1
|
Laurila S, Rebelos E, Lahesmaa M, Sun L, Schnabl K, Peltomaa TM, Klén R, U-Din M, Honka MJ, Eskola O, Kirjavainen AK, Nummenmaa L, Klingenspor M, Virtanen KA, Nuutila P. Novel effects of the gastrointestinal hormone secretin on cardiac metabolism and renal function. Am J Physiol Endocrinol Metab 2022; 322:E54-E62. [PMID: 34806426 PMCID: PMC8791786 DOI: 10.1152/ajpendo.00260.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
The cardiac benefits of gastrointestinal hormones have been of interest in recent years. The aim of this study was to explore the myocardial and renal effects of the gastrointestinal hormone secretin in the GUTBAT trial (NCT03290846). A placebo-controlled crossover study was conducted on 15 healthy males in fasting conditions, where subjects were blinded to the intervention. Myocardial glucose uptake was measured with [18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography. Kidney function was measured with [18F]FDG renal clearance and estimated glomerular filtration rate (eGFR). Secretin increased myocardial glucose uptake compared with placebo (secretin vs. placebo, means ± SD, 15.5 ± 7.4 vs. 9.7 ± 4.9 μmol/100 g/min, 95% confidence interval (CI) [2.2, 9.4], P = 0.004). Secretin also increased [18F]FDG renal clearance (44.5 ± 5.4 vs. 39.5 ± 8.5 mL/min, 95%CI [1.9, 8.1], P = 0.004), and eGFR was significantly increased from baseline after secretin, compared with placebo (17.8 ± 9.8 vs. 6.0 ± 5.2 ΔmL/min/1.73 m2, 95%CI [6.0, 17.6], P = 0.001). Our results implicate that secretin increases heart work and renal filtration, making it an interesting drug candidate for future studies in heart and kidney failure.NEW & NOTEWORTHY Secretin increases myocardial glucose uptake compared with placebo, supporting a previously proposed inotropic effect. Secretin also increased renal filtration rate.
Collapse
Affiliation(s)
- Sanna Laurila
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
- Heart Center, Satakunta Central Hospital, Pori, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | - Minna Lahesmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Internal Medicine, Jorvi Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Lihua Sun
- Turku PET Centre, University of Turku, Turku, Finland
| | - Katharina Schnabl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | | | - Riku Klén
- Turku PET Centre, University of Turku, Turku, Finland
| | - Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | - Olli Eskola
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
- Department of Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Input-output signal processing plasticity of vagal motor neurons in response to cardiac ischemic injury. iScience 2021; 24:102143. [PMID: 33665562 PMCID: PMC7898179 DOI: 10.1016/j.isci.2021.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/01/2021] [Accepted: 01/29/2021] [Indexed: 11/23/2022] Open
Abstract
Vagal stimulation is emerging as the next frontier in bioelectronic medicine to modulate peripheral organ health and treat disease. The neuronal molecular phenotypes in the dorsal motor nucleus of the vagus (DMV) remain largely unexplored, limiting the potential for harnessing the DMV plasticity for therapeutic interventions. We developed a mesoscale single-cell transcriptomics data from hundreds of DMV neurons under homeostasis and following physiological perturbations. Our results revealed that homeostatic DMV neuronal states can be organized into distinguishable input-output signal processing units. Remote ischemic preconditioning induced a distinctive shift in the neuronal states toward diminishing the role of inhibitory inputs, with concomitant changes in regulatory microRNAs miR-218a and miR-495. Chronic cardiac ischemic injury resulted in a dramatic shift in DMV neuronal states suggestive of enhanced neurosecretory function. We propose a DMV molecular network mechanism that integrates combinatorial neurotransmitter inputs from multiple brain regions and humoral signals to modulate cardiac health.
Collapse
|
3
|
Discovery of small molecule positive allosteric modulators of the secretin receptor. Biochem Pharmacol 2021; 185:114451. [PMID: 33545115 DOI: 10.1016/j.bcp.2021.114451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
The secretin receptor (SCTR) is a prototypic Class B1 G protein-coupled receptor (GPCR) that represents a key target for the development of therapeutics for the treatment of cardiovascular, gastrointestinal, and metabolic disorders. However, no non-peptidic molecules targeting this receptor have yet been disclosed. Using a high-throughput screening campaign directed at SCTR to identify small molecule modulators, we have identified three structurally related scaffolds positively modulating SCTRs. Here we outline a comprehensive study comprising a structure-activity series based on commercially available analogs of the three hit scaffold sets A (2-sulfonyl pyrimidines), B (2-mercapto pyrimidines) and C (2-amino pyrimidines), which revealed determinants of activity, cooperativity and specificity. Structural optimization of original hits resulted in analog B2, which substantially enhances signaling of truncated secretin peptides and prolongs residence time of labeled secretin up to 13-fold in a dose-dependent manner. Furthermore, we found that investigated compounds display structural similarity to positive allosteric modulators (PAMs) active at the glucagon-like peptide-1 receptor (GLP-1R), and we were able to confirm cross-recognition of that receptor by a subset of analogs. Studies using SCTR and GLP-1R mutants revealed that scaffold A, but not B and C, likely acts via two distinct mechanisms, one of which constitutes covalent modification of Cys-347GLP-1R known from GLP-1R-selective modulators. The scaffolds identified in this study might not only serve as novel pharmacologic tools to decipher SCTR- or GLP-1R-specific signaling pathways, but also as structural leads to elucidate allosteric binding sites facilitating the future development of orally available therapeutic approaches targeting these receptors.
Collapse
|
4
|
Dengler DG, Sun Q, Holleran J, Pollari S, Beutel J, Brown BT, Shinoki Iwaya A, Ardecky R, Harikumar KG, Miller LJ, Sergienko EA. Development of a Testing Funnel for Identification of Small-Molecule Modulators Targeting Secretin Receptors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:1-16. [PMID: 32749201 PMCID: PMC8278649 DOI: 10.1177/2472555220945284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The secretin receptor (SCTR), a prototypical class B G protein-coupled receptor (GPCR), exerts its effects mainly by activating Gαs proteins upon binding of its endogenous peptide ligand secretin. SCTRs can be found in a variety of tissues and organs across species, including the pancreas, stomach, liver, heart, lung, colon, kidney, and brain. Beyond that, modulation of SCTR-mediated signaling has therapeutic potential for the treatment of multiple diseases, such as heart failure, obesity, and diabetes. However, no ligands other than secretin and its peptide analogs have been described to regulate SCTRs, probably due to inherent challenges in family B GPCR drug discovery. Here we report creation of a testing funnel that allowed targeted detection of SCTR small-molecule activators. Pursuing the strategy to identify positive allosteric modulators (PAMs), we established a unique primary screening assay employing a mixture of three orthosteric stimulators that was compared in a screening campaign testing 12,000 small-molecule compounds. Beyond that, we developed a comprehensive set of secondary assays, such as a radiolabel-free target engagement assay and a NanoBiT (NanoLuc Binary Technology)-based approach to detect β-arrestin-2 recruitment, all feasible in a high-throughput environment as well as capable of profiling ligands and hits regarding their effect on binding and receptor function. This combination of methods enabled the discovery of five promising scaffolds, four of which have been validated and further characterized with respect to their allosteric activities. We propose that our results may serve as starting points for developing the first in vivo active small molecules targeting SCTRs.
Collapse
Affiliation(s)
- Daniela G. Dengler
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Qing Sun
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - John Holleran
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sirkku Pollari
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jannis Beutel
- Department of Chemistry and Pharmacy, Chemikum, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Brock T. Brown
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Aki Shinoki Iwaya
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert Ardecky
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, USA
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, USA
| | - Eduard A. Sergienko
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
5
|
Loss of secretin results in systemic and pulmonary hypertension with cardiopulmonary pathologies in mice. Sci Rep 2019; 9:14211. [PMID: 31578376 PMCID: PMC6775067 DOI: 10.1038/s41598-019-50634-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
More than 1 billion people globally are suffering from hypertension, which is a long-term incurable medical condition that can further lead to dangerous complications and death if left untreated. In earlier studies, the brain-gut peptide secretin (SCT) was found to be able to control blood pressure by its cardiovascular and pulmonary effects. For example, serum SCT in patients with congestive heart failure was one-third of the normal level. These observations strongly suggest that SCT has a causal role in blood pressure control, and in this report, we used constitutive SCT knockout (SCT−/−) mice and control C57BL/6N mice to investigate differences in the morphology, function, underlying mechanisms and response to SCT treatment. We found that SCT−/− mice suffer from systemic and pulmonary hypertension with increased fibrosis in the lungs and heart. Small airway remodelling and pulmonary inflammation were also found in SCT−/− mice. Serum NO and VEGF levels were reduced and plasma aldosterone levels were increased in SCT−/− mice. Elevated cardiac aldosterone and decreased VEGF in the lungs were observed in the SCT−/− mice. More interestingly, SCT replacement in SCT−/− mice could prevent the development of heart and lung pathologies compared to the untreated group. Taken together, we comprehensively demonstrated the critical role of SCT in the cardiovascular and pulmonary systems and provide new insight into the potential role of SCT in the pathological development of cardiopulmonary and cardiovascular diseases.
Collapse
|
6
|
Csillag V, Vastagh C, Liposits Z, Farkas I. Secretin Regulates Excitatory GABAergic Neurotransmission to GnRH Neurons via Retrograde NO Signaling Pathway in Mice. Front Cell Neurosci 2019; 13:371. [PMID: 31507377 PMCID: PMC6716020 DOI: 10.3389/fncel.2019.00371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/30/2019] [Indexed: 01/28/2023] Open
Abstract
In mammals, reproduction is regulated by a wide range of metabolic hormones that maintain the proper energy balance. In addition to regulating feeding and energy expenditure, these metabolic messengers also modulate the functional performance of the hypothalamic-pituitary-gonadal (HPG) axis. Secretin, a member of the secretin-glucagon-vasoactive intestinal peptide hormone family, has been shown to alter reproduction centrally, although the underlying mechanisms have not been explored yet. In order to elucidate its central action in the neuroendocrine regulation of reproduction, in vitro electrophysiological slice experiments were carried out on GnRH-GFP neurons in male mice. Bath application of secretin (100 nM) significantly increased the frequency of the spontaneous postsynaptic currents (sPSCs) to 118.0 ± 2.64% compared to the control, and that of the GABAergic miniature postsynaptic currents (mPSCs) to 147.6 ± 19.19%. Resting membrane potential became depolarized by 12.74 ± 4.539 mV after secretin treatment. Frequency of evoked action potentials (APs) also increased to 144.3 ± 10.8%. The secretin-triggered elevation of the frequency of mPSCs was prevented by using either a secretin receptor antagonist (3 μM) or intracellularly applied G-protein-coupled receptor blocker (GDP-β-S; 2 mM) supporting the involvement of secretin receptor in the process. Regarding the actions downstream to secretin receptor, intracellular blockade of protein kinase A (PKA) with KT-5720 (2 μM) or intracellular inhibition of the neuronal nitric oxide synthase (nNOS) by NPLA (1 μM) abolished the stimulatory effect of secretin on mPSCs. These data suggest that secretin acts on GnRH neurons via secretin receptors whose activation triggers the cAMP/PKA/nNOS signaling pathway resulting in nitric oxide release and in the presynaptic terminals this retrograde NO machinery regulates the GABAergic input to GnRH neurons.
Collapse
Affiliation(s)
- Veronika Csillag
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
7
|
Wu N, Meng F, Invernizzi P, Bernuzzi F, Venter J, Standeford H, Onori P, Marzioni M, Alvaro D, Franchitto A, Gaudio E, Glaser S, Alpini G. The secretin/secretin receptor axis modulates liver fibrosis through changes in transforming growth factor-β1 biliary secretion in mice. Hepatology 2016; 64:865-79. [PMID: 27115285 PMCID: PMC4992423 DOI: 10.1002/hep.28622] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/28/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED The secretin/secretin receptor (SR) axis is up-regulated by proliferating cholangiocytes during cholestasis. Secretin stimulates biliary proliferation by down-regulation of let-7a and subsequent up-regulation of the growth-promoting factor, nerve growth factor (NGF). It is not known whether the secretin/SR axis plays a role in subepithelial fibrosis observed during cholestasis. Our aim was to determine the role of the secretin/SR axis in activation of biliary fibrosis in animal models and human primary sclerosing cholangitis (PSC). Studies were performed in wild-type (WT) mice with bile duct ligation (BDL), BDL SR(-/-) mice, or Mdr2(-/-) mouse models of cholestatic liver injury. In selected studies, the SR antagonist (Sec 5-27) was used to block the secretin/SR axis. Biliary proliferation and fibrosis were evaluated as well as secretion of secretin (by cholangiocytes and S cells), expression of markers of fibrosis, transforming growth factor-β1 (TGF-β1), transforming growth factor-β1 receptor (TGF-β1R), let-7a, and downstream expression of NGF. Correlative studies were performed in human control and PSC liver tissue biopsies, serum, and bile. SR antagonist reduced biliary proliferation and hepatic fibrosis in BDL WT and Mdr2(-/-) mice. There was decreased expression of let-7a in BDL and Mdr2(-/-) cholangiocytes that was associated with increased NGF expression. Inhibition of let-7a accelerated liver fibrosis was attributed to cholestasis. There was increased expression of TGF-β1 and TGF-β1R. Significantly higher expression of secretin, SR, and TGF-β1 was observed in PSC patient liver samples compared to healthy controls. In addition, there was higher expression of fibrosis genes and remarkably decreased expression of let-7a and increased expression of NGF compared to the control. CONCLUSION The secretin/SR axis plays a key role in regulating the biliary contribution to cholestasis-induced hepatic fibrosis. (Hepatology 2016;64:865-879).
Collapse
Affiliation(s)
- Nan Wu
- Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Operational Funds, Baylor Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Francesca Bernuzzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Julie Venter
- Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Holly Standeford
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Marco Marzioni
- Department of Medicine, Universita’ Politecnica delle Marche, Ancona, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy,Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| |
Collapse
|
8
|
Grossini E, Farruggio S, Qoqaiche F, Raina G, Camillo L, Sigaudo L, Mary D, Surico N, Surico D. Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions. Life Sci 2016; 161:1-9. [PMID: 27469459 DOI: 10.1016/j.lfs.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/12/2023]
Abstract
AIMS Perivascular adipose tissue can be involved in the process of cardiovascular pathology through the release of adipokines, namely adiponectins. Monomeric adiponectin has been shown to increase coronary blood flow in anesthetized pigs through increased nitric oxide (NO) release and the involvement of adiponectin receptor 1 (AdipoR1). The present study was therefore planned to examine the effects of monomeric adiponectin on NO release and Ca(2+) transients in porcine aortic endothelial cells (PAEs) in normal/high glucose conditions and the related mechanisms. MAIN METHODS PAEs were treated with monomeric adiponectin alone or in the presence of intracellular kinases blocker, AdipoR1 and Ca(2+)-ATPase pump inhibitors. The role of Na(+)/Ca(2+) exchanger was examined in experiments performed in zero Na(+) medium. NO release and intracellular Ca(2+) were measured through specific probes. KEY FINDINGS In PAE cultured in normal glucose conditions, monomeric adiponectin elevated NO production and [Ca(2+)]c. Similar effects were observed in high glucose conditions, although the response was lower and not transient. The Ca(2+) mobilized by monomeric adiponectin originated from an intracellular pool thapsigargin- and ATP-sensitive and from the extracellular space. Moreover, the effects of monomeric adiponectin were prevented by kinase blockers and AdipoR1 inhibitor. Finally, in normal glucose condition, a role for Na(+)/Ca(2+) exchanger and Ca(2+)-ATPase pump in restoring Ca(2+) was found. SIGNIFICANCE Our results add new information about the control of endothelial function elicited by monomeric adiponectin, which would be achieved by modulation of NO release and Ca(2+) transients. A signalling related to Akt, ERK1/2 and p38MAPK downstream AdipoR1 would be involved.
Collapse
Affiliation(s)
- Elena Grossini
- Lab. Physiology/Experimental Surgery, Dept. of Translational Medicine, University Eastern Piedmont "A. Avogadro", Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, Novara, Via Solaroli 17, Italy.
| | - Serena Farruggio
- Lab. Physiology/Experimental Surgery, Dept. of Translational Medicine, University Eastern Piedmont "A. Avogadro", Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, Novara, Via Solaroli 17, Italy
| | - Fatima Qoqaiche
- Lab. Physiology/Experimental Surgery, Dept. of Translational Medicine, University Eastern Piedmont "A. Avogadro", Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, Novara, Via Solaroli 17, Italy
| | - Giulia Raina
- Lab. Physiology/Experimental Surgery, Dept. of Translational Medicine, University Eastern Piedmont "A. Avogadro", Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, Novara, Via Solaroli 17, Italy
| | - Lara Camillo
- Lab. Physiology/Experimental Surgery, Dept. of Translational Medicine, University Eastern Piedmont "A. Avogadro", Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, Novara, Via Solaroli 17, Italy
| | - Lorenzo Sigaudo
- Lab. Physiology/Experimental Surgery, Dept. of Translational Medicine, University Eastern Piedmont "A. Avogadro", Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, Novara, Via Solaroli 17, Italy
| | - David Mary
- Lab. Physiology/Experimental Surgery, Dept. of Translational Medicine, University Eastern Piedmont "A. Avogadro", Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, Novara, Via Solaroli 17, Italy
| | - Nicola Surico
- Gynecologic Unit, Dept. of Translational Medicine, University Eastern Piedmont "A. Avogadro", Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, Novara, Via Solaroli 17, Italy
| | - Daniela Surico
- Gynecologic Unit, Dept. of Translational Medicine, University Eastern Piedmont "A. Avogadro", Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, Novara, Via Solaroli 17, Italy
| |
Collapse
|
9
|
Grossini E, Raina G, Farruggio S, Camillo L, Molinari C, Mary D, Walker GE, Bona G, Vacca G, Moia S, Prodam F, Surico D. Intracoronary Des-Acyl Ghrelin Acutely Increases Cardiac Perfusion Through a Nitric Oxide-Related Mechanism in Female Anesthetized Pigs. Endocrinology 2016; 157:2403-15. [PMID: 27100620 DOI: 10.1210/en.2015-1922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Des-acyl ghrelin (DAG), the most abundant form of ghrelin in humans, has been found to reduce arterial blood pressure and prevent cardiac and endothelial cell apoptosis. Despite this, data regarding its direct effect on cardiac function and coronary blood flow, as well as the related involvement of autonomic nervous system and nitric oxide (NO), are scarce. We therefore examined these issues using both in vivo and in vitro studies. In 20 anesthetized pigs, intracoronary 100 pmol/mL DAG infusion with a constant heart rate and aortic blood pressure, increased coronary blood flow and NO release, whereas reducing coronary vascular resistances (P < .05). Dose responses to DAG were evaluated in five pigs. No effects on cardiac contractility/relaxation or myocardial oxygen consumption were observed. Moreover, whereas the blockade of muscarinic cholinoceptors (n = 5) or α- and β-adrenoceptors (n = 5 each) did not abolish the observed responses, NO synthase inhibition (n = 5) prevented the effects of DAG on coronary blood flow and NO release. In coronary artery endothelial cells, DAG dose dependently increased NO release through cAMP signaling and ERK1/2, Akt, and p38 MAPK involvement as well as the phosphorylation of endothelial NO synthase. In conclusion, in anesthetized pigs, DAG primarily increased cardiac perfusion through the involvement of NO release. Moreover, the phosphorylation of ERK1/2 and Akt appears to play roles in eliciting the observed NO production in coronary artery endothelial cells.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - Giulia Raina
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - Serena Farruggio
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - Lara Camillo
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - Claudio Molinari
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - David Mary
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - Gillian Elisabeth Walker
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - Gianni Bona
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - Giovanni Vacca
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - Stefania Moia
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - Flavia Prodam
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| | - Daniela Surico
- Laboratory Physiology/Experimental Surgery (E.G., G.R., S.F., L.C., C.M., D.M., G.V., D.S.), Department of Translational Medicine, and Pediatric Unit (G.E.W., G.B., S.M., F.P.), Department of Health Sciences, University E Piedmont "A. Avogadro," Azienda Ospedaliera Universitaria Maggiore della Carità, I-12800 Novara, Italy
| |
Collapse
|
10
|
Poudyal H. Mechanisms for the cardiovascular effects of glucagon-like peptide-1. Acta Physiol (Oxf) 2016; 216:277-313. [PMID: 26384481 DOI: 10.1111/apha.12604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022]
Abstract
Over the past three decades, at least 10 hormones secreted by the enteroendocrine cells have been discovered, which directly affect the cardiovascular system through their innate receptors expressed in the heart and blood vessels or through a neural mechanism. Glucagon-like peptide-1 (GLP-1), an important incretin, is perhaps best studied of these gut-derived hormones with important cardiovascular effects. In this review, I have discussed the mechanism of GLP-1 release from the enteroendocrine L-cells and its physiological effects on the cardiovascular system. Current evidence suggests that GLP-1 has positive inotropic and chronotropic effects on the heart and may be important in preserving left ventricular structure and function by direct and indirect mechanisms. The direct effects of GLP-1 in the heart may be mediated through GLP-1R expressed in atria as well as arteries and arterioles in the left ventricle and mainly involve in the activation of multiple pro-survival kinases and enhanced energy utilization. There is also good evidence to support the involvement of a second, yet to be identified, GLP-1 receptor. Further, GLP-1(9-36)amide, which was previously thought to be the inactive metabolite of the active GLP-1(7-36)amide, may also have direct cardioprotective effects. GLP-1's action on GLP-1R expressed in the central nervous system, kidney, vasculature and the pancreas may indirectly contribute to its cardioprotective effects.
Collapse
Affiliation(s)
- H. Poudyal
- Department of Diabetes, Endocrinology and Nutrition; Graduate School of Medicine and Hakubi Centre for Advanced Research; Kyoto University; Kyoto Japan
| |
Collapse
|
11
|
Grossini E, Prodam F, Walker GE, Sigaudo L, Farruggio S, Bellofatto K, Marotta P, Molinari C, Mary D, Bona G, Vacca G. Effect of monomeric adiponectin on cardiac function and perfusion in anesthetized pig. J Endocrinol 2014; 222:137-49. [PMID: 24860147 DOI: 10.1530/joe-14-0170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adiponectin, the most abundant adipokine released by adipose tissue, appears to play an important role in the regulation of vascular endothelial and cardiac function. To date, however, the physiological effects of human monomeric adiponectin on the coronary vasculature and myocardial systo-diastolic function, as well as on parasympathetic/sympathetic involvement and nitric oxide (NO) release, have not yet been investigated. Thus, we planned to determine the primary in vivo effects of human monomeric adiponectin on coronary blood flow and cardiac contractility/relaxation and the related role of autonomic nervous system, adiponectin receptors, and NO. In 30 anesthetized pigs, human monomeric adiponectin was infused into the left anterior descending coronary artery at constant heart rate and arterial blood pressure, and the effects on coronary blood flow, left ventricular systo-diastolic function, myocardial oxygen metabolism, and NO release were examined. The mechanisms of the observed hemodynamic responses were also analyzed by repeating the highest dose of human monomeric adiponectin infusion after autonomic nervous system and NO blockade, and after specific adiponectin 1 receptor antagonist administration. Intracoronary human monomeric adiponectin caused dose-related increases of coronary blood flow and cardiac function. Those effects were accompanied by increased coronary NO release and coronary adiponectin levels. Moreover, the vascular effects of the peptide were prevented by blockade of β2-adrenoceptors and NO synthase, whereas all effects of human monomeric adiponectin were prevented by adiponectin 1 receptor inhibitor. In conclusion, human monomeric adiponectin primarily increased coronary blood flow and cardiac systo-diastolic function through the involvement of specific receptors, β2-adrenoceptors, and NO release.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| | - Flavia Prodam
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| | - Gillian Elisabeth Walker
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| | - Lorenzo Sigaudo
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| | - Serena Farruggio
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| | - Kevin Bellofatto
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| | - Patrizia Marotta
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| | - Claudio Molinari
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| | - David Mary
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| | - Gianni Bona
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| | - Giovanni Vacca
- Laboratory of Physiology and Experimental SurgeryDepartment of Translational Medicine, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carita, Corso Mazzini 36, I-28100 Novara, ItalyPediatric UnitDepartment of Health Sciences, University Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, I-28100 Novara, Italy
| |
Collapse
|
12
|
Grossini E, Surico D, Mary DASG, Molinari C, Surico N, Vacca G. In anesthetized pigs human chorionic gonadotropin increases myocardial perfusion and function through a β-adrenergic-related pathway and nitric oxide. J Appl Physiol (1985) 2013; 115:422-35. [PMID: 23788572 DOI: 10.1152/japplphysiol.00425.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is not only responsible for numerous pregnancy-related processes, but can affect the cardiovascular system as well. So far, however, information about any direct effect elicited by hCG on cardiac function, perfusion, and the mechanisms involved has remained scarce. Therefore, the present study aimed to determine the primary in vivo effect of hCG on cardiac contractility and coronary blood flow and the involvement of autonomic nervous system and nitric oxide (NO). Moreover, in coronary endothelial cells (CEC), the intracellular pathways involved in the effects of hCG on NO release were also examined. In 25 anesthetized pigs, intracoronary 500 mU/ml hCG infusion at constant heart rate and aortic blood pressure increased coronary blood flow, maximum rate of change of left ventricular systolic pressure, segmental shortening, cardiac output, and coronary NO release (P < 0.0001). These hemodynamic responses were graded in a further five pigs. Moreover, while blockade of muscarinic cholinoceptors (n = 5) and of α-adrenoceptors (n = 5) did not abolish the observed responses, β1-adrenoceptors blocker (n = 5) prevented the effects of hCG on cardiac function. In addition, β2-adrenoceptors (n = 5) and NO synthase inhibition (n = 5) abolished the coronary response and the effect of hCG on NO release. In CEC, hCG induced the phosphorylation of endothelial NO synthase through cAMP/PKA signaling and ERK1/2, Akt, p38 MAPK involvement, which were activated as downstream effectors of β2-adrenoceptor stimulation. In conclusion, in anesthetized pigs, hCG primarily increased cardiac function and perfusion through the involvement of β-adrenoceptors and NO release. Moreover, cAMP/PKA-dependent kinases phosphorylation was found to play a role in eliciting the observed NO production in CEC.
Collapse
Affiliation(s)
- Elena Grossini
- Physiology Laboratory, Department of Translational Medicine, University East Piedmont A. Avogadro, Novara, Italy.
| | | | | | | | | | | |
Collapse
|