1
|
Seefeldt JM, Homilius C, Hansen J, Lassen TR, Jespersen NR, Jensen RV, Boedtkjer E, Bøtker HE, Nielsen R. Short-Chain Fatty Acid Butyrate Is an Inotropic Agent With Vasorelaxant and Cardioprotective Properties. J Am Heart Assoc 2024; 13:e033744. [PMID: 38686853 PMCID: PMC11179878 DOI: 10.1161/jaha.123.033744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND The heart can metabolize the microbiota-derived short-chain fatty acid butyrate. Butyrate may have beneficial effects in heart failure, but the underlying mechanisms are unknown. We tested the hypothesis that butyrate elevates cardiac output by mechanisms involving direct stimulation of cardiac contractility and vasorelaxation in rats. METHODS AND RESULTS We examined the effects of butyrate on (1) in vivo hemodynamics using parallel echocardiographic and invasive blood pressure measurements, (2) isolated perfused hearts in Langendorff systems under physiological conditions and after ischemia and reperfusion, and (3) isolated coronary arteries mounted in isometric wire myographs. We tested Na-butyrate added to injection solutions or physiological buffers and compared its effects with equimolar doses of NaCl. Butyrate at plasma concentrations of 0.56 mM increased cardiac output by 48.8±14.9%, stroke volume by 38.5±12.1%, and left ventricular ejection fraction by 39.6±6.2%, and lowered systemic vascular resistance by 33.5±6.4% without affecting blood pressure or heart rate in vivo. In the range between 0.1 and 5 mM, butyrate increased left ventricular systolic pressure by up to 23.7±3.4% in isolated perfused hearts and by 9.4±2.9% following ischemia and reperfusion, while reducing myocardial infarct size by 81.7±16.9%. Butyrate relaxed isolated coronary septal arteries concentration dependently with an EC50=0.57 mM (95% CI, 0.23-1.44). CONCLUSIONS We conclude that butyrate elevates cardiac output through mechanisms involving increased cardiac contractility and vasorelaxation. This effect of butyrate was not associated with adverse myocardial injury in damaged hearts exposed to ischemia and reperfusion.
Collapse
Affiliation(s)
- Jacob Marthinsen Seefeldt
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Department of Cardiology Aarhus University Hospital Aarhus Denmark
| | | | - Jakob Hansen
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Department of Forensic Medicine Aarhus University Hospital Aarhus Denmark
| | | | | | | | - Ebbe Boedtkjer
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Hans Erik Bøtker
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Department of Cardiology Aarhus University Hospital Aarhus Denmark
| | - Roni Nielsen
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Department of Cardiology Aarhus University Hospital Aarhus Denmark
| |
Collapse
|
2
|
Končeková J, Kotorová K, Gottlieb M, Bona M, Bonová P. Changes in excitatory amino acid transporters in response to remote ischaemic preconditioning and glutamate excitotoxicity. Neurochem Int 2024; 173:105658. [PMID: 38135159 DOI: 10.1016/j.neuint.2023.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The successful implementation of remote ischaemic conditioning as a clinical neuroprotective strategy requires a thorough understanding of its basic principles, which can be modified for each patient. The mechanisms of glutamate homeostasis appear to be a key component. In the current study, we focused on the brain-to-blood glutamate shift mediated by glutamate transporters (excitatory amino acid transports [EAATs]) and the effect of remote ischaemic preconditioning (RIPC) as a mediator of ischaemic tolerance. We used model mimicking ischaemia-mediated excitotoxicity (intracerebroventricular administration of glutamate) to avoid the indirect effect of ischaemia-triggered mechanisms. We found quantitative changes in EAAT2 and EAAT3 and altered membrane trafficking of EAAT1 on the cells of the choroid plexus. These changes could underlie the beneficial effects of ischaemic tolerance. There was reduced oxidative stress and increased glutathione level after RIPC treatment. Moreover, we determined the stimulus-specific response on EAATs. While glutamate overdose stimulated EAAT2 and EAAT3 overexpression, RIPC induced membrane trafficking of EAAT1 and EAAT2 rather than a change in their expression. Taken together, mechanisms related to glutamate homeostasis, especially EAAT-mediated transport, represents a powerful tool of ischaemic tolerance and allow a certain amount of flexibility based on the stimulus used.
Collapse
Affiliation(s)
- Jana Končeková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Klaudia Kotorová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Košice, 040 01, Slovak Republic
| | - Petra Bonová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic.
| |
Collapse
|
3
|
Neckář J, Alánová P, Olejníčková V, Papoušek F, Hejnová L, Šilhavý J, Behuliak M, Bencze M, Hrdlička J, Vecka M, Jarkovská D, Švíglerová J, Mistrová E, Štengl M, Novotný J, Ošťádal B, Pravenec M, Kolář F. Excess ischemic tachyarrhythmias trigger protection against myocardial infarction in hypertensive rats. Clin Sci (Lond) 2021; 135:2143-2163. [PMID: 34486670 DOI: 10.1042/cs20210648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Increased level of C-reactive protein (CRP) is a risk factor for cardiovascular diseases, including myocardial infarction and hypertension. Here, we analyzed the effects of CRP overexpression on cardiac susceptibility to ischemia/reperfusion (I/R) injury in adult spontaneously hypertensive rats (SHR) expressing human CRP transgene (SHR-CRP). Using an in vivo model of coronary artery occlusion, we found that transgenic expression of CRP predisposed SHR-CRP to repeated and prolonged ventricular tachyarrhythmias. Excessive ischemic arrhythmias in SHR-CRP led to a significant reduction in infarct size (IS) compared with SHR. The proarrhythmic phenotype in SHR-CRP was associated with altered heart and plasma eicosanoids, myocardial composition of fatty acids (FAs) in phospholipids, and autonomic nervous system imbalance before ischemia. To explain unexpected IS-limiting effect in SHR-CRP, we performed metabolomic analysis of plasma before and after ischemia. We also determined cardiac ischemic tolerance in hearts subjected to remote ischemic perconditioning (RIPer) and in hearts ex vivo. Acute ischemia in SHR-CRP markedly increased plasma levels of multiple potent cardioprotective molecules that could reduce IS at reperfusion. RIPer provided IS-limiting effect in SHR that was comparable with myocardial infarction observed in naïve SHR-CRP. In hearts ex vivo, IS did not differ between the strains, suggesting that extra-cardiac factors play a crucial role in protection. Our study shows that transgenic expression of human CRP predisposes SHR-CRP to excess ischemic ventricular tachyarrhythmias associated with a drop of pump function that triggers myocardial salvage against lethal I/R injury likely mediated by protective substances released to blood from hypoxic organs and tissue at reperfusion.
Collapse
Affiliation(s)
- Jan Neckář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Alánová
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Olejníčková
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - František Papoušek
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Hejnová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Šilhavý
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Behuliak
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Bencze
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Hrdlička
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dagmar Jarkovská
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jitka Švíglerová
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Eliška Mistrová
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Milan Štengl
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Bohuslav Ošťádal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - František Kolář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Tonnesen PT, Hjortbak MV, Lassen TR, Seefeldt JM, Bøtker HE, Jespersen NR. Myocardial salvage by succinate dehydrogenase inhibition in ischemia-reperfusion injury depends on diabetes stage in rats. Mol Cell Biochem 2021; 476:2675-2684. [PMID: 33666828 PMCID: PMC8192402 DOI: 10.1007/s11010-021-04108-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/11/2021] [Indexed: 01/03/2023]
Abstract
Inhibition of succinate dehydrogenase (SDH) by Dimethyl Malonate (DiMal) reduces cardiac ischemia-reperfusion (IR) injury. We investigated the cardioprotective effect of DiMal in a rat model during advancing type 2 diabetes. Zucker Diabetic Fatty rats and lean controls were investigated corresponding to prediabetes, onset and mature diabetes. Hearts were mounted in an isolated perfused model, and subjected to IR for investigation of infarct size (IS) and mitochondrial respiratory control ratio (RCR). DiMal was administered for 10 min before ischemia. Compared with age-matched non-diabetic rats, prediabetic rats had larger IS (49 ± 4% vs. 36 ± 2%, p = 0.007), rats with onset diabetes smaller IS (51 ± 3% vs. 62 ± 3%, p = 0.05) and rats with mature diabetes had larger IS (79 ± 3% vs. 69 ± 2%, p = 0.06). At the prediabetic stage DiMal did not alter IS. At onset of diabetes DiMal 0.6 mM increased IS in diabetic but not in non-diabetic control rats (72 ± 4% vs. 51 ± 3%, p = 0.003). At mature diabetes DiMal 0.1 and 0.6 mM reduced IS (68 ± 3% vs. 79 ± 3% and 64 ± 5% vs. 79 ± 3%, p = 0.1 and p = 0.01), respectively. DiMal 0.1 mM alone reduced IS in age-matched non-diabetic animals (55 ± 3% vs. 69 ± 2% p = 0.01). RCR was reduced at mature diabetes but not modulated by DiMal. Modulation of SDH activity results in variable infarct size reduction depending on presence and the stage of diabetes. Modulation of SDH activity may be an unpredictable cardioprotective approach.
Collapse
Affiliation(s)
- Pernille Tilma Tonnesen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Marie Vognstoft Hjortbak
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jacob Marthinsen Seefeldt
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
5
|
Penna C, Alloatti G, Crisafulli A. Mechanisms Involved in Cardioprotection Induced by Physical Exercise. Antioxid Redox Signal 2020; 32:1115-1134. [PMID: 31892282 DOI: 10.1089/ars.2019.8009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Regular exercise training can reduce myocardial damage caused by acute ischemia/reperfusion (I/R). Exercise can reproduce the phenomenon of ischemic preconditioning, due to the capacity of brief periods of ischemia to reduce myocardial damage caused by acute I/R. In addition, exercise may also activate the multiple kinase cascade responsible for cardioprotection even in the absence of ischemia. Recent Advances: Animal and human studies highlighted the fact that, besides to reduce risk factors related to cardiovascular disease, the beneficial effects of exercise are also due to its ability to induce conditioning of the heart. Exercise behaves as a physiological stress that triggers beneficial adaptive cellular responses, inducing a protective phenotype in the heart. The factors contributing to the exercise-induced heart preconditioning include stimulation of the anti-radical defense system and nitric oxide production, opioids, myokines, and adenosine-5'-triphosphate (ATP) dependent potassium channels. They appear to be also involved in the protective effect exerted by exercise against cardiotoxicity related to chemotherapy. Critical Issues and Future Directions: Although several experimental evidences on the protective effect of exercise have been obtained, the mechanisms underlying this phenomenon have not yet been fully clarified. Further studies are warranted to define precise exercise prescriptions in patients at risk of myocardial infarction or undergoing chemotherapy.
Collapse
Affiliation(s)
- Claudia Penna
- National Institute for Cardiovascular Research (INRC), Bologna, Italy.,Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | | | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Lab., University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Piccirillo S, Magi S, Castaldo P, Preziuso A, Lariccia V, Amoroso S. NCX and EAAT transporters in ischemia: At the crossroad between glutamate metabolism and cell survival. Cell Calcium 2020; 86:102160. [PMID: 31962228 DOI: 10.1016/j.ceca.2020.102160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/29/2023]
Abstract
Energy metabolism impairment is a central event in the pathophysiology of ischemia. The limited availability of glucose and oxygen strongly affects mitochondrial activity, thus leading to ATP depletion. In this setting, the switch to alternative energy sources could ameliorate cells survival by enhancing ATP production, thus representing an attractive strategy for ischemic treatment. In this regard, some studies have recently re-evaluated the metabolic role of glutamate and its potential to promote cell survival under pathological conditions. In the present review, we discuss the ability of glutamate to exert an "energizing role" in cardiac and neuronal models of hypoxia/reoxygenation (H/R) injury, focusing on the Na+/Ca2+ exchanger (NCX) and the Na+-dependent excitatory amino acid transporters (EAATs) as key players in this metabolic pathway.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
7
|
Xu J, Khoury N, Jackson CW, Escobar I, Stegelmann SD, Dave KR, Perez-Pinzon MA. Ischemic Neuroprotectant PKCε Restores Mitochondrial Glutamate Oxaloacetate Transaminase in the Neuronal NADH Shuttle after Ischemic Injury. Transl Stroke Res 2019; 11:418-432. [PMID: 31473978 DOI: 10.1007/s12975-019-00729-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
The preservation of mitochondrial function is a major protective strategy for cerebral ischemic injuries. Previously, our laboratory demonstrated that protein kinase C epsilon (PKCε) promotes the synthesis of mitochondrial nicotinamide adenine dinucleotide (NAD+). NAD+ along with its reducing equivalent, NADH, is an essential co-factor needed for energy production from glycolysis and oxidative phosphorylation. Yet, NAD+/NADH are impermeable to the inner mitochondrial membrane and their import into the mitochondria requires the activity of specific shuttles. The most important neuronal NAD+/NADH shuttle is the malate-aspartate shuttle (MAS). The MAS has been implicated in synaptic function and is potentially dysregulated during cerebral ischemia. The aim of this study was to determine if metabolic changes induced by PKCε preconditioning involved regulation of the MAS. Using primary neuronal cultures, we observed that the activation of PKCε enhanced mitochondrial respiration and glycolysis in vitro. Conversely, inhibition of the MAS resulted in decreased oxidative phosphorylation and glycolytic capacity. We further demonstrated that activation of PKCε increased the phosphorylation of key components of the MAS in rat brain synaptosomal fractions. Additionally, PKCε increased the enzyme activity of glutamic oxaloacetic transaminase 2 (GOT2), an effect that was dependent on the import of PKCε into the mitochondria and phosphorylation of GOT2. Furthermore, PKCε activation was able to rescue decreased GOT2 activity induced by ischemia. These findings reveal novel protective targets and mechanisms against ischemic injury, which involves PKCε-mediated phosphorylation and activation of GOT2 in the MAS.
Collapse
Affiliation(s)
- Jing Xu
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Nathalie Khoury
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Charles W Jackson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Samuel D Stegelmann
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
8
|
Semantic Multi-Classifier Systems Identify Predictive Processes in Heart Failure Models across Species. Biomolecules 2018; 8:biom8040158. [PMID: 30486323 PMCID: PMC6315933 DOI: 10.3390/biom8040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022] Open
Abstract
Genetic model organisms have the potential of removing blind spots from the underlying gene regulatory networks of human diseases. Allowing analyses under experimental conditions they complement the insights gained from observational data. An inevitable requirement for a successful trans-species transfer is an abstract but precise high-level characterization of experimental findings. In this work, we provide a large-scale analysis of seven weak contractility/heart failure genotypes of the model organism zebrafish which all share a weak contractility phenotype. In supervised classification experiments, we screen for discriminative patterns that distinguish between observable phenotypes (homozygous mutant individuals) as well as wild-type (homozygous wild-types) and carriers (heterozygous individuals). As the method of choice we use semantic multi-classifier systems, a knowledge-based approach which constructs hypotheses from a predefined vocabulary of high-level terms (e.g., Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or Gene Ontology (GO) terms). Evaluating these models leads to a compact description of the underlying processes and guides the screening for new molecular markers of heart failure. Furthermore, we were able to independently corroborate the identified processes in Wistar rats.
Collapse
|
9
|
Inotropic Effects of Prostacyclins on the Right Ventricle Are Abolished in Isolated Rat Hearts With Right-Ventricular Hypertrophy and Failure. J Cardiovasc Pharmacol 2017; 69:1-12. [PMID: 27652910 DOI: 10.1097/fjc.0000000000000435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Prostacyclin mimetics are vasodilatory agents used in the treatment of pulmonary arterial hypertension. The direct effects of prostanoids on right-ventricular (RV) function are unknown. We aimed to investigate the direct effects of prostacyclin mimetics on RV function in hearts with and without RV hypertrophy and failure. METHODS Wistar rats were subjected to pulmonary trunk banding to induce compensated RV hypertrophy (n = 32) or manifest RV failure (n = 32). Rats without banding served as healthy controls (n = 30). The hearts were excised and perfused in a Langendorff system and subjected to iloprost, treprostinil, epoprostenol, or MRE-269 in increasing concentrations. The effect on RV function was evaluated using a balloon-tipped catheter inserted into the right ventricle. RESULTS In control hearts, iloprost, treprostinil, and MRE-269 improved RV function. The effect was, however, absent in hearts with RV hypertrophy and failure. Treprostinil and MRE-269 even impaired RV function in hearts with manifest RV failure. CONCLUSIONS Iloprost, treprostinil, and MRE-269 improved RV function in the healthy rat heart. RV hypertrophy abolished the positive inotropic effect, and in the failing right ventricle, MRE-269 and treprostinil impaired RV function. This may be related to changes in prostanoid receptor expression and reduced coronary flow reserve in the hypertrophic and failing right ventricle.
Collapse
|
10
|
Essential role of the Na +-Ca2 + exchanger (NCX) in glutamate-enhanced cell survival in cardiac cells exposed to hypoxia/reoxygenation. Sci Rep 2017; 7:13073. [PMID: 29026150 PMCID: PMC5638850 DOI: 10.1038/s41598-017-13478-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Myocardial ischemia culminates in ATP production impairment, ionic derangement and cell death. The provision of metabolic substrates during reperfusion significantly increases heart tolerance to ischemia by improving mitochondrial performance. Under normoxia, glutamate contributes to myocardial energy balance as substrate for anaplerotic reactions, and we demonstrated that the Na+/Ca2+ exchanger1 (NCX1) provides functional support for both glutamate uptake and use for ATP synthesis. Here we investigated the role of NCX1 in the potential of glutamate to improve energy metabolism and survival of cardiac cells subjected to hypoxia/reoxygenation (H/R). Specifically, in H9c2-NCX1 myoblasts, ATP levels, mitochondrial activities and cell survival were significantly compromised after H/R challenge. Glutamate supplementation at the onset of the reoxygenation phase significantly promoted viability, improved mitochondrial functions and normalized the H/R-induced increase of NCX1 reverse-mode activity. The benefits of glutamate were strikingly lost in H9c2-WT (lacking NCX1 expression), or in H9c2-NCX1 and rat cardiomyocytes treated with either NCX or Excitatory Amino Acid Transporters (EAATs) blockers, suggesting that a functional interplay between these transporters is critically required for glutamate-induced protection. Collectively, these results revealed for the first time the key role of NCX1 for the beneficial effects of glutamate against H/R-induced cell injury.
Collapse
|
11
|
Powers SK. Exercise: Teaching myocytes new tricks. J Appl Physiol (1985) 2017; 123:460-472. [PMID: 28572498 DOI: 10.1152/japplphysiol.00418.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/31/2022] Open
Abstract
Endurance exercise training promotes numerous cellular adaptations in both cardiac myocytes and skeletal muscle fibers. For example, exercise training fosters changes in mitochondrial function due to increased mitochondrial protein expression and accelerated mitochondrial turnover. Additionally, endurance exercise training alters the abundance of numerous cytosolic and mitochondrial proteins in both cardiac and skeletal muscle myocytes, resulting in a protective phenotype in the active fibers; this exercise-induced protection of cardiac and skeletal muscle fibers is often referred to as "exercise preconditioning." As few as 3-5 consecutive days of endurance exercise training result in a preconditioned cardiac phenotype that is sheltered against ischemia-reperfusion-induced injury. Similarly, endurance exercise training results in preconditioned skeletal muscle fibers that are resistant to a variety of stresses (e.g., heat stress, exercise-induced oxidative stress, and inactivity-induced atrophy). Many studies have probed the mechanisms responsible for exercise-induced preconditioning of cardiac and skeletal muscle fibers; these studies are important, because they provide an improved understanding of the biochemical mechanisms responsible for exercise-induced preconditioning, which has the potential to lead to innovative pharmacological therapies aimed at minimizing stress-induced injury to cardiac and skeletal muscle. This review summarizes the development of exercise-induced protection of cardiac myocytes and skeletal muscle fibers and highlights the putative mechanisms responsible for exercise-induced protection in the heart and skeletal muscles.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
12
|
Vincent A, Sportouch C, Covinhes A, Barrère C, Gallot L, Delgado-Betancourt V, Lattuca B, Solecki K, Boisguérin P, Piot C, Nargeot J, Barrère-Lemaire S. Cardiac mGluR1 metabotropic receptors in cardioprotection. Cardiovasc Res 2017; 113:644-655. [PMID: 28453728 DOI: 10.1093/cvr/cvx024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/31/2017] [Indexed: 10/21/2023] Open
Abstract
AIMS In a previous study using a genome-wide microarray strategy, we identified metabotropic glutamate receptor 1 (mGluR1) as a putative cardioprotective candidate in ischaemic postconditioning (PostC). In the present study, we investigated the role of cardiac mGluR1 receptors during cardioprotection against myocardial ischaemia-reperfusion injury in the mouse myocardium. METHODS AND RESULTS mGluR1 activation by glutamate administered 5 min before reperfusion in C57Bl/6 mice subjected to a myocardial ischaemia protocol strongly decreased both infarct size and DNA fragmentation measured at 24 h reperfusion. This cardioprotective effect was mimicked by the mGluR1 agonist, DHPG (10 μM), and abolished when glutamate was coinjected with the mGluR1 antagonist YM298198 (100 nM). Wortmannin (100 nM), an inhibitor of PI3-kinase, was able to prevent glutamate-induced cardioprotection. A glutamate bolus at the onset of reperfusion failed to protect the heart of mGluR1 knockout mice subjected to a myocardial ischaemia-reperfusion protocol, although PostC still protected the mGluR1 KO mice. Glutamate-treatment improved post-infarction functional recovery as evidenced by an echocardiographic study performed 15 days after treatment and by a histological evaluation of fibrosis 21 days post-treatment. Interestingly, restoration of functional mGluR1s by a PostC stimulus was evidenced at the transcriptional level. Since mGluR1s were localized at the surface membrane of cardiomyocytes, they might contribute to the cardioprotective effect of ischaemic PostC as other Gq-coupled receptors. CONCLUSION This study provides the first demonstration that mGluR1 activation at the onset of reperfusion induces cardioprotection and might represent a putative strategy to prevent ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Anne Vincent
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Catherine Sportouch
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
- Département de cardiologie interventionnelle, Clinique du Millénaire, F-34000 Montpellier, France
| | - Aurélie Covinhes
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Christian Barrère
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Laura Gallot
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Viviana Delgado-Betancourt
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Benoît Lattuca
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Kamila Solecki
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | | | - Christophe Piot
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
- Département de cardiologie interventionnelle, Clinique du Millénaire, F-34000 Montpellier, France
| | - Joël Nargeot
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Stéphanie Barrère-Lemaire
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| |
Collapse
|
13
|
Jespersen NR, Yokota T, Støttrup NB, Bergdahl A, Paelestik KB, Povlsen JA, Dela F, Bøtker HE. Pre-ischaemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischaemia-reperfusion. J Physiol 2017; 595:3765-3780. [PMID: 28093764 DOI: 10.1113/jp273408] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/12/2017] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Pre-ischaemic administration of aminooxiacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against ischaemia-reperfusion injury. The underlying mechanism remains unknown. We examined whether transient inhibition of the MAS during ischaemia and early reperfusion by AOA treatment could prevent mitochondrial damage at later reperfusion. The AOA treatment preserved mitochondrial respiratory capacity with reduced mitochondrial oxidative stress during late reperfusion to the same extent as ischaemic preconditioning (IPC). However, AOA treatment, but not IPC, reduced the myocardial interstitial concentration of tricarboxylic acid cycle intermediates at the onset of reperfusion. The results obtained in the present study demonstrate that metabolic regulation by inhibition of the MAS at the onset of reperfusion may be beneficial for the preservation of mitochondrial function during late reperfusion in an IR-injured heart. ABSTRACT Mitochondrial dysfunction plays a central role in ischaemia-reperfusion (IR) injury. Pre-ischaemic administration of aminooxyacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against IR injury, although the underlying mechanism remains unknown. We hypothesized that a transient inhibition of the MAS during ischaemia and early reperfusion could preserve mitochondrial function at later phase of reperfusion in the IR-injured heart to the same extent as ischaemic preconditioning (IPC), which is a well-validated cardioprotective strategy against IR injury. In the present study, we show that pre-ischaemic administration of AOA preserved mitochondrial complex I-linked state 3 respiration and fatty acid oxidation during late reperfusion in IR-injured isolated rat hearts. AOA treatment also attenuated the excessive emission of mitochondrial reactive oxygen species during state 3 with complex I-linked substrates during late reperfusion, which was consistent with reduced oxidative damage in the IR-injured heart. As a result, AOA treatment reduced infarct size after reperfusion. These protective effects of MAS inhibition on the mitochondria were similar to those of IPC. Intriguingly, the protection of mitochondrial function by AOA treatment appears to be different from that of IPC because AOA treatment, but not IPC, downregulated myocardial tricarboxilic acid (TCA)-cycle intermediates at the onset of reperfusion. MAS inhibition thus preserved mitochondrial respiratory capacity and decreased mitochondrial oxidative stress during late reperfusion in the IR-injured heart, at least in part, via metabolic regulation of TCA cycle intermediates in the mitochondria at the onset of reperfusion.
Collapse
Affiliation(s)
| | - Takashi Yokota
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Andreas Bergdahl
- Department of Exercise Science, Concordia University, Montreal, Canada
| | | | | | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
|
15
|
Nishizawa K, Yano T, Tanno M, Miki T, Kuno A, Tobisawa T, Ogasawara M, Muratsubaki S, Ohno K, Ishikawa S, Miura T. Chronic Treatment With an Erythropoietin Receptor Ligand Prevents Chronic Kidney Disease–Induced Enlargement of Myocardial Infarct Size. Hypertension 2016; 68:697-706. [DOI: 10.1161/hypertensionaha.116.07480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/01/2016] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease (CKD) is known to increase myocardial infarct size after ischemia/reperfusion. However, a strategy to prevent the CKD-induced myocardial susceptibility to ischemia/reperfusion injury has not been developed. Here, we examined whether epoetin β pegol, a continuous erythropoietin receptor activator (CERA), normalizes myocardial susceptibility to ischemia/reperfusion injury by its effects on protective signaling and metabolomes in CKD. CKD was induced by 5/6 nephrectomy in rats (subtotal nephrectomy, SNx), whereas sham-operated rats served controls (Sham). Infarct size as percentage of area at risk after 20-minutes coronary occlusion/2-hour reperfusion was larger in SNx than in Sham: 60.0±4.0% versus 43.9±2.2%. Administration of CERA (0.6 μg/kg SC every 7 days) for 4 weeks reduced infarct size in SNx (infarct size as percentage of area at risk=36.9±3.9%), although a protective effect was not detected for the acute injection of CERA. Immunoblot analyses revealed that myocardial phospho-Akt-Ser473 levels under baseline conditions and on reperfusion were lower in SNx than in Sham, and CERA restored the Akt phosphorylation on reperfusion. Metabolomic analyses showed that glucose 6-phosphate and glucose 1-phosphate were reduced and malate:aspartate ratio was 1.6-fold higher in SNx than in Sham, suggesting disturbed flux of malate–aspartate shuttle by CKD. The CERA improved the malate:aspartate ratio in SNx to the control level. In H9c2 cells, mitochondrial Akt phosphorylation by insulin-like growth factor-1 was attenuated by malate–aspartate shuttle inhibition. In conclusion, the results suggest that a CERA prevents CKD-induced susceptibility of the myocardium to ischemia/reperfusion injury by restoration of Akt-mediated signaling possibly via normalized malate–aspartate shuttle flux.
Collapse
Affiliation(s)
- Keitaro Nishizawa
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| | - Masaya Tanno
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| | - Takayuki Miki
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| | - Atsushi Kuno
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| | - Toshiyuki Tobisawa
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| | - Makoto Ogasawara
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| | - Shingo Muratsubaki
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| | - Kouhei Ohno
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| | - Satoko Ishikawa
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| | - Tetsuji Miura
- Departments of Cardiovascular, Renal, and Metabolic Medicine (K.N., T.Y., M.T., T.M., A.K., T.T., M.O., S.M., K.O., S.I., T.M.) and Pharmacology (A.K.), Sapporo Medical University School of Medicine, Japan
| |
Collapse
|
16
|
Dong G, Chen T, Ren X, Zhang Z, Huang W, Liu L, Luo P, Zhou H. Rg1 prevents myocardial hypoxia/reoxygenation injury by regulating mitochondrial dynamics imbalance via modulation of glutamate dehydrogenase and mitofusin 2. Mitochondrion 2015; 26:7-18. [PMID: 26593335 DOI: 10.1016/j.mito.2015.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/09/2015] [Accepted: 11/13/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE Mitochondrial dysfunction is a prominent feature of ischemia heart disease but the underlying mechanism of dynamics (fusion/fission) is still unclear. Here we investigated a novel function and underlying mechanism of Rg1 on an in vitro cardiomyocyte model of hypoxia/reoxygenation (H/R). METHODS Cellular cytotoxicity was evaluated by MTT, mitochondrial viable staining, and cardiac marker detection. Mitochondrial function was evaluated by ATP content measurement, MMP determination, ROS, OCR and ECAR assay. Mitochondrial dynamics was investigated by Live-cell imaging with time-lapse fluorescence microscopy and morphological features were evaluated by the high-content image analysis. Mitochondrial fusion and fission-related proteins, GDH were determined by Western blot, RT-PCR and immunofluorescence. RESULTS Rg1 moderated GDH dysregulation and then protected against H/R-induced cellular damage and mitochondrial dysfunction in a dose-dependent manner. Rg1 significantly increased mitochondrial length, reduced the number of cells with fragmented mitochondria and up-regulated the MFN2 expression finally leading to preventing the imbalance of mitochondrial dynamics following H/R. Knock-down of MFN2 by specific siRNA completely abolished the ability of Rg1 to cell survival by H/R. CONCLUSION Rg1 through modulation of GDH and MFN2 maintained mitochondrial dynamics that resulted in protection against H/R-induced cardiomyocyte injury. All these results put forward a new protective mechanism of Rg1 on the therapeutic potential in cardiac I/R disorders.
Collapse
Affiliation(s)
- Gengting Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Tingbo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Xuecong Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Zhifeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Weixue Huang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Pei Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| |
Collapse
|
17
|
Drake KJ, Shotwell MS, Wikswo JP, Sidorov VY. Glutamine and glutamate limit the shortening of action potential duration in anoxia-challenged rabbit hearts. Physiol Rep 2015; 3:3/9/e12535. [PMID: 26333831 PMCID: PMC4600381 DOI: 10.14814/phy2.12535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In clinical conditions, amino acid supplementation is applied to improve contractile function, minimize ischemia/reperfusion injury, and facilitate postoperative recovery. It has been shown that glutamine enhances myocardial ATP/APD (action potential duration) and glutathione/oxidized glutathione ratios, and can increase hexosamine biosynthesis pathway flux, which is believed to play a role in cardioprotection. Here, we studied the effect of glutamine and glutamate on electrical activity in Langendorff-perfused rabbit hearts. The hearts were supplied by Tyrode's media with or without 2.5 mmol/L glutamine and 150 μmol/L glutamate, and exposed to two 6-min anoxias with 20-min recovery in between. Change in APD was detected using a monophasic action potential probe. A nonlinear mixed-effects regression technique was used to evaluate the effect of amino acids on APD over the experiment. Typically, the dynamic of APD change encompasses three phases: short transient increase (more prominent in the first episode), slow decrease, and fast increase (starting with the beginning of recovery). The effect of both anoxic challenge and glutamine/glutamate was cumulative, being more pronounced in the second anoxia. The amino acids' protective effect became largest by the end of anoxia – 20.0% (18.9, 95% CI: [2.6 ms, 35.1 ms]), during the first anoxia and 36.6% (27.1, 95% CI: [7.7 ms, 46.6 ms]), during the second. Following the second anoxia, APD difference between control and supplemented hearts progressively increased, attaining 10.8% (13.6, 95% CI: [4.1 ms, 23.1 ms]) at the experiments' end. Our data reveal APD stabilizing and suggest an antiarrhythmic capacity of amino acid supplementation in anoxic/ischemic conditions.
Collapse
Affiliation(s)
- Kenneth J Drake
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee
| | - Matthew S Shotwell
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - John P Wikswo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Veniamin Y Sidorov
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
18
|
Powers SK, Smuder AJ, Kavazis AN, Quindry JC. Mechanisms of exercise-induced cardioprotection. Physiology (Bethesda) 2014; 29:27-38. [PMID: 24382869 DOI: 10.1152/physiol.00030.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury can cause ventricular cell death and is a major pathological event leading to morbidity and mortality in those with coronary artery disease. Interestingly, as few as five bouts of exercise on consecutive days can rapidly produce a cardiac phenotype that resists IR-induced myocardial injury. This review summarizes the development of exercise-induced cardioprotection and the mechanisms responsible for this important adaptive response.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | | | | |
Collapse
|
19
|
Nguyen NT, Zhang X, Wu C, Lange RA, Chilton RJ, Lindsey ML, Jin YF. Integrative computational and experimental approaches to establish a post-myocardial infarction knowledge map. PLoS Comput Biol 2014; 10:e1003472. [PMID: 24651374 PMCID: PMC3961365 DOI: 10.1371/journal.pcbi.1003472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/02/2014] [Indexed: 01/04/2023] Open
Abstract
Vast research efforts have been devoted to providing clinical diagnostic markers of myocardial infarction (MI), leading to over one million abstracts associated with “MI” and “Cardiovascular Diseases” in PubMed. Accumulation of the research results imposed a challenge to integrate and interpret these results. To address this problem and better understand how the left ventricle (LV) remodels post-MI at both the molecular and cellular levels, we propose here an integrative framework that couples computational methods and experimental data. We selected an initial set of MI-related proteins from published human studies and constructed an MI-specific protein-protein-interaction network (MIPIN). Structural and functional analysis of the MIPIN showed that the post-MI LV exhibited increased representation of proteins involved in transcriptional activity, inflammatory response, and extracellular matrix (ECM) remodeling. Known plasma or serum expression changes of the MIPIN proteins in patients with MI were acquired by data mining of the PubMed and UniProt knowledgebase, and served as a training set to predict unlabeled MIPIN protein changes post-MI. The predictions were validated with published results in PubMed, suggesting prognosticative capability of the MIPIN. Further, we established the first knowledge map related to the post-MI response, providing a major step towards enhancing our understanding of molecular interactions specific to MI and linking the molecular interaction, cellular responses, and biological processes to quantify LV remodeling. Heart attack, known medically as myocardial infarction, often occurs as a result of partial shortage of blood supply to a portion of the heart, leading to the death of heart muscle cells. Following myocardial infarction, complications might arise, including arrhythmia, myocardial rupture, left ventricular dysfunction, and heart failure. Although myocardial infarction can be quickly diagnosed using a various number of tests, including blood tests and electrocardiography, there have been no available prognostic tests to predict the long-term outcome in response to myocardial infarction. Here, we present a framework to analyze how the left ventricle responds to myocardial infarction by combining protein interactome and experimental results retrieved from published human studies. The framework organized current understanding of molecular interactions specific to myocardial infarction, cellular responses, and biological processes to quantify left ventricular remodeling process. Specifically, our knowledge map showed that transcriptional activity, inflammatory response, and extracellular matrix remodeling are the main functional themes post myocardial infarction. In addition, text analytics of relevant abstracts revealed differentiated protein expressions in plasma or serum expressions from patients with myocardial infarction. Using this data, we predicted expression levels of other proteins following myocardial infarction.
Collapse
Affiliation(s)
- Nguyen T. Nguyen
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Xiaolin Zhang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Cathy Wu
- Center for Bioinformatics and Computational Biology and Protein Information Resource, University of Delaware, Newark, Delaware, United States of America
| | - Richard A. Lange
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Robert J. Chilton
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Merry L. Lindsey
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi, United States of America
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Povlsen JA, Løfgren B, Dalgas C, Jespersen NR, Johnsen J, Bøtker HE. Frequent biomarker analysis in the isolated perfused heart reveals two distinct phases of reperfusion injury. Int J Cardiol 2013; 171:9-14. [PMID: 24315340 DOI: 10.1016/j.ijcard.2013.11.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/20/2013] [Accepted: 11/17/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reperfusion injury and its modulation are incompletely characterized. The purpose of the present study was to characterize the dynamics of reperfusion injury by portraying the temporal release of lactate dehydrogenase (LDH) during ischemia-reperfusion injury in an isolated heart model. METHODS We studied infarct size and LDH release in the following groups: I) Effect of reperfusion length was evaluated in 79 rats subjected to 40 minute ischemia and 60, 90, 120 or 180 minute reperfusion and a) ischemic preconditioning (IPC) or b) No IPC (control). II) LDH release kinetics was studied in 6 rats subjected to calcium-paradox to verify the applicability of LDH as a dynamic marker of cellular injury. III) Ischemia-reperfusion injury modification was studied in 36 rats subjected to: a) ischemic postconditioning, b) prolonged ischemia, c) Reperfusion Injury Salvage Kinase (RISK) pathway inhibition with wortmannin in IPC hearts, d) RISK activation with insulin or e) mitochondrial permeability transition pore (mPTP) inhibition with cyclosporine A. RESULTS Infarct size increased from 60 to 180 minute reperfusion in control hearts. LDH was released in two separate peaks from 2 to 20 and 30 to 120 min of reperfusion. IPC attenuated both peaks. Postconditioning and agents known to modify reperfusion injury attenuated the second peak. CONCLUSIONS Frequent measurement of myocardial ischemia markers for 120 min of reperfusion allows identification of two phases of reperfusion injury that are affected by cardioprotective stimuli. The second phase contributes significantly to final infarct size, which is modifiable and a potential target for cardioprotective interventions.
Collapse
Affiliation(s)
- Jonas Agerlund Povlsen
- Department of Cardiology, Aarhus University Hospital, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark; Institute of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark.
| | - Bo Løfgren
- Department of Cardiology, Aarhus University Hospital, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark; Institute of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark
| | - Christian Dalgas
- Department of Cardiology, Aarhus University Hospital, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark; Institute of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark; Institute of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark
| | - Jacob Johnsen
- Department of Cardiology, Aarhus University Hospital, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark; Institute of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark; Institute of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark
| |
Collapse
|
21
|
Wang Z, Li H, Vuohelainen V, Tenhunen J, Hämäläinen M, Rinne T, Moilanen E, Paavonen T, Tarkka M, Mennander A. Confined ischemia may improve remote myocardial outcome after rat cardiac arrest. Scandinavian Journal of Clinical and Laboratory Investigation 2013; 74:27-36. [DOI: 10.3109/00365513.2013.855944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Povlsen JA, Løfgren B, Dalgas C, Birkler RID, Johannsen M, Støttrup NB, Bøtker HE. Protection against myocardial ischemia-reperfusion injury at onset of type 2 diabetes in Zucker diabetic fatty rats is associated with altered glucose oxidation. PLoS One 2013; 8:e64093. [PMID: 23704975 PMCID: PMC3660588 DOI: 10.1371/journal.pone.0064093] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/08/2013] [Indexed: 01/06/2023] Open
Abstract
Background Inhibition of glucose oxidation during initial reperfusion confers protection against ischemia-reperfusion (IR) injury in the heart. Mitochondrial metabolism is altered with progression of type 2 diabetes (T2DM). We hypothesized that the metabolic alterations present at onset of T2DM induce cardioprotection by metabolic shutdown during IR, and that chronic alterations seen in late T2DM cause increased IR injury. Methods Isolated perfused hearts from 6 (prediabetic), 12 (onset of T2DM) and 24 (late T2DM) weeks old male Zucker diabetic fatty rats (ZDF) and their age-matched heterozygote controls were subjected to 40 min ischemia/120 min reperfusion. IR injury was assessed by TTC-staining. Myocardial glucose metabolism was evaluated by glucose tracer kinetics (glucose uptake-, glycolysis- and glucose oxidation rates), myocardial microdialysis (metabolomics) and tissue glycogen measurements. Results T2DM altered the development in sensitivity towards IR injury compared to controls. At late diabetes ZDF hearts suffered increased damage, while injury was decreased at onset of T2DM. Coincident with cardioprotection, oxidation of exogenous glucose was decreased during the initial and normalized after 5 minutes of reperfusion. Metabolomic analysis of citric acid cycle intermediates demonstrated that cardioprotection was associated with a reversible shutdown of mitochondrial glucose metabolism during ischemia and early reperfusion at onset of but not at late type 2 diabetes. Conclusions The metabolic alterations of type 2 diabetes are associated with protection against IR injury at onset but detrimental effects in late diabetes mellitus consistent with progressive dysfunction of glucose oxidation. These findings may explain the variable efficacy of cardioprotective interventions in individuals with type 2 diabetes.
Collapse
|
23
|
Talwar S, Jha AJ, Hasija S, Choudhary SK, Airan B. Paediatric myocardial protection-strategies, controversies and recent developments. Indian J Thorac Cardiovasc Surg 2013. [DOI: 10.1007/s12055-013-0208-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
24
|
Sánchez JA, Rodríguez-Sinovas A, Barba I, Miró-Casas E, Fernández-Sanz C, Ruiz-Meana M, Alburquerque-Béjar JJ, García-Dorado D. Activation of RISK and SAFE pathways is not involved in the effects of Cx43 deficiency on tolerance to ischemia-reperfusion injury and preconditioning protection. Basic Res Cardiol 2013; 108:351. [PMID: 23595215 DOI: 10.1007/s00395-013-0351-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 10/27/2022]
Abstract
Connexin 43 (Cx43) deficiency increases myocardial tolerance to ischemia-reperfusion injury and abolishes preconditioning protection. It is not known whether modifications in baseline signaling through protective RISK or SAFE pathways or in response to preconditioning may contribute to these effects. To answer this question we used Cx43(Cre-ER(T)/fl) mice, in which Cx43 expression is abolished after 4-hydroxytamoxifen (4-OHT) administration. Isolated hearts from Cx43(Cre-ER(T)/fl) mice, or from Cx43(fl/fl) controls, treated with vehicle or 4-OHT, were submitted to global ischemia (40 min) and reperfusion. Cx43 deficiency was associated with reduced infarct size after ischemia-reperfusion (11.17 ± 3.25 % vs. 65.04 ± 3.79, 59.31 ± 5.36 and 65.40 ± 4.91, in Cx43(fl/fl) animals treated with vehicle, Cx43(fl/fl) mice treated with 4-OHT, and Cx43(Cre-ER(T)/fl) mice treated with vehicle, respectively, n = 8-9, p < 0.001). However, the ratio phosphorylated/total protein expression for Akt, ERK-1/2, GSK3β and STAT3 was not increased in normoxic samples from animals lacking Cx43. Instead, a reduction in the phosphorylation state of GSK3β was observed in Cx43-deficient mice (ratio: 0.15 ± 0.02 vs. 0.56 ± 0.11, 0.77 ± 0.15, and 0.46 ± 0.14, respectively, n = 5-6, p < 0.01). Furthermore, ischemic preconditioning (IPC, 4 cycles of 3.5 min of ischemia and 5 min of reperfusion) increased phosphorylation of ERK-1/2, GSK3β, and STAT3 in all hearts without differences between groups (n = 5-6, p < 0.05), although Cx43 deficient mice were not protected by either IPC or pharmacological preconditioning with diazoxide. Our data demonstrate that modification of RISK and SAFE signaling does not contribute to the role of Cx43 in the increased tolerance to myocardial ischemia-reperfusion injury and in preconditioning protection.
Collapse
Affiliation(s)
- Jose A Sánchez
- Laboratorio de Cardiología Experimental, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Metabolic inflexibility and protein lysine acetylation in heart mitochondria of a chronic model of type 1 diabetes. Biochem J 2013; 449:253-61. [PMID: 23030792 DOI: 10.1042/bj20121038] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diabetic cardiomyopathy refers to the changes in contractility that occur to the diabetic heart that can arise in the absence of vascular disease. Mitochondrial bioenergetic deficits and increased free radical production are pathological hallmarks of diabetic cardiomyopathy, but the mechanisms and causal relationships between mitochondrial deficits and the progression of disease are not understood. We evaluated cardiac mitochondrial function in a rodent model of chronic Type 1 diabetes (OVE26 mice) before the onset of contractility deficits. We found that the most pronounced change in OVE26 heart mitochondria is severe metabolic inflexibility. This inflexibility is characterized by large deficits in mitochondrial respiration measured in the presence of non-fatty acid substrates. Metabolic inflexibility occurred concomitantly with decreased activities of PDH (pyruvate dehydrogenase) and complex II. Hyper-acetylation of protein lysine was also observed. Treatment of control heart mitochondria with acetic anhydride (Ac2O), an acetylating agent, preferentially inhibited respiration by non-fatty acid substrates and increased superoxide production. We have concluded that metabolic inflexibility, induced by discrete enzymatic and molecular changes, including hyper-acetylation of protein lysine residues, precedes mitochondrial defects in a chronic rodent model of Type 1 diabetes.
Collapse
|
26
|
Chinopoulos C. Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. J Neurosci Res 2013; 91:1030-43. [PMID: 23378250 DOI: 10.1002/jnr.23196] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 01/15/2023]
Abstract
The citric acid cycle forms a major metabolic hub and as such it is involved in many disease states involving energetic imbalance. In spite of the fact that it is being branded as a "cycle", during hypoxia, when the electron transport chain does not oxidize reducing equivalents, segments of this metabolic pathway remain operational but exhibit opposing directionalities. This serves the purpose of harnessing high-energy phosphates through matrix substrate-level phosphorylation in the absence of oxidative phosphorylation. In this Mini-Review, these segments are appraised, pointing to the critical importance of the α-ketoglutarate dehydrogenase complex dictating their directionalities.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary.
| |
Collapse
|
27
|
Methanol extract of Desmodium gangeticum DC root mimetic post-conditioning effect in isolated perfused rat heart by stimulating muscarinic receptors. ASIAN PAC J TROP MED 2012; 5:448-54. [DOI: 10.1016/s1995-7645(12)60076-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/15/2012] [Accepted: 02/15/2012] [Indexed: 11/21/2022] Open
|
28
|
Mitręga K, Zorniak M, Varghese B, Lange D, Nożynski J, Porc M, Białka S, Krzemiński TF. Beneficial effects of l-leucine and l-valine on arrhythmias, hemodynamics and myocardial morphology in rats. Pharmacol Res 2011; 64:218-25. [PMID: 21605982 DOI: 10.1016/j.phrs.2011.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/14/2011] [Accepted: 04/26/2011] [Indexed: 01/19/2023]
Abstract
Branched chain amino acids (BCAA) have been shown to have a general protective effect on the heart in different animal models as well as in humans. However, so far no attempt has been made to specifically elucidate their influence on arrhythmias. Our study was performed to evaluate whether an infusion of either l-leucine or l-valine in a dose of 1mgkg(-1)h(-1) 10min before a 7-min period of left anterior descending artery occlusion followed by 15min of reperfusion, had an effect on arrhythmias measured during the reperfusion phase in the ischemia- and reperfusion-induced arrhythmias model in rats in vivo. The effect of the infusion of these substances on mean arterial blood pressure was monitored throughout the experiment. Both of the tested amino acids exhibited significant antiarrhythmic properties. l-Leucine reduced the duration of ventricular fibrillation (P<0.05) and l-valine decreased the duration of ventricular fibrillation (P<0.001) and ventricular tachycardia (P<0.05). The two amino acids were generally hypotensive. l-Valine lowered blood pressure in all phases of the experiment (P<0.05) while l-leucine lowered this parameter mainly towards the end of occlusion and reperfusion (P<0.05). In addition, 30min infusion of the amino acids in the used dose did not produce any apparent adverse histological changes that were remarkably different from control. In summary, the results of our study suggest that l-leucine and l-valine in the dose that was used attenuates arrhythmias and are hypotensive in their influence. Our findings lend support to the many ongoing investigations into the benefit of the application of l-leucine and l-valine in cardiology like their addition to cardioplegic solutions.
Collapse
Affiliation(s)
- Katarzyna Mitręga
- Chair and Department of Pharmacology, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nielsen TT, Støttrup NB, Løfgren B, Bøtker HE. Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle. Cardiovasc Res 2011; 91:382-91. [PMID: 21349875 DOI: 10.1093/cvr/cvr051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The convergence of cardioprotective intracellular signalling pathways to modulate mitochondrial function as an end-target of cytoprotective stimuli is well described. However, our understanding of whether the complementary changes in mitochondrial energy metabolism are secondary responses or inherent mechanisms of ischaemic cardioprotection remains incomplete. In the heart, the malate-aspartate shuttle (MAS) constitutes the primary metabolic pathway for transfer of reducing equivalents from the cytosol into the mitochondria for oxidation. The flux of MAS is tightly linked to the flux of the tricarboxylic acid cycle and the electron transport chain, partly by the amino acid l-glutamate. In addition, emerging evidence suggests the MAS is an important regulator of cytosolic and mitochondrial calcium homeostasis. In the isolated rat heart, inhibition of MAS during ischaemia and early reperfusion by the aminotransferase inhibitor aminooxyacetate induces infarct limitation, improves haemodynamic responses, and modulates glucose metabolism, analogous to effects observed in classical ischaemic preconditioning. On the basis of these findings, the mechanisms through which MAS preserves mitochondrial function and cell survival are reviewed. We conclude that the available evidence is supportive of a down-regulation of mitochondrial respiration during lethal ischaemia with a gradual 'wake-up' during reperfusion as a pivotal feature of ischaemic cardioprotection. Finally, comments on modulating myocardial energy metabolism by the cardioprotective amino acids glutamate and glutamine are given.
Collapse
Affiliation(s)
- Torsten Toftegaard Nielsen
- Department of Cardiology, Skejby Hospital, Aarhus University Hospital, Brendstrupgaardsvej 100, Aarhus N, Denmark.
| | | | | | | |
Collapse
|
30
|
Kristiansen SB, Løfgren B, Nielsen JM, Støttrup NB, Buhl ES, Nielsen-Kudsk JE, Nielsen TT, Rungby J, Flyvbjerg A, Bøtker HE. Comparison of two sulfonylureas with high and low myocardial K(ATP) channel affinity on myocardial infarct size and metabolism in a rat model of type 2 diabetes. Diabetologia 2011; 54:451-8. [PMID: 21104069 DOI: 10.1007/s00125-010-1970-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/04/2010] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Sulfonylureas (SUs) may impair outcome in patients with acute coronary syndrome. Most experimental studies of the myocardial effects of SU treatment are performed in non-diabetic models. We compared the effect of two widely used SUs, glibenclamide (gb) and gliclazide (gc), with high and low myocardial K(ATP) channel affinity, respectively, at therapeutic concentrations on infarct size, left ventricular (LV) function and myocardial glycogen, lactate and alanine content before and after ischaemia/reperfusion (I/R). METHODS Non-diabetic Wistar and diabetic Goto-Kakizaki rat hearts were investigated in a Langendorff preparation. Gb (0.1 μmol/l) and gc (1.0 μmol/l) were administrated throughout the study. Infarct size was evaluated after 120 min of reperfusion. Myocardial metabolite content was measured before and after ischaemia. RESULTS Infarct size was smaller in diabetic hearts than in non-diabetic hearts (0.33 ± 0.03 vs 0.51 ± 0.05, p < 0.05). Gb increased infarct size (0.54 ± 0.04 vs 0.33 ± 0.03, p < 0.05) and reduced post-ischaemic LV developed pressure (60 ± 3 vs 76 ± 3 mmHg, p < 0.05) and coronary flow (4.9 ± 0.5 vs 7.1 ± 0.4 ml min(-1) g(-1), p < 0.05) in gb-treated diabetic rats compared with untreated diabetic rats. On comparing gb-treated diabetic rats with untreated diabetic rats, glycogen content was reduced before (9.1 ± 0.6 vs 13.6 ± 1.0 nmol/mg wet weight, p < 0.01) and after ischaemia (0.9 ± 0.2 vs 1.8 ± 0.2 nmol/mg wet weight, p < 0.05), and lactate (4.8 ± 0.4 vs 3.2 ± 0.3 nmol/mg wet weight, p < 0.01) and alanine (1.38 ± 0.12 vs 0.96 ± 0.09 nmol/mg wet weight, p < 0.05) contents were increased during reperfusion. Gc-treatment of diabetic and non-diabetic rats did not affect any of the measured variables. CONCLUSIONS/INTERPRETATIONS Gb, but not gc, exacerbates I/R injury and deteriorates LV function in diabetic hearts. These effects of gb on diabetic hearts may be due to detrimental effects on myocardial carbohydrate metabolism.
Collapse
Affiliation(s)
- S B Kristiansen
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Støttrup NB, Løfgren B, Birkler RD, Nielsen JM, Wang L, Caldarone CA, Kristiansen SB, Contractor H, Johannsen M, Bøtker HE, Nielsen TT. Inhibition of the malate–aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection. Cardiovasc Res 2010; 88:257-66. [DOI: 10.1093/cvr/cvq205] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Rodríguez-Sinovas A, Sánchez JA, González-Loyola A, Barba I, Morente M, Aguilar R, Agulló E, Miró-Casas E, Esquerda N, Ruiz-Meana M, García-Dorado D. Effects of substitution of Cx43 by Cx32 on myocardial energy metabolism, tolerance to ischaemia and preconditioning protection. J Physiol 2010; 588:1139-51. [PMID: 20156849 PMCID: PMC2853001 DOI: 10.1113/jphysiol.2009.186577] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/08/2010] [Indexed: 12/31/2022] Open
Abstract
Connexin 43 (Cx43) plays an important role in cardioprotective signalling by mechanisms at least in part independent of gap junctional communication. To investigate whether this role is related to specific properties of this connexin isoform, we used a knock-in mouse model in which the coding region of Cx43 is replaced by that of Cx32. Homozygous Cx43KI32 mice showed reduced cell-to-cell Lucifer Yellow transfer (P < 0.01), but QRS duration and left ventricular fractional shortening (echocardiography) were similar to those in wild-type animals. NMR spectroscopy detected reduced ATP and increased lactate content in myocardium from homozygous Cx43KI32 animals (P < 0.05). Despite this, isolated homozygous Cx43KI32 hearts showed smaller infarcts after ischaemia-reperfusion (40 min/60 min) as compared to hearts from heterozygous and wild-type animals (13 and 31% reduction, respectively, P < 0.05). Cardiac myocytes isolated from Cx43KI32 mouse hearts also showed a reduced rate of cell death after simulated ischaemia-reperfusion. In a separate series of experiments, both ischaemic (4 cycles of 3.5 min of ischaemia and 5 min of reperfusion) and pharmacological (50 micromol l(-1) diazoxide, 10 min) preconditioning reduced infarct size in hearts from wild-type mice (by 24.84 and 26.63%, respectively, P < 0.05), but only ischaemic preconditioning was effective in hearts from heterozygous animals and both preconditioning strategies failed to protect Cx43KI32 homozygous hearts. These results demonstrate that Cx43 has an important and previously unknown modulatory effect in myocardial energy metabolism and tolerance to ischaemia, and plays a critical role in preconditioning protection, by mechanisms that are specific for this connexin isoform.
Collapse
Affiliation(s)
- Antonio Rodríguez-Sinovas
- Laboratorio de Cardiología Experimental, Servicio de Cardiología, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|