1
|
Ibáñez CA, Correa F, Lira-León G, Reyes-Castro LA, Roldán FJ, Silva-Palacios A, Buelna-Chontal M, Rodríguez-González GL, Nathanielsz PW, Zazueta C, Zambrano E. Impaired Ischemia-Reperfusion Responses in the Hearts of Aged Male and Female Offspring of Obese Rats. Arch Med Res 2024; 55:102983. [PMID: 38492326 DOI: 10.1016/j.arcmed.2024.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Maternal obesity predisposes offspring (F1) to cardiovascular disease. To evaluate basal heart function and ischemia-reperfusion (IR) responses in F1 males and females of obese mothers, female Wistar rats (F0) were fed chow or an obesogenic (MO) diet from weaning through pregnancy and lactation. Non-sibling F1 males and females were weaned to chow at postnatal day (PND) 21 and euthanized at PND 550. Offspring of MO mothers (MOF1) rarely survive beyond PND 650. Hearts were immediately isolated from euthanized F1s and subjected to 30 min ischemia with 20 min reperfusion. Retroperitoneal fat, serum triglycerides, glucose, insulin, and insulin resistance were measured. Baseline left ventricular developed pressure (LVDP) was lower in male and female MOF1 than in controls. After global ischemia, LVDP in control (C) male and female F1 recovered 78 and 83%, respectively, while recovery in MO male and female F1 was significantly lower at 28 and 52%, respectively. Following the IR challenge, MO hearts showed a higher functional susceptibility to reperfusion injury, resulting in lower cardiac reserve than controls in both sexes. Female hearts were more resistant to IR. Retroperitoneal fat was increased in male MOF1 vs. CF1. Circulating triglycerides and insulin resistance were increased in male and female MOF1 vs. CF1. These data show that MO programming reduces F1 cardiac reserve associated with age-related insulin resistance in a sex-specific manner.
Collapse
Affiliation(s)
- Carlos A Ibáñez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gabriela Lira-León
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Francisco Javier Roldán
- Departamento de Ecocardiografía, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Guadalupe L Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Peter W Nathanielsz
- Animal Science, University of Wyoming, Laramie, Wyoming, USA; Texas Pregnancy and Life Course Health Research Center, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Peixoto AB, Bravo-Valenzuela NJ, Martins WP, Tonni G, Moron AF, Mattar R, Ruano R, Rolo LC, Araujo Júnior E. Impact of overweight and obesity in the fetal cardiac function parameters in the second and third trimesters of pregnancy. Cardiol Young 2024; 34:319-324. [PMID: 37408451 DOI: 10.1017/s1047951123001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
OBJECTIVE To assess the impact of overweight and obesity in the second and third trimesters of pregnancy on fetal cardiac function parameters. METHODS We performed a prospective cohort study of 374 singleton pregnant women between 20w0d and 36w6d divided into three groups: 154 controls (body mass index - BMI < 25 kg/m2), 140 overweight (BMI 25-30 kg/m2) and 80 obese (BMI ≥ 30 kg/m2). Fetal left ventricular (LV) modified myocardial performance index (Mod-MPI) was calculated according to the following formula: (isovolumetric contraction time + isovolumetric relaxation time)/ejection time. Spectral tissue Doppler was used to determine LV and right ventricular (RV) myocardial performance index (MPI'), peak myocardial velocity during systole (S'), early diastole (E'), and late diastole (A'). RESULTS We found significant differences between the groups in maternal age (p < 0.001), maternal weight (p < 0.001), BMI (p < 0.001), number of pregnancies (p < 0.001), parity (p < 0.001), gestational age (p = 0.013), and estimated fetal weight (p = 0.003). Overweight pregnant women had higher LV Mod-MPI (0.046 versus 0.044 seconds, p = 0.009) and LV MPI' (0.50 versus 0.47 seconds, p < 0.001) than the control group. Obese pregnant women had higher RV E' than control (6.82 versus 6.33 cm/sec, p = 0.008) and overweight (6.82 versus 6.46 cm/sec, p = 0.047) groups. There were no differences in 5-min APGAR score < 7, neonatal intensive care unit admission, hypoglycemia and hyperglobulinemia between the groups. CONCLUSIONS We observed fetal myocardial dysfunction in overweight and obese pregnant women with higher LV Mod-MPI, LV MPI' and RV E' compared to fetuses from normal weight pregnant women.
Collapse
Affiliation(s)
- Alberto Borges Peixoto
- Gynecology and Obstetrics Service, Mário Palmério University Hospital, University of Uberaba (UNIUBE), Uberaba-MG, Brazil
- Department of Obstetrics and Gynecology, Federal University of Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
| | - Nathalie Jeanne Bravo-Valenzuela
- Department of Pediatrics, Pediatric Cardiology, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, Brazil
| | | | - Gabriele Tonni
- Department of Obstetrics and Neonatology, Prenatal Diagnostic Centre, Istituto di Cura e Ricovero a Carattere Scientifico (IRCCS), AUSL Reggio Emilia, Italy
| | - Antonio Fernandes Moron
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Rosiane Mattar
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Rodrigo Ruano
- Department of Maternal and Fetal Medicine, Fetal Surgery Service, Obstetrics and GynecologyUniversity of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Liliam Cristine Rolo
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Edward Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| |
Collapse
|
3
|
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc 2022; 81:227-242. [DOI: 10.1017/s0029665122001914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ever increasing prevalence of maternal obesity worldwide such that in many populations over half of women enter pregnancy either overweight or obese. This review aims to summarise the impact of maternal obesity on offspring cardiometabolic outcomes. Maternal obesity is associated with increased risk of adverse maternal and pregnancy outcomes. However, beyond this exposure to maternal obesity during development also increases the risk of her offspring developing long-term adverse cardiometabolic outcomes throughout their adult life. Both human studies and those in experimental animal models have shown that maternal obesity can programme increased risk of offspring developing obesity and adipose tissue dysfunction; type 2 diabetes with peripheral insulin resistance and β-cell dysfunction; CVD with impaired cardiac structure and function and hypertension via impaired vascular and kidney function. As female offspring themselves are therefore likely to enter pregnancy with poor cardiometabolic health this can lead to an inter-generational cycle perpetuating the transmission of poor cardiometabolic health across generations. Maternal exercise interventions have the potential to mitigate some of the adverse effects of maternal obesity on offspring health, although further studies into long-term outcomes and how these translate to a clinical context are still required.
Collapse
|
4
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
5
|
Maternal Obesity and Cardiac Development in the Offspring: Study in Human Neonates and Minipigs. JACC Cardiovasc Imaging 2017; 11:1750-1755. [PMID: 29153568 DOI: 10.1016/j.jcmg.2017.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/04/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the consequences of maternal overweight on cardiac development in offspring in infants (short term) and minipigs (short and longer term). BACKGROUND The epidemic of overweight involves pregnant women. The uterine environment affects organ development, modulating disease susceptibility. Offspring of obese mothers have higher rates of cardiovascular events and mortality. METHODS Echocardiography was performed in infants born to lean and overweight mothers at birth and at 3, 6, and 12 months of age. In minipigs born to mothers fed a high-fat diet or a normal diet, cardiac development (echocardiography, histology), glucose metabolism and perfusion (positron emission tomography), triglyceride and glycogen content, and myocardial enzymes regulating metabolism (mass spectrometry) were determined from birth to adulthood. RESULTS In neonates, maternal overweight, especially in the last trimester, predicted a thicker left ventricular posterior wall at birth (4.1 ± 0.3 vs. 3.3 ± 0.2 mm; p < 0.05) and larger end-diastolic and stroke volumes at 1 year. Minipigs born to mothers fed a high-fat diet showed greater left ventricular mass (p = 0.0001), chambers (+100%; p < 0.001), stroke volume (+75%; p = 0.001), cardiomyocyte nuclei (+28%; p = 0.02), glucose uptake, and glycogen accumulation at birth (+100%; p < 0.005), with lower levels of oxidative enzymes, compared with those born to mothers fed a normal diet. Subsequently, they developed myocardial insulin resistance and glycogen depletion. Late adulthood showed elevated heart rate (111 ± 5 vs. 84 ± 8 beats/min; p < 0.05) and ejection fraction and deficient fatty acid oxidative enzymes. CONCLUSIONS Neonatal changes in cardiac morphology were explained by late-trimester maternal body mass index; myocardial glucose overexposure seen in minipigs can justify early human findings. Longer term effects in minipigs consisted of myocardial insulin resistance, enzymatic alterations, and hyperdynamic systolic function.
Collapse
|
6
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Jiang X, Ma H, Li C, Cao Y, Wang Y, Zhang Y, Liu Y. Effects of neonatal dexamethasone administration on cardiac recovery ability under ischemia-reperfusion in 24-wk-old rats. Pediatr Res 2016; 80:128-35. [PMID: 26991264 DOI: 10.1038/pr.2016.54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evaluations of stress-induced cardiac functional alterations in adults after neonatal glucocorticoid (GC) treatment have been limited. In the present study, we evaluated adult cardiac functional recovery during postischemic reperfusion and measured cardiac gene expression involved energy metabolism in rats neonatally treated with dexamethasone (DEX). METHOD Male Wistar rats were injected DEX in first 3 d after birth and controls were received saline (SAL). At 24 wk of age, insulin tolerance tests were performed, plasma lipid levels were measured, and left ventricular function and myocardial infarct size were evaluated. Expressions of genes involved in cardiac energy metabolism were measured by quantitative real-time polymerase chain reaction (PCR) and western blot. RESULTS In 24-wk-old rats, neonatal DEX administration caused dyslipidemia, impaired cardiac recovery function and increased size of infarction, decreased cardiac expression of glucose transporter 4(GLUT4), peroxisome proliferative-activated receptor gamma coactivator 1α (PGC-1α) and ratios of phospho-forkhead box O1/forkhead box O1 (p-FoxO1/FoxO1) and phospho AMP-activated protein kinase/AMP-activated protein kinase (p-AMPK/AMPK) but increased pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) expression compared with controls. CONCLUSION Neonatal DEX administration impairs cardiac functional recovery during reperfusion following ischemia in 24-wk-old rats. Reduced cardiac glucose utilization may contribute to the long-term detrimental effects caused by neonatal DEX treatment.
Collapse
Affiliation(s)
- Xinli Jiang
- Department of Ophthalmology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Chunguang Li
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue Cao
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Wang
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yan Liu
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
9
|
Blackmore HL, Ozanne SE. Programming of cardiovascular disease across the life-course. J Mol Cell Cardiol 2014; 83:122-30. [PMID: 25510678 DOI: 10.1016/j.yjmcc.2014.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 02/03/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality, affecting both developed and developing countries. Whilst it is well recognized that our risk of CVD can be determined by the interaction between our genetics and lifestyle, this only partly explains the variability at the population level. Based on these well-known risk factors, for many years, intervention and primary prevention strategies have focused on modifying lifestyle factors in adulthood. However, research shows that our risk of CVD can be pre-determined by our early life environment and this area of research is known as the Developmental Origins of Health and Disease. The aim of this review is to evaluate our current understanding of mechanisms underlying the programming of CVD. This article is part of a special issue entitled CV Aging.
Collapse
Affiliation(s)
- Heather L Blackmore
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom.
| | - Susan E Ozanne
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
10
|
Ramirez-Perez FI, Schenewerk AL, Coffman KL, Foote C, Ji T, Rivera RM, Martinez-Lemus LA. Effects of the use of assisted reproductive technologies and an obesogenic environment on resistance artery function and diabetes biomarkers in mice offspring. PLoS One 2014; 9:e112651. [PMID: 25386661 PMCID: PMC4227714 DOI: 10.1371/journal.pone.0112651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
Maternal obesity affects the incidence of cardiovascular disease and diabetes in offspring. Also the use of assisted reproductive technologies (ART) has been associated with cardiovascular deficiencies in offspring. Obese women often suffer from infertility and use ART to achieve a pregnancy, but the combined effects of maternal obesity and ART on cardiovascular health and incidence of diabetes in the offspring is not known. Here, we report the effects of the use of ART within an obesogenic environment, consisting of feeding a western diet (WD) to dams and offspring, on resistance artery function and presence of diabetes biomarkers in juvenile mice offspring. Our results indicate that WD and ART interacted to induce endothelial dysfunction in mesenteric resistance arteries isolated from 7-week-old mice offspring. This was determined by presence of a reduced acetylcholine-induced dilation compared to controls. The arteries from these WD-ART mice also had greater wall cross-sectional areas and wall to lumen ratios indicative of vascular hypertrophic remodeling. Of the diabetes biomarkers measured, only resistin was affected by a WD×ART interaction. Serum resistin was significantly greater in WD-ART offspring compared to controls. Diet and sex effects were observed in other diabetes biomarkers. Our conclusion is that in mice the use of ART within an obesogenic environment interacts to favor the development of endothelial dysfunction in the resistance arteries of juvenile offspring, while having marginal effects on diabetes biomarkers.
Collapse
Affiliation(s)
- Francisco I. Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Angela L. Schenewerk
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Katy L. Coffman
- Department of Statistics, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Christopher Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
- * E-mail: (LAM); (RMR)
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65211, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, 65211, United States of America
- * E-mail: (LAM); (RMR)
| |
Collapse
|
11
|
Abstract
It is widely recognized that environmental insults during adulthood including smoking, lack of exercise and a poor diet increases an individual's risk of cardiovascular disease (CVD). However, research initiated over the last two decades has highlighted that our risk of CVD can be programmed following adverse exposures during early development. Such adverse exposures may include, undernutrition, placental insufficiency, hypoxia, overnutrition and obesity. This review aims to address the current Western obesity crisis by addressing the long-term impact of maternal overnutrition and obesity on the offspring's future risk of CVD. Although current human studies have observed the presence of adverse CVD markers in children born to obese mothers, animal models have proved vital in understanding the underlying mechanisms involved. Mechanisms suggested to be involved in the programming of CVD in the offspring include increased oxidative stress, inflammation, lipotoxicity and epigenetics. CVD remains the greatest cause of death worldwide, therefore further understanding of the mechanisms mediating these effects is important in the development of intervention strategies.
Collapse
|
12
|
Iozzo P, Holmes M, Schmidt MV, Cirulli F, Guzzardi MA, Berry A, Balsevich G, Andreassi MG, Wesselink JJ, Liistro T, Gómez-Puertas P, Eriksson JG, Seckl J. Developmental ORIgins of Healthy and Unhealthy AgeiNg: the role of maternal obesity--introduction to DORIAN. Obes Facts 2014; 7:130-51. [PMID: 24801105 PMCID: PMC5644840 DOI: 10.1159/000362656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/12/2014] [Indexed: 12/31/2022] Open
Abstract
Europe has the highest proportion of elderly people in the world. Cardiovascular disease, type 2 diabetes, sarcopenia and cognitive decline frequently coexist in the same aged individual, sharing common early risk factors and being mutually reinforcing. Among conditions which may contribute to establish early risk factors, this review focuses on maternal obesity, since the epidemic of obesity involves an ever growing number of women of reproductive age and children, calling for appropriate studies to understand the consequences of maternal obesity on the offspring's health and for developing effective measures and policies to improve people's health before their conception and birth. Though the current knowledge suggests that the long-term impact of maternal obesity on the offspring's health may be substantial, the outcomes of maternal obesity over the lifespan have not been quantified, and the molecular changes induced by maternal obesity remain poorly characterized. We hypothesize that maternal insulin resistance and reduced placental glucocorticoid catabolism, leading to oxidative stress, may damage the DNA, either in its structure (telomere shortening) or in its function (via epigenetic changes), resulting in altered gene expression/repair, disease during life, and pathological ageing. This review illustrates the background to the EU-FP7-HEALTH-DORIAN project.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pis
- *Patricia Iozzo, MD, PhD, Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa (Italy),
| | - Megan Holmes
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | - Tiziana Liistro
- Institute of Clinical Physiology, National Research Council (CNR), Pis
| | | | - Johan G. Eriksson
- Samfundet Folkhälsan i Svenska Finland rf (Folkhälsan), Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Jonathan Seckl
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Dowling D, McAuliffe FM. The molecular mechanisms of offspring effects from obese pregnancy. Obes Facts 2013; 6:134-45. [PMID: 23571656 PMCID: PMC5644678 DOI: 10.1159/000350706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/29/2012] [Indexed: 11/19/2022] Open
Abstract
The incidence of obesity, increased weight gain and the popularity of high-fat / high-sugar diets are seriously impacting upon the global population. Billions of individuals are affected, and although diet and lifestyle are of paramount importance to the development of adult obesity, compelling evidence is emerging which suggests that maternal obesity and related disorders may be passed on to the next generation by non-genetic means. The processes acting within the uteri of obese mothers may permanently predispose offspring to a diverse plethora of diseases ranging from obesity and diabetes to psychiatric disorders. This review aims to summarise some of the molecular mechanisms and active processes currently known about maternal obesity and its effect on foetal and neonatal physiology and metabolism. Complex and multifactorial networks of molecules are intertwined and culminate in a pathologically synergistic manner to cause disruption and disorganisation of foetal physiology. This altered phenotype may potentiate the cycle of intergenerational transmission of obesity and related disorders.
Collapse
Affiliation(s)
| | - Fionnuala M. McAuliffe
- *Prof. Dr. Fionnuala M. McAuliffe, UCD Obstetrics & Gynaecology, School of Medicine and Medical Science, University College Dublin, National Maternity Hospital, Dublin 2 (Ireland),
| |
Collapse
|
14
|
Glucose intolerance associated with early-life exposure to maternal cafeteria feeding is dependent upon post-weaning diet. Br J Nutr 2011; 107:964-78. [DOI: 10.1017/s0007114511003916] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In addition to being a risk factor for adverse outcomes of pregnancy, maternal obesity may play a role in determining the long-term disease patterns observed in the resulting offspring, with metabolic and dietary factors directly programming fetal development. The present study evaluated the potential for feeding rats an obesogenic cafeteria diet (O) pre-pregnancy, during pregnancy, during lactation and for the offspring post-weaning, to programme glucose tolerance. Early-life exposure to an O diet had no significant effect on offspring food intake. Early-life programming associated with O feeding to induce maternal obesity was associated with reduced adiposity in offspring weaned onto low-fat chow. Adult offspring exposed to an O diet in early life and weaned on a chow diet had low fasting glucose and insulin concentrations and appeared to be more sensitive to insulin during an intraperitoneal glucose tolerance test. When weaned on an O diet, male offspring were more prone to glucose intolerance than females. On the basis of the area under the glucose curve, maternal O feeding at any point from pre-mating to lactation was associated with impaired glucose tolerance. The mechanism for this was not identified, although increased hepatic expression of Akt2 may have indicated disturbance of insulin signalling pathways. The observations in the present study confirm that maternal overnutrition and obesity during pregnancy are risk factors for metabolic disturbance in the resulting offspring. Although the effects on glucose homeostasis were independent of offspring adiposity, the programming of a glucose-intolerant phenotype was only observed when offspring were weaned on a diet that induced greater fat deposition.
Collapse
|
15
|
Roysommuti S, Malila P, Jirakulsomchok D, Wyss JM. Adult renal function is modified by perinatal taurine status in conscious male rats. J Biomed Sci 2010; 17 Suppl 1:S31. [PMID: 20804607 PMCID: PMC2994393 DOI: 10.1186/1423-0127-17-s1-s31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Perinatal taurine exposure influences renal function in adult female offspring. This study tests the hypothesis that prenatal rather than postnatal taurine exposure alters renal function in adult conscious male rats. Female Sprague Dawley rats were fed normal rat chow and tap water alone (Control), tap water containing 3% β-alanine (taurine depletion, TD) or tap water containing 3% taurine (taurine supplementation, TS) either from conception until delivery (fetal period; TDF or TSF) or from delivery until weaning (lactation period; TDL or TSL). After weaning, male offspring were fed with the normal rat chow and tap water ad libitum. At 7-8 weeks of age, renal function was studied in conscious, restrained rats. Mean arterial pressures were slightly higher in rats receiving taurine supplementation during either the fetal or lactation periods (compared to Control and TD groups), but heart rates were not significantly different among groups. Effective renal blood flows were lower in TDF, TDL, and TSF rats (TDF 4.6±0.8 ml/min/g kidney weight (KW), TDL 3.0±0.9 ml/min/g KW, and TSF 2.8±0.7 ml/min/g KW) than in TSL (7.7±0.9 ml/min/g KW) or Control rats (7.3±1.6 ml/min/g KW). These differences were correlated with significant increases in renal vascular resistance in TDF, TDL, and TSF groups compared to TSL and Control rats. In contrast, glomerular filtration rates were not significantly different among groups. Although basal water and sodium excretion were slightly lower in TDL and TSF rats compared to other groups, their diuretic and natriuretic responses to an acute saline load were not different from Control. The present data indicate that in adult male rats, both perinatal supplementation and depletion of taurine can alter renal hemodynamics, and these effects are differentially time-dependent.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | | | | |
Collapse
|
16
|
Abstract
There are many instances in life when the environment plays a critical role in the health outcomes of an individual, yet none more so than those experienced in fetal and neonatal life. One of the most detrimental environmental problems encountered during this critical growth period are changes in nutrition to the growing fetus and newborn. Disturbances in the supply of nutrients and oxygen to the fetus can not only lead to adverse fetal growth patterns, but they have also been associated with the development of features of metabolic syndrome in adult life. This fetal response has been termed developmental programming or the developmental origins of health and disease. The present review focuses on the epidemiological studies that identified this association and the importance that animal models have played in studying this concept. We also address the potential mechanisms that may underpin the developmental programming of future disease. It also highlights (i) how developmental plasticity, although beneficial for short-term survival, can subsequently programme glucose intolerance and insulin resistance in adult life by eliciting changes in key organ structures and the epigenome, and (ii) how aberrant mitochondrial function can potentially lead to the development of Type 2 diabetes and other features of metabolic syndrome.
Collapse
Affiliation(s)
- Matthew J Warner
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | | |
Collapse
|
17
|
Wang J, Ma H, Tong C, Zhang H, Lawlis GB, Li Y, Zang M, Ren J, Nijland MJ, Ford SP, Nathanielsz PW, Li J. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. FASEB J 2010; 24:2066-76. [PMID: 20110268 DOI: 10.1096/fj.09-142315] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Maternal obesity in pregnancy predisposes offspring to insulin resistance and associated cardiovascular disease. Here, we used a well-established sheep model to investigate the effects of maternal obesity on cardiac functions. Multiparous ewes were assigned to a control (CON) diet [100% of National Research Council (NRC) recommendations] or an obesogenic (OB) diet (150% of NRC recommendations) from 60 d before conception to necropsy on d 135 of pregnancy. Fetal blood glucose and insulin were increased (P<0.01, n=8) in OB (35.09+/-2.03 mg/dl and 3.40+/-1.43 microU/ml, respectively) vs. CON ewes (23.80+/-1.38 mg/dl and 0.769+/-0.256 microU/ml). Phosphorylation of AMP-activated protein kinase (AMPK), a cardioprotective signaling pathway, was reduced (P<0.05), while the stress signaling pathway, p38 MAPK, was up-regulated (P<0.05) in OB maternal and fetal hearts. Phosphorylation of c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 (IRS-1) at Ser-307 were increased (P<0.05) in OB fetal heart associated with lower downstream PI3K-Akt activity (P<0.05), indicating impaired cardiac insulin signaling. Although OB fetal hearts exhibited a normal contractile function vs. CON fetal hearts during basal perfusion, they developed an impaired heart-rate-left-ventricular-developed pressure product in response to high workload stress. Taken together, fetuses of OB mothers demonstrate alterations in cardiac PI3K-Akt, AMPK, and JNK-IRS-1 signaling pathways that would predispose them to insulin resistance and cardiac dysfunction.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|