1
|
Sánchez-Fernández D, Eguibar A, López C, Cuesta ÁM, Albiñana V, Rogers-Ezewuike S, Gómez-Rivas JA, Saldaña L, Botella LM, Ferrer M. Effect of 5β-dihydrotestosterone on vasodilator function and on cell proliferation. PLoS One 2024; 19:e0312080. [PMID: 39441776 PMCID: PMC11498709 DOI: 10.1371/journal.pone.0312080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Aging is one of the main factors associated with cardiovascular diseases. Androgens exert beneficial effects on the cardiovascular system and testosterone (TES) replacement therapy improves cardiometabolic risk factors. However, TES is contraindicated in patients with prostate cancer due to its proliferative effects on prostatic tumor cells. Additionally, TES and its reduced metabolites 5α- and 5β-dihydrotestosterone (5α-DHT and 5β-DHT) exert vasodilatory effects. Since androgen levels decrease during aging and 5β-DHT lacks genomic effects, this study is focused on analyzing its effect on vasodilator function and the proliferation rate of prostatic tumor and vascular smooth muscle cells. To study the vascular function, mesenteric arteries from aged-orchidectomized Sprague-Dawley rats were used. Mesenteric segments were divided into one control (without treatment) and three groups with the androgens (10 nM, 30 min) to analyze: acetylcholine- and sodium nitroprusside-induced responses and nitric oxide and superoxide anion production. To analyze cell proliferation, the effect of androgens on cell viability was determined. The results showed that 5β-DHT improves vasodilator function in arteries from aged-orchidectomized rats and induces antioxidant action, while the proliferation rate of the androgen-dependent prostatic tumor cells remains unaltered. These results make 5β-DHT a promising therapeutic agent for the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- David Sánchez-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Aritz Eguibar
- Servicio de Urología, Hospital Quirón Salud, Marbella, Spain
| | - Cristina López
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángel M. Cuesta
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad 707, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Virginia Albiñana
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad 707, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Soline Rogers-Ezewuike
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan A. Gómez-Rivas
- Servicio de Urología, Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Saldaña
- Grupo de Fisiopatología Ósea y Biomateriales, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER- BBN, Madrid, Spain
| | - Luisa M. Botella
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad 707, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Ahmed B, Rahman AA, Lee S, Malhotra R. The Implications of Aging on Vascular Health. Int J Mol Sci 2024; 25:11188. [PMID: 39456971 PMCID: PMC11508873 DOI: 10.3390/ijms252011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Vascular aging encompasses structural and functional changes in the vasculature, significantly contributing to cardiovascular diseases, which are the leading cause of death globally. The incidence and prevalence of these diseases increase with age, with most morbidity and mortality attributed to myocardial infarction and stroke. Diagnosing and intervening in vascular aging while understanding the mechanisms behind age-induced vascular phenotypic and pathophysiological alterations offers the potential for delaying and preventing cardiovascular mortality in an aging population. This review delves into various aspects of vascular aging by examining age-related changes in arterial health at the cellular level, including endothelial dysfunction, cellular senescence, and vascular smooth muscle cell transdifferentiation, as well as at the structural level, including arterial stiffness and changes in wall thickness and diameter. We also explore aging-related changes in perivascular adipose tissue deposition, arterial collateralization, and calcification, providing insights into the physiological and pathological implications. Overall, aging induces phenotypic changes that augment the vascular system's susceptibility to disease, even in the absence of traditional risk factors, such as hypertension, diabetes, obesity, and smoking. Overall, age-related modifications in cellular phenotype and molecular homeostasis increase the vulnerability of the arterial vasculature to structural and functional alterations, thereby accelerating cardiovascular risk. Increasing our understanding of these modifications is crucial for success in delaying or preventing cardiovascular diseases. Non-invasive techniques, such as measuring carotid intima-media thickness, pulse wave velocity, and flow-mediated dilation, as well as detecting vascular calcifications, can be used for the early detection of vascular aging. Targeting specific pathological mechanisms, such as cellular senescence and enhancing angiogenesis, holds promise for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Ahmed A. Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sujin Lee
- Division of Vascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Shang YH, Liang DQ, Song XL, Feng X, Mao GY, Yang TT, Wang ZY, Wang JH. Association between sleep regularity and arterial stiffness among middle-age adults in Southwestern China. BMC Public Health 2024; 24:2530. [PMID: 39289652 PMCID: PMC11409594 DOI: 10.1186/s12889-024-20054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Sleep regularity has been linked to a risk of arterial stiffness (AS). However, the association between sleep regularity indicators, which reflect 24-hour sleep variability, and AS has not yet been examined. METHODS We analyzed data from 516 adults, aged 40-65 years (the median age of 51 years), from the 'Follow-up Study of Sleep Characteristics and Chronic Diseases in the Middle-aged and Elderly Population in Guizhou Province'. Participants underwent assessments of AS (OMRON HBP-8000, baPWV ≥ 1400 cm/s) and sleep (wrist smart band (Honor band 5i) for ≥ 7 days). Logistic regression was utilized to evaluate the odds ratio (OR) and 95% confidence interval (CI) of the association between sleep regularity and AS. RESULTS A total of 516 people were included in this study, of which 279 (54.07%) were in the AS group. The univariate results showed that the AS group (Median 71.18) had lower SRI compared to the No-AS group (Median 75.00) (p < 0.001). The multifactorial results showed participants with higher SRI scores were more likely to have a lower risk of AS compared to those with lower SRI scores (ORQ4 VS. Q1=0.46, 95%CI: 0.25-0.85, p = 0.013). The SRI effect was more pronounced in male (ORQ4 VS. Q1=0.28, 95%CI: 0.12-0.69, p = 0.005), snoring populations (ORQ4 VS. Q1=0.13, 95%CI: 0.04-0.48, p = 0.002), and non-retired populations (ORQ4 VS. Q1=0.45, 95%CI: 0.22-0.92, p = 0.028). CONCLUSIONS The present findings indicated that the effect between SRI and AS may be more sensitive than the standard deviation of sleep duration as well as the standard deviation of sleep onset.
Collapse
Affiliation(s)
- Yuan-Hao Shang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road Guian New District, Guiyang, 561113, China
| | - Da-Qiang Liang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road Guian New District, Guiyang, 561113, China
| | - Xiao-Ling Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road Guian New District, Guiyang, 561113, China
| | - Xia Feng
- Department of Sleep Medicine, the Second People's Hospital of Guizhou Province, Guiyang, China
| | - Guang-Yan Mao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road Guian New District, Guiyang, 561113, China
| | - Ting-Ting Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road Guian New District, Guiyang, 561113, China
| | - Zi-Yun Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road Guian New District, Guiyang, 561113, China.
| | - Jun-Hua Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road Guian New District, Guiyang, 561113, China.
| |
Collapse
|
4
|
Dirjayanto VJ, Pompei G, Rubino F, Biscaglia S, Campo G, Mihailidou AS, den Ruijter H, Kunadian V. Non-invasive vascular measures as prognostic predictors for older patients with non-ST elevation acute coronary syndrome. Coron Artery Dis 2024; 35:368-381. [PMID: 38436050 DOI: 10.1097/mca.0000000000001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
BACKGROUND Adverse cardiac events are common in older patients with non-ST elevation acute coronary syndrome (NSTEACS), yet prognostic predictors are still lacking. This study investigated the long-term prognostic significance of non-invasive measures including endothelial function, carotid intima-media thickness (CIMT), and vascular stiffness in older NSTEACS patients referred for invasive treatment. METHODS NSTEACS patients aged 75 years and older recruited to a multicentre cohort study (NCT01933581) were assessed for baseline endothelial function using endoPAT logarithm of reactive hyperemia index (LnRHI), CIMT using B-mode ultrasound, and vascular stiffness using carotid-femoral pulse wave velocity (cfPWV). Long-term outcomes included major adverse cardiovascular events (MACE), a composite of death, reinfarction, urgent revascularization, stroke/transient ischemic attack, and significant bleeding. RESULTS Recruitment resulted in 214 patients assessed for LnRHI, 190 patients assessed for CIMT and 245 patients assessed for cfPWV. For LnRHI group (median follow-up 4.73 years [IQR: 1.41-5.00]), Cox regression analysis revealed a trend towards increased risk of MACE (HR: 1.24 [95% CI: 0.80-1.93]; P = 0.328) and mortality (HR: 1.49 [95% CI: 0.86-2.59]; P = 0.157), but no significance was reached. No difference for other components of MACE was found. For CIMT group (median follow up 4.74 years [IQR: 1.55-5.00]), no statistically significant difference in MACE was found (HR: 0.92 [95% CI: 0.53-1.59]; P = 0.754). Similarly, for cfPWV group (median follow-up 4.96 years [IQR: 1.55-5.00]), results did not support prognostic significance (for MACE, HR: 0.95 [95% CI: 0.65-1.39]; P = 0.794). CONCLUSION Endothelial function, CIMT and vascular stiffness were proven unsuitable as strong prognostic predictors in older patients with NSTEACS. CLINICAL TRIAL REGISTRATION NCT01933581.
Collapse
Affiliation(s)
- Valerie J Dirjayanto
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Faculty of Medicine, Universitas Indonesia, Indonesia, Jakarta
| | - Graziella Pompei
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, FE
| | - Francesca Rubino
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Simone Biscaglia
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, FE
| | - Gianluca Campo
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, FE
| | - A S Mihailidou
- Department of Cardiology and Kolling Institute, Royal North Shore Hospital and Macquarie University, Sydney, New South Wales, Australia
| | - Hester den Ruijter
- Division Heart and Lungs, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Amsterdam
| | - Vijay Kunadian
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Gagliano V, Gehrig D, Del Giorno R, Gianini J, Gabutti L. A Population-Based Scoring System to Assess the Impact of Individual Risk Factors on Vascular Health. Aging Dis 2024; 15:1373-1383. [PMID: 37728581 PMCID: PMC11081151 DOI: 10.14336/ad.2023.0823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Arterial stiffness is an indicator of vascular health, influenced by both pathological conditions and physiological determinants, noticeably age. Augmentation index (AI) and pulse wave velocity (PWV) are used among others to assess arterial stiffness. Several risk factors may contribute to pathologically increase arterial stiffness and produce early vascular aging. Our study aims to assess the impact of individual risk factors on vascular health, evaluating the distribution of PWV and AI values in a cohort of adult people without modifiable cardiovascular risk factors while analyzing their role in accelerating vascular ageing. We performed a secondary analysis of a Swiss population-based research project, which took place in 2017 and 2018. Of the 1202 participants originally enrolled, 1097 were included in the final sample. The population was divided into without (n=388) and with risk factors (n=709), based on the presence of the following: smoking, diabetes, previous cardiovascular disease (CVD), chronic kidney disease stage 3 or more, LDL cholesterol ≥ 4.11 or treatment with hypolipidemic drugs, hypertension or treatment with antihypertensive drugs, and metabolic syndrome. Tonometric and oscillometric devices were employed to assess PWV, and the 75th percentiles of PWV and AI in the population without risk factors were calculated to identify cut-offs for the logistic regression analysis. We developed nomograms by assigning a numerical score to each independent prognostic factor; the total score estimating the probability of PWVs and AIs being over the defined cut-offs. Patients with hypertension, diabetes, and obesity showed higher PWV values (p < 0.001). In the univariate logistic regression, factors predictive for higher PWV values were diabetes, CVDs, hypercholesterolemia, and hypertension, while CVDs, antihyperlipidemic treatment, hypertension, and increased BMI were predictive in the multivariate logistic regression. Smoking did not significantly influence arterial stiffness parameters. The present study provides reference values for PWV and AI in subjects without modifiable cardiovascular risk factors and, through nomograms, a risk score stratification to assess the impact of individual risk factors on vascular health.
Collapse
Affiliation(s)
- Vanessa Gagliano
- Department of Internal Medicine, Clinical Research Unit, Regional Hospital of Bellinzona and Valli, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| | - David Gehrig
- Faculty of Biomedicine, Università della Svizzera Italiana, Lugano, Switzerland.
| | - Rosaria Del Giorno
- Faculty of Biomedicine, Università della Svizzera Italiana, Lugano, Switzerland.
- Angiology service, University Hospital of Lausanne, Lausanne, Switzerland.
| | - Jvan Gianini
- Department of Internal Medicine, Clinical Research Unit, Regional Hospital of Bellinzona and Valli, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| | - Luca Gabutti
- Department of Internal Medicine, Clinical Research Unit, Regional Hospital of Bellinzona and Valli, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Faculty of Biomedicine, Università della Svizzera Italiana, Lugano, Switzerland.
| |
Collapse
|
6
|
Gao T, Wang YF, Sun X, Zhang HR, Tian XC, Hei N, Yang XN, Zhou JX, Zhu L. CT quantification of pulmonary vessels in lung aging. Clin Radiol 2024; 79:e767-e774. [PMID: 38365539 DOI: 10.1016/j.crad.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
AIM To evaluate the effect of aging on pulmonary vessels based on computed tomography (CT) quantification and analyse the correlation between quantitative pulmonary vascular volume and pulmonary function during aging. MATERIALS AND METHODS A total of 330 healthy adult volunteers, including 161 men (53 aged 20-39 years, 61 aged 40-59 years, and 47 aged ≥60 years) and 169 women (53 aged 20-39 years, 63 aged 40-59 years, and 53 aged ≥60 years) were recruited in this study. AVIEW software was used to quantitatively measure pulmonary vascular volume, including pulmonary total blood vessel volume (TBV) and small blood vessel volume with a cross-sectional area of <5 mm2 (BV5). Pulmonary vascular volume parameters were standardised using the ratio of vascular volume to the body surface area (BSA; TBV/BSA and BV5/BSA). Subsequently, the effect of aging on the pulmonary vessels was analysed. RESULTS The pulmonary vascular volume parameters TBV/BSA and BV5/BSA of the whole lung, right lung, and left lung decreased significantly with increasing age (p<0.05). Additionally, TBV/BSA and BV5/BSA of the whole lung were higher in men than in women. The declining trend of pulmonary vascular volume was consistent in men and women and increased with age. CONCLUSIONS The pulmonary vascular volume parameters, TBV/BSA and BV5/BSA, decreased with age and were weakly positively correlated with pulmonary function.
Collapse
Affiliation(s)
- T Gao
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China; The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Y F Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - X Sun
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - H R Zhang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - X C Tian
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - N Hei
- Department of Radiology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - X N Yang
- School of Ningxia Medical University, Yinchuan 750004, China
| | - J X Zhou
- School of Ningxia Medical University, Yinchuan 750004, China
| | - L Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
7
|
Weijs RWJ, Oudegeest-Sander MH, Hopman MTE, Thijssen DHJ, Claassen JAHR. Cerebrovascular CO 2 reactivity and dynamic cerebral autoregulation through the eighth decade of life and their implications for cognitive decline. J Cereb Blood Flow Metab 2024; 44:712-725. [PMID: 38064286 PMCID: PMC11197147 DOI: 10.1177/0271678x231219568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 04/26/2024]
Abstract
Aging is accompanied by a decrease in cerebral blood flow (CBF), especially in the presence of preclinical cognitive decline. The role of cerebrovascular physiology including regulatory mechanisms of CBF in processes underlying aging and subclinical cognitive decline is, however, not fully understood. We explored changes in cerebrovascular CO2 reactivity and dynamic cerebral autoregulation (dCA) through the eighth decade of life, and their relation with early cognitive decline. After 10.9 years, twenty-eight (age, 80.0 ± 3.5 years; 46% female) out of forty-eight healthy older adults who had participated in a previous study (age at baseline, 70 ± 4 years; 42% female), underwent repeated transcranial Doppler assessments. Linear mixed-model analyses revealed small reductions in cerebrovascular CO2 reactivity with aging (-0.37%/mmHg, P = 0.041), whereas dCA was modestly enhanced (gain: -0.009 cm/s/mmHg, P = 0.038; phase: +8.9 degrees, P = 0.004). These changes were more pronounced in participants who had developed subjective memory complaints at follow-up. Our observations confirm that dCA is not impaired in aging, despite lower cerebral perfusion and cerebrovascular reactivity. Altogether, this unique longitudinal study highlights the involvement of cerebrovascular health in preclinical cognitive decline, which is of clinical relevance in the development of dementia management strategies.
Collapse
Affiliation(s)
- Ralf WJ Weijs
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Madelijn H Oudegeest-Sander
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria TE Hopman
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dick HJ Thijssen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jurgen AHR Claassen
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
van der Linden J, Stefens SJM, Heredia‐Genestar JM, Ridwan Y, Brandt RMC, van Vliet N, de Beer I, van Thiel BS, Steen H, Cheng C, Roks AJM, Danser AHJ, Essers J, van der Pluijm I. Ercc1 DNA repair deficiency results in vascular aging characterized by VSMC phenotype switching, ECM remodeling, and an increased stress response. Aging Cell 2024; 23:e14126. [PMID: 38451018 PMCID: PMC11113264 DOI: 10.1111/acel.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Cardiovascular diseases are the number one cause of death globally. The most important determinant of cardiovascular health is a person's age. Aging results in structural changes and functional decline of the cardiovascular system. DNA damage is an important contributor to the aging process, and mice with a DNA repair defect caused by Ercc1 deficiency display hypertension, vascular stiffening, and loss of vasomotor control. To determine the underlying cause, we compared important hallmarks of vascular aging in aortas of both Ercc1Δ/- and age-matched wildtype mice. Additionally, we investigated vascular aging in 104 week old wildtype mice. Ercc1Δ/- aortas displayed arterial thickening, a loss of cells, and a discontinuous endothelial layer. Aortas of 24 week old Ercc1Δ/- mice showed phenotypical switching of vascular smooth muscle cells (VSMCs), characterized by a decrease in contractile markers and a decrease in synthetic markers at the RNA level. As well as an increase in osteogenic markers, microcalcification, and an increase in markers for damage induced stress response. This suggests that Ercc1Δ/- VSMCs undergo a stress-induced contractile-to-osteogenic phenotype switch. Ercc1Δ/- aortas showed increased MMP activity, elastin fragmentation, and proteoglycan deposition, characteristic of vascular aging and indicative of age-related extracellular matrix remodeling. The 104 week old WT mice showed loss of cells, VSMC dedifferentiation, and senescence. In conclusion, Ercc1Δ/- aortas rapidly display many characteristics of vascular aging, and thus the Ercc1Δ/- mouse is an excellent model to evaluate drugs that prevent vascular aging in a short time span at the functional, histological, and cellular level.
Collapse
Affiliation(s)
- Janette van der Linden
- Division of Vascular Medicine and Pharmacology, Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Sanne J. M. Stefens
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - José María Heredia‐Genestar
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Yanto Ridwan
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
- AMIE Core facilityErasmus University Medical CenterRotterdamThe Netherlands
| | - Renata M. C. Brandt
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Isa de Beer
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Bibi S. van Thiel
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | | | - Caroline Cheng
- Division of Experimental Cardiology, Department of CardiologyMC UtrechtUtrechtThe Netherlands
- Division of Internal Medicine and Dermatology, Department of Nephrology and HypertensionMC UtrechtUtrechtThe Netherlands
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
- Department of Vascular SurgeryCardiovascular Institute, Erasmus University Medical CenterRotterdamThe Netherlands
- Department of RadiotherapyErasmus University Medical CenterRotterdamThe Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
- Department of Vascular SurgeryCardiovascular Institute, Erasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
9
|
Zhang J, Wang X, Fu Z, Xing C, Wang Z, Yang H, Li J, Liu M, Dong L, Zhang X, Li Y, Wang J, Long J, Liu J, Wang S, Li J, Gao F. Long-term simulated microgravity fosters carotid aging-like changes via Piezo1. Cardiovasc Res 2024; 120:548-559. [PMID: 38271270 DOI: 10.1093/cvr/cvae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024] Open
Abstract
AIMS Elucidating the impacts of long-term spaceflight on cardiovascular health is urgently needed in face of the rapid development of human space exploration. Recent reports including the NASA Twins Study on vascular deconditioning and aging of astronauts in spaceflight are controversial. The aims of this study were to elucidate whether long-term microgravity promotes vascular aging and the underlying mechanisms. METHODS AND RESULTS Hindlimb unloading (HU) by tail suspension was used to simulate microgravity in rats and mice. The dynamic changes of carotid stiffness in rats during 8 weeks of HU were determined. Simulated microgravity led to carotid artery aging-like changes as evidenced by increased stiffness, thickness, fibrosis, and elevated senescence biomarkers in the HU rats. Specific deletion of the mechanotransducer Piezo1 in vascular smooth muscles significantly blunted these aging-like changes in mice. Mechanistically, mechanical stretch-induced activation of Piezo1 elevated microRNA-582-5p in vascular smooth muscle cells, with resultant enhanced synthetic cell phenotype and increased collagen deposition via PTEN/PI3K/Akt signalling. Importantly, inhibition of miRNA-582-5p alleviated carotid fibrosis and stiffness not only in HU rats but also in aged rats. CONCLUSIONS Long-term simulated microgravity induces carotid aging-like changes via the mechanotransducer Piezo1-initiated and miRNA-mediated mechanism.
Collapse
MESH Headings
- Animals
- Aging/metabolism
- Aging/pathology
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Arteries/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Fibrosis
- Hindlimb Suspension
- Ion Channels/metabolism
- Ion Channels/genetics
- Mechanotransduction, Cellular/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- PTEN Phosphohydrolase/metabolism
- PTEN Phosphohydrolase/genetics
- Rats, Sprague-Dawley
- Signal Transduction
- Time Factors
- Vascular Remodeling
- Vascular Stiffness
- Weightlessness Simulation
Collapse
Affiliation(s)
- Jiaxin Zhang
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Xinpei Wang
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Zihao Fu
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Changyang Xing
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Wang
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Hongyan Yang
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Jiahui Li
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Meijie Liu
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Ling Dong
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Yongzhi Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Jiaping Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Jiangang Long
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shengpeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Jia Li
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
- Key Laboratory of Hazard Assessment and Control in Special Operational Environment of Ministry of Education, School of Public Health, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| |
Collapse
|
10
|
Sarai P, Luff C, Rohani-Shukla C, Strutton PH. Characteristics of motor evoked potentials in patients with peripheral vascular disease. PLoS One 2024; 19:e0290491. [PMID: 38662756 PMCID: PMC11045072 DOI: 10.1371/journal.pone.0290491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
With an aging population, it is common to encounter people diagnosed with peripheral vascular disease (PVD). Some will undergo surgeries during which the spinal cord may be compromised and intraoperative neuromonitoring with motor evoked potentials (MEPs) is employed to help mitigate paralysis. No data exist on characteristics of MEPs in older, PVD patients, which would be valuable for patients undergoing spinal cord at-risk surgery or participating in neurophysiological research. Transcranial magnetic stimulation, which can be delivered to the awake patient, was used to stimulate the motor cortex of 20 patients (mean (±SD)) age 63.2yrs (±11.5) with confirmed PVD, every 10 minutes for one hour with MEPs recorded from selected upper and lower limb muscles. Data were compared to that from 20 healthy volunteers recruited for a protocol development study (28yrs (±7.6)). MEPs did not differ between patient's symptomatic and asymptomatic legs. MEP amplitudes were not different for a given muscle between patients and healthy participants. Except for vastus lateralis, disease severity did not correlate with MEP amplitude. There were no differences over time in the coefficient of variation of MEP amplitude at each time point for any muscle in patients or in healthy participants. Although latencies of MEPs were not different between patients and healthy participants for a given muscle, they were longer in older participants. The results obtained suggest PVD alone does not impact MEPs; there were no differences between more symptomatic and less symptomatic legs. Further, in general, disease severity did not corelate with MEP characteristics. With an aging population, more patients with PVD and cardiovascular risk factors will be participating in neurophysiological studies or undergoing surgery where spinal cord integrity is monitored. Our data show that MEPs from these patients can be easily evoked and interpreted.
Collapse
Affiliation(s)
- Pawandeep Sarai
- The Nick Davey Laboratory, Division of Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Charlotte Luff
- The Nick Davey Laboratory, Division of Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Cyrus Rohani-Shukla
- The Nick Davey Laboratory, Division of Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Paul H. Strutton
- The Nick Davey Laboratory, Division of Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Nyland J, Sirignano MN, Richards J, Krupp RJ. Regenerative Anterior Cruciate Ligament Healing in Youth and Adolescent Athletes: The Emerging Age of Recovery Science. J Funct Morphol Kinesiol 2024; 9:80. [PMID: 38804446 PMCID: PMC11130880 DOI: 10.3390/jfmk9020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
Anterior cruciate ligament (ACL) injuries mainly arise from non-contact mechanisms during sport performance, with most injuries occurring among youth or adolescent-age athletes, particularly females. The growing popularity of elite-level sport training has increased the total volume, intensity and frequency of exercise and competition loading to levels that may exceed natural healing capacity. Growing evidence suggests that the prevailing mechanism that leads to non-contact ACL injury from sudden mechanical fatigue failure may be accumulated microtrauma. Given the consequences of primary ACL injury on the future health and quality of life of youth and adolescent athletes, the objective of this review is to identify key "recovery science" factors that can help prevent these injuries. Recovery science is any aspect of sports training (type, volume, intensity, frequency), nutrition, and sleep/rest or other therapeutic modalities that may prevent the accumulated microtrauma that precedes non-contact ACL injury from sudden mechanical fatigue failure. This review discusses ACL injury epidemiology, current surgical efficacy, the native ACL vascular network, regional ACL histological complexities such as the entheses and crimp patterns, extracellular matrix remodeling, the concept of causal histogenesis, exercise dosage and ligament metabolism, central nervous system reorganization post-ACL rupture, homeostasis regulation, nutrition, sleep and the autonomic nervous system. Based on this information, now may be a good time to re-think primary ACL injury prevention strategies with greater use of modified sport training, improved active recovery that includes well-planned nutrition, and healthy sleep patterns. The scientific rationale behind the efficacy of regenerative orthobiologics and concomitant therapies for primary ACL injury prevention in youth and adolescent athletes are also discussed.
Collapse
Affiliation(s)
- John Nyland
- Norton Orthopedic Institute, 9880 Angie’s Way, Suite 250, Louisville, KY 40241, USA (J.R.); (R.J.K.)
| | | | | | | |
Collapse
|
12
|
Most A, Kraushaar L, Dörr O, Keranov S, Hoelscher S, Weber R, Akdogan E, Groesser V, Husain-Syed F, Nef H, Hamm CW, Bauer P. Association of central blood pressure with an exaggerated blood pressure response to exercise among elite athletes. Eur J Appl Physiol 2024; 124:1239-1252. [PMID: 37987923 PMCID: PMC10955016 DOI: 10.1007/s00421-023-05353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE The systolic blood pressure/workload (SBP/MET) slope was recently reported to be a reliable parameter to identify an exaggerated blood pressure response (eBPR) in the normal population and in athletes. However, it is unclear whether an eBPR correlates with central blood pressure (CBP) and vascular function in elite athletes. METHODS We examined 618 healthy male elite athletes (age 25.8 ± 5.1 years) of mixed sports with a standardized maximum exercise test. CBP and vascular function were measured non-invasively with a validated oscillometric device. The SBP/MET slope was calculated and the threshold for an eBPR was set at > 6.2 mmHg/MET. Two groups were defined according to ≤ 6.2 and > 6.2 mmHg/MET, and associations of CBP and vascular function with the SBP/MET slope were compared for each group. RESULTS Athletes with an eBPR (n = 180, 29%) displayed a significantly higher systolic CBP (102.9 ± 7.5 vs. 100 ± 7.7 mmHg, p = 0.001) but a lower absolute (295 ± 58 vs. 384 ± 68 W, p < 0.001) and relative workload (3.14 ± 0.54 vs. 4.27 ± 1.1 W/kg, p < 0.001) compared with athletes with a normal SBP/MET slope (n = 438, 71%). Systolic CBP was positively associated with the SBP/MET slope (r = 0.243, p < 0.001). In multiple logistic regression analyses, systolic CBP (odds ratio [OR] 1.099, 95% confidence interval [CI] 1.045-1.155, p < 0.001) and left atrial volume index (LAVI) (OR 1.282, CI 1.095-1.501, p = 0.002) were independent predictors of an eBPR. CONCLUSION Systolic CBP and LAVI were independent predictors of an eBPR. An eBPR was further associated with a lower performance level, highlighting the influence of vascular function on the BPR and performance of male elite athletes.
Collapse
Affiliation(s)
- Astrid Most
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35390, Giessen, Germany
| | | | - Oliver Dörr
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Stanislav Keranov
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Sophie Hoelscher
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Rebecca Weber
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Ebru Akdogan
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Vincent Groesser
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Faeq Husain-Syed
- Department of Internal Medicine, Member of the German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Giessen, Germany
| | - Holger Nef
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Christian W Hamm
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35390, Giessen, Germany
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Rhein-Main Partner Site, Bad Nauheim, Germany
| | - Pascal Bauer
- Department of Cardiology and Angiology, Justus Liebig University Giessen, 35390, Giessen, Germany.
| |
Collapse
|
13
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
14
|
Li L, Zhang J, Zhang X, Huo Z, Jiang J, Wu Y, Zhu C, Chen S, Du X, Li H, Wei X, Ji C, Wu S, Huang Z. Association of Cumulative Exposure to Cardiovascular Health Behaviors and Factors with the Onset and Progression of Arterial Stiffness. J Atheroscler Thromb 2024; 31:368-381. [PMID: 37926522 PMCID: PMC10999723 DOI: 10.5551/jat.64469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/10/2023] [Indexed: 11/07/2023] Open
Abstract
AIM This study aims to explore the association of cumulative exposure to cardiovascular health behaviors and factors with the onset and progression of arterial stiffness. METHODS In this study, 24,110 participants were examined from the Kailuan cohort, of which 11,527 had undergone at least two brachial-ankle pulse wave velocity (baPWV) measurements. The cumulative exposure to cardiovascular health behaviors and factors (cumCVH) was calculated as the sum of the cumCVH scores between two consecutive physical examinations, multiplied by the time interval between the two. A logistic regression model was constructed to evaluate the association of cumCVH with arterial stiffness. Generalized linear regression models were used to analyze how cumCVH affects baPWV progression. Moreover, a Cox proportional hazards regression model was used to analyze the effect of cumCVH on the risk of arterial stiffness. RESULTS In this study, participants were divided into four groups, according to quartiles of cumCVH exposure levels, namely, quartile 1 (Q1), quartile 2 (Q2), quartile 3 (Q3), and quartile 4 (Q4). Logistic regression analysis showed that compared with the Q1 group, the incidence of arterial stiffness in terms of cumCVH among Q2, Q3, and Q4 groups decreased by 16%, 30%, and 39%, respectively. The results of generalized linear regression showed that compared with the Q1 group, the incidence of arterial stiffness in the Q3 and Q4 groups increased by -25.54 and -29.83, respectively. The results of Cox proportional hazards regression showed that compared with the Q1 group, the incidence of arterial stiffness in cumCVH among Q2, Q3, and Q4 groups decreased by 11%, 19%, and 22%, respectively. Sensitivity analyses showed consistency with the main results. CONCLUSIONS High cumCVH can delay the progression of arterial stiffness and reduce the risk of developing arterial stiffness.
Collapse
Affiliation(s)
- Liuxin Li
- Department of Cardiology, Kailuan Hospital, Tangshan, China
- Graduate School, North China University of Science and Technology, Tangshan, China
| | - Jingdi Zhang
- Graduate School, North China University of Science and Technology, Tangshan, China
| | - Xiaoxue Zhang
- Department of Cardiology, Kailuan Hospital, Tangshan, China
- Graduate School, North China University of Science and Technology, Tangshan, China
| | - Zhenyu Huo
- Graduate School, North China University of Science and Technology, Tangshan, China
| | - Jinguo Jiang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Yuntao Wu
- Department of Cardiology, Kailuan Hospital, Tangshan, China
| | - Chenrui Zhu
- Department of Cardiology, Kailuan Hospital, Tangshan, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan Hospital, Tangshan, China
| | - Xin Du
- Department of Cardiology, Kailuan Hospital, Tangshan, China
| | - Huiying Li
- Department of Cardiology, Kailuan Hospital, Tangshan, China
| | - Xiaoming Wei
- Department of Cardiology, Kailuan Hospital, Tangshan, China
| | - Chunpeng Ji
- Department of Cardiology, Kailuan Hospital, Tangshan, China
| | - Shouling Wu
- Department of Cardiology, Kailuan Hospital, Tangshan, China
| | - Zhe Huang
- Department of Cardiology, Kailuan Hospital, Tangshan, China
| |
Collapse
|
15
|
Karimpour P, Ferizoli R, May JM, Kyriacou PA. Customisable Silicone Vessels and Tissue Phantoms for In Vitro Photoplethysmography Investigations into Cardiovascular Disease. SENSORS (BASEL, SWITZERLAND) 2024; 24:1681. [PMID: 38475217 DOI: 10.3390/s24051681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
Age-related vessel deterioration leads to changes in the structure and function of the heart and blood vessels, notably stiffening of vessel walls, increasing the risk of developing cardiovascular disease (CVD), which accounts for 17.9 million global deaths annually. This study describes the fabrication of custom-made silicon vessels with varying mechanical properties (arterial stiffness). The primary objective of this study was to explore how changes in silicone formulations influenced vessel properties and their correlation with features extracted from signals obtained from photoplethysmography (PPG) reflectance sensors in an in vitro setting. Through alterations in the silicone formulations, it was found that it is possible to create elastomers exhibiting an elasticity range of 0.2 MPa to 1.22 MPa. It was observed that altering vessel elasticity significantly impacted PPG signal morphology, particularly reducing amplitude with increasing vessel stiffness (p < 0.001). A p-value of 5.176 × 10-15 and 1.831 × 10-14 was reported in the red and infrared signals, respectively. It has been concluded in this study that a femoral artery can be recreated using the silicone material, with the addition of a softener to achieve the required mechanical properties. This research lays the foundation for future studies to replicate healthy and unhealthy vascular systems. Additional pathologies can be introduced by carefully adjusting the elastomer materials or incorporating geometrical features consistent with various CVDs.
Collapse
Affiliation(s)
- Parmis Karimpour
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK
| | - Redjan Ferizoli
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK
| | - James M May
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK
| | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK
| |
Collapse
|
16
|
Gonçalves R, Gaillard R, Cecil C, Defina S, Steegers EAP, Jaddoe VWV. Arterial Health Markers in Relation to Behavior and Cognitive Outcomes at School Age. J Am Heart Assoc 2024; 13:e029771. [PMID: 38420836 PMCID: PMC10944063 DOI: 10.1161/jaha.123.029771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Impaired arterial health is associated with a decline in cognitive function and psychopathology in adults. We hypothesized that these associations originate in early life. We examined the associations of blood pressure, common carotid artery intima media thickness, and carotid distensibility with behavior and cognitive outcomes during adolescence. METHODS AND RESULTS This study was embedded in the Dutch Generation R Study, a population-based prospective cohort study from early fetal life onwards. Blood pressure, carotid intima media thickness, and carotid distensibility were measured at the age of 10 years. At the age of 13 years, total, internalizing and externalizing problems and attention-deficit hyperactivity disorder symptoms were measured using the parent-reported Child Behavior Checklist (CBCL/6-18), autistic traits were assessed by the Social Responsiveness Scale, and IQ was assessed using the Wechsler Intelligence Scale for Children-Fifth Edition. A 1-SD score higher mean arterial pressure was associated with lower odds of internalizing problems (odds ratio [OR], 0.92 [95% CI, 0.85-0.99]). However, this association was nonsignificant after correction for multiple testing. Carotid intima media thickness and carotid distensibility were not associated with behavior and cognitive outcomes at 13 years old. CONCLUSIONS From our results, we cannot conclude that the associations of blood pressure, carotid intima media thickness, and carotid distensibility at age 10 years with behavior and cognitive outcomes are present in early adolescence. Further follow-up studies are needed to identify the critical ages for arterial health in relation to behavior and cognitive outcomes at older ages.
Collapse
Affiliation(s)
- Romy Gonçalves
- The Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of Pediatrics, Sophia’s Children’s HospitalErasmus University Medical CenterRotterdamThe Netherlands
| | - Romy Gaillard
- The Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of Pediatrics, Sophia’s Children’s HospitalErasmus University Medical CenterRotterdamThe Netherlands
| | - Charlotte Cecil
- The Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of Child and Adolescent Psychiatry/PsychologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Serena Defina
- The Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of Child and Adolescent Psychiatry/PsychologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Eric. A. P. Steegers
- Department of Obstetrics and Gynecology, Sophia’s Children’s HospitalErasmus University Medical CenterRotterdamThe Netherlands
| | - Vincent W. V. Jaddoe
- The Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of Pediatrics, Sophia’s Children’s HospitalErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
17
|
Freeman M, Huethorst E, Boland E, Dunne M, Burton F, Denning C, Myles R, Smith G. A novel method for the percutaneous induction of myocardial infarction by occlusion of small coronary arteries in the rabbit. Am J Physiol Heart Circ Physiol 2024; 326:H735-H751. [PMID: 38180449 PMCID: PMC11221806 DOI: 10.1152/ajpheart.00657.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Arrhythmic sudden cardiac death (SCD) is an important cause of mortality following myocardial infarction (MI). The rabbit has similar cardiac electrophysiology to humans and is therefore an important small animal model to study post-MI arrhythmias. The established approach of surgical coronary ligation results in thoracic adhesions that impede epicardial electrophysiological studies. Adhesions are absent following a percutaneously induced MI, which is also associated with reduced surgical morbidity and so represents a clear refinement of the approach. Percutaneous procedures have previously been described in large rabbits (3.5-5.5 kg). Here, we describe a novel method of percutaneous MI induction in smaller rabbits (2.5-3.5 kg) that are readily available commercially. New Zealand White rabbits (n = 51 males, 3.1 ± 0.3 kg) were anesthetized using isoflurane (1.5-3%) and underwent either a percutaneous MI procedure involving microcatheter tip deployment (≤1.5 Fr, 5 mm), coronary ligation surgery, or a sham procedure. Electrocardiography (ECG) recordings were used to confirm ST-segment elevation indicating coronary occlusion. Blood samples (1 and 24 h) were taken for cardiac troponin I (cTnI) levels. Ejection fraction (EF) was measured at 6-8 wk. Rabbits were then euthanized (Euthatal) and hearts were processed for magnetic resonance imaging and histology. Mortality rates were similar in both groups. Scar volume, cTnI, and EF were similar between both MI groups and significantly different from their respective sham controls. Thus, percutaneous coronary occlusion by microcatheter tip deployment is feasible in rabbits (2.5-3.5 kg) and produces an MI with similar characteristics to surgical ligation with lower procedural trauma and without epicardial adhesions.NEW & NOTEWORTHY Surgical coronary ligation is the standard technique to induce myocardial infarction (MI) in rabbits but is associated with procedural trauma and the generation of thoracic adhesions. Percutaneous coronary occlusion avoids these shortcomings and is established in pigs but has only been applicable to large rabbits because of a mismatch between the equipment used and target vessel size. Here, we describe a new scalable approach to percutaneous MI induction that is safe and effective in 2.5-3.5-kg rabbits.
Collapse
Affiliation(s)
- Michael Freeman
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Eline Huethorst
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Erin Boland
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael Dunne
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francis Burton
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachel Myles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
18
|
Oh SK, Won YJ, Lim BG. Surgical pleth index monitoring in perioperative pain management: usefulness and limitations. Korean J Anesthesiol 2024; 77:31-45. [PMID: 36926752 PMCID: PMC10834712 DOI: 10.4097/kja.23158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023] Open
Abstract
Surgical pleth index (SPI) monitoring is a representative, objective nociception-monitoring device that measures nociception using photoplethysmographic signals. It is easy to apply to patients and the numerical calculation formula is intuitively easy to understand; therefore, its clinical interpretation is simple. Several studies have demonstrated its efficacy and utility. Compared with hemodynamic parameters, the SPI can detect the degree of nociception during surgery under general anesthesia with greater accuracy, and therefore can provide better guidance for the administration of various opioids, including remifentanil, fentanyl, and sufentanil. Indeed, SPI-guided analgesia is associated with lower intraoperative opioid consumption, faster patient recovery, and comparable or lower levels of postoperative pain and rates of adverse events compared with conventional analgesia. In addition, SPI monitoring allows for the degree of postoperative pain and analgesic requirements to be predicted through the SPI values immediately before patient arousal. However, because patient age, effective circulating volume, position, concomitant medication and anesthetic regimen and level of consciousness may be confounding factors in SPI monitoring, clinicians must be careful when interpreting SPI values. In addition, as SPI values can differ depending on anesthetic and analgesic regimens and the underlying disease, an awareness of the effects of these variables with an understanding of the advantages and disadvantages of SPI monitoring compared to other nociception monitoring devices is essential. Therefore, this review aimed to help clinicians perform optimal SPI-guided analgesia and to assist with the establishment of future research designs through clarifying current usefulness and limitations of SPI monitoring in perioperative pain management.
Collapse
Affiliation(s)
- Seok Kyeong Oh
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Young Ju Won
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Byung Gun Lim
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Bareiro FAQ, Carnicero JA, Acha AA, Artalejo CR, Jimenez MCG, Mañas LR, García García FJ. How cognitive performance changes according to the ankle-brachial index score in an elderly cohort? Results from the Toledo Study of Healthy Ageing. GeroScience 2024; 46:609-620. [PMID: 37870701 PMCID: PMC10828423 DOI: 10.1007/s11357-023-00966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
In the ageing process, the vascular system undergoes morphological and functional changes that may condition brain functioning; for this reason, the aims of this study were to assess the effect of vascular function indirectly measured by ankle-brachial index (ABI) on both cognitive performance at baseline and change in cognitive performance at end of follow-up. We developed a prospective, population-based, cohort study with 1147 participants aged > 65 years obtained from the Toledo Study for Healthy Ageing who had cognitive assessment and measured ABI in the first wave (2006-2009) were selected for the cross-sectional analysis. Those participants who also performed the cognitive assessment in the second wave (2011-2013) were selected for the prospective analysis. Cognitive impairment diagnosis and symptoms and/or history of cardio/neurovascular disease were used as exclusion criteria. Multivariate segmented regression model was used to assess the associations between ABI and cognitive performance in both the cross-sectional and prospective analyses. As ABI score decreased from 1.4, the cross-sectional analysis showed a higher decrease in cognitive performance and the prospective analysis showed a higher degree of worsening in cognitive performance. Our findings suggest that the ABI, a widespread measure of vascular health in primary care, may be a useful tool for predicting cognitive performance and its evolution.
Collapse
Affiliation(s)
- Fabio A Quiñónez Bareiro
- Department of Geriatrics, Hospital Virgen del Valle, Hospital Universitario de Toledo, Toledo, Spain
| | - José A Carnicero
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
- Geriatric Research Group, Biomedical Research Foundation at Getafe University Hospital, Ctra. Toledo Km. 12.5, 28905, Getafe, Spain.
| | - Ana Alfaro Acha
- Department of Geriatrics, Hospital Virgen del Valle, Hospital Universitario de Toledo, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Cristina Rosado Artalejo
- Department of Geriatrics, Hospital Virgen del Valle, Hospital Universitario de Toledo, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - María C Grau Jimenez
- Department of Geriatrics, Hospital Virgen del Valle, Hospital Universitario de Toledo, Toledo, Spain
| | - Leocadio Rodriguez Mañas
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Geriatric Department, Hospital Universitario de Getafe, Getafe, Spain
| | - Francisco J García García
- Department of Geriatrics, Hospital Virgen del Valle, Hospital Universitario de Toledo, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
20
|
Somani YB, Boidin M, Peggen MAG, Wanders I, Proctor DN, Low DA, Jones H, Lip GYH, Thijssen DHJ. Single and 7-day handgrip and squat exercise prevents endothelial ischemia-reperfusion injury in individuals with cardiovascular disease risk factors. Am J Physiol Regul Integr Comp Physiol 2024; 326:R79-R87. [PMID: 37899755 DOI: 10.1152/ajpregu.00168.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
Whole body exercise provides protection against endothelial ischemia-reperfusion (IR) injury. In this crossover study, we examined the effects of 1) single bout of local exercise (handgrip, squats) on endothelial responses to IR, and 2) if 7 days of daily local exercise bolsters these effects in individuals with cardiovascular disease (CVD) risk factors. Fifteen participants (9 women, 58 ± 5 yr, ≥2 CVD risk factors) attended the laboratory for six visits. Subsequent to familiarization (visit 1), during visit 2 (control) brachial artery flow-mediated dilation (FMD) was measured before and after IR (15-min upper-arm ischemia, 15-min reperfusion). One week later, participants were randomized to 4 × 5-min unilateral handgrip (50% maximal voluntary contraction, 25 rpm) or squat exercises (15 rpm), followed by IR plus FMD measurements. Subsequently, home-based exercise was performed (6 days), followed by another visit to the laboratory for the IR protocol plus FMD measurements (18-24 h after the last exercise bout). After a 2-wk washout period, procedures were repeated with the alternative exercise mode. For a single exercise bout, we found a significant IR injury × exercise mode interaction (P < 0.01) but no main effect of injury (P = 0.08) or condition (P = 0.61). A lower post-IR FMD was evident after control (pre-IR: 4.3 ± 2.1% to post-IR: 2.9 ± 1.9%, P < 0.01) but not after handgrip (pre-IR: 3.8 ± 1.6% to post-IR: 3.4 ± 1.5%, P = 0.31) or squats (pre-IR: 3.9 ± 1.8% to post-IR: 4.0 ± 1.9%, P = 0.74). After 7 days of daily exercise, we found no change in FMD post-IR following handgrip (pre-IR: 4.3 ± 1.9% to post-IR: 4.7 ± 3.2%) or squats (pre-IR: 3.7 ± 2.1% to post-IR: 4.7 ± 3.0%, P > 0.05). Single bouts of dynamic, local exercise (handgrip, squats) provide remote protection against endothelial IR-induced injury in individuals with CVD risk factors, with 1-wk daily, home-based exercise preserving these effects for up to 24 h following the last exercise bout.NEW & NOTEWORTHY We show that single bouts of dynamic handgrip and squat exercise provide remote protection against endothelial ischemia-reperfusion (IR)-induced injury in individuals with cardiovascular disease (CVD) risk factors, with 1-wk daily, home-based exercise preserving these effects for up to 24 h following the last exercise bout.
Collapse
Affiliation(s)
- Yasina B Somani
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Maxime Boidin
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Mandy A G Peggen
- Department of Medical Biosciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Iris Wanders
- Department of Medical Biosciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - David N Proctor
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - David A Low
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helen Jones
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Clinical Medicine, Danish Center for Clinical Health Services, Aalborg University, Aalborg, Denmark
| | - Dick H J Thijssen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Medical Biosciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| |
Collapse
|
21
|
Gu H, Gao Y, Hou Z, Zhang C, Wang X, Lu B. Impact of coronary atherosclerosis progression on cardiovascular events in patients with suspected coronary artery disease: A two-center retrospective analysis of 1062 cases stratified by age. J Cardiovasc Comput Tomogr 2024; 18:102-104. [PMID: 37981504 DOI: 10.1016/j.jcct.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Affiliation(s)
- Hui Gu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, #324, Jingwu Road, Jinan, Shandong 250021, China; Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250014, China; Department of Radiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Yang Gao
- Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, #167 Bei-Li-Shi Street, Beijing 100037, China
| | - Zhihui Hou
- Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, #167 Bei-Li-Shi Street, Beijing 100037, China
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, #324, Jingwu Road, Jinan, Shandong 250021, China; Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250014, China.
| | - Bin Lu
- Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, #167 Bei-Li-Shi Street, Beijing 100037, China.
| |
Collapse
|
22
|
Belhoul-Fakir H, Brown ML, Thompson PL, Hamzah J, Jansen S. Connecting the Dots: How Injury in the Arterial Wall Contributes to Atherosclerotic Disease. Clin Ther 2023; 45:1092-1098. [PMID: 37891144 DOI: 10.1016/j.clinthera.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE The occurrence and development of atherosclerotic cardiovascular disease, which can result in severe outcomes, such as myocardial infarction, stroke, loss of limb, renal failure, and infarction of the gut, are strongly associated with injury to the intimal component of the arterial wall whether via the inside-out or outside-in pathways. The role of injury to the tunica media as a pathway of atherosclerosis initiation is an underresearched area. This review focuses on potential pathways to vessel wall injury as well as current experimental and clinical research in the middle-aged and elderly populations, including the role of exercise, as it relates to injury to the tunica media. METHODS A database search using PubMed and Google Scholar was conducted for research articles published between 1909 and 2023 that focused on pathways of atherogenesis and the impact of mechanical forces on wall injury. The following key words were searched: wall injury, tunica media, atherogenesis, vascular aging, and wall strain. Studies were analyzed, and the relevant information was extracted from each study. FINDINGS A link between high mechanical stress in the arterial wall and reduced vascular compliance was found. The stiffening and calcification of the arterial wall with aging induce high blood pressure and pulse pressure, thereby causing incident hypertension and cardiovascular disease. In turn, prolonged high mechanical stress, particularly wall strain, applied to the arterial wall during vigorous exercise, results in stiffening and calcification of tunica media, accelerated arterial aging, and cardiovascular disease events. In both scenarios, the tunica media is the primary target of mechanical stress and the first to respond to hemodynamic changes. The cyclical nature of these impacts confounds the results of each because they are not mutually exclusive. IMPLICATIONS The role of stress in the tunica media appears to be overlooked despite its relevance, and further research into new primary preventive therapies is needed aside from cautioning the role of vigorous exercise in the elderly population.
Collapse
Affiliation(s)
- Hanane Belhoul-Fakir
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
| | - Michael Lawrence Brown
- School of Population Health, Curtin University, Bently, Perth, Western Australia, Australia
| | - Peter L Thompson
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Juliana Hamzah
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia, Australia.
| |
Collapse
|
23
|
van der Linden J, Trap L, Scherer CV, Roks AJM, Danser AHJ, van der Pluijm I, Cheng C. Model Systems to Study the Mechanism of Vascular Aging. Int J Mol Sci 2023; 24:15379. [PMID: 37895059 PMCID: PMC10607365 DOI: 10.3390/ijms242015379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death globally. Within cardiovascular aging, arterial aging holds significant importance, as it involves structural and functional alterations in arteries that contribute substantially to the overall decline in cardiovascular health during the aging process. As arteries age, their ability to respond to stress and injury diminishes, while their luminal diameter increases. Moreover, they experience intimal and medial thickening, endothelial dysfunction, loss of vascular smooth muscle cells, cellular senescence, extracellular matrix remodeling, and deposition of collagen and calcium. This aging process also leads to overall arterial stiffening and cellular remodeling. The process of genomic instability plays a vital role in accelerating vascular aging. Progeria syndromes, rare genetic disorders causing premature aging, exemplify the impact of genomic instability. Throughout life, our DNA faces constant challenges from environmental radiation, chemicals, and endogenous metabolic products, leading to DNA damage and genome instability as we age. The accumulation of unrepaired damages over time manifests as an aging phenotype. To study vascular aging, various models are available, ranging from in vivo mouse studies to cell culture options, and there are also microfluidic in vitro model systems known as vessels-on-a-chip. Together, these models offer valuable insights into the aging process of blood vessels.
Collapse
Affiliation(s)
- Janette van der Linden
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Lianne Trap
- Department of Pulmonary Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Caroline V. Scherer
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
24
|
Kopyto E, Czeczelewski M, Mikos E, Stępniak K, Kopyto M, Matuszek M, Nieoczym K, Czarnecki A, Kuczyńska M, Cheda M, Drelich-Zbroja A, Jargiełło T. Contrast-Enhanced Ultrasound Feasibility in Assessing Carotid Plaque Vulnerability-Narrative Review. J Clin Med 2023; 12:6416. [PMID: 37835061 PMCID: PMC10573420 DOI: 10.3390/jcm12196416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The risk assessment for carotid atherosclerotic lesions involves not only determining the degree of stenosis but also plaque morphology and its composition. Recently, carotid contrast-enhanced ultrasound (CEUS) has gained importance for evaluating vulnerable plaques. This review explores CEUS's utility in detecting carotid plaque surface irregularities and ulcerations as well as intraplaque neovascularization and its alignment with histology. Initial indications suggest that CEUS might have the potential to anticipate cerebrovascular incidents. Nevertheless, there is a need for extensive, multicenter prospective studies that explore the relationships between CEUS observations and patient clinical outcomes in cases of carotid atherosclerotic disease.
Collapse
Affiliation(s)
- Ewa Kopyto
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Marcin Czeczelewski
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Eryk Mikos
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Karol Stępniak
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Maja Kopyto
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Małgorzata Matuszek
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Karolina Nieoczym
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Adam Czarnecki
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Maryla Kuczyńska
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (M.K.); (M.C.); (A.D.-Z.); (T.J.)
| | - Mateusz Cheda
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (M.K.); (M.C.); (A.D.-Z.); (T.J.)
| | - Anna Drelich-Zbroja
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (M.K.); (M.C.); (A.D.-Z.); (T.J.)
| | - Tomasz Jargiełło
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (M.K.); (M.C.); (A.D.-Z.); (T.J.)
| |
Collapse
|
25
|
Li P, Liu Z, Wan K, Wang K, Zheng C, Huang J. Effects of regular aerobic exercise on vascular function in overweight or obese older adults: A systematic review and meta-analysis. J Exerc Sci Fit 2023; 21:313-325. [PMID: 37520931 PMCID: PMC10372915 DOI: 10.1016/j.jesf.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/16/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Background Overweight and obese older adults have a high risk for developing cardiovascular disease. Aerobic exercise is a valuable strategy to improve vascular health, but the effects of aerobic exercise on vascular endothelial function in obese and overweight older adults remain controversial. The purpose of this meta-analysis was to investigate the effects of aerobic exercise on vascular function in obese and overweight older adults with or without comorbidity. Methods A systematic literature search for related studies published in English was conducted between January 1989 and October 30, 2022, in the PubMed, Embase, and Cochrane Library databases. A random effects model was chosen for meta-analysis, which calculated the effect sizes of control and intervention groups after exercise intervention using standardized mean differences (SMDs) corrected for Hedges' g bias and 95% confidence intervals (95% CIs). Results Twenty-six studies containing 1418 participants were included in the study. After excluding three studies contributing to higher heterogeneity by sensitivity analysis, there are small effects of regular aerobic exercise on vascular function of obese and overweight older adults, including flow-mediated dilation (FMD) [SMD = 0.21, 95% CI (0.02, 0.41), z = 2.16, df = 19, I2 = 52.2%, P = 0.031] and pulse wave velocity (PWV) [SMD = -0.24, 95% CI (-0.46, -0.02), z = 2.17, df = 10, I2 = 8.6%, P = 0.030], and no significant effect was observed on augmentation index (Aix). Subgroup analysis showed small effects of regular aerobic exercise on FMD [SMD = 0.37, 95% CI (0.13, 0.61), z = 3.05, df = 9, I2 = 52.6%, P = 0.002] in the overweight not obese subgroup (25 = BMI <30 kg/m2), but no significant effect on the obese subgroup (BMI ≥30 kg/m2). Regular aerobic exercise for more than 24 weeks improved FMD by small effect sizes [SMD = 0.48, 95% CI (0.04, 0.93), z = 2.12, df = 5, I2 = 56.4%, P = 0.034] and for more than three times per week improved FMD by moderate effect sizes [SMD = 0.55, 95% CI (0.12, 0.98), z = 2.50, df = 3, I2 = 31.1%, P = 0.012] in obese and overweight older adults with or without CVD. Conclusion In obese and overweight older adults with or without comorbidity, regular aerobic exercise for more than 24 weeks improved FMD by small effect sizes and exercise for more than three times per week improved FMD by moderate effect sizes and regular aerobic exercise reduced PWV by small effect sizes and had no influence on Aix. Taken together, it was recommended that obese and overweight older adults should adhere to regular aerobic exercise, training at least 3 times per week for better results.
Collapse
Affiliation(s)
- Peilun Li
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Ziqing Liu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Kewen Wan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kangle Wang
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China
| | - Chen Zheng
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Neutel CHG, Wesley CD, Van Praet M, Civati C, Roth L, De Meyer GRY, Martinet W, Guns PJ. Empagliflozin decreases ageing-associated arterial stiffening and vascular fibrosis under normoglycemic conditions. Vascul Pharmacol 2023; 152:107212. [PMID: 37619798 DOI: 10.1016/j.vph.2023.107212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Arterial stiffness is a hallmark of vascular ageing and results in increased blood flow pulsatility to the periphery, damaging end-organs such as the heart, kidneys and brain. Treating or "reversing" arterial stiffness has therefore become a central target in the field of vascular ageing. SGLT2 inhibitors, initially developed in the context of type 2 diabetes mellitus, have become a cornerstone of heart failure treatment. Additionally, effects on the vasculature have been reported. Here, we demonstrate that treatment with the SGLT2 inhibitor empagliflozin (7 weeks, 15 mg/kg/day) decreased ageing-induced arterial stiffness of the aorta in old mice with normal blood glucose levels. However, no universal mechanism was identified. While empagliflozin reduced the ageing-associated increase in collagen type I in the medial layer of the abdominal infrarenal aorta and decreased medial TGF-β deposition, this was not observed in the thoracic descending aorta. Moreover, empagliflozin was not able to prevent elastin fragmentation. In conclusion, empagliflozin decreased arterial stiffness in aged mice, indicating that SGLT2 inhibition could be a valuable strategy in mitigating vascular ageing. Further research is warranted to unravel the underlying, possibly region-specific, mechanisms.
Collapse
Affiliation(s)
- Cédric H G Neutel
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.
| | - Callan D Wesley
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Melissa Van Praet
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Celine Civati
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| |
Collapse
|
27
|
Koch Esteves N, Khir AW, González‐Alonso J. Lower limb hyperthermia augments functional hyperaemia during small muscle mass exercise similarly in trained elderly and young humans. Exp Physiol 2023; 108:1154-1171. [PMID: 37409754 PMCID: PMC10988472 DOI: 10.1113/ep091275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
NEW FINDINGS What is the central question of the study? Ageing is postulated to lead to underperfusion of human limb tissues during passive and exertional hyperthermia, but findings to date have been equivocal. Thus, does age have an independent adverse effect on local haemodynamics during passive single-leg hyperthermia, single-leg knee-extensor exercise and their combination? What is the main finding and its importance? Local hyperthermia increased leg blood flow over three-fold and had an additive effect during knee-extensor exercise with no absolute differences in leg perfusion between the healthy, exercise-trained elderly and the young groups. Our findings indicate that age per se does not compromise lower limb hyperaemia during local hyperthermia and/or small muscle mass exercise. ABSTRACT Heat and exercise therapies are recommended to improve vascular health across the lifespan. However, the haemodynamic effects of hyperthermia, exercise and their combination are inconsistent in young and elderly people. Here we investigated the acute effects of local-limb hyperthermia and exercise on limb haemodynamics in nine healthy, trained elderly (69 ± 5 years) and 10 young (26 ± 7 years) adults, hypothesising that the combination of local hyperthermia and exercise interact to increase leg perfusion, albeit to a lesser extent in the elderly. Participants underwent 90 min of single whole-leg heating, with the contralateral leg remaining as control, followed by 10 min of low-intensity incremental single-leg knee-extensor exercise with both the heated and control legs. Temperature profiles and leg haemodynamics at the femoral and popliteal arteries were measured. In both groups, heating increased whole-leg skin temperature and blood flow by 9.5 ± 1.2°C and 0.7 ± 0.2 L min-1 (>3-fold), respectively (P < 0.0001). Blood flow in the heated leg remained 0.7 ± 0.6 and 1.0 ± 0.8 L min-1 higher during exercise at 6 and 12 W, respectively (P < 0.0001). However, there were no differences in limb haemodynamics between cohorts, other than the elderly group exhibiting a 16 ± 6% larger arterial diameter and a 51 ± 6% lower blood velocity following heating (P < 0.0001). In conclusion, local hyperthermia-induced limb hyperperfusion and/or small muscle mass exercise hyperaemia are preserved in trained older people despite evident age-related structural and functional alterations in their leg conduit arteries.
Collapse
Affiliation(s)
- Nuno Koch Esteves
- Division of Sport, Health, and Exercise Sciences, Department of Life SciencesBrunel University LondonUxbridgeUK
| | | | - José González‐Alonso
- Division of Sport, Health, and Exercise Sciences, Department of Life SciencesBrunel University LondonUxbridgeUK
| |
Collapse
|
28
|
Alinezhad‐Namaghi M, Eslami S, Nematy M, Rezvani R, Khoshnasab A, Bonakdaran S, Philippou E, Norouzy A. Association of time-restricted feeding, arterial age, and arterial stiffness in adults with metabolic syndrome. Health Sci Rep 2023; 6:e1385. [PMID: 37408869 PMCID: PMC10318230 DOI: 10.1002/hsr2.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023] Open
Abstract
Background Time-restricted feeding (TRF) is a kind of intermittent fasting defined as eating and drinking only during a certain number of hours in a day. It has been suggested that intermittent fasting may improve cardiovascular risk factors. This study evaluated the association of TRF and arterial stiffness, using pulse wave velocity (PWV), pulse wave analysis, and arterial age in metabolic syndrome participants. Methods A cohort study was carried out among metabolic syndrome adults who were followed over the Ramadan fasting period (used as a model of TRF since food was only allowed for about 8 h/day). The subjects were divided into Ramadan fasting and Ramadan nonfasting groups. The aortic PWV and central aortic pressure waveform were measured. Central systolic pressure, central pulse pressure, and indices of arterial compliance, such as augmentation pressure and augmentation index (AIx), were determined from waveform analysis. Results Ninety-five adults (31.57% female, age: 45.46 ± 9.10 years) with metabolic syndrome (based on the International Diabetes Federation definition) participated in this study. Ramadan fasting and Ramadan nonfasting groups were including 80 and 15 individuals respectively. A significant reduction was seen in PWV (0.29 m/s), central systolic pressure (4.03 mmHg), central pulse pressure (2.43 mmHg), central augmentation pressure (1.88 mmHg), and central AIx (2.47) in the Ramadan fasting group (p = 0.014, p < 0.001, p = 0.001, p = 0.003, and p = 0.036 respectively). There were no significant changes in these indices among the Ramadan nonfasting group. Conclusions This study suggested that TRF reduces arterial age and improves arterial stiffness among people with metabolic syndrome. This might be considered a beneficial nutrition strategy for extending healthspan (and perhaps longevity).
Collapse
Affiliation(s)
- Maryam Alinezhad‐Namaghi
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saeid Eslami
- Pharmaceutical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mohsen Nematy
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Reza Rezvani
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Adeleh Khoshnasab
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Shokoofeh Bonakdaran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Elena Philippou
- Department of Life and Health Sciences, School of Sciences and EngineeringUniversity of NicosiaCyprus
- Department of Nutritional SciencesKing's CollegeLondonUK
| | - Abdolreza Norouzy
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
29
|
Puspitasari YM. Sirtuin 2 in vascular ageing: the forsaken child? Eur Heart J 2023:ehad366. [PMID: 37377081 DOI: 10.1093/eurheartj/ehad366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Affiliation(s)
- Yustina M Puspitasari
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
30
|
Dong H, Ferruzzi J, Liu M, Brewster LP, Leshnower BG, Gleason RL. Effect of Aging, Sex, and Gene (Fbln5) on Arterial Stiffness of Mice: 20 Weeks Adult Fbln5-knockout Mice Have Older Arteries than 100 Weeks Wild-Type Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542920. [PMID: 37398425 PMCID: PMC10312538 DOI: 10.1101/2023.05.30.542920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The arterial stiffening is a strong independent predictor of cardiovascular risk and has been used to characterize the biological age of arteries ('arterial age'). Here we revealed that the Fbln5 gene knockout (Fbln5 -/- ) significantly increases the arterial stiffening for both male and female mice. We also showed that the arterial stiffening increases with natural aging, but the stiffening effect of Fbln5 -/- is much more severe than aging. The arterial stiffening of 20 weeks old mice with Fbln5 -/- is much higher than that at 100 weeks in wild-type (Fbln5 +/+ ) mice, which indicates that 20 weeks mice (equivalent to ∼26 years old humans) with Fbln5 -/- have older arteries than 100 weeks wild-type mice (equivalent to ∼77 years humans). Histological microstructure changes of elastic fibers in the arterial tissue elucidate the underlying mechanism of the increase of arterial stiffening due to Fbln5-knockout and aging. These findings provide new insights to reverse 'arterial age' due to abnormal mutations of Fbln5 gene and natural aging. This work is based on a total of 128 biaxial testing samples of mouse arteries and our recently developed unified-fiber-distribution (UFD) model. The UFD model considers the fibers in the arterial tissue as a unified distribution, which is more physically consistent with the real fiber distribution of arterial tissues than the popular fiber-family-based models (e.g., the well-know Gasser-Ogden-Holzapfel [GOH] model) that separate the fiber distribution into several fiber families. Thus, the UFD model achieves better accuracies with less material parameters. To our best knowledge, the UFD model is the only existing accurate model that could capture the property/stiffness differences between different groups of the experimental data discussed here.
Collapse
|
31
|
Piknova B, Park JW, Thomas SM, Tunau-Spencer KJ, Schechter AN. Nitrate and Nitrite Metabolism in Aging Rats: A Comparative Study. Nutrients 2023; 15:nu15112490. [PMID: 37299453 DOI: 10.3390/nu15112490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Nitric oxide (NO) (co)regulates many physiological processes in the body. Its short-lived free radicals force synthesis in situ and on-demand, without storage possibility. Local oxygen availability determines the origin of NO-either by synthesis by nitric oxide synthases (NOS) or by the reduction of nitrate to nitrite to NO by nitrate/nitrite reductases. The existence of nitrate reservoirs, mainly in skeletal muscle, assures the local and systemic availability of NO. Aging is accompanied by changes in metabolic pathways, leading to a decrease in NO availability. We explored age-related changes in various rat organs and tissues. We found differences in nitrate and nitrite contents in tissues of old and young rats at baseline levels, with nitrate levels being generally higher and nitrite levels being generally lower in old rats. However, there were no differences in the levels of nitrate-transporting proteins and nitrate reductase between old and young rats, with the exception of in the eye. Increased dietary nitrate led to significantly higher nitrate enrichment in the majority of old rat organs compared to young rats, suggesting that the nitrate reduction pathway is not affected by aging. We hypothesize that age-related NO accessibility changes originate either from the NOS pathway or from changes in NO downstream signaling (sGC/PDE5). Both possibilities need further investigation.
Collapse
Affiliation(s)
- Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji Won Park
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha M Thomas
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Khalid J Tunau-Spencer
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan N Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
de Sousa MKF, Silva RDM, Freire YA, Souto GC, Câmara M, Cabral LLP, Macêdo GAD, Costa EC, Oliveira RS. Associations between physical activity and cardiorespiratory fitness with vascular health phenotypes in older adults: a cross-sectional study. Front Physiol 2023; 14:1096139. [PMID: 37256064 PMCID: PMC10225566 DOI: 10.3389/fphys.2023.1096139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Objective: We investigated the associations between physical activity (PA) and cardiorespiratory fitness (CRF) with vascular health phenotypes in community-dwelling older adults. Methods: This cross-sectional study included 82 participants (66.8 ± 5.2 years; 81% females). Moderate-to-vigorous physical activity (MVPA) was assessed using accelerometers, and CRF was measured using the distance covered in the 6-min walk test (6MWT). The vascular health markers were as follows: i) arterial function measured as aortic pulse wave velocity (aPWV) estimated using an automatic blood pressure device; and ii) arterial structure measured as the common carotid intima-media thickness (cIMT). Using a combination of normal cIMT and aPWV values, four groups of vascular health phenotypes were created: normal aPWV and cIMT, abnormal aPWV only, abnormal cIMT only, and abnormal aPWV and cIMT. Multiple linear regression was used to estimate the beta coefficients (β) and their respective 95% confidence intervals (95% CI) adjusting for BMI, and medication for diabetes, lipid, and hypertension, sex, age, and blood pressure. Results: Participants with abnormal aPWV and normal cIMT (β = -53.76; 95% CI = -97.73--9.78 m; p = 0.017), and participants with both abnormal aPWV and cIMT (β = -71.89; 95% CI = -125.46--18.31 m; p = 0.009) covered less distance in the 6MWT, although adjusting for age, sex and blood pressure decreased the strength of the association with only groups of abnormal aPWV and cIMT covering a lower 6MWT distance compared to participants with both normal aPWV and cIMT (β = -55.68 95% CI = -111.95-0.59; p = 0.052). No associations were observed between MVPA and the vascular health phenotypes. Conslusion: In summary, poor CRF, but not MVPA, is associated with the unhealthiest vascular health phenotype (abnormal aPWV/cIMT) in older adults.
Collapse
Affiliation(s)
| | - Raíssa de Melo Silva
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Physical Education, ExCE Research Group, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Yuri Alberto Freire
- Department of Physical Education, ExCE Research Group, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Gabriel Costa Souto
- Department of Physical Education, ExCE Research Group, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marcyo Câmara
- Department of Physical Education, ExCE Research Group, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ludmila Lucena Pereira Cabral
- Department of Physical Education, ExCE Research Group, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Geovani Araújo Dantas Macêdo
- Department of Physical Education, ExCE Research Group, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Eduardo Caldas Costa
- Department of Physical Education, ExCE Research Group, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ricardo Santos Oliveira
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- INTEGRA—Integrative Physiology, Health, and Performance Research Group, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
33
|
Hobson S, Arefin S, Witasp A, Hernandez L, Kublickiene K, Shiels PG, Stenvinkel P. Accelerated Vascular Aging in Chronic Kidney Disease: The Potential for Novel Therapies. Circ Res 2023; 132:950-969. [PMID: 37053277 DOI: 10.1161/circresaha.122.321751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The pathophysiology of vascular disease is linked to accelerated biological aging and a combination of genetic, lifestyle, biological, and environmental risk factors. Within the scenario of uncontrolled artery wall aging processes, CKD (chronic kidney disease) stands out as a valid model for detailed structural, functional, and molecular studies of this process. The cardiorenal syndrome relates to the detrimental bidirectional interplay between the kidney and the cardiovascular system. In addition to established risk factors, this group of patients is subjected to a plethora of other emerging vascular risk factors, such as inflammation, oxidative stress, mitochondrial dysfunction, vitamin K deficiency, cellular senescence, somatic mutations, epigenetic modifications, and increased apoptosis. A better understanding of the molecular mechanisms through which the uremic milieu triggers and maintains early vascular aging processes, has provided important new clues on inflammatory pathways and emerging risk factors alike, and to the altered behavior of cells in the arterial wall. Advances in the understanding of the biology of uremic early vascular aging opens avenues to novel pharmacological and nutritional therapeutic interventions. Such strategies hold promise to improve future prevention and treatment of early vascular aging not only in CKD but also in the elderly general population.
Collapse
Affiliation(s)
- S Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - S Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - A Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - L Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - K Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - P G Shiels
- School of Molecular Biosciences, MVLS, University of Glasgow, United Kingdom (P.G.S.)
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| |
Collapse
|
34
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
35
|
Mechanism of oxidized phospholipid-related inflammatory response in vascular ageing. Ageing Res Rev 2023; 86:101888. [PMID: 36806379 DOI: 10.1016/j.arr.2023.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Vascular ageing is an important factor in the morbidity and mortality of the elderly. Atherosclerosis is a characteristic disease of vascular ageing, which is closely related to the enhancement of vascular inflammation. Phospholipid oxidation products are important factors in inducing cellular inflammation. Through interactions with vascular cells and immune cells, they regulate intracellular signaling pathways, activate the expression of various cytokines, and affect cell behavior, such as metabolic level, proliferation, apoptosis, etc. Intervention in lipid metabolism and anti-inflammation are the two key pathways of drugs for the treatment of atherosclerosis. This review aims to sort out the signaling pathway of oxidized phospholipids-induced inflammatory factors in vascular cells and immune cells and the mechanism leading to changes in cell behavior, and summarize the therapeutic targets in the inflammatory signaling pathway for the development of atherosclerosis drugs.
Collapse
|
36
|
Ma L, Li K, Wei W, Zhou J, li Z, Zhang T, Wangsun Y, Tian F, Dong Q, Zhang H, Xing W. Exercise protects aged mice against coronary endothelial senescence via FUNDC1-dependent mitophagy. Redox Biol 2023; 62:102693. [PMID: 37030149 PMCID: PMC10113862 DOI: 10.1016/j.redox.2023.102693] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Vascular aging contributes to adverse changes in organ function and is a significant indicator of major cardiac events. Endothelial cells (ECs) participate in aging-provoked coronary vascular pathology. Regular exercise is associated with preservation of arterial function with aging in humans. However, the molecular basis is not well understood. The present study was aimed to determine the effects of exercise on coronary endothelial senescence and whether mitochondrial clearance regulator FUN14 domain containing 1 (FUNDC1)-related mitophagy and mitochondrial homeostasis were involved. In mouse coronary arteries, FUNDC1 levels showed gradually decrease with age. Both FUNDC1 and mitophagy levels in cardiac microvascular endothelial cells (CMECs) were significantly reduced in aged mice and were rescued by exercise training. Exercise also alleviated CMECs senescence as evidenced by senescence associated β-galactosidase activity and aging markers, prevented endothelial abnormal cell migration, proliferation, and eNOS activation in CMECs from aged mice, and improved endothelium-dependent vasodilation of coronary artery, reduced myocardial neutrophil infiltration and inflammatory cytokines evoked by MI/R, restored angiogenesis and consequently alleviated MI/R injury in aging. Importantly, FUNDC1 deletion abolished the protective roles of exercise and FUNDC1 overexpression in ECs with adeno-associated virus (AAV) reversed endothelial senescence and prevented MI/R injury. Mechanistically, PPARγ played an important role in regulating FUNDC1 expressions in endothelium under exercise-induced laminar shear stress. In conclusion, exercise prevents endothelial senescence in coronary arteries via increasing FUNDC1 in a PPARγ-dependent manner, and subsequently protects aged mice against MI/R injury. These findings highlight FUNDC1-mediated mitophagy as potential therapeutic target that prevents endothelial senescence and myocardial vulnerability.
Collapse
|
37
|
Zheng X, Berg Sen J, Li Z, Sabouri M, Samarah L, Deacon CS, Bernardo J, Machin DR. High-salt diet augments systolic blood pressure and induces arterial dysfunction in outbred, genetically diverse mice. Am J Physiol Heart Circ Physiol 2023; 324:H473-H483. [PMID: 36735405 PMCID: PMC10010918 DOI: 10.1152/ajpheart.00415.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Excess salt consumption contributes to hypertension and arterial dysfunction in humans living in industrialized societies. However, this arterial phenotype is not typically observed in inbred, genetically identical mouse strains that consume a high-salt (HS) diet. Therefore, we sought to determine the effects of HS diet consumption on systolic blood pressure (BP) and arterial function in UM-HET3 mice, an outbred, genetically diverse strain of mice. Male and female UM-HET3 mice underwent a low-salt [LS (1% NaCl)] or HS (4% NaCl) diet for 12 wk. Systolic BP and aortic stiffness, determined by pulse wave velocity (PWV), were increased in HS after 2 and 4 wk, respectively, compared with baseline and continued to increase through week 12 (P < 0.05). Systolic BP was higher from weeks 2-12 and PWV was higher from weeks 4-12 in HS compared with LS mice (P < 0.05). Aortic collagen content was ∼81% higher in HS compared with LS (P < 0.05), whereas aortic elastin content was similar between groups (P > 0.05). Carotid artery endothelium-dependent dilation (EDD) was ∼10% lower in HS compared with LS (P < 0.05), endothelium-independent dilation was similar between groups (P > 0.05). Finally, there was a strong relationship between systolic BP and PWV (r2 = 0.40, P < 0.05), as well as inverse relationship between EDD and systolic BP (r2 = 0.21, P < 0.05) or PWV (r2 = 0.20, P < 0.05). In summary, HS diet consumption in UM-HET3 mice increases systolic BP, which is accompanied by aortic stiffening and impaired EDD. These data suggest that outbred, genetically diverse mice may provide unique translational insight into arterial adaptations of humans that consume an HS diet.NEW & NOTEWORTHY Excess salt consumption is a contributor to hypertension and arterial dysfunction in humans living in industrialized societies, but this phenotype is not observed in inbred, genetically identical mice that consume a high-salt (HS) diet. This study reveals that a HS diet in outbred, genetically diverse mice progressively increases systolic blood pressure and induce arterial dysfunction. These data suggest that genetically diverse mice may provide translational insight into arterial adaptations in humans that consume an HS diet.
Collapse
Affiliation(s)
- Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Jennifer Berg Sen
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Zhuoxin Li
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Mostafa Sabouri
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Luaye Samarah
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Christina S Deacon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Joseph Bernardo
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
38
|
Ruediger SL, Pizzey FK, Koep JL, Coombes JS, Askew CD, Bailey TG. Comparison of peripheral and cerebral vascular function between premenopausal, early and late postmenopausal females. Exp Physiol 2023; 108:518-530. [PMID: 36621779 PMCID: PMC10103882 DOI: 10.1113/ep090813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? We sought to investigate whether peripheral and cerebrovascular function are impaired in early and late postmenopausal females compared with premenopausal females, while also accounting for nitric oxide and estradiol levels. What is the main finding and its importance? We observed no differences in peripheral vascular and cerebrovascular function between healthy and physically active premenopausal females and early and late postmenopausal females. Our findings contradict previous cross-sectional observations of vascular and cerebrovascular dysfunction across menopause. Longitudinal studies assessing vascular and cerebrovascular outcomes across the menopausal transition are warranted. ABSTRACT The risk of cardiovascular and cerebrovascular disease increases in ageing females, coinciding with the onset of menopause. Differences in peripheral and cerebrovascular function across menopausal stages, however, are poorly characterized. The aim of this study was to compare peripheral and cerebrovascular function between healthy premenopausal (PRE), early (1-6 years after final menstrual period; E-POST) and late (>6 years after final menstrual period; L-POST) postmenopausal females. We also explored the association between reproductive hormones, NO bioavailability and cerebrovascular function. In 39 females (40-65 years of age), we measured arterial stiffness, brachial artery flow-mediated dilatation, and cerebrovascular reactivity (CVR) to hypercapnia in the middle (MCAv) and internal (ICA) carotid arteries. Follicle-stimulating hormone, estradiol, progesterone and plasma nitrate and nitrite concentrations were also measured. Years since final menstrual period (PRE, 0 ± 0 years; E-POST, 3 ± 1 years; L-POST, 11 ± 4 years; P < 0.001) and estradiol levels (PRE, 145.5 ± 65.6 pg ml-1 ; E-POSTm 30.2 ± 81.2 pg ml-1 ; L-POST, 7.7 ± 11.3 pg ml-1 ; P < 0.001) were different between groups. All groups exceeded the guidelines for recommended physical activity. There were no group differences in blood pressure (P = 0.382), arterial stiffness (P = 0.129), flow-mediated dilatation (P = 0.696) or MCAv CVR (P = 0.442). The ICA CVR blood flow response was lower in PRE compared with L-POST (26.5 ± 19.2 vs. 47.8 ± 12.6%; P = 0.010), but after adjusting for age these differences were no longer present. Flow-mediated dilatation (r = 0.313, P = 0.105) and ICA CVR (r = -0.154, P = 0.495) were not associated with the estradiol concentration. There were no associations between the estradiol concentration and NO bioavailability. These results suggest that in healthy, physically active early and late postmenopausal females, vascular and cerebrovascular function is generally well preserved.
Collapse
Affiliation(s)
- Stefanie L. Ruediger
- Physiology and Ultrasound Laboratory in Science and ExerciseCentre for Research on Exercise, Physical Activity and HealthSchool of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Faith K. Pizzey
- Physiology and Ultrasound Laboratory in Science and ExerciseCentre for Research on Exercise, Physical Activity and HealthSchool of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Jodie L. Koep
- Physiology and Ultrasound Laboratory in Science and ExerciseCentre for Research on Exercise, Physical Activity and HealthSchool of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Children's Health and Exercise Research Centre, Sport and Health SciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Jeff S. Coombes
- Physiology and Ultrasound Laboratory in Science and ExerciseCentre for Research on Exercise, Physical Activity and HealthSchool of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Christopher D. Askew
- VasoActive Research GroupSchool of HealthUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
- Sunshine Coast Health InstituteSunshine Coast Hospital and Health ServiceBirtinyaQueenslandAustralia
| | - Tom G. Bailey
- Physiology and Ultrasound Laboratory in Science and ExerciseCentre for Research on Exercise, Physical Activity and HealthSchool of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneQueenslandAustralia
- School of NursingMidwifery and Social WorkThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
39
|
Onnis C, Muscogiuri G, Cademartiri F, Fanni D, Faa G, Gerosa C, Mannelli L, Suri JS, Sironi S, Montisci R, Saba L. Non-invasive coronary imaging in elderly population. Eur J Radiol 2023; 162:110794. [PMID: 37001255 DOI: 10.1016/j.ejrad.2023.110794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Age is a non-modifiable cardiovascular risk factor, which leads to development and progression of chronic conditions, such as coronary artery disease, by promoting atherosclerosis. Aging is responsible for morphological structure changes of the coronary arteries and specific atherosclerotic plaque features, which can be studied with non-invasive coronary imaging techniques, particularly coronary CT angiography. The aim of this review is to evaluate current knowledge on this technique applied to the elderly population, and to describe CAD manifestation and plaque features of coronary atherosclerosis in this particular set of patients. We also discuss the clinical implication of frailty assessment and customization of diagnostic strategies in order to shift the approach from disease-centered to patient-centered care.
Collapse
|
40
|
Sun P, Wu H, Bai X, Zhang L, Zhang C, Wang X, Lou C, Li B, Li Z, Bai H. Decellularized fish swim bladder patch loaded with mesenchymal stem cells inhibits neointimal hyperplasia. J Biomed Mater Res B Appl Biomater 2023; 111:551-559. [PMID: 36200602 DOI: 10.1002/jbm.b.35172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 09/03/2022] [Indexed: 01/21/2023]
Abstract
We previously showed decellularized fish swim bladder can be used as vascular patch and tube graft in rats, mesenchymal stem cells (MSCs) have showed the capability to inhibit neointimal hyperplasia in different animal models. We hypothesized that decellularized fish swim bladder patch loaded with MSCs (bioinspired patch) can inhibit neointimal hyperplasia in a rat aortic patch angioplasty model. Rat MSCs were grown in vitro and flow cytometry was used to confirm their quality. 3.6 × 105 MSCs were mixed into 100 μl of sodium alginate (SA)/hyaluronic acid (HA) hydrogel, two layers of fish swim bladders (5 mm × 5 mm) were sutured together, bioinspired patch was created by injection of hydrogel with MSCs into the space between two layers of fish swim bladder patches. Decellularized rat thoracic aorta patch was used as control. Patches were harvested at days 1 and 14 after implantation. Samples were examined by histology, immunohistochemistry, and immunofluorescence. The decellularized rat thoracic aorta patch and the fish swim bladder patch had a similar healing process after implantation. The bioinspired patch had a similar structure like native aorta. Bioinspired patch showed a decreased neointimal thickness (p = .0053), fewer macrophages infiltration (p = .0090), and lower proliferation rate (p = .0291) compared to the double layers fish swim bladder patch group. Decellularized fish swim bladder patch loaded with MSCs can inhibit neointimal hyperplasia effectively. Although this is a preliminary animal study, it may have a potential application in large animals or clinical research.
Collapse
Affiliation(s)
- Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiche Bai
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China.,The First Zhongyuan Middle School, Zhengzhou, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueyun Wang
- Department of Physiology, Medical School of Zhengzhou University, Zhengzhou, China
| | - Chunyang Lou
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Li
- Department of Physiology, Medical School of Zhengzhou University, Zhengzhou, China
| | - Zhuo Li
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China.,Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| |
Collapse
|
41
|
Mansur AJ. SAGE Score and Pulse Wave Velocity in Non-Hypertensive Individuals. Arq Bras Cardiol 2023; 120:e20220881. [PMID: 36856246 PMCID: PMC10263455 DOI: 10.36660/abc.20220881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Alfredo José Mansur
- Instituto do CoraçãoFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| |
Collapse
|
42
|
Won YJ, Oh SK, Lim BG, Kim YS, Lee DY, Lee JH. Effect of surgical pleth index-guided remifentanil administration on perioperative outcomes in elderly patients: a prospective randomized controlled trial. BMC Anesthesiol 2023; 23:57. [PMID: 36803564 PMCID: PMC9936695 DOI: 10.1186/s12871-023-02011-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND During general anesthesia, the surgical pleth index (SPI) monitors nociception. The evidence of SPI in the elderly remains scarce. We aimed to investigate whether there is a difference in perioperative outcomes following intraoperative opioid administration according to the surgical pleth index (SPI) value versus hemodynamic parameters (heart rate or blood pressure) in elderly patients. METHODS Patients aged 65-90 years who underwent laparoscopic colorectal cancer surgery under sevoflurane/remifentanil anesthesia were randomized to receive remifentanil guided by SPI (SPI group) or conventional clinical judgment based on hemodynamic parameters (conventional group). The primary endpoint was intraoperative remifentanil consumption. Secondary endpoints were intraoperative hemodynamic instability, pain score, fentanyl consumption and delirium in the post-anesthesia care unit (PACU), and perioperative changes in interleukin-6 and natural killer (NK) cell activity. RESULTS Seventy-five patients (38, SPI; 37, conventional) were included in the study. The SPI group consumed significantly more remifentanil intraoperatively than the conventional group (mean ± SD, 0.13 ± 0.05 vs. 0.06 ± 0.04 μg/kg/min, P < 0.001). Intraoperative hypertension and tachycardia were more common in the conventional group than in the SPI group. Pain score in the PACU (P = 0.013) and the incidence of delirium in the PACU were significantly lower in the SPI group than the conventional group (5.2% vs. 24.3%, P = 0.02). There was no significant difference in NK cell activity and interleukin-6 level. CONCLUSIONS In the elderly patients, SPI-guided analgesia provided appropriate analgesia with sufficient intraoperative remifentanil consumption, lower incidence of hypertension/ tachycardia events, and a lower incidence of delirium in the PACU than the conventional analgesia. However, SPI-guided analgesia may not prevent perioperative immune system deterioration. TRIAL REGISTRATION The randomized controlled trial was retrospectively registered in the UMIN Clinical Trials Registry (trial number: UMIN000048351; date of registration: 12/07/2022).
Collapse
Affiliation(s)
- Young Ju Won
- grid.411134.20000 0004 0474 0479Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Gurodong-Ro 148, Guro-Gu, Seoul, 08308 Republic of Korea
| | - Seok Kyeong Oh
- grid.411134.20000 0004 0474 0479Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Gurodong-Ro 148, Guro-Gu, Seoul, 08308 Republic of Korea
| | - Byung Gun Lim
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
| | - Young Sung Kim
- grid.411134.20000 0004 0474 0479Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Gurodong-Ro 148, Guro-Gu, Seoul, 08308 Republic of Korea
| | - Do Yeop Lee
- grid.411134.20000 0004 0474 0479Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Gurodong-Ro 148, Guro-Gu, Seoul, 08308 Republic of Korea
| | - Jae Hak Lee
- grid.411134.20000 0004 0474 0479Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Gurodong-Ro 148, Guro-Gu, Seoul, 08308 Republic of Korea
| |
Collapse
|
43
|
Weijs RWJ, Shkredova DA, Brekelmans ACM, Thijssen DHJ, Claassen JAHR. Longitudinal changes in cerebral blood flow and their relation with cognitive decline in patients with dementia: Current knowledge and future directions. Alzheimers Dement 2023; 19:532-548. [PMID: 35485906 DOI: 10.1002/alz.12666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/15/2023]
Abstract
The pathophysiology underlying cognitive decline is multifactorial, with increasing literature suggesting a role for cerebrovascular health. Cerebral blood flow (CBF) is an important element of cerebrovascular health, which raises questions regarding the relation between CBF and cognitive decline. Cross-sectional studies demonstrate lower CBF in patients with cognitive decline compared to healthy age-matched peers. Remarkably, longitudinal studies do not support a link between CBF reductions and cognitive decline. These studies, however, are often limited by small sample sizes and may therefore be underpowered to detect small effect sizes. Therefore, through a systematic review and meta-analysis of longitudinal studies, we examined whether longitudinal changes in global CBF are related to cognitive decline in subjects with Alzheimer's disease, and qualitatively described findings on regional CBF. Considering the growing impact of dementia and the lack of treatment options, it is important to understand the role of CBF as a prognostic biomarker and/or treatment target in dementia.
Collapse
Affiliation(s)
- Ralf W J Weijs
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daria A Shkredova
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Anna C M Brekelmans
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud UMC Alzheimer's Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
44
|
Cui Y, Gollasch M, Kassmann M. Arterial myogenic response and aging. Ageing Res Rev 2023; 84:101813. [PMID: 36470339 DOI: 10.1016/j.arr.2022.101813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The arterial myogenic response is an inherent property of resistance arteries. Myogenic tone is crucial for maintaining a relatively constant blood flow in response to changes in intraluminal pressure and protects delicate organs from excessive blood flow. Although this fundamental physiological phenomenon has been extensively studied, the underlying molecular mechanisms are largely unknown. Recent studies identified a crucial role of mechano-activated angiotensin II type 1 receptors (AT1R) in this process. The development of myogenic response is affected by aging. In this review, we summarize recent progress made to understand the role of AT1R and other mechanosensors in the control of arterial myogenic response. We discuss age-related alterations in myogenic response and possible underlying mechanisms and implications for healthy aging.
Collapse
Affiliation(s)
- Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125 Berlin, Germany
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Mario Kassmann
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany.
| |
Collapse
|
45
|
Kassis A, Fichot MC, Horcajada MN, Horstman AMH, Duncan P, Bergonzelli G, Preitner N, Zimmermann D, Bosco N, Vidal K, Donato-Capel L. Nutritional and lifestyle management of the aging journey: A narrative review. Front Nutr 2023; 9:1087505. [PMID: 36761987 PMCID: PMC9903079 DOI: 10.3389/fnut.2022.1087505] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
With age, the physiological responses to occasional or regular stressors from a broad range of functions tend to change and adjust at a different pace and restoring these functions in the normal healthy range becomes increasingly challenging. Even if this natural decline is somehow unavoidable, opportunities exist to slow down and attenuate the impact of advancing age on major physiological processes which, when weakened, constitute the hallmarks of aging. This narrative review revisits the current knowledge related to the aging process and its impact on key metabolic functions including immune, digestive, nervous, musculoskeletal, and cardiovascular functions; and revisits insights into the important biological targets that could inspire effective strategies to promote healthy aging.
Collapse
Affiliation(s)
- Amira Kassis
- Whiteboard Nutrition Science, Beaconsfield, QC, Canada,Amira Kassis,
| | | | | | | | - Peter Duncan
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | - Nicolas Preitner
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Diane Zimmermann
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Karine Vidal
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Laurence Donato-Capel
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland,*Correspondence: Laurence Donato-Capel,
| |
Collapse
|
46
|
Untracht GR, Dikaios N, Durrani AK, Bapir M, Sarunic MV, Sampson DD, Heiss C, Sampson DM. Pilot study of optical coherence tomography angiography-derived microvascular metrics in hands and feet of healthy and diabetic people. Sci Rep 2023; 13:1122. [PMID: 36670141 PMCID: PMC9853488 DOI: 10.1038/s41598-022-26871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023] Open
Abstract
Optical coherence tomography angiography (OCTA) is a non-invasive, high-resolution imaging modality with growing application in dermatology and microvascular assessment. Accepted reference values for OCTA-derived microvascular parameters in skin do not yet exist but need to be established to drive OCTA into the clinic. In this pilot study, we assess a range of OCTA microvascular metrics at rest and after post-occlusive reactive hyperaemia (PORH) in the hands and feet of 52 healthy people and 11 people with well-controlled type 2 diabetes mellitus (T2DM). We calculate each metric, measure test-retest repeatability, and evaluate correlation with demographic risk factors. Our study delivers extremity-specific, age-dependent reference values and coefficients of repeatability of nine microvascular metrics at baseline and at the maximum of PORH. Significant differences are not seen for age-dependent microvascular metrics in hand, but they are present for several metrics in the foot. Significant differences are observed between hand and foot, both at baseline and maximum PORH, for most of the microvascular metrics with generally higher values in the hand. Despite a large variability over a range of individuals, as is expected based on heterogeneous ageing phenotypes of the population, the test-retest repeatability is 3.5% to 18% of the mean value for all metrics, which highlights the opportunities for OCTA-based studies in larger cohorts, for longitudinal monitoring, and for assessing the efficacy of interventions. Additionally, branchpoint density in the hand and foot and changes in vessel diameter in response to PORH stood out as good discriminators between healthy and T2DM groups, which indicates their potential value as biomarkers. This study, building on our previous work, represents a further step towards standardised OCTA in clinical practice and research.
Collapse
Affiliation(s)
- Gavrielle R Untracht
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, 6009, Australia
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK
| | - Nikolaos Dikaios
- Mathematics Research Centre, Academy of Athens, Athens, 10679, Greece
| | - Abdullah K Durrani
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK
- School of Physics, Advanced Technology Institute, The University of Surrey, Guildford, GU27XH, UK
| | - Mariam Bapir
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK
| | - Marinko V Sarunic
- Institute of Ophthalmology, University College London, London, EC1V 2PD, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - David D Sampson
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK
- School of Physics, Advanced Technology Institute, The University of Surrey, Guildford, GU27XH, UK
| | - Christian Heiss
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK
- East Surrey Hospital, Surrey and Sussex Healthcare NHS Trust, Redhill, RH15RH, UK
| | - Danuta M Sampson
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK.
- Institute of Ophthalmology, University College London, London, EC1V 2PD, UK.
| |
Collapse
|
47
|
Zhang Y, Zhang Y, Zhu L, Yu Z, Lu F, Wang Z, Zhang Q. The Correlation Between Health Risk Factors and Diabesity and Lipid Profile Indicators: The Role Mediator of TSH. Diabetes Metab Syndr Obes 2023; 16:1247-1259. [PMID: 37159748 PMCID: PMC10163876 DOI: 10.2147/dmso.s398124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/02/2023] [Indexed: 05/11/2023] Open
Abstract
Introduction Obesity in adults is a problem, particularly when paired with other metabolic abnormalities. Previous research have linked various screening approaches to diabetes, but additional evidence points to the relevance of combining diabetes screening methods with obesity and its effects. This research examined the impact of thyroid hormones (TSHs) and health risk factors (HRFs) in screening for obesity and diabetes in Chinese populations, and whether age can modulate this association. Methods From March to July 2022, the Hefei Community Health Service Center connected with the First Affiliated Hospital of Anhui Medical University was chosen, and the multi-stage cluster sample approach was utilized to test adults aged 21-90 in each community. Latent category analysis (LCA) was performed to investigate the clustering patterns of HRFs. A one-way ANOVA was used to examine waist circumference (WC), biochemical markers, and general data. Furthermore, multivariate logistic regression analysis was utilized to investigate the relationship between health risk variables and WC. Results A total of 750 individuals without a history of major problems who had a community health physical examination were chosen, with missing data greater than 5% excluded. Finally, 708 samples were included in the study with an effective rate of 94.4%. The average WC was (90.0±10.33) cm, the prevalence in the >P75, P50~P75, P25~P50, and ≤P25 groups were 24.7%, 18.9%, 28.7% and 27.7%, respectively. The average TSH was (2.76±2.0) μIU/mL. Male (β=1.91), HOMA-IR (β=0.06), TyG (β=2.41), SBP (β=0.08), TG (β=0.94) and UA (β=0.03) were more likely to have a higher prevalence of WC level. The analyses revealed significant correlations between HRFs, TSH, age, other metabolic indexes and WC (P < 0.05). Discussion Our findings suggest that the quality of metabolic-related indicators used to successfully decrease diabetes in Chinese individuals with high HRFs levels should be prioritized. Comprehensive indicators might be a useful and practical way for measuring the metabolic evolution of diabetes level levels.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Yulin Zhang
- The Second Clinical Medical College, Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Li Zhu
- Department of Endocrinology, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Zixiang Yu
- The First Clinical Medical College, Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Fangting Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Zhen Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
- Correspondence: Qiu Zhang, Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China, Email
| |
Collapse
|
48
|
Nyland J, Pyle B, Krupp R, Kittle G, Richards J, Brey J. ACL microtrauma: healing through nutrition, modified sports training, and increased recovery time. J Exp Orthop 2022; 9:121. [PMID: 36515744 PMCID: PMC9751252 DOI: 10.1186/s40634-022-00561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Sports injuries among youth and adolescent athletes are a growing concern, particularly at the knee. Based on our current understanding of microtrauma and anterior cruciate ligament (ACL) healing characteristics, this clinical commentary describes a comprehensive plan to better manage ACL microtrauma and mitigate the likelihood of progression to a non-contact macrotraumatic ACL rupture. METHODS Medical literature related to non-contact ACL injuries among youth and adolescent athletes, collagen and ACL extracellular matrix metabolism, ACL microtrauma and sudden failure, and concerns related to current sports training were reviewed and synthesized into a comprehensive intervention plan. RESULTS With consideration for biopsychosocial model health factors, proper nutrition and modified sports training with increased recovery time, a comprehensive primary ACL injury prevention plan is described for the purpose of better managing ACL microtrauma, thereby reducing the incidence of non-contact macrotraumatic ACL rupture among youth and adolescent athletes. CONCLUSION Preventing non-contact ACL injuries may require greater consideration for reducing accumulated ACL microtrauma. Proper nutrition including glycine-rich collagen peptides, or gelatin-vitamin C supplementation in combination with healthy sleep, and adjusted sports training periodization with increased recovery time may improve ACL extracellular matrix collagen deposition homeostasis, decreasing sudden non-contact ACL rupture incidence likelihood in youth and adolescent athletes. Successful implementation will require compliance from athletes, parents, coaches, the sports medicine healthcare team, and event organizers. Studies are needed to confirm the efficacy of these concepts. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- J Nyland
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA.
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA.
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA.
| | - B Pyle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - R Krupp
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - G Kittle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - J Richards
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - J Brey
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
49
|
Eckersley A, Ozols M, Chen P, Tam V, Ward LJ, Hoyland JA, Trafford A, Yuan XM, Schiller HB, Chan D, Sherratt MJ. Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biol 2022; 114:108-137. [PMID: 35618217 DOI: 10.1016/j.matbio.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Extracellular matrices (ECMs) in the intervertebral disc (IVD), lung and artery are thought to undergo age-dependant accumulation of damage by chronic exposure to mechanisms such as reactive oxygen species, proteases and glycation. It is unknown whether this damage accumulation is species-dependant (via differing lifespans and hence cumulative exposures) or whether it can influence the progression of age-related diseases such as atherosclerosis. Peptide location fingerprinting (PLF) is a new proteomic analysis method, capable of the non-targeted identification of structure-associated changes within proteins. Here we applied PLF to publicly available ageing human IVD (outer annulus fibrosus), ageing mouse lung and human arterial atherosclerosis datasets and bioinformatically identified novel target proteins alongside common age-associated differences within protein structures which were conserved between three ECM-rich organs, two species, three IVD tissue regions, sexes and in an age-related disease. We identify peptide yield differences across protein structures which coincide with biological regions, potentially reflecting the functional consequences of ageing or atherosclerosis for macromolecular assemblies (collagen VI), enzyme/inhibitor activity (alpha-2 macroglobulin), activation states (complement C3) and interaction states (laminins, perlecan, fibronectin, filamin-A, collagen XIV and apolipoprotein-B). Furthermore, we show that alpha-2 macroglobulin and collagen XIV exhibit possible shared structural consequences in IVD ageing and arterial atherosclerosis, providing novel links between an age-related disease and intrinsic ageing. Crucially, we also demonstrate that fibronectin, laminin beta chains and filamin-A all exhibit conserved age-associated structural differences between mouse lung and human IVD, providing evidence that ECM, and their associating proteins, may be subjected to potentially similar mechanisms or consequences of ageing across both species, irrespective of differences in lifespan and tissue function.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Peikai Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, Guangdong 518053, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Liam J Ward
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Judith A Hoyland
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew Trafford
- Division of Cardiovascular Sciences, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine, Division of Prevention, Rehabilitation and Community Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Herbert B Schiller
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
50
|
Majewski M, Klett-Mingo M, Verdasco-Martín CM, Otero C, Ferrer M. Spirulina extract improves age-induced vascular dysfunction. PHARMACEUTICAL BIOLOGY 2022; 60:627-637. [PMID: 35294322 PMCID: PMC8933018 DOI: 10.1080/13880209.2022.2047209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Vascular dysfunction is considered a hallmark of ageing that has been associated with altered vasomotor responses, in which nitric oxide (NO) and reactive oxygen species participate. The consumption of Spirulina extracts, with antioxidant properties, increased recently. OBJECTIVE This study investigates the effect of Spirulina aqueous extract (SAE) on the vascular function of the aorta from aged rats. MATERIALS AND METHODS Aortic segments from aged male Sprague-Dawley rats (20-22 months old) were exposed to SAE (0.1% w/v, for 3 h) to analyse: (i) the vasodilator response induced by acetylcholine (ACh), by the NO donor sodium nitroprusside (SNP), by the carbon monoxide releasing molecule (CORM) and by the KATP channel opener, cromakalim (CK); (ii) the vasoconstrictor response induced by KCl and noradrenaline (NA); (iii) the production of NO and superoxide anion, and (iv) the expression of the p-eNOS and HO-1 proteins. RESULTS Incubation with SAE increased the expression of p-eNOS (1.6-fold) and HO-1 (2.0-fold), enhanced NO release (1.4-fold in basal and 1.9-fold in ACh-stimulated conditions) while decreased the production of superoxide (0.7-fold). SAE also increased the sensitivity (measured as pEC50) to ACh (control: -7.06 ± 0.11; SAE: -8.16 ± 0.21), SNP (control: -7.96 ± 0.16; SAE: -9.11 ± 0.14) and CK (control: -7.05 ± 0.39; SAE: -8.29 ± 0.53), and potentiated the response to KCl (1.3-fold) and to NA (1.7-fold). CONCLUSION The antioxidant properties of SAE improved the vasomotor responses of aorta from aged rats. These results may support the use of Spirulina as a protection against vascular dysfunction.
Collapse
Affiliation(s)
- Michal Majewski
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Mercedes Klett-Mingo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos M. Verdasco-Martín
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cristina Otero
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Cristina Otero Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid, Madrid, Spain
- CONTACT Mercedes Ferrer Departamento de Fisiología, Facultad de Medicina, UAM. C/Arzobispo Morcillo, 4, 28029Madrid, Spain
| |
Collapse
|