm-thick ventricular slices, obtained from neonatal rat hearts, were genetically modified with lentiviral vectors encoding Ca2+-translocating channelrhodopsin (CatCh), a light-gated depolarizing ion channel, or enhanced yellow fluorescent protein (eYFP) as control. Stable anatomical re-entry was induced in both experimental groups. Activation of CatCh was precisely controlled by 470-nm patterned illumination, while the effects on anatomical re-entry were studied by optical voltage mapping. Regional illumination in the pathway of anatomical re-entry resulted in termination of arrhythmic activity only in CatCh-expressing slices by establishing a local and reversible, depolarization-induced conduction block in the illuminated area. Systematic adjustment of the size of the light-exposed area in the re-entrant pathway revealed that re-entry could be terminated by either wave collision or extinction, depending on the depth (transmurality) of illumination. In silico studies implicated source-sink mismatches at the site of subtransmural conduction block as an important factor in re-entry termination. Conclusions Anatomical re-entry in ventricular tissue can be manipulated by optogenetic induction of a local and reversible conduction block in the re-entrant pathway, allowing effective re-entry termination. These results provide distinctively new mechanistic insight into re-entry termination and a novel perspective for cardiac arrhythmia management.
Collapse
|
15
|
Balasundaram K, Masse S, Farid T, Nair K, Asta J, Cusimano RJ, Vigmond E, Nanthakumar K, Umapathy K. Morphologically constrained signal subspace characterization of electrograms during ventricular fibrillation. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2017.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Abstract
Objectives The objective of this study was to evaluate the spatio-temporal organization and progression of human ventricular fibrillation (VF) in the left (LV) and right (RV) ventricles. Background Studies suggest that localized sources contribute to VF maintenance, but the evolution of VF episodes has not been quantified. Methods Synchrony between electrograms recorded from 25 patients with induced VF is computed and used to define the Asynchronous Index (ASI), indicating regions which are out-of-step with surrounding tissue. Computer simulations show that ASI can identify the location of VF-maintaining sources, where larger values of ASImax correlate with more stable sources. Results Automated synchrony analysis shows elevated values of ASI in a majority of self-terminating episodes (LV: 8/9, RV: 7/8) and sustained episodes (LV: 11/11, RV: 12/12). The locations of ASImax in sustained episodes co-localize with rotor cores when rotational activity is simultaneously present in phase maps (LV: 8/8, RV: 5/7, p<.05). The distribution of ASImax differentiates self-terminating from sustained episodes (mean ASImax = 0.60±0.14 and 0.70±0.16, respectively; p=0.01). Across sustained episodes the LV exhibits an increase in ASImax with time. Conclusions Quantitative analysis identifies localized asynchronous regions that correlate with sources in VF, with sustained episodes evolving to exhibit more stable activation in the LV. This successive increase in stability indicates a stabilizing agent may be responsible for perpetuating fibrillation in a "migrate-and-capture" mechanism in the LV.
Collapse
|
17
|
Bai J, Yin R, Wang K, Zhang H. Mechanisms Underlying the Emergence of Post-acidosis Arrhythmia at the Tissue Level: A Theoretical Study. Front Physiol 2017; 8:195. [PMID: 28424631 PMCID: PMC5371659 DOI: 10.3389/fphys.2017.00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/15/2017] [Indexed: 11/17/2022] Open
Abstract
Acidosis has complex electrophysiological effects, which are associated with a high recurrence of ventricular arrhythmias. Through multi-scale cardiac computer modeling, this study investigated the mechanisms underlying the emergence of post-acidosis arrhythmia at the tissue level. In simulations, ten Tusscher-Panfilov ventricular model was modified to incorporate various data on acidosis-induced alterations of cellular electrophysiology and intercellular electrical coupling. The single cell models were incorporated into multicellular one-dimensional (1D) fiber and 2D sheet tissue models. Electrophysiological effects were quantified as changes of action potential profile, sink-source interactions of fiber tissue, and the vulnerability of tissue to the genesis of unidirectional conduction that led to initiation of re-entry. It was shown that acidosis-induced sarcoplasmic reticulum (SR) calcium load contributed to delayed afterdepolarizations (DADs) in single cells. These DADs may be synchronized to overcome the source-sink mismatch arising from intercellular electrotonic coupling, and produce a premature ventricular complex (PVC) at the tissue level. The PVC conduction can be unidirectionally blocked in the transmural ventricular wall with altered electrical heterogeneity, resulting in the genesis of re-entry. In conclusion, altered source-sink interactions and electrical heterogeneity due to acidosis-induced cellular electrophysiological alterations may increase susceptibility to post-acidosis ventricular arrhythmias.
Collapse
Affiliation(s)
- Jieyun Bai
- School of Computer Science and Technology, Harbin Institute of TechnologyHarbin, China
| | - Renli Yin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of TechnologyHarbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of TechnologyHarbin, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of TechnologyHarbin, China.,Biological Physics Group, School of Physics and Astronomy, University of ManchesterManchester, UK.,Space Institute of Southern ChinaShenzhen, China
| |
Collapse
|
18
|
Nayak AR, Panfilov AV, Pandit R. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers. Phys Rev E 2017; 95:022405. [PMID: 28297843 DOI: 10.1103/physreve.95.022405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 06/06/2023]
Abstract
We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.
Collapse
Affiliation(s)
- Alok Ranjan Nayak
- International Institute of Information Technology (IIIT-Bhubaneswar), Gothapatna, Po: Malipada, Bhubaneswar 751003, India
| | - A V Panfilov
- Department of Physics and Astronomy, Gent University, Krijgslaan 281, S9, 9000 Gent, Belgium
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Rahul Pandit
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Sridhar S, Vandersickel N, Panfilov AV. Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue. Sci Rep 2017; 7:40985. [PMID: 28106124 PMCID: PMC5247688 DOI: 10.1038/srep40985] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/23/2022] Open
Abstract
Managing lethal cardiac arrhythmias is one of the biggest challenges in modern cardiology, and hence it is very important to understand the factors underlying such arrhythmias. While early afterdepolarizations (EAD) of cardiac cells is known to be one such arrhythmogenic factor, the mechanisms underlying the emergence of tissue level arrhythmias from cellular level EADs is not fully understood. Another known arrhythmogenic condition is fibrosis of cardiac tissue that occurs both due to aging and in many types of heart diseases. In this paper we describe the results of a systematic in-silico study, using the TNNP model of human cardiac cells and MacCannell model for (myo)fibroblasts, on the possible effects of diffuse fibrosis on arrhythmias occurring via EADs. We find that depending on the resting potential of fibroblasts (VFR), M-F coupling can either increase or decrease the region of parameters showing EADs. Fibrosis increases the probability of occurrence of arrhythmias after a single focal stimulation and this effect increases with the strength of the M-F coupling. While in our simulations, arrhythmias occur due to fibrosis induced ectopic activity, we do not observe any specific fibrotic pattern that promotes the occurrence of these ectopic sources.
Collapse
Affiliation(s)
- S. Sridhar
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Nele Vandersickel
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Alexander V. Panfilov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
20
|
A novel algorithm for ventricular arrhythmia classification using a fuzzy logic approach. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:903-912. [PMID: 27815728 DOI: 10.1007/s13246-016-0491-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
In the present study, it has been shown that an unnecessary implantable cardioverter-defibrillator (ICD) shock is often delivered to patients with an ambiguous ECG rhythm in the overlap zone between ventricular tachycardia (VT) and ventricular fibrillation (VF); these shocks significantly increase mortality. Therefore, accurate classification of the arrhythmia into VT, organized VF (OVF) or disorganized VF (DVF) is crucial to assist ICDs to deliver appropriate therapy. A classification algorithm using a fuzzy logic classifier was developed for accurately classifying the arrhythmias into VT, OVF or DVF. Compared with other studies, our method aims to combine ten ECG detectors that are calculated in the time domain and the frequency domain in addition to different levels of complexity for detecting subtle structure differences between VT, OVF and DVF. The classification in the overlap zone between VT and VF is refined by this study to avoid ambiguous identification. The present method was trained and tested using public ECG signal databases. A two-level classification was performed to first detect VT with an accuracy of 92.6 %, and then the discrimination between OVF and DVF was detected with an accuracy of 84.5 %. The validation results indicate that the proposed method has superior performance in identifying the organization level between the three types of arrhythmias (VT, OVF and DVF) and is promising for improving the appropriate therapy choice and decreasing the possibility of sudden cardiac death.
Collapse
|
21
|
Alonso S, Bär M, Echebarria B. Nonlinear physics of electrical wave propagation in the heart: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096601. [PMID: 27517161 DOI: 10.1088/0034-4885/79/9/096601] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.
Collapse
Affiliation(s)
- Sergio Alonso
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12 10587, Berlin, Germany. Department of Physics, Universitat Politècnica de Catalunya, Av. Dr. Marañón 44, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
22
|
Bai J, Wang K, Li Q, Yuan Y, Zhang H. Pro-arrhythmogenic effects of CACNA1C G1911R mutation in human ventricular tachycardia: insights from cardiac multi-scale models. Sci Rep 2016; 6:31262. [PMID: 27502440 PMCID: PMC4977499 DOI: 10.1038/srep31262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/14/2016] [Indexed: 01/11/2023] Open
Abstract
Mutations in the CACNA1C gene are associated with ventricular tachycardia (VT). Although the CACNA1C mutations were well identified in patients with cardiac arrhythmias, mechanisms by which cardiac arrhythmias are generated in such genetic mutation conditions remain unclear. In this study, we identified a novel mechanism of VT resulted from enhanced repolarization dispersion which is a key factor for arrhythmias in the CACNA1C G1911R mutation using multi-scale computational models of the human ventricle. The increased calcium influx in the mutation prolonged action potential duration (APD), produced steepened action potential duration restitution (APDR) curves as well as augmented membrane potential differences among different cell types during repolarization, increasing transmural dispersion of repolarization (DOR) and the spatial and temporal heterogeneity of cardiac electrical activities. Consequentially, the vulnerability to unidirectional conduction block in response to a premature stimulus increased at tissue level in the G1911R mutation. The increased functional repolarization dispersion anchored reentrant excitation waves in tissue and organ models, facilitating the initiation and maintenance of VT due to less meandering rotor tip. Thus, the increased repolarization dispersion caused by the G1911R mutation is a primary factor that may primarily contribute to the genesis of cardiac arrhythmias in Timothy Syndrome.
Collapse
Affiliation(s)
- Jieyun Bai
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, 150001, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, 150001, China
| | - Yongfeng Yuan
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, 150001, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, 150001, China
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
23
|
Hill YR, Child N, Hanson B, Wallman M, Coronel R, Plank G, Rinaldi CA, Gill J, Smith NP, Taggart P, Bishop MJ. Investigating a Novel Activation-Repolarisation Time Metric to Predict Localised Vulnerability to Reentry Using Computational Modelling. PLoS One 2016; 11:e0149342. [PMID: 26934736 PMCID: PMC4775046 DOI: 10.1371/journal.pone.0149342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/29/2016] [Indexed: 11/19/2022] Open
Abstract
Exit sites associated with scar-related reentrant arrhythmias represent important targets for catheter ablation therapy. However, their accurate location in a safe and robust manner remains a significant clinical challenge. We recently proposed a novel quantitative metric (termed the Reentry Vulnerability Index, RVI) to determine the difference between activation and repolarisation intervals measured from pairs of spatial locations during premature stimulation to accurately locate the critical site of reentry formation. In the clinic, the method showed potential to identify regions of low RVI corresponding to areas vulnerable to reentry, subsequently identified as ventricular tachycardia (VT) circuit exit sites. Here, we perform an in silico investigation of the RVI metric in order to aid the acquisition and interpretation of RVI maps and optimise its future usage within the clinic. Within idealised 2D sheet models we show that the RVI produces lower values under correspondingly more arrhythmogenic conditions, with even low resolution (8 mm electrode separation) recordings still able to locate vulnerable regions. When applied to models of infarct scars, the surface RVI maps successfully identified exit sites of the reentrant circuit, even in scenarios where the scar was wholly intramural. Within highly complex infarct scar anatomies with multiple reentrant pathways, the identified exit sites were dependent upon the specific pacing location used to compute the endocardial RVI maps. However, simulated ablation of these sites successfully prevented the reentry re-initiation. We conclude that endocardial surface RVI maps are able to successfully locate regions vulnerable to reentry corresponding to critical exit sites during sustained scar-related VT. The method is robust against highly complex and intramural scar anatomies and low resolution clinical data acquisition. Optimal location of all relevant sites requires RVI maps to be computed from multiple pacing locations.
Collapse
Affiliation(s)
- Yolanda R. Hill
- Department of Biomedical Engineering, Division of Imaging Sciences & Biomedical Engineering, King’s College London, London, United Kingdom
| | - Nick Child
- Department of Biomedical Engineering, Division of Imaging Sciences & Biomedical Engineering, King’s College London, London, United Kingdom
| | - Ben Hanson
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Mikael Wallman
- Department of Systems and Data Analysis, Franhofer-Chalmers Centre, Gothenburg, Sweden
| | - Ruben Coronel
- Academic Medical Center, Amsterdam, Netherlands
- L’Institut de RYthmologieet de Modelisation Cardiaque (LIRYC), Fondation Universite Bordeaux, Bordeaux, France
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | | | - Jaswinder Gill
- Department of Cardiology, Guys and St Thomas’ Hospital, London, United Kingdom
| | - Nicolas P. Smith
- Department of Biomedical Engineering, Division of Imaging Sciences & Biomedical Engineering, King’s College London, London, United Kingdom
- Department of Engineering, University of Auckland, Auckland, New Zealand
| | - Peter Taggart
- Department of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Martin J. Bishop
- Department of Biomedical Engineering, Division of Imaging Sciences & Biomedical Engineering, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Filament Dynamics during Simulated Ventricular Fibrillation in a High-Resolution Rabbit Heart. BIOMED RESEARCH INTERNATIONAL 2015; 2015:720575. [PMID: 26587544 PMCID: PMC4637469 DOI: 10.1155/2015/720575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/06/2015] [Indexed: 11/30/2022]
Abstract
The mechanisms underlying ventricular fibrillation (VF) are not well understood. The electrical activity on the heart surface during VF has been recorded extensively in the experimental setting and in some cases clinically; however, corresponding transmural activation patterns are prohibitively difficult to measure. In this paper, we use a high-resolution biventricular heart model to study three-dimensional electrical activity during fibrillation, focusing on the driving sources of VF: “filaments,” the organising centres of unstable reentrant scroll waves. We show, for the first time, specific 3D filament dynamics during simulated VF in a whole heart geometry that includes fine-scale anatomical structures. Our results suggest that transmural activity is much more complex than what would be expected from surface observations alone. We present examples of complex intramural activity, including filament breakup and reattachment, anchoring to the thin right ventricular apex; rapid transitions among various filament shapes; and filament lengths much greater than wall thickness. We also present evidence for anatomy playing a major role in VF development and coronary vessels and trabeculae influencing filament dynamics. Overall, our results indicate that intramural activity during simulated VF is extraordinarily complex and suggest that further investigation of 3D filaments is necessary to fully comprehend recorded surface patterns.
Collapse
|
25
|
Clayton RH. Models of ventricular arrhythmia mechanisms. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:1526-9. [PMID: 24109990 DOI: 10.1109/embc.2013.6609803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanisms that initiate and sustain ventricular arrhythmias in the human heart are clinically important, but hard to study experimentally. In this study, a monodomain model of electrical activation was used to examine how dynamics of electrophysiology at the cell scale influence the surface activation patterns of VF at the tissue scale. Cellular electrophysiology was described with two variants of a phenomenological model of the human ventricular epicardial action potential. The tissue geometry was an 8.0 × 8.0 × 1.2 cm 3D tissue slab with axially symmetric anisotropy. In both cases an initial re-entrant wave fragmented into multiple wavelets of activation. The model variant with steep action potential duration restitution produced much more complex activation, with a greater average number of filaments (13.79) than the variant with less steep restitution (3.08). More complex activation was associated with proportionally fewer transmural filaments, and so the average number of epicardial wavefronts and phase singularities per filament was lower. The average number of epicardial phase singularities and wavefronts for the model variant with less steep restitution were consistent with experimental observations in the human heart. This study shows that small changes in cell scale dynamics can have a large influence on the complexity of re-entrant activation in simulated 3D tissue, as well as on the features observed on the epicardial surface.
Collapse
|
26
|
Calvo D, Atienza F, Saiz J, Martínez L, Ávila P, Rubín J, Herreros B, Arenal Á, García-Fernández J, Ferrer A, Sebastián R, Martínez-Camblor P, Jalife J, Berenfeld O. Ventricular Tachycardia and Early Fibrillation in Patients With Brugada Syndrome and Ischemic Cardiomyopathy Show Predictable Frequency-Phase Properties on the Precordial ECG Consistent With the Respective Arrhythmogenic Substrate. Circ Arrhythm Electrophysiol 2015; 8:1133-43. [PMID: 26253505 PMCID: PMC4608487 DOI: 10.1161/circep.114.002717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 07/23/2015] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Ventricular fibrillation (VF) has been proposed to be maintained by localized high-frequency sources. We tested whether spectral-phase analysis of the precordial ECG enabled identification of periodic activation patterns generated by such sources.
Collapse
Affiliation(s)
- David Calvo
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Felipe Atienza
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Javier Saiz
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Laura Martínez
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Pablo Ávila
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - José Rubín
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Benito Herreros
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Ángel Arenal
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Javier García-Fernández
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Ana Ferrer
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Rafael Sebastián
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Pablo Martínez-Camblor
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - José Jalife
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.)
| | - Omer Berenfeld
- From the Arrhythmia Unit, Hospital Universitario Central de Asturias, Oviedo, Spain (D.C., J.R.); Center for Arrhythmia Research, University of Michigan, Ann Arbor (J.J., O.B.); Arrhythmia Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain (F.A., P.Á., Á.A.); Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de Valencia, Valencia, Spain (J.S., L.M., A.F.); Arrhythmia Unit, Hospital Río Hortega de Valladolid and Universitario de Burgos, Valladolid-Burgos, Spain (B.H., J.G.-F.); Universitat de Valencia, Valencia, Spain (R.S.); and Department of Statistics, Hospital Universitario Central de Asturias, Oviedo, Spain (P.M.-C.).
| |
Collapse
|
27
|
Chaykovskaya M, Rudic B, Tsyganov A, Zaklyazminskaya E, Yakovleva M, Borggrefe M. The use of noninvasive ECG imaging for examination of a patient with Brugada syndrome. HeartRhythm Case Rep 2015; 1:260-263. [PMID: 28491563 PMCID: PMC5419418 DOI: 10.1016/j.hrcr.2015.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Key Words
- BrS, Brugada syndrome
- Brugada syndrome
- CCW, counterclockwise
- CT, computed tomography
- CW, clockwise
- ECG, electrocardiography
- ECGI, electrocardiographic imaging
- EG, electrogram
- EP, electrophysiology
- LV, left ventricle
- Noninvasive ECG imaging
- RVOT, right ventricular outflow tract
- VF, ventricular fibrillation
- VT, ventricular tachycardia
- Ventricular tachycardia
Collapse
Affiliation(s)
- Maria Chaykovskaya
- Petrovsky National Research Center of Surgery, Moscow, Russia
- Address reprint requests and correspondence: Dr Maria Chaykovskaya, Cardiac Electrophysiology Department, Petrovsky Russian Research Center of Surgery, Abrikosovsky per. 2, 119991, Moscow, Russia
| | - Boris Rudic
- 1 Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Mannheim, Mannheim Germany
| | - Alexey Tsyganov
- Petrovsky National Research Center of Surgery, Moscow, Russia
| | | | | | - Martin Borggrefe
- 1 Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Mannheim, Mannheim Germany
| |
Collapse
|
28
|
Abstract
The sequence of myocardial electrical activation during fibrillation is complex and changes with each cycle. Phase analysis represents the electrical activation-recovery process as an angle. Lines of equal phase converge at a phase singularity at the center of rotation of a reentrant wave, and the identification of reentry and tracking of reentrant wavefronts can be automated. We examine the basic ideas behind phase analysis. With the exciting prospect of using phase analysis of atrial electrograms to guide ablation in the human heart, we highlight several recent developments in preprocessing electrograms so that phase can be estimated reliably.
Collapse
Affiliation(s)
- Richard H Clayton
- Insigneo Institute for in-silico medicine and Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK.
| | - Martyn P Nash
- Auckland Bioengineering Institute and Engineering Science, University of Auckland, Uniservices House, Level 7, Room 439-715, 70 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
29
|
St-Yves G, Davidsen J. Influence of the medium's dimensionality on defect-mediated turbulence. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032926. [PMID: 25871191 DOI: 10.1103/physreve.91.032926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Indexed: 06/04/2023]
Abstract
Spatiotemporal chaos in oscillatory and excitable media is often characterized by the presence of phase singularities called defects. Understanding such defect-mediated turbulence and its dependence on the dimensionality of a given system is an important challenge in nonlinear dynamics. This is especially true in the context of ventricular fibrillation in the heart, where the importance of the thickness of the ventricular wall is contentious. Here, we study defect-mediated turbulence arising in two different regimes in a conceptual model of excitable media and investigate how the statistical character of the turbulence changes if the thickness of the medium is changed from (quasi-) two- dimensional to three dimensional. We find that the thickness of the medium does not have a significant influence in, far from onset, fully developed turbulence while there is a clear transition if the system is close to a spiral instability. We provide clear evidence that the observed transition and change in the mechanism that drives the turbulent behavior is purely a consequence of the dimensionality of the medium. Using filament tracking, we further show that the statistical properties in the three-dimensional medium are different from those in turbulent regimes arising from filament instabilities like the negative line tension instability. Simulations also show that the presence of this unique three-dimensional turbulent dynamics is not model specific.
Collapse
Affiliation(s)
- Ghislain St-Yves
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Canada T2N 1N4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Canada T2N 1N4
| |
Collapse
|
30
|
Tøndel K, Land S, Niederer SA, Smith NP. Quantifying inter-species differences in contractile function through biophysical modelling. J Physiol 2015; 593:1083-111. [PMID: 25480801 DOI: 10.1113/jphysiol.2014.279232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/28/2014] [Indexed: 11/08/2022] Open
Abstract
Animal models and measurements are frequently used to guide and evaluate clinical interventions. In this context, knowledge of inter-species differences in physiology is crucial for understanding the limitations and relevance of animal experimental assays for informing clinical applications. Extensive effort has been put into studying the structure and function of cardiac contractile proteins and how differences in these translate into the functional properties of muscles. However, integrating this knowledge into a quantitative description, formalising and highlighting inter-species differences both in the kinetics and in the regulation of physiological mechanisms, remains challenging. In this study we propose and apply a novel approach for the quantification of inter-species differences between mouse, rat and human. Assuming conservation of the fundamental physiological mechanisms underpinning contraction, biophysically based computational models are fitted to simulate experimentally recorded phenotypes from multiple species. The phenotypic differences between species are then succinctly quantified as differences in the biophysical model parameter values. This provides the potential of quantitatively establishing the human relevance of both animal-based experimental and computational models for application in a clinical context. Our results indicate that the parameters related to the sensitivity and cooperativity of calcium binding to troponin C and the activation and relaxation rates of tropomyosin/crossbridge binding kinetics differ most significantly between mouse, rat and human, while for example the reference tension, as expected, shows only minor differences between the species. Hence, while confirming expected inter-species differences in calcium sensitivity due to large differences in the observed calcium transients, our results also indicate more unexpected differences in the cooperativity mechanism. Specifically, the decrease in the unbinding rate of calcium to troponin C with increasing active tension was much lower for mouse than for rat and human. Our results also predicted crossbridge binding to be slowest in human and fastest in mouse.
Collapse
Affiliation(s)
- Kristin Tøndel
- Department of Biomedical Engineering, King's College London, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK; Simula Research Laboratory, Martin Linges v. 17/25, Rolfsbukta 4B, Fornebu, 1364, Norway
| | | | | | | |
Collapse
|
31
|
Park SA, Gray RA. Optical Mapping of Ventricular Fibrillation Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:313-42. [PMID: 26238059 DOI: 10.1007/978-3-319-17641-3_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is very limited information regarding the dynamic patterns of the electrical activity during ventricular fibrillation (VF) in humans. Most of the data used to generate and test hypotheses regarding the mechanisms of VF come from animal models and computer simulations and the quantification of VF patterns is non-trivial. Many of the experimental recordings of the dynamic spatial patterns of VF have been obtained from mammals using "optical mapping" or "video imaging" technology in which "phase maps" are derived from high-resolution transmembrane recordings from the heart surface. The surface manifestation of the unstable reentrant waves sustaining VF can be identified as "phase singularities" and their number and location provide one measure of VF complexity. After providing a brief history of optical mapping of VF, we compare and contrast a quantitative analysis of VF patterns from the heart surface for four different animal models, hence providing physiological insight into the variety of VF dynamics among species. We found that in all four animal models the action potential duration restitution slope was actually negative during VF and that the spatial dispersion of electrophysiological parameters were not different during the first second of VF compared to pacing immediately before VF initiation. Surprisingly, our results suggest that APD restitution and spatial dispersion may not be essential causes of VF dynamics. Analyses of electrophysiological quantities in the four animal models are consistent with the idea that VF is essentially a two-dimensional phenomenon in small rabbit hearts whose size are near the boundary of the "critical mass" required to sustain VF, while VF in large pig hearts is three-dimensional and exhibits the maximal theoretical phase singularity density, and thus will not terminate spontaneously.
Collapse
Affiliation(s)
- Sarah A Park
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | |
Collapse
|
32
|
Kazbanov IV, Clayton RH, Nash MP, Bradley CP, Paterson DJ, Hayward MP, Taggart P, Panfilov AV. Effect of global cardiac ischemia on human ventricular fibrillation: insights from a multi-scale mechanistic model of the human heart. PLoS Comput Biol 2014; 10:e1003891. [PMID: 25375999 PMCID: PMC4222598 DOI: 10.1371/journal.pcbi.1003891] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022] Open
Abstract
Acute regional ischemia in the heart can lead to cardiac arrhythmias such as ventricular fibrillation (VF), which in turn compromise cardiac output and result in secondary global cardiac ischemia. The secondary ischemia may influence the underlying arrhythmia mechanism. A recent clinical study documents the effect of global cardiac ischaemia on the mechanisms of VF. During 150 seconds of global ischemia the dominant frequency of activation decreased, while after reperfusion it increased rapidly. At the same time the complexity of epicardial excitation, measured as the number of epicardical phase singularity points, remained approximately constant during ischemia. Here we perform numerical studies based on these clinical data and propose explanations for the observed dynamics of the period and complexity of activation patterns. In particular, we study the effects on ischemia in pseudo-1D and 2D cardiac tissue models as well as in an anatomically accurate model of human heart ventricles. We demonstrate that the fall of dominant frequency in VF during secondary ischemia can be explained by an increase in extracellular potassium, while the increase during reperfusion is consistent with washout of potassium and continued activation of the ATP-dependent potassium channels. We also suggest that memory effects are responsible for the observed complexity dynamics. In addition, we present unpublished clinical results of individual patient recordings and propose a way of estimating extracellular potassium and activation of ATP-dependent potassium channels from these measurements.
Collapse
Affiliation(s)
- Ivan V Kazbanov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Richard H Clayton
- INSIGNEO Institute for In-Silico Medicine, University of Sheffield, Sheffield, United Kingdom; Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Chris P Bradley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Martin P Hayward
- Departments of Cardiology and Cardiothoracic Surgery, University College Hospital, London, United Kingdom
| | - Peter Taggart
- Departments of Cardiology and Cardiothoracic Surgery, University College Hospital, London, United Kingdom
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium; Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
33
|
Images as drivers of progress in cardiac computational modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:198-212. [PMID: 25117497 PMCID: PMC4210662 DOI: 10.1016/j.pbiomolbio.2014.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/02/2014] [Indexed: 11/28/2022]
Abstract
Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.
Collapse
|
34
|
Developing a novel comprehensive framework for the investigation of cellular and whole heart electrophysiology in the in situ human heart: historical perspectives, current progress and future prospects. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:252-60. [PMID: 24972083 DOI: 10.1016/j.pbiomolbio.2014.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 11/23/2022]
Abstract
Understanding the mechanisms of fatal ventricular arrhythmias is of great importance. In view of the many electrophysiological differences that exist between animal species and humans, the acquisition of basic electrophysiological data in the intact human heart is essential to drive and complement experimental work in animal and in-silico models. Over the years techniques have been developed to obtain basic electrophysiological signals directly from the patients by incorporating these measurements into routine clinical procedures which access the heart such as cardiac catheterisation and cardiac surgery. Early recordings with monophasic action potentials provided valuable information including normal values for the in vivo human heart, cycle length dependent properties, the effect of ischaemia, autonomic nervous system activity, and mechano-electric interaction. Transmural recordings addressed the controversial issue of the mid myocardial "M" cell. More recently, the technique of multielectrode mapping (256 electrodes) developed in animal models has been extended to humans, enabling mapping of activation and repolarisation on the entire left and right ventricular epicardium in patients during cardiac surgery. Studies have examined the issue of whether ventricular fibrillation was driven by a "mother" rotor with inhomogeneous and fragmented conduction as in some animal models, or by multiple wavelets as in other animal studies; results showed that both mechanisms are operative in humans. The simpler spatial organisation of human VF has important implications for treatment and prevention. To link in-vivo human electrophysiological mapping with cellular biophysics, multielectrode mapping is now being combined with myocardial biopsies. This technique enables region-specific electrophysiology changes to be related to underlying cellular biology, for example: APD alternans, which is a precursor of VF and sudden death. The mechanism is incompletely understood but related to calcium cycling and APD restitution. Multielectrode sock mapping during incremental pacing enables epicardial sites to be identified which exhibit marked APD alternans and sites where APD alternans is absent. Whole heart electrophysiology is assessed by activation repolarisation mapping and analysis is performed immediately on-site in order to guide biopsies to specific myocardial sites. Samples are analysed for ion channel expression, Ca(2+)-handling proteins, gap junctions and extracellular matrix. This new comprehensive approach to bridge cellular and whole heart electrophysiology allowed to identify 20 significant changes in mRNA for ion channels Ca(2+)-handling proteins, a gap junction channel, a Na(+)-K(+) pump subunit and receptors (particularly Kir 2.1) between the positive and negative alternans sites.
Collapse
|
35
|
Bishop MJ, Burton RAB, Kalla M, Nanthakumar K, Plank G, Bub G, Vigmond EJ. Mechanism of reentry induction by a 9-V battery in rabbit ventricles. Am J Physiol Heart Circ Physiol 2014; 306:H1041-53. [PMID: 24464758 DOI: 10.1152/ajpheart.00591.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the application of a 9-V battery to the epicardial surface is a simple method of ventricular fibrillation induction, the fundamental mechanisms underlying this process remain unstudied. We used a combined experimental and modelling approach to understand how the interaction of direct current (DC) from a battery may induce reentrant activity within rabbit ventricles and its dependence on battery application timing and duration. A rabbit ventricular computational model was used to simulate 9-V battery stimulation for different durations at varying onset times during sinus rhythm. Corresponding high-resolution optical mapping measurements were conducted on rabbit hearts with DC stimuli applied via a relay system. DC application to diastolic tissue induced anodal and cathodal make excitations in both simulations and experiments. Subsequently, similar static epicardial virtual electrode patterns were formed that interacted with sinus beats but did not induce reentry. Upon battery release during diastole, break excitations caused single ectopics, similar to application, before sinus rhythm resumed. Reentry induction was possible for short battery applications when break excitations were slowed and forced to take convoluted pathways upon interaction with refractory tissue from prior make excitations or sinus beats. Short-lived reentrant activity could be induced for battery release shortly after a sinus beat for longer battery applications. In conclusion, the application of a 9-V battery to the epicardial surface induces reentry through a complex interaction of break excitations after battery release with prior induced make excitations or sinus beats.
Collapse
Affiliation(s)
- Martin J Bishop
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Finlay MC, Xu L, Taggart P, Hanson B, Lambiase PD. Bridging the gap between computation and clinical biology: validation of cable theory in humans. Front Physiol 2013; 4:213. [PMID: 24027527 PMCID: PMC3761165 DOI: 10.3389/fphys.2013.00213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/25/2013] [Indexed: 11/13/2022] Open
Abstract
Introduction: Computerized simulations of cardiac activity have significantly contributed to our understanding of cardiac electrophysiology, but techniques of simulations based on patient-acquired data remain in their infancy. We sought to integrate data acquired from human electrophysiological studies into patient-specific models, and validated this approach by testing whether electrophysiological responses to sequential premature stimuli could be predicted in a quantitatively accurate manner. Methods: Eleven patients with structurally normal hearts underwent electrophysiological studies. Semi-automated analysis was used to reconstruct activation and repolarization dynamics for each electrode. This S2 extrastimuli data was used to inform individualized models of cardiac conduction, including a novel derivation of conduction velocity restitution. Activation dynamics of multiple premature extrastimuli were then predicted from this model and compared against measured patient data as well as data derived from the ten-Tusscher cell-ionic model. Results: Activation dynamics following a premature S3 were significantly different from those after an S2. Patient specific models demonstrated accurate prediction of the S3 activation wave, (Pearson's R2 = 0.90, median error 4%). Examination of the modeled conduction dynamics allowed inferences into the spatial dispersion of activation delay. Further validation was performed against data from the ten-Tusscher cell-ionic model, with our model accurately recapitulating predictions of repolarization times (R2 = 0.99). Conclusions: Simulations based on clinically acquired data can be used to successfully predict complex activation patterns following sequential extrastimuli. Such modeling techniques may be useful as a method of incorporation of clinical data into predictive models.
Collapse
Affiliation(s)
- Malcolm C Finlay
- Department of Cardiac Electrophysiology, The Heart Hospital, Institute of Cardiovascular Science, University College London London, UK
| | | | | | | | | |
Collapse
|
37
|
Fansler DR, Smith TW. Rotors: Linking VF and VT? Heart Rhythm 2013; 10:1917-8. [PMID: 23969071 DOI: 10.1016/j.hrthm.2013.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Indexed: 11/16/2022]
Affiliation(s)
- Derrick R Fansler
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
38
|
Abstract
The objective of this article is to present a broad review of the role of cardiac electric rotors and their accompanying spiral waves in the mechanism of cardiac fibrillation. At the outset, we present a brief historical overview regarding reentry and then discuss the basic concepts and terminologies pertaining to rotors and their initiation. Thereafter, the intrinsic properties of rotors and spiral waves, including phase singularities, wavefront curvature, and dominant frequency maps, are discussed. The implications of rotor dynamics for the spatiotemporal organization of fibrillation, independent of the species being studied, are described next. The knowledge gained regarding the role of cardiac structure in the initiation or maintenance of rotors and the ionic bases of spiral waves in the past 2 decades, as well as the significance for drug therapy, is reviewed subsequently. We conclude by examining recent evidence suggesting that rotors are critical in sustaining both atrial and ventricular fibrillation in the human heart and its implications for treatment with radiofrequency ablation.
Collapse
Affiliation(s)
- Sandeep V Pandit
- Center for Arrhythmia Research, University of Michigan, NCRC, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
39
|
Novel nonsurgical left ventricular assist device and system. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2013; 14:154-6. [PMID: 23664169 DOI: 10.1016/j.carrev.2013.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/26/2013] [Indexed: 11/23/2022]
Abstract
Treatment options for advanced stages of congestive heart failure remain limited. Left ventricular assist devices (LVADs) have emerged as a means to support failing circulation. However, these devices are not without significant risk such as major open chest surgery. We utilized a novel approach for device placement at the aorto-left atria continuity as a site to create a conduit capable of accommodating a percutaneous LVAD system. We designed and developed an expandable nitinol based device for placement at this site to create a shunt between the LA and aorta. Our experiments support this anatomic location as an accessible and feasible site for accommodation of an entirely percutaneous LVAD. The novelty of this approach would bypass the left ventricle, and thereby minimize complications and morbidities associated with current LVAD placement.
Collapse
|
40
|
Bishop MJ, Vigmond EJ, Plank G. The functional role of electrophysiological heterogeneity in the rabbit ventricle during rapid pacing and arrhythmias. Am J Physiol Heart Circ Physiol 2013; 304:H1240-52. [PMID: 23436328 PMCID: PMC3652087 DOI: 10.1152/ajpheart.00894.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/15/2013] [Indexed: 11/22/2022]
Abstract
Electrophysiological heterogeneity in action potential recordings from healthy intact hearts remains highly variable and, where present, is almost entirely abolished at fast pacing rates. Consequently, the functional importance of intrinsic action potential duration (APD) heterogeneity in healthy ventricles, and particularly its role during rapidly activating reentrant arrhythmias, remain poorly understood. By incorporating both transmural and apicobasal APD heterogeneity within a biventricular rabbit computational model and comparing with an equivalent homogeneous model, we directly investigated the functional importance of intrinsic APD heterogeneity under fast pacing and arrhythmogenic protocols. Although differences in APD were significantly modulated at the tissue level during pacing and further reduced as pacing frequency increased, small differences were still noticeable. Such differences were further marginally accentuated/attenuated via electrotonic effects relative to wavefront propagation directions. The remaining small levels of APD heterogeneity under the fastest pacing frequencies resulted in arrhythmia initiation via heterogeneous conduction block, in contrast to complete block in the homogeneous model. Such induction mechanisms were more evident during premature stimuli at slower paced rhythms where intrinsic heterogeneity remained to a greater degree. During sustained arrhythmias, however, intrinsic heterogeneity made little difference to overall reentrant behavior, either visually, or in terms of duration, metrics quantifying filament/phase singularity dynamics, and global electrocardiogram characteristics. These findings suggest that, despite being important during arrhythmia initiation, intrinsic electrophysiological heterogeneity plays little functional role during rapid pacing and sustained arrhythmia dynamics in the healthy ventricle and thus questions the need to incorporate such detail in computational models when simulating rapid arrhythmias.
Collapse
Affiliation(s)
- Martin J Bishop
- Biomedical Engineering Department, Division of Imaging Sciences, King's College London, London, United Kingdom.
| | | | | |
Collapse
|
41
|
Such-Miquel L, Chorro FJ, Guerrero J, Trapero I, Brines L, Zarzoso M, Parra G, Soler C, del Canto I, Alberola A, Such L. Evaluación de la complejidad de la activación miocárdica durante la fibrilación ventricular. Estudio experimental. Rev Esp Cardiol 2013. [DOI: 10.1016/j.recesp.2012.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Balasundaram K, Masse S, Nair K, Umapathy K. Automated signal pattern detection in ECG during human ventricular arrhythmias. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:1029-1032. [PMID: 24109866 DOI: 10.1109/embc.2013.6609679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ventricular arrhythmias seriously affects cardiac function. Of these arrhythmias, Ventricular fibrillation is considered as a lethal cardiac condition. Recent studies have reported that ventricular arrhythmias are not completely random and may exhibit regional spatio-temporal organizations. These organizations could be indicative of reoccurring signal patterns and might be embedded within the surface electrocardiograms (ECGs) during ventricular arrhythmias. In this work, we aim to identify such reoccurring ECG signal patterns during ventricular arrhythmias. The detection of such signal patterns and their distribution could be of help in sub-classifying the affected population for better targeted diagnosis and treatment. Our analysis on 14 ECG segments (on average 3.24 minutes per segment) obtained from the MIT-BIH ventricular arrhythmia database identified three reoccurring signal patterns. A wavelet based technique was developed for automating the pattern identification process using ECGs. The proposed method achieved automated detection accuracies of 73.3%, 75.0% and 86.6% for the proposed signal patterns.
Collapse
|
43
|
Chorro FJ, Ibañez-Catalá X, Trapero I, Such-Miquel L, Pelechano F, Cánoves J, Mainar L, Tormos A, Cerdá JM, Alberola A, Such L. Ventricular fibrillation conduction through an isthmus of preserved myocardium between radiofrequency lesions. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2012; 36:286-98. [PMID: 23240900 DOI: 10.1111/pace.12060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 10/14/2012] [Accepted: 10/23/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Selective local acceleration of myocardial activation during ventricular fibrillation (VF) contributes information on the interactions between neighboring zones during the arrhythmia. This study analyzes these interactions, centering the observations on an isthmus of myocardium between two radiofrequency (RF) lesions. METHODS In nine isolated rabbit hearts, a gap of preserved myocardium was established between two RF lesions in the anterolateral left ventricle (LV) wall. Before, during, and after increasing the spatial heterogeneity of VF by local myocardial stretching, VF epicardial recordings were obtained. RESULTS Local stretch in the anterior LV wall decreased the excitable window (17 ± 7 ms vs 26 ± 7 ms; P < 0.05) and increased the dominant frequency (DFr; 18.9 ± 5.0 Hz vs 15.2 ± 3.6 Hz; P < 0.05) in this zone, without changes in the non-stretched posterolateral zone (25 ± 4 ms vs 27 ± 6 ms, ns and 14.1 ± 2.7 Hz vs 14.3 ± 3.0 Hz, ns). The DFr ratio at both sides of the gap was inversely correlated to the excitable window ratio (R = -0.57; P = 0.002). Before (31% vs 26%), during (29% vs 22%), and after stretch suppression (35% vs 25%), the wavefronts passing through the gap from the posterolateral to the anterior LV wall were seen to predominate. The number of wavefronts that passed from the anterior to the posterolateral LV wall was related to the excitable window in this zone (R = 0.41; P = 0.03). CONCLUSIONS The VF acceleration induced in the stretched zone does not increase the flow of wavefronts toward the non-stretched zone in the adjacent gap of preserved myocardium. The absence of significant changes in the electrophysiological parameters of the non-stretched myocardium limits the arrival of wavefronts in this zone.
Collapse
Affiliation(s)
- Francisco J Chorro
- Service of Cardiology, Valencia University Clinic Hospital Incliva, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Evaluation of the complexity of myocardial activation during ventricular fibrillation. An experimental study. ACTA ACUST UNITED AC 2012; 66:177-84. [PMID: 24775451 DOI: 10.1016/j.rec.2012.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022]
Abstract
INTRODUCTION AND OBJECTIVES An experimental model is used to analyze the characteristics of ventricular fibrillation in situations of variable complexity, establishing relationships among the data produced by different methods for analyzing the arrhythmia. METHODS In 27 isolated rabbit heart preparations studied under the action of drugs (propranolol and KB-R7943) or physical procedures (stretching) that produce different degrees of change in the complexity of myocardial activation during ventricular fibrillation, use was made of spectral, morphological, and mapping techniques to process the recordings obtained with epicardial multielectrodes. RESULTS The complexity of ventricular fibrillation assessed by mapping techniques was related to the dominant frequency, normalized spectral energy, signal regularity index, and their corresponding coefficients of variation, as well as the area of the regions of interest identified on the basis of these parameters. In the multivariate analysis, we used as independent variables the area of the regions of interest related to the spectral energy and the coefficient of variation of the energy (complexity index=-0.005×area of the spectral energy regions -2.234×coefficient of variation of the energy+1.578; P=.0001; r=0.68). CONCLUSIONS The spectral and morphological indicators and, independently, those derived from the analysis of normalized energy regions of interest provide a reliable approach to the evaluation of the complexity of ventricular fibrillation as an alternative to complex mapping techniques.
Collapse
|
45
|
A classification scheme for ventricular arrhythmias using wavelets analysis. Med Biol Eng Comput 2012; 51:153-64. [DOI: 10.1007/s11517-012-0980-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
46
|
Bingen BO, Askar SFA, Schalij MJ, Kazbanov IV, Ypey DL, Panfilov AV, Pijnappels DA. Prolongation of minimal action potential duration in sustained fibrillation decreases complexity by transient destabilization. Cardiovasc Res 2012; 97:161-70. [PMID: 22977009 DOI: 10.1093/cvr/cvs288] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Sustained ventricular fibrillation (VF) is maintained by multiple stable rotors. Destabilization of sustained VF could be beneficial by affecting VF complexity (defined by the number of rotors). However, underlying mechanisms affecting VF stability are poorly understood. Therefore, the aim of this study was to correlate changes in arrhythmia complexity with changes in specific electrophysiological parameters, allowing a search for novel factors and underlying mechanisms affecting stability of sustained VF. METHODS AND RESULTS Neonatal rat ventricular cardiomyocyte monolayers and Langendorff-perfused adult rat hearts were exposed to increasing dosages of the gap junctional uncoupler 2-aminoethoxydiphenyl borate (2-APB) to induce arrhythmias. Ion channel blockers/openers were added to study effects on VF stability. Electrophysiological parameters were assessed by optical mapping and patch-clamp techniques. Arrhythmia complexity in cardiomyocyte cultures increased with increasing dosages of 2-APB (n > 38), leading to sustained VF: 0.0 ± 0.1 phase singularities/cm(2) in controls vs. 0.0 ± 0.1, 1.0 ± 0.9, 3.3 ± 3.2, 11.0 ± 10.1, and 54.3 ± 21.7 in 5, 10, 15, 20, and 25 µmol/L 2-APB, respectively. Arrhythmia complexity inversely correlated with wavelength. Lengthening of wavelength during fibrillation could only be induced by agents (BaCl(2)/BayK8644) increasing the action potential duration (APD) at maximal activation frequencies (minimal APD); 123 ± 32%/117 ± 24% of control. Minimal APD prolongation led to transient VF destabilization, shown by critical wavefront collision leading to rotor termination, followed by significant decreases in VF complexity and activation frequency (52%/37%). These key findings were reproduced ex vivo in rat hearts (n = 6 per group). CONCLUSION These results show that stability of sustained fibrillation is regulated by minimal APD. Minimal APD prolongation leads to transient destabilization of fibrillation, ultimately decreasing VF complexity, thereby providing novel insights into anti-fibrillatory mechanisms.
Collapse
Affiliation(s)
- Brian O Bingen
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Bishop MJ, Plank G. The role of fine-scale anatomical structure in the dynamics of reentry in computational models of the rabbit ventricles. J Physiol 2012; 590:4515-35. [PMID: 22753546 PMCID: PMC3467803 DOI: 10.1113/jphysiol.2012.229062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fine-scale anatomical structures in the heart may play an important role in sustaining cardiac arrhythmias. However, the extent of this role and how it may differ between species are not fully understood. In this study we used computational modelling to assess the impact of anatomy upon arrhythmia maintenance in the rabbit ventricles. Specifically, we quantified the dynamics of excitation wavefronts during episodes of simulated tachyarrhythmias and fibrillatory arrhythmias, defined as being respectively characterised by relatively low and high spatio-temporal disorganisation.Two computational models were used: a highly anatomically detailed MR-derived rabbit ventricular model (representing vasculature, endocardial structures) and a simplified equivalent model, constructed from the same MR-data but lacking such fine-scale anatomical features. During tachyarrhythmias, anatomically complex and simplified models showed very similar dynamics; however, during fibrillatory arrhythmias, as activation wavelength decreased, the presence of fine-scale anatomical details appeared to marginally increase disorganisation of wavefronts during arrhythmias in the complex model. Although a small amount of clustering of reentrant rotor centres (filaments) around endocardial structures was witnessed in follow-up analysis (which slightly increased during fibrillation as rotor size decreased), this was significantly less than previously reported in large animals. Importantly, no anchoring of reentrant rotors was visibly identifiable in arrhythmia movies. These differences between tachy- and fibrillatory arrhythmias suggest that the relative size of reentrant rotors with respect to anatomical obstacles governs the influence of fine-scale anatomy in the maintenance of ventricular arrhythmias in the rabbit. In conclusion, our simulations suggest that fine-scale anatomical features play little apparent role in the maintenance of tachyarrhythmias in the rabbit ventricles and, contrary to experimental reports in larger animals, appear to play only a minor role in the maintenance of fibrillatory arrhythmias. These findings also have important implications in optimising the level of detail required in anatomical computational meshes frequently used in arrhythmia investigations.
Collapse
Affiliation(s)
- Martin J Bishop
- Department of Biomedical Engineering, Division of Imaging Sciences King’s College London, London, UK.
| | | |
Collapse
|
48
|
Carusi A, Burrage K, Rodríguez B. Bridging experiments, models and simulations: an integrative approach to validation in computational cardiac electrophysiology. Am J Physiol Heart Circ Physiol 2012; 303:H144-55. [PMID: 22582088 DOI: 10.1152/ajpheart.01151.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computational models in physiology often integrate functional and structural information from a large range of spatiotemporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and skepticism concerning how computational methods can improve our understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fundamental requirement to fulfill these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present study aims at informing strategies for validation by elucidating the complex interrelations among experiments, models, and simulations in cardiac electrophysiology. We describe the processes, data, and knowledge involved in the construction of whole ventricular multiscale models of cardiac electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. We argue that validation is part of the whole MSE system and is contingent upon 1) understanding and coping with sources of biovariability; 2) testing and developing robust techniques and tools as a prerequisite to conducting physiological investigations; 3) defining and adopting standards to facilitate the interoperability of experiments, models, and simulations; 4) and understanding physiological validation as an iterative process that contributes to defining the specific aspects of cardiac electrophysiology the MSE system targets, rather than being only an external test, and that this is driven by advances in experimental and computational methods and the combination of both.
Collapse
|
49
|
Ziv O, Schofield L, Lau E, Chaves L, Patel D, Jeng P, Peng X, Choi BR, Koren G. A novel, minimally invasive, segmental myocardial infarction with a clear healed infarct borderzone in rabbits. Am J Physiol Heart Circ Physiol 2012; 302:H2321-30. [PMID: 22447944 DOI: 10.1152/ajpheart.00031.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventricular arrhythmias in the setting of a healed myocardial infarction have been studied to a much lesser degree than acute and subacute infarction, due to the pericardial scarring, which results from the traditional open-chest techniques used for myocardial infarction (MI) induction. We sought to develop a segmental MI with low perioperative mortality in the rabbit that allows optimal visualization and therefore improved study of the infarction borderzone. Rabbits underwent MI using endovascular coil occlusion of the first obtuse marginal artery. Three weeks postprocedure, we evaluated our model by echocardiography and electrophysiology studies, optical mapping of isolated hearts, and histological studies. Seventeen rabbits underwent the protocol (12 MI and 5 sham) with a 92% survival to completion of the study (11 MI and 5 sham). MI rabbits demonstrated wall motion abnormalities on echocardiography while shams did not. At electrophysiological study, two MI rabbits had inducible ventricular tachycardia and one had inducible ventricular fibrillation. Isolated hearts demonstrated no pericardial scarring with a smooth, easily identifiable infarct borderzone. Optical mapping of the borderzone region showed successful mapping of peri-infarct reentry formation, with ventricular fibrillation inducible in 11 of 11 MI hearts and 1 of 5 sham hearts. We demonstrate successful high resolution mapping in the borderzone, showing delayed conduction in this region corresponding to late deflections in the QRS on ECG. We report the successful development of a minimally invasive MI via targeted coil delivery to the obtuse marginal artery with an exceptionally high rate of procedural survival and an arrhythmogenic phenotype. This model mimics human post-MI on echocardiography, gross pathology, histology, and electrophysiology.
Collapse
Affiliation(s)
- Ohad Ziv
- Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Adeniran I, El Harchi A, Hancox JC, Zhang H. Proarrhythmia in KCNJ2-linked short QT syndrome: insights from modelling. Cardiovasc Res 2012; 94:66-76. [DOI: 10.1093/cvr/cvs082] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|