1
|
Castiglioni L, Gelosa P, Muluhie M, Mercuriali B, Rzemieniec J, Gotti M, Fiordaliso F, Busca G, Sironi L. Fenofibrate reduces cardiac remodeling by mitochondrial dynamics preservation in a renovascular model of cardiac hypertrophy. Eur J Pharmacol 2024; 978:176767. [PMID: 38909934 DOI: 10.1016/j.ejphar.2024.176767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Fenofibrate, a PPAR-α agonist clinically used to lower serum lipid levels, reduces cardiac remodeling and improves cardiac function. However, its mechanism of action is not completely elucidated. In this study we examined the effect of fenofibrate on mitochondria in a rat model of renovascular hypertension, focusing on mediators controlling mitochondrial dynamics and autophagy. Rats with two-kidney one-clip (2K1C) hypertension were treated with fenofibrate 150 mg/kg/day (2K1C-FFB) or vehicle (2K1C-VEH) for 8 weeks. Systolic blood pressure and cardiac functional were in-vivo assessed, while cardiomyocyte size and protein expression of mediators of cardiac hypertrophy and mitochondrial dynamics were ex-vivo examined by histological and Western blot analyses. Fenofibrate treatment counteracted the development of hypertension and the increase of left ventricular mass, relative wall thickness and cross-sectional area of cardiomyocytes. Furthermore, fenofibrate re-balanced the expression Mfn2, Drp1 and Parkin, regulators of fusion, fission, mitophagy respectively. Regarding autophagy, the LC3-II/LC3-I ratio was increased in 2K1C-VEH and 2K1C-FFB, whereas the autophagy was increased only in 2K1C-FFB. In cultured H9C2 cardiomyoblasts, fenofibrate reversed the Ang II-induced mRNA up-regulation of hypertrophy markers Nppa and Myh7, accumulation of reactive oxygen species and depolarization of the mitochondrial membrane exerting protection mediated by up-regulation of the Uncoupling protein 2. Our results indicate that fenofibrate acts directly on cardiomyocytes and counteracts the pressure overload-induced cardiac maladaptive remodeling. This study reveals a so far hidden mechanism involving mitochondrial dynamics in the beneficial effects of fenofibrate, support its repurposing for the treatment of cardiac hypertrophy and provide new potential targets for its pharmacological function.
Collapse
Affiliation(s)
- Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Majeda Muluhie
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Joanna Rzemieniec
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marco Gotti
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Busca
- Azienda "Polo Veterinario di Lodi", University of Milan, Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Zahner MR, Brown MC, Chandley MJ. Inactivation of the paraventricular nucleus attenuates the cardiogenic sympathetic afferent reflex in the spontaneously hypertensive rat. J Hypertens 2024; 42:70-78. [PMID: 37889604 PMCID: PMC10792548 DOI: 10.1097/hjh.0000000000003542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
BACKGROUND Myocardial ischemia causes the release of bradykinin, which stimulates cardiac afferents, causing sympathetic excitation and chest pain. Glutamatergic activation of the paraventricular hypothalamic nucleus (PVN) in the spontaneously hypertensive rat (SHR) drives elevated basal sympathetic activity. Thus, we tested the hypothesis that inactivation of the PVN attenuates the elevated reflex response to epicardial bradykinin in the SHR and that ionotropic PVN glutamate receptors mediate the elevated reflex. METHODS We recorded the arterial pressure and renal sympathetic nerve activity (RSNA) response to epicardial bradykinin application in anesthetized SHR and Wistar Kyoto (WKY) rats before and after PVN microinjection of GABA A agonist muscimol or ionotropic glutamate receptor antagonist kynurenic acid. RESULTS Muscimol significantly decreased the arterial pressure response to bradykinin from 180.4 ± 5.8 to 119.5 ± 6.9 mmHg in the SHR and from 111.8 ± 7.0 to 84.2 ± 8.3 mmHg in the WKY and the RSNA response from 186.2 ± 7.1 to 142.7 ± 7.3% of baseline in the SHR and from 201.0 ± 11.5 to 160.2 ± 9.3% of baseline in the WKY. Kynurenic acid significantly decreased the arterial pressure response in the SHR from 164.5 ± 5.0 to 126.2 ± 7.7 mmHg and the RSNA response from 189.9 ± 13.7to 168.5 ± 12.7% of baseline but had no effect in the WKY. CONCLUSION These results suggest that tonic PVN activity is critical for the full manifestation of the CSAR in both the WKY and SHR. Glutamatergic PVN activity contributes to the augmented CSAR observed in the SHR.
Collapse
Affiliation(s)
- Matthew R Zahner
- Department of Health Sciences, East Tennessee State University College of Public Health
| | - Mary C Brown
- Department of Health Sciences, East Tennessee State University College of Public Health
| | - Michelle J Chandley
- Department of Biomedical Science, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| |
Collapse
|
3
|
Xu Y, Fei X, Fu H, Chen A, Zhu X, Zhang F, Han Y. Upregulated expression of a TOR2A gene product-salusin-β in the paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in rats with chronic heart failure induced by coronary artery ligation. Acta Physiol (Oxf) 2023; 238:e13987. [PMID: 37183727 DOI: 10.1111/apha.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
AIM Enhanced cardiac sympathetic afferent reflex (CSAR) promotes sympathetic hyperactivation in chronic heart failure (CHF). Salusin-β is a torsin family 2 member A (TOR2A) gene product and a cardiovascular active peptide closely associated with cardiovascular diseases. We aimed to determine the roles of salusin-β in the paraventricular nucleus (PVN) in modulating enhanced CSAR and sympathetic hyperactivation in rats with CHF induced by coronary artery ligation and elucidate the underlying molecular mechanisms. METHODS CSAR was evaluated based on the responses of mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) to the epicardial administration of capsaicin in rats under anesthesia. RESULTS Salusin-β protein expression was upregulated in the PVN of the CHF compared with sham-operated rats. Salusin-β microinjection into the PVN dose-dependently increased MAP and RSNA and enhanced CSAR, while anti-salusin-β IgG exerted opposite effects. The effect of salusin-β was inhibited by reactive oxygen species (ROS) scavenger or NAD(P)H oxidase inhibitor but promoted by superoxide dismutase inhibitor. The effect of anti-salusin-β IgG was interdicted by nitric oxide (NO) synthase inhibitor. Furthermore, chronic salusin-β gene knockdown in PVN attenuated CSAR, reduced sympathetic output, improved myocardial remodeling and cardiac function, decreased NAD(P)H oxidase activity and ROS levels, and increased NO levels in the CHF rats. CONCLUSION Increased salusin-β activity in the PVN contributes to sympathetic hyperactivation and CSAR in CHF by inhibiting NO release and stimulating NAD(P)H oxidase-ROS production. Reducing endogenous central salusin-β expression might be a novel strategy for preventing and treating CHF in the future.
Collapse
Affiliation(s)
- Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejie Fei
- Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Hangjiang Fu
- Department of General Practice, Jinling Hospital, Nanjing, Jiangsu, China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinrui Zhu
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Shinohara K. Emerging topics on basic research in hypertension: interorgan communication and the need for interresearcher collaboration. Hypertens Res 2023; 46:638-645. [PMID: 36646880 PMCID: PMC9841142 DOI: 10.1038/s41440-023-01176-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The pathogenesis of hypertension is multifactorial and highly complex. Basic research plays critical roles in elucidating the complex pathogenesis of hypertension and developing its treatment. This review covers recent topics in basic research related to hypertension in the following six parts: brain/autonomic nervous system, kidney, vascular system, potential treatments, extracellular vesicles, and gut microbiota. The brain receives afferent nerve inputs from peripheral organs, including the heart, kidneys, and adipose tissue, and humoral inputs from circulating factors such as proinflammatory cytokines and leptin, which are involved in the regulation of central sympathetic outflow. In the kidneys, changes in Wnt/β-catenin signaling have been reported in several hypertensive models. New findings on the renin-angiotensin-aldosterone system in the kidneys have also been reported. Sirtuin 6, which participates in various cellular functions, including DNA repair, has been shown to have protective effects on the vascular system. Skin water conservation, mediated by skin vasoconstriction and the accumulation of osmolytes such as sodium, has been found to contribute to hypertension. Studies of rivaroxaban and sodium-glucose cotransporter-2 inhibitors as drug repositioning candidates have been performed. Extracellular vesicles have been shown to be involved in novel diagnostic approaches and treatments for hypertension as well as other diseases. In gut microbiota studies, interactions between microbiota and antihypertensive drugs and potential pathophysiology linking microbiota and COVID-19 have been reported. It can be seen that inter-organ communication has received particular attention from these recent research topics. To truly understand the pathogenesis of hypertension and to develop treatments for conquering hypertension, interresearcher communication and collaboration should be further facilitated. This mini-review focuses on recent topics on basic research in hypertension from the several points of view. The recent topics indicate that inter-organ communication has received particular attention. Interresearcher communication and collaboration should also be further facilitated to truly understand the complex pathogenesis of hypertension and to develop the treatments.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
5
|
Martin D, Reihe C, Drummer S, Roessler K, Boomer S, Nelson M. Venoconstrictor responses to activation of bradykinin-sensitive pericardial afferents involve the region of the hypothalamic paraventricular nucleus. Physiol Rep 2022; 10:e15221. [PMID: 35307973 PMCID: PMC8935126 DOI: 10.14814/phy2.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023] Open
Abstract
Veins are important in the control of venous return, cardiac output, and cardiovascular homeostasis. However, the effector systems modulating venous function remain to be fully elucidated. We demonstrated that activation of bradykinin-sensitive pericardial afferents elicited systemic venoconstriction. The hypothalamic paraventricular nucleus (PVN) is an important site modulating autonomic outflow to the venous compartment. We tested the hypothesis that the PVN region is involved in the venoconstrictor response to pericardial injection of bradykinin. Rats were anesthetized with urethane/alpha chloralose and instrumented for recording arterial pressure, vena caval pressure, and mean circulatory filling pressure (MCFP), an index of venous tone. The rats were fitted with a pericardial catheter and PVN injector guide tubes. Mean arterial pressure (MAP), heart rate (HR), and MCFP responses to pericardial injection of bradykinin (1, 10 µg/kg) were recorded before and after PVN injection of omega conotoxin GVIA (200 ng/200 nl). Pericardial injection of saline produced no systematic effects on MAP, HR, or MCFP. In contrast, pericardial injection of bradykinin was associated with short latency increases in MAP (16 ± 4 to 18 ± 2 mm Hg) and MCFP 0.35 ± 0.19 to 1.01 ± 0.27 mm Hg. Heart rate responses to pericardial BK were highly variable, but HR was significantly increased (15 ± 9 bpm) at the higher BK dose. Conotoxin injection in the PVN region did not affect baseline values for these variables. However, injection of conotoxin into the area of the PVN largely attenuated the pressor (-1 ± 3 to 6 ± 3 mm Hg), MCFP (-0.19 ± 0.07 to 0.20 ± 0.18 mm Hg), and HR (4 ± 14 bpm) responses to pericardial bradykinin injection. We conclude that the PVN region is involved in the venoconstrictor responses to pericardial bradykinin injection.
Collapse
Affiliation(s)
- Doug Martin
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| | - Casey Reihe
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| | - Sam Drummer
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| | - Kyle Roessler
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| | - Shane Boomer
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| | - Madeleine Nelson
- Division of Basic Biomedical SciencesUniversity of South DakotaVermillionSouth DakotaUSA
| |
Collapse
|
6
|
Shibata R, Shinohara K, Ikeda S, Iyonaga T, Matsuura T, Kashihara S, Ito K, Kishi T, Hirooka Y, Tsutsui H. Transient receptor potential vanilloid 1-expressing cardiac afferent nerves may contribute to cardiac hypertrophy in accompany with an increased expression of brain-derived neurotrophic factor within nucleus tractus solitarius in a pressure overload model. Clin Exp Hypertens 2022; 44:249-257. [DOI: 10.1080/10641963.2022.2029470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Risa Shibata
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Shota Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Iyonaga
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taku Matsuura
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichiro Kashihara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ito
- Ito Heart Clinic, Fukuoka, Japan
| | - Takuya Kishi
- Graduate School of Medicine (Cardiology), International University of Health and Welfare, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Medical Technology and Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Su C, Xue J, Ye C, Chen A. Role of the central renin‑angiotensin system in hypertension (Review). Int J Mol Med 2021; 47:95. [PMID: 33846799 PMCID: PMC8041481 DOI: 10.3892/ijmm.2021.4928] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Present in more than one billion adults, hypertension is the most significant modifiable risk factor for mortality resulting from cardiovascular disease. Although its pathogenesis is not yet fully understood, the disruption of the renin-angiotensin system (RAS), consisting of the systemic and brain RAS, has been recognized as one of the primary reasons for several types of hypertension. Therefore, acquiring sound knowledge of the basic science of RAS and the under- lying mechanisms of the signaling pathways associated with RAS may facilitate the discovery of novel therapeutic targets with which to promote the management of patients with cardiovascular and kidney disease. In total, 4 types of angiotensin II receptors have been identified (AT1R-AT4R), of which AT1R plays the most important role in vasoconstriction and has been most extensively studied. It has been found in several regions of the brain, and its distribution is highly associated with that of angiotensin-like immunoreactivity in nerve terminals. The effect of AT1R involves the activation of multiple media and signaling pathways, among which the most important signaling pathways are considered to be AT1R/JAK/STAT and Ras/Raf/MAPK pathways. In addition, the regulation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and cyclic AMP response element-binding (CREB) pathways is also closely related to the effect of ATR1. Their mechanisms of action are related to pro-inflammatory and sympathetic excitatory effects. Central AT1R is involved in almost all types of hypertension, including spontaneous hypertension, salt-sensitive hypertension, obesity-induced hypertension, renovascular hypertension, diabetic hypertension, L-NAME-induced hypertension, stress-induced hypertension, angiotensin II-induced hyper- tension and aldosterone-induced hypertension. There are 2 types of central AT1R blockade, acute blockade and chronic blockade. The latter can be achieved by chemical blockade or genetic engineering. The present review article aimed to high- light the prevalence, functions, interactions and modulation means of central AT-1R in an effort to assist in the treatment of several pathological conditions. The identification of angiotensin-derived peptides and the development of AT-2R agonists may provide a wider perspective on RAS, as well as novel therapeutic strategies.
Collapse
Affiliation(s)
- Chuanxin Su
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jinhua Xue
- Research Center for Cardiovascular and Cerebrovascular Diseases, The University of Duisburg‑Essen, Duisburg‑Essen University, D-45122 Essen, Germany
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
8
|
Yu XJ, Xin GR, Liu KL, Liu XJ, Fu LY, Qi J, Kang KB, Meng TT, Yi QY, Li Y, Sun YJ, Kang YM. Paraventricular Nucleus Infusion of Oligomeric Proantho Cyanidins Improves Renovascular Hypertension. Front Neurosci 2021; 15:642015. [PMID: 33746706 PMCID: PMC7969814 DOI: 10.3389/fnins.2021.642015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of hypertension. Oligomeric proantho cyanidins (OPC) is the main polyphenol presents in grape seed and is known for its potent antioxidant and anti-inflammatory properties. In the present study, we hypothesize that OPC can attenuate oxidative stress in the paraventricular nucleus of hypothalamus (PVN), ameliorate neurotransmitter imbalance, decrease the blood pressure and sympathetic activity in renovascular hypertensive rats. After induction of renovascular hypertension by the two-kidney one-clip (2K-1C) method, male Sprague-Dawley rats received chronic bilateral PVN infusion of OPC (20 μg/h) or vehicle via osmotic minipump for 4 weeks. We found that hypertension induced by 2K-1C was associated with the production of reactive oxygen species (ROS) in the PVN. Infusion of OPC in the PVN significantly reduced the systolic blood pressure and norepinephrine in plasma of 2K-1C rats. In addition, PVN infusion of OPC decreased the level of ROS and the expression of stress-related nicotinamide adenine dinucleotide phosphate (NADPH) oxidases subunit NOX4, increased the levels of nuclear factor E2-related factor 2 (Nrf2) and antioxidant enzyme, balanced the content of cytokines, increased expression of glutamic acid decarboxylase and decreased the expression of tyrosine hydroxylase in the PVN of 2K-1C rats. Our findings provided strong evidence that PVN infusion of OPC inhibited the progression of renovascular hypertension through its potent anti-oxidative and anti-inflammatory function in the PVN.
Collapse
Affiliation(s)
- Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Guo-Rui Xin
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Xiao-Jing Liu
- Department of Cardiology, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Kai B Kang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ting-Ting Meng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Xi'an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Yao-Jun Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| |
Collapse
|
9
|
Dalmasso C, Leachman JR, Osborn JL, Loria AS. Sensory signals mediating high blood pressure via sympathetic activation: role of adipose afferent reflex. Am J Physiol Regul Integr Comp Physiol 2019; 318:R379-R389. [PMID: 31868518 DOI: 10.1152/ajpregu.00079.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood pressure regulation in health and disease involves a balance between afferent and efferent signals from multiple organs and tissues. Although there are numerous reviews focused on the role of sympathetic nerves in different models of hypertension, few have revised the contribution of afferent nerves innervating adipose tissue and their role in the development of obesity-induced hypertension. Both clinical and basic research support the beneficial effects of bilateral renal denervation in lowering blood pressure. However, recent studies revealed that afferent signals from adipose tissue, in an adipose-brain-peripheral pathway, could contribute to the increased sympathetic activation and blood pressure during obesity. This review focuses on the role of adipose tissue afferent reflexes and briefly describes a number of other afferent reflexes modulating blood pressure. A comprehensive understanding of how multiple afferent reflexes contribute to the pathophysiology of essential and/or obesity-induced hypertension may provide significant insights into improving antihypertensive therapeutic approaches.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Osborn
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
10
|
Xia JD, Chen J, Yang BB, Sun HJ, Zhu GQ, Dai YT, Yang J, Wang ZJ. Differences in sympathetic nervous system activity and NMDA receptor levels within the hypothalamic paraventricular nucleus in rats with differential ejaculatory behavior. Asian J Androl 2019. [PMID: 29516873 PMCID: PMC6038171 DOI: 10.4103/aja.aja_4_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Differences in intravaginal ejaculation latency reflect normal biological variation, but the causes are poorly understood. Here, we investigated whether variation in ejaculation latency in an experimental rat model is related to altered sympathetic nervous system (SNS) activity and expression of N-methyl-D-aspartic acid (NMDA) receptors in the paraventricular nucleus of the hypothalamus (PVN). Male rats were classified as “sluggish,” “normal,” and “rapid” ejaculators on the basis of ejaculation frequency during copulatory behavioral testing. The lumbar splanchnic nerve activity baselines in these groups were not significantly different at 1460 ± 480 mV, 1660 ± 600 mV, and 1680 ± 490 mV, respectively (P = 0.71). However, SNS sensitivity was remarkably different between the groups (P < 0.01), being 28.9% ± 8.1% in “sluggish,” 48.4% ± 7.5% in “normal,” and 88.7% ± 7.4% in “rapid” groups. Compared with “normal” ejaculators, the percentage of neurons expressing NMDA receptors in the PVN of “rapid” ejaculators was significantly higher, whereas it was significantly lower in “sluggish” ejaculators (P = 0.01). In addition, there was a positive correlation between the expression of NMDA receptors in the PVN and SNS sensitivity (r = 0.876, P = 0.02). This study shows that intravaginal ejaculatory latency is associated with SNS activity and is mediated by NMDA receptors in the PVN.
Collapse
Affiliation(s)
- Jia-Dong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Bai-Bing Yang
- Department of Andrology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210000, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210000, China
| | - Yu-Tian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Jie Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zeng-Jun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
11
|
Shanks J, de Morais SDB, Gao L, Zucker IH, Wang HJ. TRPV1 (Transient Receptor Potential Vanilloid 1) Cardiac Spinal Afferents Contribute to Hypertension in Spontaneous Hypertensive Rat. Hypertension 2019; 74:910-920. [PMID: 31422690 DOI: 10.1161/hypertensionaha.119.13285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension is associated with increased sympathetic activity. A component of this sympathoexcitation may be driven by increased signaling from sensory endings from the heart to the autonomic control areas in the brain. This pathway mediates the so-called cardiac sympathetic afferent reflex, which is also activated by coronary ischemia or other nociceptive stimuli in the heart. The cardiac sympathetic afferent reflex has been shown to be enhanced in the heart failure state and in renal hypertension. However, little is known about its role in the development or progression of hypertension or the phenotype of the sensory endings involved. To investigate this, we used the selective afferent neurotoxin, resiniferatoxin (RTX) to chronically abolish the cardiac sympathetic afferent reflex in 2 models of hypertension; the spontaneous hypertensive rats (SHRs) and AngII (angiotensin II) infusion (240 ng/kg per min). Blood pressure (BP) was measured in conscious animals for 2 to 8 weeks post-RTX. Epidural application of RTX to the T1-T4 spinal segments prevented the further BP increase in 8-week-old SHR and lowered BP in 16-week-old SHR. RTX did not affect BP in Wistar-Kyoto normotensive rats nor in AngII-infused rats. Epicardial application of RTX (50 µg/mL) in 4-week-old SHR prevented the BP increase whereas this treatment does not lower BP in 16-week-old SHR. When RTX was administered into the L2-L5 spinal segments of 16-week-old SHR, no change in BP was observed. These findings indicate that signaling via thoracic afferent nerve fibers may contribute to the hypertension phenotype in the SHR but not in the Ang II infusion model of hypertension.
Collapse
Affiliation(s)
- Julia Shanks
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Sharon D B de Morais
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Lie Gao
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Irving H Zucker
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Han-Jun Wang
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE.,Department of Anesthesiology (H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
12
|
Nishi EE, Lopes NR, Gomes GN, Perry JC, Sato AYS, Naffah-Mazzacoratti MG, Bergamaschi CT, Campos RR. Renal denervation reduces sympathetic overactivation, brain oxidative stress, and renal injury in rats with renovascular hypertension independent of its effects on reducing blood pressure. Hypertens Res 2018; 42:628-640. [PMID: 30573809 DOI: 10.1038/s41440-018-0171-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022]
Abstract
The underlying mechanisms by which renal denervation (RD) decreases blood pressure (BP) remain incompletely understood. In this study, we investigated the effects of ischemic kidney denervation on different sympathetic outflows, brain and renal expression of angiotensin-II receptors, oxidative stress and renal function markers in the 2-kidney, 1-clip (2K-1C) rat model. Surgical RD was performed in Wistar male rats 4-5 weeks after clip implantation. After 10 days of RD, BP, and the activity of sympathetic nerves projecting to the contralateral kidney (rSNA) and splanchnic region were partially reduced in 2K-1C rats, with no change in systemic renin-angiotensin system (RAS). To distinguish the effects of RD from the reduction in BP, 2K-1C rats were treated with hydralazine by oral gavage (25 mg/kg/day for 1 week). RD, but not hydralazine, normalized oxidative stress in the sympathetic premotor brain regions and improved intrarenal RAS, renal injury, and proteinuria. Furthermore, different mechanisms led to renal injury and oxidative stress in the ischemic and contralateral kidneys of 2K-1C rats. Injury and oxidative stress in the ischemic kidney were driven by the renal nerves. Although RD attenuated rSNA, injury and oxidative stress persisted in the contralateral kidney, probably due to increased BP. Therefore, nerves from the ischemic kidney at least partially contribute to the increase in BP, sympathetic outflows, brain oxidative stress, and renal alterations in rats with renovascular hypertension. Based on these findings, the reduction in oxidative stress in the brain is a central mechanism that contributes to the effects of RD on Goldblatt hypertension.
Collapse
Affiliation(s)
- Erika E Nishi
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Nathalia R Lopes
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Guiomar N Gomes
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juliana C Perry
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alex Y S Sato
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria G Naffah-Mazzacoratti
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cássia T Bergamaschi
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ruy R Campos
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Wang D, Wu Y, Chen Y, Wang A, Lv K, Kong X, He Y, Hu N. Focal selective chemo-ablation of spinal cardiac afferent nerve by resiniferatoxin protects the heart from pressure overload-induced hypertrophy. Biomed Pharmacother 2018; 109:377-385. [PMID: 30399572 DOI: 10.1016/j.biopha.2018.10.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Resiniferatoxin (RTX), a selective transient receptor potential vanilloid 1 (TRPV1) receptor agonist, can eliminate TRPV1+ primary sensory afferents and blunt cardiac sympathetic afferent reflex for a relatively long period. The present study determined the effects of intrathecal RTX administration on transverse aortic constriction (TAC)-induced cardiac dysfunction and cardiac remodeling in rats. Five days before TAC, RTX (2 μg/10 μl) was injected intrathecally into the T2/T3 interspace of rats. Cardiac sympathetic nerve activities (CSNAs) and cardiac structure and function were determined eight weeks after TAC. Intrathecal RTX administration abolished TRPV1 expression in the dorsal horn and reduced over-activated CSNA in the TAC rat model. Hemodynamic analysis revealed that RTX reduced left ventricular end-diastolic pressure, indicating the improvement of cardiac compliance. Histologic analysis, real-time reverse transcription-polymerase chain reaction, and Western blots showed that RTX prevented TAC-induced cardiac hypertrophy, cardiac fibrosis, and cardiac apoptosis and reduced the expression of apoptotic proteins and myocardial mRNAs. In conclusion, these results demonstrate that focal chemo-ablation of TRPV1+ afferents in the spinal cord protects the heart from pressure overload-induced cardiac remodeling and cardiac dysfunction, which suggest a novel promising therapeutic method for cardiac hypertrophy and diastolic dysfunction.
Collapse
Affiliation(s)
- Deguo Wang
- Department of Gerontology, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, PR China; Non-Coding RNA Research Center of Wannan Medical College, Wuhu, Anhui, 241001, PR China.
| | - Yong Wu
- Department of Gerontology, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, PR China
| | - Yueyun Chen
- Department of Gerontology, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, PR China
| | - Ancai Wang
- Department of Gerontology, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, PR China
| | - Kun Lv
- Non-Coding RNA Research Center of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Xiang Kong
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, PR China
| | - Yang He
- School of Basic Courses, Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Nengwei Hu
- Department of Pharmacology and Therapeutics, and Trinity College, Institute of Neuroscience, Biotechnology Building, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
14
|
Roncari CF, Barbosa RM, Vendramini RC, De Luca LA, Menani JV, Colombari E, Colombari DSA. Enhanced angiotensin II induced sodium appetite in renovascular hypertensive rats. Peptides 2018; 101:82-88. [PMID: 29305157 DOI: 10.1016/j.peptides.2017.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Renovascular hypertensive 2-kidney, 1-clip (2K1C) rats have an increased activity of the renin-angiotensin system and an initial transitory increase in daily water and NaCl intake. However, the dipsogenic and natriorexigenic responses to angiotensin II (ANG II) have not been tested yet in 2K1C rats. Therefore, in the present study, we evaluated water and 0.3 M NaCl intake induced by water deprivation (WD)-partial rehydration (PR) or intracerebroventricular (icv) ANG II in 2K1C rats. In addition, the cardiovascular changes to these treatments were also evaluated. Male Holtzman rats received a silver clip around the left renal artery to induce 2K1C renovascular hypertension. In the 5th week, a group of animals received a guide cannula in the lateral ventricle for icv injections. Daily water intake increased from the 3rd week after surgery and remained elevated until the 6th week (last recording week), whereas daily 0.3 M NaCl intake transiently increased from the 2nd to the 5th week after surgery. On the 6th week, in spite of comparable daily 0.3 M NaCl intake between 2K1C and sham rats, WD-PR and icv ANG II induced an increased 0.3 M NaCl intake in 2K1C rats. Water intake induced by WD-PR, not by icv ANG II, also increased in 2K1C rats. The increase in arterial pressure to WD-PR or icv ANG II was similar in sham and 2K1C rats. Therefore, these results suggest that 2K1C rats are more responsive to the natriorexigenic effects of ANG II, whereas other responses to ANG II are not modified.
Collapse
Affiliation(s)
- Camila F Roncari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil.
| | - Rafaela M Barbosa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Regina C Vendramini
- Department of Clinical Analysis, School of Pharmacy, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Laurival A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| |
Collapse
|
15
|
de Brito Alves JL, Costa-Silva JH. Maternal protein malnutrition induced-hypertension: New evidence about the autonomic and respiratory dysfunctions and epigenetic mechanisms. Clin Exp Pharmacol Physiol 2017; 45:422-429. [PMID: 29164748 DOI: 10.1111/1440-1681.12892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
Maternal protein malnutrition during the critical stages of development (pregnancy, lactation and first infancy) can lead to adult hypertension. Studies have shown that renal and cardiovascular dysfunctions can be associated to the development of hypertension in humans and rats exposed to maternal protein malnutrition. The etiology of hypertension, however, includes a complex network involved in central and peripheral blood pressure control. Recently, the hyperactivity of the sympathetic nervous system in protein-restricted rats has been reported. Studies have shown that protein malnutrition during pregnancy and/or lactation alters blood pressure control through mechanisms that include central sympathetic-respiratory dysfunctions and epigenetic modifications, which may contribute to adult hypertension. Thus, this review will discuss the historical context, new evidences of neurogenic disruption in respiratory-sympathetic activities and possible epigenetic mechanisms involved in maternal protein malnutrition induced- hypertension.
Collapse
Affiliation(s)
- José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, UFPB, João Pessoa, Brazil
| | - João Henrique Costa-Silva
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, UFPE, Vitória de Santo Antão-PE, Brazil
| |
Collapse
|
16
|
Differential gene and lncRNA expression in the lower thoracic spinal cord following ischemia/reperfusion-induced acute kidney injury in rats. Oncotarget 2017; 8:53465-53481. [PMID: 28881824 PMCID: PMC5581123 DOI: 10.18632/oncotarget.18584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/21/2017] [Indexed: 12/28/2022] Open
Abstract
We used high-throughput RNA sequencing to analyze differential gene and lncRNA expression patterns in the lower thoracic spinal cord during ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) in rats. We observed that of 32662 mRNAs, 4296 out were differentially expressed in the T8-12 segments of the spinal cord upon I/R-induced AKI. Among these, 62 were upregulated and 34 were downregulated in response to I/R (FDR < 0.05, |log2FC| > 1). Further, 52 differentially expressed lncRNAs (35 upregulated and 17 downregulated) were identified among 3849 lncRNA transcripts. The differentially expressed mRNAs were annotated as “biological process,” “cellular components” and “molecular functions” through gene ontology enrichment analysis. KEGG pathway enrichment analysis showed that cell cycle and renin-angiotensin pathways were upregulated in response to I/R, while protein digestion and absorption, hedgehog, neurotrophin, MAPK, and PI3K-Akt signaling were downregulated. The RNA-seq data was validated by qRT-PCR and western blot analyses of select mRNAs and lncRNAs. We observed that Bax, Caspase-3 and phospho-AKT were upregulated and Bcl-2 was downregulated in the spinal cord in response to renal injury. We also found negative correlations between three lncRNAs (TCONS_00042175, TCONS_00058568 and TCONS_00047728) and the degree of renal injury. These findings provide evidence for differential expression of lncRNAs and mRNAs in the lower thoracic spinal cord following I/R-induced AKI in rats and suggest potential clinical applicability.
Collapse
|
17
|
Yi QY, Qi J, Yu XJ, Li HB, Zhang Y, Su Q, Shi T, Zhang DM, Guo J, Feng ZP, Wang ML, Zhu GQ, Liu JJ, Shi XL, Kang YM. Paraventricular Nucleus Infusion of Epigallocatechin-3-O-Gallate Improves Renovascular Hypertension. Cardiovasc Toxicol 2017; 16:276-85. [PMID: 26162770 DOI: 10.1007/s12012-015-9335-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of hypertension. Epigallocatechin-3-O-gallate (EGCG) is the main polyphenol present in green tea and is known for its potent antioxidant and anti-inflammatory properties. In the present study, we hypothesize that EGCG attenuates oxidative stress in the paraventricular nucleus of hypothalamus (PVN), thereby decreasing the blood pressure and sympathetic activity in renovascular hypertensive rats. After renovascular hypertension was induced in male Sprague-Dawley rats by the two-kidney one-clip (2K-1C) method, the rats received bilateral PVN infusion of EGCG (20 μg/h) or vehicle via osmotic minipump for 4 weeks. Our results were shown as follows: (1) Hypertension induced by 2K-1C was associated with the production of reactive oxygen species in the PVN; (2) chronic infusion of EGCG in the PVN decreased stress-related NAD(P)H oxidase subunit gp91(phox) and NOX-4 and increased the activity of antioxidant enzymes (SOD-1), also balanced the content of cytokines (IL-1β, IL-6, IL-10 and MCP-1) in the PVN, and attenuated the level of norepinephrine in plasma of 2K-1C rats. Our findings provide strong evidence that PVN infusion of EGCG inhibited renovascular hypertension progression through its potent anti-oxidative and anti-inflammatory activity in the PVN.
Collapse
Affiliation(s)
- Qiu-Yue Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Tao Shi
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dong-Mei Zhang
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Mo-Lin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Lian Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China. .,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
18
|
Xia JD, Chen J, Sun HJ, Zhou LH, Zhu GQ, Chen Y, Dai YT. Centrally mediated ejaculatory response via sympathetic outflow in rats: role of N-methyl-D-aspartic acid receptors in paraventricular nucleus. Andrology 2016; 5:153-159. [PMID: 27860425 DOI: 10.1111/andr.12274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/03/2016] [Accepted: 07/19/2016] [Indexed: 11/29/2022]
Affiliation(s)
- J.-D. Xia
- Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - J. Chen
- Department of Obstetrics and Gynecology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| | - H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - L.-H. Zhou
- Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - Y. Chen
- Department of Andrology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| | - Y.-T. Dai
- Department of Andrology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| |
Collapse
|
19
|
Pinkham MI, Barrett CJ. Estradiol alters the chemosensitive cardiac afferent reflex in female rats by augmenting sympathoinhibition and attenuating sympathoexcitation. Clin Exp Pharmacol Physiol 2016; 42:622-31. [PMID: 25810130 DOI: 10.1111/1440-1681.12392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 01/26/2023]
Abstract
The chemosensitive cardiac vagal and sympathetic afferent reflexes are implicated in driving pathophysiological changes in sympathetic nerve activity (SNA) in cardiovascular disease states. This study investigated the impact of sex and ovarian hormones on the chemosensitive cardiac afferent reflex. Experiments were performed in anaesthetized, sinoaortic baroreceptor denervated male, female and ovariectomized female (OVX) Wistar rats with either intact cardiac innervation or bilateral vagotomy. To investigate the chemosensitive cardiac afferent reflexes renal SNA, heart rate (HR) and arterial pressure (AP) were recorded before and following application of capsaicin onto the epicardial surface of the left ventricle. Compared to males, ovary-intact females displayed similar cardiac afferent reflex mediated changes in renal SNA albeit with a reduced maximum sympathetic reflex driven increase in renal SNA. In females, ovariectomy significantly attenuated the cardiac vagal afferent reflex mediated inhibition of renal SNA (renal SNA decreased 2 ± 17% in OVX versus -50 ± 4% in ovary-intact females, P < 0.05) and augmented cardiac sympathetic afferent reflex mediated sympathoexcitation (renal SNA increased 91 ± 11% in OVX vs 62 ± 9% in ovary-intact females, P < 0.05) so that overall increases in reflex driven sympathoexcitation were significantly enhanced. Chronic estradiol replacement, but not progesterone replacement, begun at time of ovariectomy restored cardiac afferent reflex responses to be similar as ovary-intact females. Vagal denervation eliminated all group differences. The current findings show ovariectomy in female rats, mimicking menopause in women, results in greater chemosensitive cardiac afferent reflex driven sympathoexcitation and does so, at least partly, via the loss of estradiols actions on the cardiac vagal afferent reflex pathway.
Collapse
Affiliation(s)
- Maximilian I Pinkham
- Circulatory Control Laboratory, Department of Physiology and Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Carolyn J Barrett
- Circulatory Control Laboratory, Department of Physiology and Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Angiotensin-(1–7) enhances the effects of angiotensin II on the cardiac sympathetic afferent reflex and sympathetic activity in rostral ventrolateral medulla in renovascular hypertensive rats. ACTA ACUST UNITED AC 2015; 9:865-77. [DOI: 10.1016/j.jash.2015.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/11/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022]
|
21
|
Chen WW, Xiong XQ, Chen Q, Li YH, Kang YM, Zhu GQ. Cardiac sympathetic afferent reflex and its implications for sympathetic activation in chronic heart failure and hypertension. Acta Physiol (Oxf) 2015; 213:778-94. [PMID: 25598170 DOI: 10.1111/apha.12447] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/22/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Persistent excessive sympathetic activation greatly contributes to the pathogenesis of chronic heart failure (CHF) and hypertension. Cardiac sympathetic afferent reflex (CSAR) is a sympathoexcitatory reflex with positive feedback characteristics. Humoral factors such as bradykinin, adenosine and reactive oxygen species produced in myocardium due to myocardial ischaemia stimulate cardiac sympathetic afferents and thereby reflexly increase sympathetic activity and blood pressure. The CSAR is enhanced in myocardial ischaemia, CHF and hypertension. The enhanced CSAR at least partially contributes to the sympathetic activation and pathogenesis of these diseases. Nucleus of the solitary tract (NTS), hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla are the most important central sites involved in the modulation and integration of the CSAR. Angiotensin II, AT1 receptors and NAD(P)H oxidase-derived superoxide anions pathway in the PVN are mainly responsible for the enhanced CSAR in CHF and hypertension. Central angiotensin-(1-7), nitric oxide, endothelin, intermedin, hydrogen peroxide and several other signal molecules are involved in regulating CSAR. Blockade of the CSAR shows beneficial effects in CHF and hypertension. This review focuses on the anatomical and physiological basis of the CSAR, the interaction of CSAR with baroreflex and chemoreflex, and the role of enhanced CSAR in the pathogenesis of CHF and hypertension.
Collapse
Affiliation(s)
- W.-W. Chen
- Department of Physiology; Key Laboratory of Cardiovascular Disease and Molecular Intervention; Nanjing Medical University; Nanjing Jiangsu China
| | - X.-Q. Xiong
- Department of Physiology; Key Laboratory of Cardiovascular Disease and Molecular Intervention; Nanjing Medical University; Nanjing Jiangsu China
| | - Q. Chen
- Department of Pathophysiology; Nanjing Medical University; Nanjing Jiangsu China
| | - Y.-H. Li
- Department of Pathophysiology; Nanjing Medical University; Nanjing Jiangsu China
| | - Y.-M. Kang
- Department of Physiology and Pathophysiology; Cardiovascular Research Center; Xi'an Jiaotong University School of Medicine; Xi'an China
| | - G.-Q. Zhu
- Department of Physiology; Key Laboratory of Cardiovascular Disease and Molecular Intervention; Nanjing Medical University; Nanjing Jiangsu China
| |
Collapse
|
22
|
Combined Aliskiren and L-arginine treatment reverses renovascular hypertension in an animal model. Hypertens Res 2015; 38:471-7. [PMID: 25740291 DOI: 10.1038/hr.2015.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/12/2015] [Accepted: 01/25/2015] [Indexed: 11/08/2022]
Abstract
Renovascular hypertension is characterized by increased renal sympathetic activity, angiotensin II and by endothelial dysfunction. The purpose of this study was to determine the role of renal sympathetic nerve activity (RSNA) in mediating the anti-hypertensive effects of aliskiren (ALSK) and L-arginine (L-ARG) in a rat renovascular hypertension model. Hypertension was induced by clipping the right renal artery, and the following five groups were divided: SHAM operated; 2-kidney, 1-clip (2K1C); 2K1C plus ALSK; 2K1C plus L-ARG; and 2K1C plus ALSK+ L-ARG. The systolic blood pressure (SBP) of 2K1C rats increased from 114.4±5.2 to 204±12.7 mm Hg (P<0.05) and was only reduced by ALSK+L-ARG treatment (138.4±4.37 mm Hg). The 2K1C hypertension increased the baseline RSNA (SHAM: 62.4±6.39 vs. 2K1C: 97.4±8.43%). L-ARG or ALSK+L-ARG treatment significantly decreased baseline RSNA (2K1C L-ARG:70.7±2.39; 2K1C ALSK+L-ARG: 69.3±4.23%), but ALSK treatment alone did not (2K1C ALSK: 84.2±2.5%). Urinary water, Na(+), Cl(-) and urea excretion were similar in the 2K1C L-ARG, 2K1C ALSK+L-ARG and SHAM groups. The combination of ALSK+L-ARG restored urine flow and increased the glomerular filtration rate. The nNOS expression in the non clipped kidney was significantly increased in 2K1C ALSK+L-ARG rats. In conclusion, combined ALSK+L-ARG treatment normalizes SBP and prevents renal dysfunction in 2K1C hypertensive rats.
Collapse
|
23
|
Nishi EE, Bergamaschi CT, Campos RR. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation. Exp Physiol 2015; 100:479-84. [PMID: 25599970 DOI: 10.1113/expphysiol.2014.079889] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/09/2014] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review describes the role of renal nerves as the key carrier of signals from the kidneys to the CNS and vice versa; the brain and kidneys communicate through this carrier to maintain homeostasis in the body. What advances does it highlight? Whether renal or autonomic dysfunction is the predominant contributor to systemic hypertension is still debated. In this review, we focus on the role of the renal nerves in a model of renovascular hypertension. The sympathetic nervous system influences the renal regulation of arterial pressure and body fluid composition. Anatomical and physiological evidence has shown that sympathetic nerves mediate changes in urinary sodium and water excretion by regulating the renal tubular water and sodium reabsorption throughout the nephron, changes in the renal blood flow and the glomerular filtration rate by regulating the constriction of renal vasculature, and changes in the activity of the renin-angiotensin system by regulating the renin release from juxtaglomerular cells. Additionally, renal sensory afferent fibres project to the autonomic central nuclei that regulate blood pressure. Hence, renal nerves play a key role in the crosstalk between the kidneys and the CNS to maintain homeostasis in the body. Therefore, the increased sympathetic nerve activity to the kidney and the renal afferent nerve activity to the CNS may contribute to the outcome of diseases, such as hypertension.
Collapse
Affiliation(s)
- Erika E Nishi
- Department of Physiology, Cardiovascular Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
24
|
Pro-inflammatory cytokines in paraventricular nucleus mediate the cardiac sympathetic afferent reflex in hypertension. Auton Neurosci 2014; 186:54-61. [DOI: 10.1016/j.autneu.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/02/2014] [Accepted: 10/10/2014] [Indexed: 02/07/2023]
|
25
|
Role of renal nerves in the treatment of renovascular hypertensive rats with L-arginine. Int J Hypertens 2014; 2014:735627. [PMID: 25349722 PMCID: PMC4199080 DOI: 10.1155/2014/735627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/24/2014] [Accepted: 09/09/2014] [Indexed: 12/19/2022] Open
Abstract
The purpose was to determine the role of renal nerves in mediating the effects of antihypertensive treatment with L-arginine in a renovascular hypertension model. The 2K1C (two-kidney one-clip model) hypertensive rats were submitted to bilateral surgical-pharmacological renal denervation. The animals were subdivided into six experimental groups: normotensive control rats (SHAM), 2K1C rats, 2K1C rats treated with L-arginine (2K1C + L-arg), denervated normotensive (DN) rats, denervated 2K1C (2K1C + DN) rats, and denervated 2K1C + L-arg (2K1C + DN + L-arg) rats. Arterial blood pressure, water intake, urine volume, and sodium excretion were measured. The 2K1C rats exhibited an increase in the mean arterial pressure (MAP) (from 106 ± 3 to 183 ± 5.8 mmHg, P < 0.01), whereas L-arg treatment induced a reduction in the MAP (143 ± 3.4 mmHg) without lowering it to the control level. Renal nerve denervation reduced the MAP to normotensive levels in 2K1C rats with or without chronic L-arg treatment. L-arg and denervation induced increases in water intake and urine volume, and L-arg caused a significant natriuretic effect. Our results suggest that renal sympathetic activity participates in the genesis and the maintenance of the hypertension and also demonstrate that treatment with L-arg alone is incapable of normalizing the MAP and that the effect of such treatment is not additive with the effect of kidney denervation.
Collapse
|
26
|
Li HB, Qin DN, Ma L, Miao YW, Zhang DM, Lu Y, Song XA, Zhu GQ, Kang YM. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicol Appl Pharmacol 2014; 279:141-9. [PMID: 24937322 DOI: 10.1016/j.taap.2014.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/07/2014] [Accepted: 06/06/2014] [Indexed: 02/05/2023]
Abstract
The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin-angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague-Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinopril (LSP, 10μg/h) or vehicle via osmotic minipump for 4weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91(phox)) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM.
Collapse
Affiliation(s)
- Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Da-Nian Qin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China.
| | - Le Ma
- Department of Public Health, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Yu-Wang Miao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Dong-Mei Zhang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Yan Lu
- Department of Clinical Laboratory, Sanaitang Hospital, Lanzhou 730030, China
| | - Xin-Ai Song
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China.
| |
Collapse
|
27
|
Transneuronal tracing of central autonomic regions involved in cardiac sympathetic afferent reflex in rats. J Neurol Sci 2014; 342:45-51. [DOI: 10.1016/j.jns.2014.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 03/25/2014] [Accepted: 04/21/2014] [Indexed: 01/08/2023]
|
28
|
Zhou H, Sun HJ, Chang JR, Ding L, Gao Q, Tang CS, Zhu GQ, Zhou YB. Cardiac sympathetic afferent reflex response to intermedin microinjection into paraventricular nucleus is mediated by nitric oxide and γ-amino butyric acid in hypertensive rats. Exp Biol Med (Maywood) 2014; 239:1352-9. [DOI: 10.1177/1535370214533882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) and involves in the regulation of cardiovascular function in both peripheral tissues and central nervous system (CNS). Paraventricular nucleus (PVN) of hypothalamus is an important site in the control of cardiac sympathetic afferent reflex (CSAR) which participates in sympathetic over-excitation of hypertension. The aim of this study is to investigate whether IMD in the PVN is involved in the inhibition of CSAR and its related mechanism in hypertension. Rats were subjected to two-kidney one-clip (2K1C) surgery to induce renovascular hypertension or sham-operation (Sham). Acute experiments were carried out four weeks later under anesthesia. The CSAR was evaluated with the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to the epicardial application of capsaicin. The RSNA and MAP were recorded in sinoaortic-denervated, cervical-vagotomized and anesthetized rats. Bilateral PVN microinjection of IMD (25 pmol) caused greater decrease in the CSAR in 2K1C rats than in Sham rats, which was prevented by pretreatment with adrenomedullin (AM) receptor antagonist AM22-52, non-selective nitric oxide (NO) synthase (NOS) inhibitor l-NAME or γ-amino butyric acid (GABA)B receptor blocker CGP-35348. PVN pretreatment with CGRP receptor antagonist CGRP8-37 or GABAA receptor blocker gabazine had no significant effect on the CSAR response to IMD. AM22-52, l-NAME and CGP-35348 in the PVN could increase CSAR in Sham and 2K1C rats. These data indicate that IMD in the PVN inhibits CSAR via AM receptor, and both NO and GABA in the PVN involve in the effect of IMD on CSAR in Sham and renovascular hypertensive rats.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Hai-jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Jin-rui Chang
- Department of Physiology, Xi'an Medical University, Shanxi 710021, China
| | - Lei Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Qing Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Chao-shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Guo-qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Ye-bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
29
|
Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats. Auton Neurosci 2014; 183:23-9. [PMID: 24560525 PMCID: PMC4079011 DOI: 10.1016/j.autneu.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/27/2014] [Accepted: 02/01/2014] [Indexed: 11/30/2022]
Abstract
Despite extensive use of the renovascular/Goldblatt model of hypertension—2K-1C, and the use of renal denervation to treat drug resistant hypertensive patients, autonomic mechanisms that underpin the maintenance of this hypertension are important yet remain unclear. Our aim was to analyse cardiovascular autonomic function by power spectral density analysis of both arterial pressure and pulse interval measured continuously by radio telemetry for 6 weeks after renal artery clipping. Mean arterial pressure increased from 106 ± 5 to 185 ± 2 mm Hg during 5 weeks post clipping when it stabilized. A tachycardia developed during the 4th week, which plateaued between weeks 5 and 6. The gain of the cardiac vagal baroreflex decreased immediately after clipping and continued to do so until the 5th week when it plateaued (from − 2.4 ± 0.09 to − 0.8 ± 0.04 bpm/mm Hg; P < 0.05). A similar time course of changes in the high frequency power spectral density of the pulse interval was observed (decrease from 13.4 ± 0.6 to 8.3 ± 0.01 ms2; P < 0.05). There was an increase in both the very low frequency and low frequency components of systolic blood pressure that occurred 3 and 4 weeks after clipping, respectively. Thus, we show for the first time the temporal profile of autonomic mechanisms underpinning the initiation, development and maintenance of renovascular hypertension including: an immediate depression of cardiac baroreflex gain followed by a delayed cardiac sympathetic predominance; elevated sympathetic vasomotor drive occurring after the initiation of the hypertension but coinciding during its mid-development and maintenance.
Collapse
|
30
|
Zhou YB, Sun HJ, Chen D, Liu TY, Han Y, Wang JJ, Tang CS, Kang YM, Zhu GQ. Intermedin in paraventricular nucleus attenuates sympathetic activity and blood pressure via nitric oxide in hypertensive rats. Hypertension 2013; 63:330-7. [PMID: 24218431 DOI: 10.1161/hypertensionaha.113.01681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide family, which shares the receptor system consisting of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs). This study investigated the effects of IMD in paraventricular nucleus (PVN) on renal sympathetic nerve activity and mean arterial pressure and its downstream mechanism in hypertension. Rats were subjected to 2-kidney 1-clip (2K1C) surgery to induce renovascular hypertension or sham operation. Acute experiments were performed 4 weeks later under anesthesia. IMD mRNA and protein were downregulated in 2K1C rats. Bilateral PVN microinjection of IMD caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in 2K1C rats than in sham-operated rats, which were prevented by pretreatment with adrenomedullin receptor antagonist AM22-52 or nonselective nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester, and attenuated by selective neuronal NO synthase inhibitor N(ω)-propyl-l-arginine hydrochloride or endothelial NO synthase inhibitor N(5)-(1-iminoethyl)-l-ornithine dihydrochloride. AM22-52 increased renal sympathetic nerve activity and mean arterial pressure in 2K1C rats but not in sham-operated rats, whereas calcitonin/calcitonin gene-related peptide receptor antagonist calcitonin/calcitonin gene-related peptide 8-37 had no significant effect. CRLR and RAMP3 mRNA, as well as CRLR, RAMP2, and RAMP3 protein expressions, in the PVN were increased in 2K1C rats. Microinjection of IMD into the PVN increased the NO metabolites (NOx) level in the PVN in 2K1C rats, which was prevented by AM22-52. Chronic PVN infusion of IMD reduced, but AM22-52 increased, blood pressure in conscious 2K1C rats. These results indicate that IMD in the PVN inhibits sympathetic activity and attenuates hypertension in 2K1C rats, which are mediated by adrenomedullin receptors (CRLR/RAMP2 or CRLR/RAMP3) and its downstream NO.
Collapse
Affiliation(s)
- Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 140 Hanzhong Rd, Nanjing 210029, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li P, Sun HJ, Han Y, Wang JJ, Zhang F, Tang CS, Zhou YB. Intermedin enhances sympathetic outflow via receptor-mediated cAMP/PKA signaling pathway in nucleus tractus solitarii of rats. Peptides 2013; 47:1-6. [PMID: 23816795 DOI: 10.1016/j.peptides.2013.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Direct administration of intermedin (IMD) into the brain elicits cardiovascular effects different from the systemic administration. Nucleus tractus solitarii (NTS) is an important region for the cardiovascular regulation. The present study was designed to determine the effect of IMD on modulating the sympathetic outflow and its related molecular mechanism in the NTS. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in anesthetized rats. Site-specific microinjection of IMD (20pmol) bilaterally into the NTS significantly increased RSNA and MAP. IMD-evoked increases of RSNA and MAP were almost abolished by pretreatment with receptor antagonist ADM22-52, an adenylyl cyclase (AC) inhibitor SQ22536, or a protein kinase A (PKA) inhibitor Rp-cAMP. However, pretreatment with another receptor antagonist calcitonin gene-related peptide (CGRP)8-37 did not suppress the increases of RSNA and MAP induced by IMD. Furthermore, IMD increased the cyclic adenosine monophosphate (cAMP) level, which was inhibited by ADM22-52 pretreatment in the NTS. These results suggest that IMD participates in the sympathetic nerve activity and central regulation of the cardiovascular system and a receptor-mediated cAMP/PKA signaling pathway is involved in IMD-induced effects in the NTS.
Collapse
Affiliation(s)
- Peng Li
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Xu B, Zheng H, Patel KP. Relative contributions of the thalamus and the paraventricular nucleus of the hypothalamus to the cardiac sympathetic afferent reflex. Am J Physiol Regul Integr Comp Physiol 2013; 305:R50-9. [PMID: 23616108 DOI: 10.1152/ajpregu.00004.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac sympathetic afferent reflex (CSAR) is induced by stimulating the cardiac sympathetic afferents, which evokes increases in sympathetic outflow and arterial pressure. In the present study, we attempted to identify the contribution of thalamic and hypothalamic nuclei involved in the CSAR. First, we observed that there was an increase in the number of c-Fos-labeled cells in the paraventricular nucleus (PVN) (190 ± 18 vs. 101 ± 15; P < 0.05), the paraventricular nucleus of the thalamus (PVT) (239 ± 23 vs. 151 ± 15; P < 0.05), and the mediodorsal thalamic nucleus (MD) (92 ± 9 vs. 63 ± 6; P < 0.05) following epicardial application of bradykinin (BK) compared with the control group (P < 0.05). Second, using extracellular single-unit recording, we found 25% of spontaneously active neurons in the thalamus were stimulated by epicardial application of BK or capsaicin in intact rats. However, 24% of spontaneously active neurons in the thalamus were still stimulated by epicardial application of BK or capsaicin despite vagotomy and sinoaortic denervation. None of the neurons in the thalamus responded to baroreflex changes in arterial pressure, induced by intravenous injection of phenylephrine or sodium nitroprusside. The CSAR was inhibited by microinjection of muscimol or lidocaine into the PVN. However, it was not inhibited or blocked by microinjection of muscimol or lidocaine into the thalamus. Taken together, these data suggest that the thalamus, while activated, is not critical for autonomic adjustments in response to activation of the CSAR. On the other hand, the PVN is critically involved in the central pathway of the CSAR.
Collapse
Affiliation(s)
- Bo Xu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | |
Collapse
|
33
|
Li P, Sun HJ, Cui BP, Zhou YB, Han Y. Angiotensin-(1-7) in the rostral ventrolateral medulla modulates enhanced cardiac sympathetic afferent reflex and sympathetic activation in renovascular hypertensive rats. Hypertension 2013; 61:820-7. [PMID: 23424239 DOI: 10.1161/hypertensionaha.111.00191] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enhancement of the cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic excitation in hypertension. The aim of the present study was to determine whether angiotensin (Ang)-(1-7) in the rostral ventrolateral medulla (RVLM) modulated the enhanced CSAR and sympathetic activation, and the signaling pathways that mediated these effects in the 2-kidney, 1-clip renovascular hypertension model. Cardiac sympathetic afferent reflex was evaluated using renal sympathetic nerve activity and mean arterial pressure responses to epicardial capsaicin application in anesthetized sinoaortic-denervated and cervical-vagotomized rats. RVLM microinjection of Ang-(1-7) induced greater increases in renal sympathetic nerve activity and mean arterial pressure, and greater enhancement in CSAR in 2-kidney, 1-clip rats than in sham-operated rats, which was blocked by Mas receptor antagonist A-779, adenylyl cyclase inhibitors SQ22536 and MDL-12,330A, and protein kinase A inhibitors rp-adenosine-3',5'-cyclic monophosphorothionate and H-89. Mas receptor expression in RVLM was increased in 2-kidney, 1-clip rats. Treatment with A-779, SQ22536, MDL-12,330A, rp-adenosine-3',5'-cyclic monophosphorothionate, or H-89 in RVLM inhibited CSAR and decreased renal sympathetic nerve activity and mean arterial pressure in 2-kidney, 1-clip rats, whereas cAMP analogue dibutyryl-cAMP had the opposite effects. Ang-(1-7) in RVLM increased, whereas A-779 decreased the cAMP level and the epicardial capsaicin application-induced increases in the cAMP level in RVLM. These results indicate that Ang-(1-7) in the RVLM enhances the CSAR and increases the sympathetic outflow and blood pressure via Mas receptor activation. The increased endogenous Ang-(1-7) and Mas receptor activity in RVLM contributes to the enhanced CSAR and sympathetic activation in renovascular hypertension, and the cAMP-protein kinase A pathway is involved in these Ang-(1-7)-mediated effects in the RVLM.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
34
|
Salusin-β in paraventricular nucleus increases blood pressure and sympathetic outflow via vasopressin in hypertensive rats. Cardiovasc Res 2013; 98:344-51. [DOI: 10.1093/cvr/cvt031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
35
|
Sun HJ, Li P, Chen WW, Xiong XQ, Han Y. Angiotensin II and angiotensin-(1-7) in paraventricular nucleus modulate cardiac sympathetic afferent reflex in renovascular hypertensive rats. PLoS One 2012; 7:e52557. [PMID: 23285085 PMCID: PMC3527547 DOI: 10.1371/journal.pone.0052557] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT(1) receptors by angiotension (Ang) II in the paraventricular nucleus (PVN) augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7) in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7) and Ang II on CSAR in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS The two-kidney, one-clip (2K1C) method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7) in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham) rats. Mas receptor antagonist A-779 and AT(1) receptor antagonist losartan induced opposite effects to Ang-(1-7) or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7). PVN pretreatment with Ang-(1-7) dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT(1) receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7) level did not. CONCLUSIONS Ang-(1-7) in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7) and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7) in PVN potentiates the effects of Ang II in renovascular hypertension.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Li
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei-Wei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Han Y, Sun HJ, Li P, Gao Q, Zhou YB, Zhang F, Gao XY, Zhu GQ. Angiotensin-(1-7) in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats. PLoS One 2012; 7:e48966. [PMID: 23139827 PMCID: PMC3489789 DOI: 10.1371/journal.pone.0048966] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/01/2012] [Indexed: 12/14/2022] Open
Abstract
Background Excessive sympathetic activity contributes to the pathogenesis and progression of hypertension. Enhanced cardiac sympathetic afferent reflex (CSAR) is involved in sympathetic activation. This study was designed to determine the roles of angiotensin (Ang)-(1–7) in paraventricular nucleus (PVN) in modulating sympathetic activity and CSAR and its signal pathway in renovascular hypertension. Methodology/Principal Findings Renovascular hypertension was induced with two-kidney, one-clip method. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in sinoaortic-denervated and cervical-vagotomized rats with anesthesia. CSAR was evaluated with the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of Ang-(1–7) and cAMP analogue db-cAMP caused greater increases in RSNA and MAP, and enhancement in CSAR in hypertensive rats than in sham-operated rats, while Mas receptor antagonist A-779 produced opposite effects. There was no significant difference in the angiotensin-converting enzyme 2 (ACE2) activity and Ang-(1–7) level in the PVN between sham-operated rats and hypertensive rats, but the Mas receptor protein expression in the PVN was increased in hypertensive rats. The effects of Ang-(1–7) were abolished by A-779, adenylyl cyclase inhibitor SQ22536 or protein kinase A (PKA) inhibitor Rp-cAMP. SQ22536 or Rp-cAMP reduced RSNA and MAP in hypertensive rats, and attenuated the CSAR in both sham-operated and hypertensive rats. Conclusions Ang-(1–7) in the PVN increases RSNA and MAP and enhances the CSAR, which is mediated by Mas receptors. Endogenous Ang-(1–7) and Mas receptors contribute to the enhanced sympathetic outflow and CSAR in renovascular hypertension. A cAMP-PKA pathway is involved in the effects of Ang-(1–7) in the PVN.
Collapse
Affiliation(s)
- Ying Han
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye-bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Ya Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
37
|
SOD1 gene transfer into paraventricular nucleus attenuates hypertension and sympathetic activity in spontaneously hypertensive rats. Pflugers Arch 2012; 465:261-70. [PMID: 23114721 DOI: 10.1007/s00424-012-1173-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/15/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Excessive sympathetic activity contributes to the initiation and progression of hypertension. Reactive oxygen species in the paraventricular nucleus (PVN) is involved in sympathetic overdrive and hypertension. The present study was designed to investigate whether superoxide dismutase 1 (SOD1) overexpression in the PVN attenuated sympathetic activation and hypertension. Adenoviral vectors containing human SOD1 or null adenoviral vectors were microinjected into the PVN of Wistar rats and spontaneously hypertensive rats (SHR). Significant depressor effects were observed from weeks 1 to 4 after SOD1 gene transfer in SHR. Acute experiments were carried out at the end of the 3rd week. In the PVN, superoxide anion and angiotensin II levels were increased while SOD1 activity and protein expression were decreased in SHR, which were attenuated by SOD1 overexpression in the PVN. However, SOD1 overexpression had no significant effect on the SOD2 activity in the PVN. The blood pressure response to ganglionic blockade, cardiac sympathetic nerve activity, and cardiac sympathetic afferent reflex (CSAR) were enhanced, and the plasma norepinephrine level was increased in SHR, which were prevented by SOD1 gene transfer in the PVN. Furthermore, SOD1 overexpression decreased the ratio of left ventricular weight to body weight, cross-sectional areas of myocardial cells, media thickness, and the media/lumen ratio of small arteries in the heart in SHR. These results indicate that SOD1 overexpression in the PVN reduces arterial blood pressure, attenuates excessive sympathetic activity and CSAR, and improves myocardial and vascular remodeling in SHR.
Collapse
|
38
|
Li P, Zhang F, Zhou YB, Cui BP, Han Y. Superoxide anions modulate the effects of angiotensin-(1–7) in the rostral ventrolateral medulla on cardiac sympathetic afferent reflex and sympathetic activity in rats. Neuroscience 2012; 223:388-98. [DOI: 10.1016/j.neuroscience.2012.07.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/28/2012] [Accepted: 07/19/2012] [Indexed: 11/15/2022]
|
39
|
Chen AD, Xiong XQ, Gan XB, Zhang F, Zhou YB, Gao XY, Han Y. Endothelin-1 in paraventricular nucleus modulates cardiac sympathetic afferent reflex and sympathetic activity in rats. PLoS One 2012; 7:e40748. [PMID: 22815806 PMCID: PMC3398005 DOI: 10.1371/journal.pone.0040748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/12/2012] [Indexed: 02/01/2023] Open
Abstract
Background Cardiac sympathetic afferent reflex (CSAR) is a positive-feedback, sympathoexcitatory reflex. Paraventricular nucleus (PVN) is an important component of the central neurocircuitry of the CSAR. The present study is designed to determine whether endothelin-1 (ET-1) in the PVN modulates the CSAR and sympathetic activity, and whether superoxide anions are involved in modulating the effects of ET-1 in the PVN in rats. Methodology/Principal Findings In anaesthetized Sprague–Dawley rats with cervical vagotomy and sinoaortic denervation, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The CSAR was evaluated by the responses of the RSNA and MAP to epicardial application of capsaicin. Microinjection of ET-1 into the bilateral PVN dose-dependently enhanced the CSAR, increased the baseline RSNA and MAP. The effects of ET-1 were blocked by PVN pretreatment with the ETA receptor antagonist BQ-123. However, BQ-123 alone had no significant effects on the CSAR, the baseline RSNA and MAP. Bilateral PVN pretreatment with either superoxide anion scavenger tempol or polyethylene glycol-superoxide dismutase (PEG-SOD) inhibited the effects of ET-1 on the CSAR, RSNA and MAP. Microinjection of ET-1 into the PVN increased the superoxide anion level in the PVN, which was abolished by PVN pretreatment with BQ-123. Epicardial application of capsaicin increased superoxide anion level in PVN which was further enhanced by PVN pretreatment with ET-1. Conclusions Exogenous activation of ETA receptors with ET-1 in the PVN enhances the CSAR, increases RSNA and MAP. Superoxide anions in PVN are involved in the effects of ET-1 in the PVN.
Collapse
Affiliation(s)
- Ai-Dong Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiao-Qing Xiong
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xian-Bing Gan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xing-Ya Gao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
40
|
Gan XB, Duan YC, Xiong XQ, Li P, Cui BP, Gao XY, Zhu GQ. Inhibition of cardiac sympathetic afferent reflex and sympathetic activity by baroreceptor and vagal afferent inputs in chronic heart failure. PLoS One 2011; 6:e25784. [PMID: 21991351 PMCID: PMC3185007 DOI: 10.1371/journal.pone.0025784] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
Background Cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation and angiotensin II (Ang II) in paraventricular nucleus (PVN) augments the CSAR in vagotomized (VT) and baroreceptor denervated (BD) rats with chronic heart failure (CHF). This study was designed to determine whether it is true in intact (INT) rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF. Methodology/Principal Findings Sham-operated (Sham) or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD) or INT. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats. Conclusions The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.
Collapse
Affiliation(s)
- Xian-Bing Gan
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yang-Can Duan
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Department of Medical Ultrasound, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiao-Qing Xiong
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Peng Li
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Bai-Ping Cui
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xing-Ya Gao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
41
|
Shi Z, Gan XB, Fan ZD, Zhang F, Zhou YB, Gao XY, De W, Zhu GQ. Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf) 2011; 203:289-97. [PMID: 21624097 DOI: 10.1111/j.1748-1716.2011.02313.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study was to determine the roles of inflammatory cytokines in paraventricular nucleus (PVN) in modulating sympathetic activity, blood pressure and cardiac sympathetic afferent reflex (CSAR). METHODS Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in anaesthetized rats with bilateral sinoaortic denervation and vagotomy. The CSAR was evaluated by the RSNA response to epicardial application of bradykinin (BK). The levels of inflammatory cytokines were measured with ELISA. RESULTS The PVN microinjection of pro-inflammatory cytokines (PIC), tumour necrosis factor (TNF)-α or interleukin (IL)-1β, increased the baseline MAP and RSNA, and enhanced the CSAR. Anti-inflammatory cytokines (AIC), IL-4 or IL-13, in the PVN only increased the baseline MAP. In the rats pretreated with TNF-α or IL-1β but not in the rats pretreated with IL-4 or IL-13, sub-response dose of angiotensin II caused significant increases in the MAP and RSNA and enhancement in the CSAR. AT(1) receptor antagonist losartan in the PVN attenuated the effects of angiotensin II, TNF-α and IL-1β, but not the effects of IL-4 and IL-13. Stimulation of cardiac sympathetic afferents with epicardial application of BK increased the levels of TNF-α, IL-1β but not IL-4 in the PVN. CONCLUSION TNF-α or IL-1β in the PVN increases blood pressure and sympathetic outflow and enhances the CSAR, which is partially dependent on the AT(1) receptors, while IL-4 or IL-13 in the PVN only increases blood pressure. There is a synergetic effect of Ang II with TNF-α or IL-1β on blood pressure, sympathetic activity and CSAR.
Collapse
Affiliation(s)
- Z Shi
- Department of Physiology, Nanjing Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Artificial microRNA interference targeting AT1a receptors in paraventricular nucleus attenuates hypertension in rats. Gene Ther 2011; 19:810-7. [DOI: 10.1038/gt.2011.145] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Xu Y, Gao Q, Gan XB, Chen L, Zhang L, Zhu GQ, Gao XY. Endogenous hydrogen peroxide in paraventricular nucleus mediates sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Exp Physiol 2011; 96:1282-92. [PMID: 21890522 DOI: 10.1113/expphysiol.2011.059733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An enhancement of the cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation in renovascular hypertension. Angiotensin II in the paraventricular nucleus (PVN) augments the CSAR and increases sympathetic outflow and blood pressure. The present study aimed to determine whether endogenous hydrogen peroxide in the PVN mediated the enhanced CSAR, sympathetic activity and the effects of angiotensin II in the PVN in renovascular hypertension induced by the two-kidney, one-clip method (2K1C) in rats. At the end of the fourth week, the rats underwent sino-aortic and vagal denervation under general anaesthesia with urethane and α-chloralose. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The CSAR was evaluated by the RSNA response to epicardial application of bradykinin. Microinjection of polyethylene glycol-catalase (PEG-CAT), an analogue of endogenous catalase, into the PVN decreased the RSNA and MAP and abolished the CSAR in both sham-operated and 2K1C rats. Microinjection into the PVN of the catalase inhibitor, aminotriazole, increased the RSNA and MAP and enhanced the CSAR. The effects of PEG-CAT or aminotriazole were greater in 2K1C rats than in sham-operated animals. The effects of angiotensin II in the PVN were abolished by pretreatment with PEG-CAT in both sham-operated and 2K1C rats; however, aminotriazole failed to potentiate the effects of angiotensin II. The catalase activity was decreased but the H(2)O(2) levels were increased in the PVN of 2K1C rats. These results indicate that endogenous H(2)O(2) in the PVN not only mediates the enhanced sympathetic activity and CSAR, but also the effects of angiotensin II in the PVN in renovascular hypertensive rats.
Collapse
Affiliation(s)
- Yao Xu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Han Y, Fan ZD, Yuan N, Xie GQ, Gao J, De W, Gao XY, Zhu GQ. Superoxide anions in the paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats. J Appl Physiol (1985) 2011; 110:646-52. [DOI: 10.1152/japplphysiol.00908.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation in renovascular hypertension. The present study was designed to determine the role of superoxide anions in the paraventricular nucleus (PVN) in mediating the enhanced CSAR and sympathetic activity in renovascular hypertension in the two-kidney, one-clip (2K1C) model. Sinoaortic denervation and vagotomy were carried out, and renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded under anesthesia. The CSAR was evaluated by the response of RSNA to the epicardial application of capsaicin. Superoxide anion levels and NAD(P)H oxidase activity in the PVN increased in 2K1C rats and were much higher in 2K1C rats than in sham-operated (sham) rats after the epicardial application of capsaicin or PVN microinjection of ANG II. In both 2K1C and sham rats, PVN microinjection of the superoxide anion scavenger tempol or the NAD(P)H oxidase inhibitor apocynin abolished the CSAR, whereas the SOD inhibitor diethyldithiocarbamic acid (DETC) potentiated the CSAR. Tempol and apocynin decreased but DETC increased baseline RSNA and MAP. ANG II in the PVN caused larger responses of the CSAR, baseline RSNA, and baseline MAP in 2K1C rats than in sham rats. The effects of ANG II were abolished by pretreatment with tempol or apocynin in both 2K1C and sham rats and augmented by DETC in the PVN in 2K1C rats. These results indicate that superoxide anions in the PVN mediate the CSAR and the effects of ANG II in the PVN. Increased superoxide anions in the PVN contribute to the enhanced CSAR and sympathetic activity in renovascular hypertension.
Collapse
Affiliation(s)
- Ying Han
- Departments of 1Physiology and
- Biochemical and Molecular Biology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | - Wei De
- Biochemical and Molecular Biology, Nanjing Medical University, Nanjing, China
| | | | - Guo-Qing Zhu
- Departments of 1Physiology and
- Biochemical and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Han Y, Yuan N, Zhang SJ, Gao J, Shi Z, Zhou YB, Gao XY, Zhu GQ. c-Src in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats. Pflugers Arch 2011; 461:437-46. [PMID: 21340460 DOI: 10.1007/s00424-011-0932-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/23/2010] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
Enhanced cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation in renovascular hypertension. The study was to determine whether c-Src in paraventricular nucleus (PVN) is involved in the enhanced CSAR and sympathetic activation in hypertensive rats induced by two-kidney one-clip (2K1C). At the end of the fourth week after 2K1C surgery, renal sympathetic nerve activity (RSNA) was recorded in anesthetized rats with baroreceptor denervation and vagotomy. The CSAR was evaluated by the RSNA response to epicardial application of capsaicin. In the PVN, c-Src activity was higher in 2K1C rats than sham-operated (Sham) rats while c-Src expression was not. Epicardial application of capsaicin or PVN microinjection of angiotensin II (Ang II) increased c-Src activity more in 2K1C than Sham rats. PVN microinjection of selective Src family kinase inhibitor 4-Amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazol [3,4-D] pyrimidine (PP2) or 2,3-Dihydro-N,N-dimethyl-2-oxo-3-[(4,5,6,7-tetrahydro-1 H-indol-2-yl)methylene]-1 H-indole-5-sulfonamide (SU6656) abolished the CSAR and decreased RSNA more in 2K1C than Sham rats. The Ang II-induced RSNA and CSAR enhancement was abolished by PP2 or SU6656 pretreatment in 2K1C and Sham rats. NAD(P)H oxidase activity and superoxide anion level in PVN were higher in 2K1C rats, which was attenuated by PP2 but increased by epicardial application of capsaicin or PVN microinjection of Ang II. The effects of capsaicin or Ang II were abolished by PP2. These results indicate that c-Src in the PVN is involved in the enhanced CSAR and sympathetic activation in renovascular hypertension, and mediates the excitatory effects of Ang II in the PVN on the CSAR and sympathetic activity via NAD(P)H oxidase-derived generation of superoxide anions.
Collapse
Affiliation(s)
- Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Xu B, Chen WW, Fan ZD, Han Y, Xiong XQ, Gao XY, Zhu GQ. Responses of neurons in paraventricular nucleus to activation of cardiac afferents and acute myocardial ischaemia in rats. Exp Physiol 2011; 96:295-304. [DOI: 10.1113/expphysiol.2010.055475] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Chen AD, Zhang SJ, Yuan N, Xu Y, De W, Gao XY, Zhu GQ. Angiotensin AT1receptors in paraventricular nucleus contribute to sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Exp Physiol 2011; 96:94-103. [DOI: 10.1113/expphysiol.2010.054353] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Zhong MK, Gao J, Zhang F, Xu B, Fan ZD, Wang W, Zhu GQ. Reactive oxygen species in rostral ventrolateral medulla modulate cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf) 2009; 197:297-304. [PMID: 19645750 DOI: 10.1111/j.1748-1716.2009.02026.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM The aim of the present study was to investigate whether reactive oxygen species (ROS) in rostral ventrolateral medulla (RVLM) modulate cardiac sympathetic afferent reflex (CSAR) and the enhanced CSAR response caused by microinjection of angiotensin II (Ang II) into the paraventricular nucleus (PVN). METHODS Under urethane and alpha-chloralose anaesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in sinoaortic-denervated and cervical-vagotomized rats. The CSAR was evaluated by the RSNA response to epicardial application of capsaicin (1.0 nmol). RESULTS Bilateral RVLM microinjection of tempol (a superoxide anion scavenger) or polyethylene glycol-superoxide dismutase (PEG-SOD, an analogue of endogenous superoxide dismutase) attenuated the CSAR, but did not cause significant change in baseline RSNA and MAP. NAD(P)H oxidase inhibitors apocynin or phenylarsine oxide (PAO) also showed similar effects, but SOD inhibitor diethyldithio-carbamic acid (DETC) enhanced the CSAR and baseline RSNA, and increased the baseline MAP. Bilateral PVN microinjection of Ang II (0.3 nmol) enhanced the CSAR and increased RSNA and MAP, which was inhibited by the pre-treatment with RVLM administration of tempol, PEG-SOD, apocynin or PAO. The pre-treatment with DETC in the RVLM only showed a tendency in potentiating the CSAR response of Ang II in the PVN, but significantly potentiated the RSNA and MAP responses of Ang II. CONCLUSION These results suggest that the NAD(P)H oxidase-derived ROS in the RVLM modulate the CSAR. The ROS in the RVLM is necessary for the enhanced CSAR response caused by Ang II in the PVN.
Collapse
Affiliation(s)
- M-K Zhong
- Department of Physiology, Nanjing Medical University, China
| | | | | | | | | | | | | |
Collapse
|