1
|
Parise EM, Gyles TM, Godino A, Sial OK, Browne CJ, Parise LF, Torres-Berrío A, Salery M, Durand-de Cuttoli R, Rivera MT, Cardona-Acosta AM, Holt L, Markovic T, van der Zee YY, Lorsch ZS, Cathomas F, Garon JB, Teague C, Issler O, Hamilton PJ, Bolaños-Guzmán CA, Russo SJ, Nestler EJ. Sex-Specific Regulation of Stress Susceptibility by the Astrocytic Gene Htra1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588724. [PMID: 38659771 PMCID: PMC11042238 DOI: 10.1101/2024.04.12.588724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Major depressive disorder (MDD) is linked to impaired structural and synaptic plasticity in limbic brain regions. Astrocytes, which regulate synapses and are influenced by chronic stress, likely contribute to these changes. We analyzed astrocyte gene profiles in the nucleus accumbens (NAc) of humans with MDD and mice exposed to chronic stress. Htra1 , which encodes an astrocyte-secreted protease targeting the extracellular matrix (ECM), was significantly downregulated in the NAc of males but upregulated in females in both species. Manipulating Htra1 in mouse NAc astrocytes bidirectionally controlled stress susceptibility in a sex-specific manner. Such Htra1 manipulations also altered neuronal signaling and ECM structural integrity in NAc. These findings highlight astroglia and the brain's ECM as key mediators of sex-specific stress vulnerability, offering new approaches for MDD therapies.
Collapse
|
2
|
Almassri LS, Ohl AP, Iafrate MC, Wade AD, Tokar NJ, Mafi AM, Beebe NL, Young JW, Mellott JG. Age-related upregulation of perineuronal nets on inferior collicular cells that project to the cochlear nucleus. Front Aging Neurosci 2023; 15:1271008. [PMID: 38053844 PMCID: PMC10694216 DOI: 10.3389/fnagi.2023.1271008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Disruptions to the balance of excitation and inhibition in the inferior colliculus (IC) occur during aging and underlie various aspects of hearing loss. Specifically, the age-related alteration to GABAergic neurotransmission in the IC likely contributes to the poorer temporal precision characteristic of presbycusis. Perineuronal nets (PNs), a specialized form of the extracellular matrix, maintain excitatory/inhibitory synaptic environments and reduce structural plasticity. We sought to determine whether PNs increasingly surround cell populations in the aged IC that comprise excitatory descending projections to the cochlear nucleus. Method We combined Wisteria floribunda agglutinin (WFA) staining for PNs with retrograde tract-tracing in three age groups of Fischer Brown Norway (FBN) rats. Results The data demonstrate that the percentage of IC-CN cells with a PN doubles from ~10% at young age to ~20% at old age. This was true in both lemniscal and non-lemniscal IC. Discussion Furthermore, the increase of PNs occurred on IC cells that make both ipsilateral and contralateral descending projections to the CN. These results indicate that reduced structural plasticity in the elderly IC-CN pathway, affecting excitatory/inhibitory balance and, potentially, may lead to reduced temporal precision associated with presbycusis.
Collapse
Affiliation(s)
- Laila S. Almassri
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Andrew P. Ohl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Milena C. Iafrate
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Aidan D. Wade
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Nick J. Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Amir M. Mafi
- The Ohio State College of Medicine, The Ohio State, Columbus, OH, United States
| | - Nichole L. Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
3
|
Del Duca E, Renert-Yuval Y, Pavel AB, Mikhaylov D, Wu J, Lefferdink R, Fang M, Sheth A, Blumstein A, Facheris P, Estrada YD, Rangel SM, Krueger JG, Paller AS, Guttman-Yassky E. Proteomic characterization of atopic dermatitis blood from infancy to adulthood. J Am Acad Dermatol 2023; 88:1083-1093. [PMID: 36773824 PMCID: PMC10231669 DOI: 10.1016/j.jaad.2022.12.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/10/2022] [Accepted: 12/11/2022] [Indexed: 02/12/2023]
Abstract
BACKGROUND Patients with atopic dermatitis (AD) have systemic biomarker dysregulation that differs by age group; however, the proteomic characteristics of these age-based changes are unknown. OBJECTIVE To profile blood proteins of patients with AD across different age groups versus age-appropriate controls. METHODS Using the Olink high-throughput proteomic platform, we profiled 375 serum proteins of 20 infants (age, 0-5 years), 39 children (age, 6-11 years), 21 adolescents (age, 12-17 years), and 20 adults (age, ≥18 years) with moderate-to-severe AD and 83 age-appropriate controls. RESULTS Each group presented a distinct systemic proteomic signature. Th2-related proteins were increased in infant AD and further intensified with age through adolescence and adulthood (interleukin 4/CCL13/CCL17). In contrast, Th1 axis down-regulation was detected in infants with AD and gradually reversed to increased Th1 products (interferon γ/CXCL9/CXCL10/CCL2) in patients with AD from childhood to adulthood. Despite their short disease duration, infants already had evidence of systemic inflammation, with significant upregulation of innate immunity (interleukin 17C/ interleukin-1RN), T-cell activation/migration (CCL19), Th2 (CCL13/CCL17), and Th17 (PI3) proteins. Adults with AD present unique upregulation of cardiovascular proteins related to coagulation and diabetes. LIMITATIONS Cross-sectional observational study with a single time point. CONCLUSION Systemic immune signatures of AD are age-specific beyond the shared Th2 immune activation. These data advocate for precision medicine approaches based on age-specific AD profiles.
Collapse
Affiliation(s)
- Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York; Department of Dermatology, University of Magna Graecia, Catanzaro, Italy
| | - Yael Renert-Yuval
- Laboratory for Investigative Dermatology, the Rockefeller University, New York, New York
| | - Ana B Pavel
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York; Department of Biomedical Engineering, University of Mississippi, University, Mississippi
| | - Daniela Mikhaylov
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York
| | - Jianni Wu
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York
| | - Rachel Lefferdink
- Department of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Milie Fang
- Department of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anjani Sheth
- Department of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alli Blumstein
- Department of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paola Facheris
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York; Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Yeriel D Estrada
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York
| | - Stephanie M Rangel
- Department of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - James G Krueger
- Laboratory for Investigative Dermatology, the Rockefeller University, New York, New York
| | - Amy S Paller
- Department of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Emma Guttman-Yassky
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York; Laboratory for Investigative Dermatology, the Rockefeller University, New York, New York.
| |
Collapse
|
4
|
Brown TE, Sorg BA. Net gain and loss: influence of natural rewards and drugs of abuse on perineuronal nets. Neuropsychopharmacology 2023; 48:3-20. [PMID: 35568740 PMCID: PMC9700711 DOI: 10.1038/s41386-022-01337-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022]
Abstract
Overindulgence, excessive consumption, and a pattern of compulsive use of natural rewards, such as certain foods or drugs of abuse, may result in the development of obesity or substance use disorder, respectively. Natural rewards and drugs of abuse can trigger similar changes in the neurobiological substrates that drive food- and drug-seeking behaviors. This review examines the impact natural rewards and drugs of abuse have on perineuronal nets (PNNs). PNNs are specialized extracellular matrix structures that ensheathe certain neurons during development over the critical period to provide synaptic stabilization and a protective microenvironment for the cells they surround. This review also analyzes how natural rewards and drugs of abuse impact the density and maturation of PNNs within reward-associated circuitry of the brain, which may contribute to maladaptive food- and drug-seeking behaviors. Finally, we evaluate the relatively few studies that have degraded PNNs to perturb reward-seeking behaviors. Taken together, this review sheds light on the complex way PNNs are regulated by natural rewards and drugs and highlights a need for future studies to delineate the molecular mechanisms that underlie the modification and maintenance of PNNs following exposure to rewarding stimuli.
Collapse
Affiliation(s)
- Travis E Brown
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| | - Barbara A Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, 97232, USA
| |
Collapse
|
5
|
John U, Patro N, Patro I. Perineuronal nets: Cruise from a honeycomb to the safety nets. Brain Res Bull 2022; 190:179-194. [DOI: 10.1016/j.brainresbull.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
6
|
Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry 2022; 27:3192-3203. [PMID: 35760878 PMCID: PMC9708575 DOI: 10.1038/s41380-022-01634-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
Abstract
All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, various glycoproteins including tenascins and thrombospondin, and many other molecules that are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in the modulation of memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of various types of memory and their participation in memory pathology. PNNs are now being considered as a target for the treatment of impaired memory. There are many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, and production of the various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic.
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jiri Ruzicka
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Barbara A Sorg
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
7
|
Brandebura AN, Kolson DR, Amick EM, Ramadan J, Kersting MC, Nichol RH, Holcomb PS, Mathers PH, Stoilov P, Spirou GA. Transcriptional profiling reveals roles of intercellular Fgf9 signaling in astrocyte maturation and synaptic refinement during brainstem development. J Biol Chem 2022; 298:102176. [PMID: 35753346 PMCID: PMC9304775 DOI: 10.1016/j.jbc.2022.102176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Neural tissue maturation is a coordinated process under tight transcriptional control. We previously analyzed the kinetics of gene expression in the medial nucleus of the trapezoid body (MNTB) in the brainstem during the critical postnatal phase of its development. While this work revealed timed execution of transcriptional programs, it was blind to the specific cells where gene expression changes occurred. Here, we utilized single-cell RNA-Seq to determine transcriptional profiles of each major MNTB cell type. We discerned directional signaling patterns between neuronal, glial, and vascular-associated cells for VEGF, TGFβ, and Delta-Notch pathways during a robust period of vascular remodeling in the MNTB. Furthermore, we describe functional outcomes of the disruption of neuron-astrocyte fibroblast growth factor 9 (Fgf9) signaling. We used a conditional KO (cKO) approach to genetically delete Fgf9 from principal neurons in the MNTB, which led to an early onset of glial fibrillary acidic protein (Gfap) expression in astrocytes. In turn, Fgf9 cKO mice show increased levels of astrocyte-enriched brevican (Bcan), a component of the perineuronal net matrix that ensheaths principal neurons in the MNTB and the large calyx of Held terminal, while levels of the neuron-enriched hyaluronan and proteoglycan link protein 1 (Hapln1) were unchanged. Finally, volumetric analysis of vesicular glutamate transporters 1 and 2 (Vglut1/2), which serves as a proxy for terminal size, revealed an increase in calyx of Held volume in the Fgf9 cKO. Overall, we demonstrate a coordinated neuron-astrocyte Fgf9 signaling network that functions to regulate astrocyte maturation, perineuronal net structure, and synaptic refinement.
Collapse
Affiliation(s)
- Ashley N Brandebura
- Graduate Program in Biochemistry and Molecular Biology, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA; Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Douglas R Kolson
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA; Department of Otolaryngology HNS, West Virginia University, Morgantown, West Virginia, USA; Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, USA
| | - Emily M Amick
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Jad Ramadan
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA; Department of Otolaryngology HNS, West Virginia University, Morgantown, West Virginia, USA
| | - Matthew C Kersting
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Robert H Nichol
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Paul S Holcomb
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA; Department of Otolaryngology HNS, West Virginia University, Morgantown, West Virginia, USA
| | - Peter H Mathers
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA; Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA; Department of Otolaryngology HNS, West Virginia University, Morgantown, West Virginia, USA; Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, USA.
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA.
| | - George A Spirou
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
8
|
Schmidt S, Holzer M, Arendt T, Sonntag M, Morawski M. Tau Protein Modulates Perineuronal Extracellular Matrix Expression in the TauP301L-acan Mouse Model. Biomolecules 2022; 12:biom12040505. [PMID: 35454094 PMCID: PMC9027016 DOI: 10.3390/biom12040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Tau mutations promote the formation of tau oligomers and filaments, which are neuropathological signs of several tau-associated dementias. Types of neurons in the CNS are spared of tau pathology and are surrounded by a specialized form of extracellular matrix; called perineuronal nets (PNs). Aggrecan, the major PN proteoglycans, is suggested to mediate PNs neuroprotective function by forming an external shield preventing the internalization of misfolded tau. We recently demonstrated a correlation between aggrecan amount and the expression and phosphorylation of tau in a TauP310L-acan mouse model, generated by crossbreeding heterozygous aggrecan mice with a significant reduction of aggrecan and homozygous TauP301L mice. Neurodegenerative processes have been associated with changes of PN structure and protein signature. In this study, we hypothesized that the structure and protein expression of PNs in this TauP310L-acan mouse is regulated by tau. Immunohistochemical and biochemical analyses demonstrate that protein levels of PN components differ between TauP301LHET-acanWT and TauP301LHET-acanHET mice, accompanied by changes in the expression of protein phosphatase 2 A. In addition, tau can modulate PN components such as brevican. Co-immunoprecipitation experiments revealed a physical connection between PN components and tau. These data demonstrate a complex, mutual interrelation of tau and the proteoglycans of the PN.
Collapse
|
9
|
Dankovich TM, Rizzoli SO. The Synaptic Extracellular Matrix: Long-Lived, Stable, and Still Remarkably Dynamic. Front Synaptic Neurosci 2022; 14:854956. [PMID: 35350469 PMCID: PMC8957932 DOI: 10.3389/fnsyn.2022.854956] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
In the adult brain, synapses are tightly enwrapped by lattices of the extracellular matrix that consist of extremely long-lived molecules. These lattices are deemed to stabilize synapses, restrict the reorganization of their transmission machinery, and prevent them from undergoing structural or morphological changes. At the same time, they are expected to retain some degree of flexibility to permit occasional events of synaptic plasticity. The recent understanding that structural changes to synapses are significantly more frequent than previously assumed (occurring even on a timescale of minutes) has called for a mechanism that allows continual and energy-efficient remodeling of the extracellular matrix (ECM) at synapses. Here, we review recent evidence for such a process based on the constitutive recycling of synaptic ECM molecules. We discuss the key characteristics of this mechanism, focusing on its roles in mediating synaptic transmission and plasticity, and speculate on additional potential functions in neuronal signaling.
Collapse
Affiliation(s)
- Tal M. Dankovich
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- International Max Planck Research School for Neuroscience, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| | - Silvio O. Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| |
Collapse
|
10
|
Enzymatic Degradation of Cortical Perineuronal Nets Reverses GABAergic Interneuron Maturation. Mol Neurobiol 2022; 59:2874-2893. [PMID: 35233718 PMCID: PMC9016038 DOI: 10.1007/s12035-022-02772-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/16/2022] [Indexed: 12/03/2022]
Abstract
Perineuronal nets (PNNs) are specialised extracellular matrix structures which preferentially enwrap fast-spiking (FS) parvalbumin interneurons and have diverse roles in the cortex. PNN maturation coincides with closure of the critical period of cortical plasticity. We have previously demonstrated that BDNF accelerates interneuron development in a c-Jun-NH2-terminal kinase (JNK)–dependent manner, which may involve upstream thousand-and-one amino acid kinase 2 (TAOK2). Chondroitinase-ABC (ChABC) enzymatic digestion of PNNs reportedly reactivates ‘juvenile-like’ plasticity in the adult CNS. However, the mechanisms involved are unclear. We show that ChABC produces an immature molecular phenotype in cultured cortical neurons, corresponding to the phenotype prior to critical period closure. ChABC produced different patterns of PNN-related, GABAergic and immediate early (IE) gene expression than well-characterised modulators of mature plasticity and network activity (GABAA-R antagonist, bicuculline, and sodium-channel blocker, tetrodotoxin (TTX)). ChABC downregulated JNK activity, while this was upregulated by bicuculline. Bicuculline, but not ChABC, upregulated Bdnf expression and ERK activity. Furthermore, we found that BDNF upregulation of semaphorin-3A and IE genes was TAOK mediated. Our data suggest that ChABC heightens structural flexibility and network disinhibition, potentially contributing to ‘juvenile-like’ plasticity. The molecular phenotype appears to be distinct from heightened mature synaptic plasticity and could relate to JNK signalling. Finally, we highlight that BDNF regulation of plasticity and PNNs involves TAOK signalling.
Collapse
|
11
|
Breiderhoff T, Himmerkus N, Meoli L, Fromm A, Sewerin S, Kriuchkova N, Nagel O, Ladilov Y, Krug S, Quintanova C, Stumpp M, Garbe-Schönberg D, Westernströer U, Merkel C, Brinkhus M, Altmüller J, Schweiger M, Mueller D, Mutig K, Morawski M, Halbritter J, Milatz S, Bleich M, Günzel D. Claudin-10a Deficiency Shifts Proximal Tubular Cl - Permeability to Cation Selectivity via Claudin-2 Redistribution. J Am Soc Nephrol 2022; 33:699-717. [PMID: 35031570 PMCID: PMC8970455 DOI: 10.1681/asn.2021030286] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022] Open
Abstract
Background The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiological role of claudin-10a in the kidney has been unclear. Methods To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice; confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining; and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. Results Mice deficient in claudin-10a were fertile and without overt phenotypes. Upon knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a consequence, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison of other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, as well as unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. Conclusions Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyperreabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.
Collapse
Affiliation(s)
- Tilman Breiderhoff
- T Breiderhoff, Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Medicine, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Nina Himmerkus
- N Himmerkus, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Luca Meoli
- L Meoli, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Fromm
- A Fromm, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Sewerin
- S Sewerin, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Natalia Kriuchkova
- N Kriuchkova, Institute for Functional Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Nagel
- O Nagel, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yury Ladilov
- Y Ladilov, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Krug
- S Krug, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Catarina Quintanova
- C Quintanova, Institute of Physiology, Christian-Albrechts-Universitat zu Kiel, Kiel, Germany
| | - Meike Stumpp
- M Stumpp, Zoological Institute, Comparative Immunobiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Garbe-Schönberg
- D Garbe-Schönberg, Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ulrike Westernströer
- U Westernströer, Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Cosima Merkel
- C Merkel, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Merle Brinkhus
- M Brinkhus, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Janine Altmüller
- J Altmüller, Cologne Center for Genomics, University of Cologne, Koln, Germany
| | - Michal Schweiger
- M Schweiger, Cologne Center for Genomics, University of Cologne, Koln, Germany
| | - Dominik Mueller
- D Mueller, Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- K Mutig, Institute for Functional Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morawski
- M Morawski, Leipzig University Paul Flechsig Institute of Brain Research, Leipzig, Germany
| | - Jan Halbritter
- J Halbritter, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanne Milatz
- S Milatz, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Markus Bleich
- M Bleich, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dorothee Günzel
- D Günzel, Clinical Physiology / Div. of Nutritional Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
12
|
Magyar A, Racz E, Matesz C, Wolf E, Kiss P, Gaal B. Lesion-induced changes of brevican expression in the perineuronal net of the superior vestibular nucleus. Neural Regen Res 2022; 17:649-654. [PMID: 34380906 PMCID: PMC8504393 DOI: 10.4103/1673-5374.320988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Damage to the vestibular sense organs evokes static and dynamic deficits in the eye movements, posture and vegetative functions. After a shorter or longer period of time, the vestibular function is partially or completely restored via a series of processes such as modification in the efficacy of synaptic inputs. As the plasticity of adult central nervous system is associated with the alteration of extracellular matrix, including its condensed form, the perineuronal net, we studied the changes of brevican expression in the perineuronal nets of the superior vestibular nucleus after unilateral labyrinth lesion. Our results demonstrated that the unilateral labyrinth lesion and subsequent compensation are accompanied by the changing of brevican staining pattern in the perineuronal nets of superior vestibular nucleus of the rat. The reduction of brevican in the perineuronal nets of superior vestibular nucleus may contribute to the vestibular plasticity by suspending the non-permissive role of brevican in the restoration of perineuronal net assembly. After a transitory decrease, the brevican expression restored to the control level parallel to the partial restoration of impaired vestibular function. The bilateral changing in the brevican expression supports the involvement of commissural vestibular fibers in the vestibular compensation. All experimental procedures were approved by the ‘University of Debrecen – Committee of Animal Welfare’ (approval No. 6/2017/DEMAB) and the ‘Scientific Ethics Committee of Animal Experimentation’ (approval No. HB/06/ÉLB/2270-10/2017; approved on June 6, 2017).
Collapse
Affiliation(s)
- Agnes Magyar
- Pediatrics Clinic, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Racz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen; MTA-DE Neuroscience Research Group, Debrecen, Hungary
| | - Clara Matesz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine; Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ervin Wolf
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Kiss
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Botond Gaal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Crapser JD, Arreola MA, Tsourmas KI, Green KN. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell Mol Immunol 2021; 18:2472-2488. [PMID: 34413489 PMCID: PMC8546068 DOI: 10.1038/s41423-021-00751-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia shape the synaptic environment in health and disease, but synapses do not exist in a vacuum. Instead, pre- and postsynaptic terminals are surrounded by extracellular matrix (ECM), which together with glia comprise the four elements of the contemporary tetrapartite synapse model. While research in this area is still just beginning, accumulating evidence points toward a novel role for microglia in regulating the ECM during normal brain homeostasis, and such processes may, in turn, become dysfunctional in disease. As it relates to synapses, microglia are reported to modify the perisynaptic matrix, which is the diffuse matrix that surrounds dendritic and axonal terminals, as well as perineuronal nets (PNNs), specialized reticular formations of compact ECM that enwrap neuronal subsets and stabilize proximal synapses. The interconnected relationship between synapses and the ECM in which they are embedded suggests that alterations in one structure necessarily affect the dynamics of the other, and microglia may need to sculpt the matrix to modify the synapses within. Here, we provide an overview of the microglial regulation of synapses, perisynaptic matrix, and PNNs, propose candidate mechanisms by which these structures may be modified, and present the implications of such modifications in normal brain homeostasis and in disease.
Collapse
Affiliation(s)
- Joshua D. Crapser
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Miguel A. Arreola
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kate I. Tsourmas
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kim N. Green
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| |
Collapse
|
14
|
Sierksma MC, Borst JGG. Using ephaptic coupling to estimate the synaptic cleft resistivity of the calyx of Held synapse. PLoS Comput Biol 2021; 17:e1009527. [PMID: 34699519 PMCID: PMC8570497 DOI: 10.1371/journal.pcbi.1009527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/05/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022] Open
Abstract
At synapses, the pre- and postsynaptic cells get so close that currents entering the cleft do not flow exclusively along its conductance, gcl. A prominent example is found in the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB), where the presynaptic action potential can be recorded in the postsynaptic cell in the form of a prespike. Here, we developed a theoretical framework for ephaptic coupling via the synaptic cleft, and we tested its predictions using the MNTB prespike recorded in voltage-clamp. The shape of the prespike is predicted to resemble either the first or the second derivative of the inverted presynaptic action potential if cleft currents dissipate either mostly capacitively or resistively, respectively. We found that the resistive dissipation scenario provided a better description of the prespike shape. Its size is predicted to scale with the fourth power of the radius of the synapse, explaining why intracellularly recorded prespikes are uncommon in the central nervous system. We show that presynaptic calcium currents also contribute to the prespike shape. This calcium prespike resembled the first derivative of the inverted calcium current, again as predicted by the resistive dissipation scenario. Using this calcium prespike, we obtained an estimate for gcl of ~1 μS. We demonstrate that, for a circular synapse geometry, such as in conventional boutons or the immature calyx of Held, gcl is scale-invariant and only defined by extracellular resistivity, which was ~75 Ωcm, and by cleft height. During development the calyx of Held develops fenestrations. We show that these fenestrations effectively minimize the cleft potentials generated by the adult action potential, which might otherwise interfere with calcium channel opening. We thus provide a quantitative account of the dissipation of currents by the synaptic cleft, which can be readily extrapolated to conventional, bouton-like synapses.
Collapse
Affiliation(s)
- Martijn C. Sierksma
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
15
|
Nojima K, Miyazaki H, Hori T, Vargova L, Oohashi T. Assessment of Possible Contributions of Hyaluronan and Proteoglycan Binding Link Protein 4 to Differential Perineuronal Net Formation at the Calyx of Held. Front Cell Dev Biol 2021; 9:730550. [PMID: 34604231 PMCID: PMC8485899 DOI: 10.3389/fcell.2021.730550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
The calyx of Held is a giant nerve terminal mediating high-frequency excitatory input to principal cells of the medial nucleus of the trapezoid body (MNTB). MNTB principal neurons are enwrapped by densely organized extracellular matrix structures, known as perineuronal nets (PNNs). Emerging evidence indicates the importance of PNNs in synaptic transmission at the calyx of Held. Previously, a unique differential expression of aggrecan and brevican has been reported at this calyceal synapse. However, the role of hyaluronan and proteoglycan binding link proteins (HAPLNs) in PNN formation and synaptic transmission at this synapse remains elusive. This study aimed to assess immunohistochemical evidence for the effect of HAPLN4 on differential PNN formation at the calyx of Held. Genetic deletion of Hapln4 exhibited a clear ectopic shift of brevican localization from the perisynaptic space between the calyx of Held terminals and principal neurons to the neuropil surrounding the whole calyx of Held terminals. In contrast, aggrecan expression showed a consistent localization at the surrounding neuropil, together with HAPLN1 and tenascin-R, in both gene knockout (KO) and wild-type (WT) mice. An in situ proximity ligation assay demonstrated the molecular association of brevican with HAPLN4 in WT and HAPLN1 in gene KO mice. Further elucidation of the roles of HAPLN4 may highlight the developmental and physiological importance of PNN formation in the calyx of Held.
Collapse
Affiliation(s)
- Kojiro Nojima
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruko Miyazaki
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Hori
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Lydia Vargova
- Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czechia.,Department of Cellular Physiology, Institute of Experimental Medicine AS CR, Prague, Czechia
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
16
|
Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells from stress. Sci Rep 2021; 11:18808. [PMID: 34552146 PMCID: PMC8458439 DOI: 10.1038/s41598-021-98323-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence of new primate-specific genes is an essential factor in human and primate brain development and functioning. POU2F1/Oct-1 is a transcription regulator in higher eukaryotes which is involved in the regulation of development, differentiation, stress response, and other processes. We have demonstrated that the Tigger2 transposon insertion into the POU2F1 gene which occurred in the primate lineage led to the formation of an additional exon (designated the Z-exon). Z-exon-containing primate-specific Oct-1Z transcript includes a short upstream ORF (uORF) located at its 5’-end and the main ORF encoding the Oct-1Z protein isoform (Pou2F1 isoform 3, P14859-3), which differs from other Oct-1 isoforms by its N-terminal peptide. The Oct-1Z-encoding transcript is expressed mainly in human brain cortex. Under normal conditions, the translation of the ORF coding for the Oct-1Z isoform is repressed by uORF. Under various stress conditions, uORF enables a strong increase in the translation of the Oct-1Z-encoding ORF. Increased Oct-1Z expression levels in differentiating human neuroblasts activate genes controlling stress response, neural cell differentiation, brain formation, and organogenesis. We have shown that the Oct-1Z isoform of the POU2F1/Oct-1 transcription factor is an example of a primate-specific genomic element contributing to brain development and cellular stress defense.
Collapse
|
17
|
Mafi AM, Russ MG, Hofer LN, Pham VQ, Young JW, Mellott JG. Inferior collicular cells that project to the auditory thalamus are increasingly surrounded by perineuronal nets with age. Neurobiol Aging 2021; 105:1-15. [PMID: 34004491 PMCID: PMC8338758 DOI: 10.1016/j.neurobiolaging.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
The age-related loss of GABA in the inferior colliculus (IC) likely plays a role in the development of age-related hearing loss. Perineuronal nets (PNs), specialized aggregates of extracellular matrix, increase with age in the IC. PNs, associated with GABAergic neurotransmission, can stabilize synapses and inhibit structural plasticity. We sought to determine whether PN expression increased on GABAergic and non-GABAergic IC cells that project to the medial geniculate body (MG). We used retrograde tract-tracing in combination with immunohistochemistry for glutamic acid decarboxylase and Wisteria floribunda agglutinin across three age groups of Fischer Brown Norway rats. Results demonstrate that PNs increase with age on lemniscal and non-lemniscal IC-MG cells, however two key differences exist. First, PNs increased on non-lemniscal IC-MG cells during middle-age, but not until old age on lemniscal IC-MG cells. Second, increases of PNs on lemniscal IC-MG cells occurred on non-GABAergic cells rather than on GABAergic cells. These results suggest that synaptic stabilization and reduced plasticity likely occur at different ages on a subset of the IC-MG pathway.
Collapse
Affiliation(s)
- Amir M Mafi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Matthew G Russ
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Lindsay N Hofer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Vincent Q Pham
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA.
| |
Collapse
|
18
|
Milinkeviciute G, Chokr SM, Castro EM, Cramer KS. CX3CR1 mutation alters synaptic and astrocytic protein expression, topographic gradients, and response latencies in the auditory brainstem. J Comp Neurol 2021; 529:3076-3097. [PMID: 33797066 DOI: 10.1002/cne.25150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 01/14/2023]
Abstract
The precise and specialized circuitry in the auditory brainstem develops through adaptations of cellular and molecular signaling. We previously showed that elimination of microglia during development impairs synaptic pruning that leads to maturation of the calyx of Held, a large encapsulating synapse that terminates on neurons of the medial nucleus of the trapezoid body (MNTB). Microglia depletion also led to a decrease in glial fibrillary acidic protein (GFAP), a marker for mature astrocytes. Here, we investigated the role of signaling through the fractalkine receptor (CX3CR1), which is expressed by microglia and mediates communication with neurons. CX3CR1-/- and wild-type mice were studied before and after hearing onset and at 9 weeks of age. Levels of GFAP were significantly increased in the MNTB in mutants at 9 weeks. Pruning was unaffected at the calyx of Held, but we found an increase in expression of glycinergic synaptic marker in mutant mice at P14, suggesting an effect on maturation of inhibitory inputs. We observed disrupted tonotopic gradients of neuron and calyx size in MNTB in mutant mice. Auditory brainstem recording (ABR) revealed that CX3CR1-/- mice had normal thresholds and amplitudes but decreased latencies and interpeak latencies, particularly for the highest frequencies. These results demonstrate that disruption of fractalkine signaling has a significant effect on auditory brainstem development. Our findings highlight the importance of neuron-microglia-astrocyte communication in pruning of inhibitory synapses and establishment of tonotopic gradients early in postnatal development.
Collapse
Affiliation(s)
- Giedre Milinkeviciute
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Sima M Chokr
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Emily M Castro
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| |
Collapse
|
19
|
Arreola MA, Soni N, Crapser JD, Hohsfield LA, Elmore MRP, Matheos DP, Wood MA, Swarup V, Mortazavi A, Green KN. Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R +/- mouse model of ALSP, which can be rescued via CSF1R inhibitors. SCIENCE ADVANCES 2021; 7:eabg1601. [PMID: 34433559 PMCID: PMC8386924 DOI: 10.1126/sciadv.abg1601] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/02/2021] [Indexed: 06/02/2023]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia is an autosomal dominant neurodegenerative disease caused by mutations in colony-stimulating factor 1 receptor (CSF1R). We sought to identify the role of microglial CSF1R haploinsufficiency in mediating pathogenesis. Using an inducible Cx3cr1 CreERT2/+-Csf1r +/fl system, we found that postdevelopmental, microglia-specific Csf1r haploinsufficiency resulted in reduced expression of homeostatic microglial markers. This was associated with loss of presynaptic surrogates and the extracellular matrix (ECM) structure perineuronal nets. Similar phenotypes were observed in constitutive global Csf1r haploinsufficient mice and could be reversed/prevented by microglia elimination in adulthood. As microglial elimination is unlikely to be clinically feasible for extended durations, we treated adult CSF1R+/- mice at different disease stages with a microglia-modulating dose of the CSF1R inhibitor PLX5622, which prevented microglial dyshomeostasis along with synaptic- and ECM-related deficits. These data highlight microglial dyshomeostasis as a driver of pathogenesis and show that CSF1R inhibition can mitigate these phenotypes.
Collapse
Affiliation(s)
- Miguel A Arreola
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Monica R P Elmore
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Beebe NL, Schofield BR. Cholinergic boutons are closely associated with excitatory cells and four subtypes of inhibitory cells in the inferior colliculus. J Chem Neuroanat 2021; 116:101998. [PMID: 34186203 DOI: 10.1016/j.jchemneu.2021.101998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/23/2023]
Abstract
Acetylcholine (ACh) is a neuromodulator that has been implicated in multiple roles across the brain, including the central auditory system, where it sets neuronal excitability and gain and affects plasticity. In the cerebral cortex, subtypes of GABAergic interneurons are modulated by ACh in a subtype-specific manner. Subtypes of GABAergic neurons have also begun to be described in the inferior colliculus (IC), a midbrain hub of the auditory system. Here, we used male and female mice (Mus musculus) that express fluorescent protein in cholinergic cells, axons, and boutons to look at the association between ACh and four subtypes of GABAergic IC cells that differ in their associations with extracellular markers, their soma sizes, and their distribution within the IC. We found that most IC cells, including excitatory and inhibitory cells, have cholinergic boutons closely associated with their somas and proximal dendrites. We also found that similar proportions of each of four subtypes of GABAergic cells are closely associated with cholinergic boutons. Whether the different types of GABAergic cells in the IC are differentially regulated remains unclear, as the response of cells to ACh is dependent on which types of ACh receptors are present. Additionally, this study confirms the presence of these four subtypes of GABAergic cells in the mouse IC, as they had previously been identified only in guinea pigs. These results suggest that cholinergic projections to the IC modulate auditory processing via direct effects on a multitude of inhibitory circuits.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Brett R Schofield
- Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
21
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
22
|
Wingert JC, Sorg BA. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Front Synaptic Neurosci 2021; 13:673210. [PMID: 34040511 PMCID: PMC8141737 DOI: 10.3389/fnsyn.2021.673210] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround specific neurons in the brain and spinal cord, appear during critical periods of development, and restrict plasticity during adulthood. Removal of PNNs can reinstate juvenile-like plasticity or, in cases of PNN removal during early developmental stages, PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin (PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These inhibitory interneurons profoundly inhibit the network of surrounding neurons via their elaborate contacts with local pyramidal neurons, and they are key contributors to gamma oscillations generated across several brain regions. Among other functions, these gamma oscillations regulate plasticity associated with learning, decision making, attention, cognitive flexibility, and working memory. The detailed mechanisms by which PNN removal increases plasticity are only beginning to be understood. Here, we review the impact of PNN removal on several electrophysiological features of their underlying PV interneurons and nearby pyramidal neurons, including changes in intrinsic and synaptic membrane properties, brain oscillations, and how these changes may alter the integration of memory-related information. Additionally, we review how PNN removal affects plasticity-associated phenomena such as long-term potentiation (LTP), long-term depression (LTD), and paired-pulse ratio (PPR). The results are discussed in the context of the role of PV interneurons in circuit function and how PNN removal alters this function.
Collapse
Affiliation(s)
- Jereme C Wingert
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Barbara A Sorg
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| |
Collapse
|
23
|
Duncan BW, Murphy KE, Maness PF. Molecular Mechanisms of L1 and NCAM Adhesion Molecules in Synaptic Pruning, Plasticity, and Stabilization. Front Cell Dev Biol 2021; 9:625340. [PMID: 33585481 PMCID: PMC7876315 DOI: 10.3389/fcell.2021.625340] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian brain circuits are wired by dynamic formation and remodeling during development to produce a balance of excitatory and inhibitory synapses. Synaptic regulation is mediated by a complex network of proteins including immunoglobulin (Ig)- class cell adhesion molecules (CAMs), structural and signal-transducing components at the pre- and post-synaptic membranes, and the extracellular protein matrix. This review explores the current understanding of developmental synapse regulation mediated by L1 and NCAM family CAMs. Excitatory and inhibitory synapses undergo formation and remodeling through neuronal CAMs and receptor-ligand interactions. These responses result in pruning inactive dendritic spines and perisomatic contacts, or synaptic strengthening during critical periods of plasticity. Ankyrins engage neural adhesion molecules of the L1 family (L1-CAMs) to promote synaptic stability. Chondroitin sulfates, hyaluronic acid, tenascin-R, and linker proteins comprising the perineuronal net interact with L1-CAMs and NCAM, stabilizing synaptic contacts and limiting plasticity as critical periods close. Understanding neuronal adhesion signaling and synaptic targeting provides insight into normal development as well as synaptic connectivity disorders including autism, schizophrenia, and intellectual disability.
Collapse
Affiliation(s)
- Bryce W Duncan
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Kelsey E Murphy
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
24
|
Gildawie KR, Ryll LM, Hexter JC, Peterzell S, Valentine AA, Brenhouse HC. A two-hit adversity model in developing rats reveals sex-specific impacts on prefrontal cortex structure and behavior. Dev Cogn Neurosci 2021; 48:100924. [PMID: 33515957 PMCID: PMC7847967 DOI: 10.1016/j.dcn.2021.100924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Adversity early in life substantially impacts prefrontal cortex (PFC) development and vulnerability to later-life psychopathology. Importantly, repeated adverse experiences throughout childhood increase the risk for PFC-mediated behavioral deficits more commonly in women. Evidence from animal models points to effects of adversity on later-life neural and behavioral dysfunction; however, few studies have investigated the neurobiological underpinnings of sex-specific, long-term consequences of multiple developmental stressors. We modeled early life adversity in rats via maternal separation (postnatal day (P)2-20) and juvenile social isolation (P21-35). In adulthood, anxiety-like behavior was assessed in the elevated zero maze and the presence and structural integrity of PFC perineuronal nets (PNNs) enwrapping parvalbumin (PV)-expressing interneurons was quantified. PNNs are extracellular matrix structures formed during critical periods in postnatal development that play a key role in the plasticity of PV cells. We observed a female-specific effect of adversity on hyperactivity and risk-assessment behavior. Moreover, females – but not males – exposed to multiple hits of adversity demonstrated a reduction in PFC PV cells in adulthood. We also observed a sex-specific, potentiated reduction in PV + PNN structural integrity. These findings suggest a sex-specific impact of repeated adversity on neurostructural development and implicate PNNs as a contributor to associated behavioral dysfunction.
Collapse
Affiliation(s)
| | - Lilly M Ryll
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Jessica C Hexter
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Shayna Peterzell
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
25
|
Extracellular Matrix in Neural Plasticity and Regeneration. Cell Mol Neurobiol 2020; 42:647-664. [PMID: 33128689 DOI: 10.1007/s10571-020-00986-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.
Collapse
|
26
|
Green KN, Crapser JD, Hohsfield LA. To Kill a Microglia: A Case for CSF1R Inhibitors. Trends Immunol 2020; 41:771-784. [PMID: 32792173 PMCID: PMC7484341 DOI: 10.1016/j.it.2020.07.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Microglia, the brain's immune sentinels, have garnered much attention in recent years. Researchers have begun to identify the manifold roles that these cells play in the central nervous system (CNS), and this work has been greatly facilitated by microglial depletion paradigms. The varying degrees of spatiotemporal manipulation afforded by such techniques allow microglial ablation before, during, and/or following insult, injury, or disease. We review the major methods of microglial depletion, including toxin-based, genetic, and pharmacological approaches, which differ in key factors including depletion onset, duration, and off-target effects. We conclude that pharmacological CSF1R inhibitors afford the most extensive versatility in manipulating microglia, making them ideal candidates for future studies investigating microglial function in health and disease.
Collapse
Affiliation(s)
- Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| | - Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
27
|
Schmidt S, Stapf C, Schmutzler S, Lachmann I, Arendt T, Holzer M, Sonntag M, Morawski M. Aggrecan modulates the expression and phosphorylation of tau in a novel bigenic TauP301L - Acan mouse model. Eur J Neurosci 2020; 53:3889-3904. [PMID: 32737917 DOI: 10.1111/ejn.14923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023]
Abstract
Selected types of neurons in the central nervous system are associated with a specialized form of extracellular matrix. These so-called perineuronal nets (PNs) are supramolecular structures surrounding neuronal somata, proximal dendrites and axon initial segments. PNs are involved in the regulation of plasticity and synaptic physiology. In addition, PNs were proposed to carry neuroprotective functions as PN-ensheathed neurons are mostly spared of tau pathology in brains of Alzheimer patients. Recently, the neuroprotective action of PNs was confirmed experimentally, demonstrating (i) that mainly aggrecan mediates the neuroprotective function of PNs and (ii) that aggrecan seems to generate an external shielding preventing the internalization of pathological forms of tau. In the present study, we aimed at extending these findings and hypothesized that aggrecan further provides an intracellular protection by preventing mutation-triggered formation of pathological forms of tau. We used crossbreds of TauP301L mice and heterozygous aggrecan mice which are characterized by spontaneous deletion of the aggrecan allele. We analysed the extent of tau pathology in dependence of aggrecan protein amount by applying immunohistochemistry, Western blotting and ELISA. The results clearly indicate that aggrecan has no significant impact on tau aggregation in the brainstem of our mouse model. Still, reduced aggrecan levels were accompanied by increased levels of tau protein and reduced number of Tau-1-positive neurons, which indicate an increase in phosphorylation of tau. In conclusion, these data demonstrate a correlation between aggrecan and P301L mutation-triggered tau expression and phosphorylation in our bigenic mouse model.
Collapse
Affiliation(s)
- Sophie Schmidt
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Caroline Stapf
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sandra Schmutzler
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | - Thomas Arendt
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Max Holzer
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Mandy Sonntag
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
28
|
Crapser JD, Spangenberg EE, Barahona RA, Arreola MA, Hohsfield LA, Green KN. Microglia facilitate loss of perineuronal nets in the Alzheimer's disease brain. EBioMedicine 2020; 58:102919. [PMID: 32745992 PMCID: PMC7399129 DOI: 10.1016/j.ebiom.2020.102919] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Microglia, the brain's principal immune cell, are increasingly implicated in Alzheimer's disease (AD), but the molecular interfaces through which these cells contribute to amyloid beta (Aβ)-related neurodegeneration are unclear. We recently identified microglial contributions to the homeostatic and disease-associated modulation of perineuronal nets (PNNs), extracellular matrix structures that enwrap and stabilize neuronal synapses, but whether PNNs are altered in AD remains controversial. METHODS Extensive histological analysis was performed on male and female 5xFAD mice at 4, 8, 12, and 18 months of age to assess plaque burden, microgliosis, and PNNs. Findings were validated in postmortem AD tissue. The role of neuroinflammation in PNN loss was investigated via LPS treatment, and the ability to prevent or rescue disease-related reductions in PNNs was assessed by treating 5xFAD and 3xTg-AD model mice with colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to deplete microglia. FINDINGS Utilizing the 5xFAD mouse model and human cortical tissue, we report that PNNs are extensively lost in AD in proportion to plaque burden. Activated microglia closely associate with and engulf damaged nets in the 5xFAD brain, and inclusions of PNN material are evident in mouse and human microglia, while aggrecan, a critical PNN component, deposits within human dense-core plaques. Disease-associated reductions in parvalbumin (PV)+ interneurons, frequently coated by PNNs, are preceded by PNN coverage and integrity impairments, and similar phenotypes are elicited in wild-type mice following microglial activation with LPS. Chronic pharmacological depletion of microglia prevents 5xFAD PNN loss, with similar results observed following depletion in aged 3xTg-AD mice, and this occurs despite plaque persistence. INTERPRETATION We conclude that phenotypically altered microglia facilitate plaque-dependent PNN loss in the AD brain. FUNDING The NIH (NIA, NINDS) and the Alzheimer's Association.
Collapse
Affiliation(s)
- Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | | | - Rocio A Barahona
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Miguel A Arreola
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Schmidt S, Arendt T, Morawski M, Sonntag M. Neurocan Contributes to Perineuronal Net Development. Neuroscience 2020; 442:69-86. [PMID: 32634529 DOI: 10.1016/j.neuroscience.2020.06.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 11/27/2022]
Abstract
Perineuronal nets (PNs) are matrix molecule assemblies surrounding neuronal somata, dendrites and axon initial segments in a lattice-like appearance. PN molecules are involved in many structural and physiological processes during development and in adulthood, suggesting a crucial role in normal brain function. Neurocan, as one of the main PN proteoglycans, is suggested to control important developmental processes of neuronal tissue. This statement relies on thorough and excellent experimental work mainly conducted in reduced systems, such as cell cultures. However, previous data collected in neurocan-deficient mice do not seem to support neurocan's role in development since brain development in general and the formation of PNs especially in the hippocampus were reported to be undisturbed in neurocan-deficient mice. Here, we aim to re-address the role of neurocan in developmental processes by investigating the influence of neurocan on PN formation in the medial nucleus of the trapezoid body, a PN-enriched nucleus in the auditory brainstem, using neurocan-deficient mice. Immunohistochemical and biochemical analyses demonstrate that neurocan controls the regulation of PN development by influencing mRNA and protein quantity of various PN molecules. Resulting alterations in PN fine structure are critical for PN function as estimated by reduced amount of GAD65/67 and prolongation of synaptic transmission delay of calyx of Held synapses. Thus, neurocan contributes to proper PN formation and synapse physiology in the MNTB.
Collapse
Affiliation(s)
- Sophie Schmidt
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Mandy Sonntag
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany.
| |
Collapse
|
30
|
Beebe NL, Noftz WA, Schofield BR. Perineuronal nets and subtypes of GABAergic cells differentiate auditory and multisensory nuclei in the intercollicular area of the midbrain. J Comp Neurol 2020; 528:2695-2707. [PMID: 32304096 DOI: 10.1002/cne.24926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/10/2022]
Abstract
The intercollicular region, which lies between the inferior and superior colliculi in the midbrain, contains neurons that respond to auditory, visual, and somatosensory stimuli. Golgi studies have been used to parse this region into three distinct nuclei: the intercollicular tegmentum (ICt), the rostral pole of the inferior colliculus (ICrp), and the nucleus of the brachium of the IC (NBIC). Few reports have focused on these nuclei, especially the ICt and the ICrp, possibly due to lack of a marker that distinguishes these areas and is compatible with modern methods. Here, we found that staining for GABAergic cells and perineuronal nets differentiates these intercollicular nuclei in guinea pigs. Further, we found that the proportions of four subtypes of GABAergic cells differentiate intercollicular nuclei from each other and from adjacent inferior collicular subdivisions. Our results support earlier studies that suggest distinct morphology and functions for intercollicular nuclei, and provide staining methods that differentiate intercollicular nuclei and are compatible with most modern techniques. We hope that this will help future studies to further characterize the intercollicular region.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - William A Noftz
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Biomedical Sciences Program, Kent State University, Kent, Ohio, USA
| | - Brett R Schofield
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Biomedical Sciences Program, Kent State University, Kent, Ohio, USA
| |
Collapse
|
31
|
Park SS, Lee DH, Lee SM, Lee CH, Kim SY. Noise exposure alters MMP9 and brevican expression in the rat primary auditory cortex. BMC Neurosci 2020; 21:16. [PMID: 32334536 PMCID: PMC7183651 DOI: 10.1186/s12868-020-00567-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/17/2020] [Indexed: 01/22/2023] Open
Abstract
Background This study aimed to investigate the changes in molecules related to perineuronal nets (PNNs) and synaptic transporters in the primary auditory cortices of rats with noise-induced hearing loss. Female Sprague–Dawley rats at postnatal day 7 were divided into the noise and control groups. Four hours of 115 dB SPL white noise was delivered for 10 days to the noise group. Thirty days after noise exposure, the primary auditory cortex and the inferior colliculus were harvested. The expression levels of vesicular glutamatergic transporter (VGLUT)1, VGLUT2, vesicular GABA transporter (VGAT), glutamate decarboxylase (GAD)67, brevican, aggrecan, MMP9, and MMP14 were evaluated using real-time reverse transcription polymerase chain reaction or western blot. An immunofluorescence assay was conducted to assess parvalbumin (PV), Wisteria floribunda agglutinin (WFA), and brevican. The immune-positive cells were counted in the primary auditory cortex. Results The expression level of VGLUT1 in the primary auditory cortex was decreased in the noise group. The expression level of VGLUT2 in the inferior colliculus was elevated in the noise group. The expression levels of brevican and PV + WFA in the primary auditory cortex were decreased in the noise group. The expression level of MMP9 in the primary auditory cortex was increased in the noise group. Conclusion Noise-induced hearing loss during the precritical period impacted PNN expression in the primary auditory cortex. Increased MMP9 expression may have contributed to the decrease in brevican expression. These changes were accompanied by the attenuation of glutamatergic synaptic transporters.
Collapse
Affiliation(s)
- Sung-Su Park
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Da-Hye Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Chang Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea.
| |
Collapse
|
32
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
33
|
Mafi AM, Hofer LN, Russ MG, Young JW, Mellott JG. The Density of Perineuronal Nets Increases With Age in the Inferior Colliculus in the Fischer Brown Norway Rat. Front Aging Neurosci 2020; 12:27. [PMID: 32116654 PMCID: PMC7026493 DOI: 10.3389/fnagi.2020.00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss, one of the most frequently diagnosed disabilities in industrialized countries, may result from declining levels of GABA in the aging inferior colliculus (IC). However, the mechanisms of aging and subsequent disruptions of temporal processing in elderly hearing abilities are still being investigated. Perineuronal nets (PNs) are a specialized form of the extracellular matrix and have been linked to GABAergic neurotransmission and to the regulation of structural and synaptic plasticity. We sought to determine whether the density of PNs in the IC changes with age. We combined Wisteria floribunda agglutinin (WFA) staining with immunohistochemistry to glutamic acid decarboxylase in three age groups of Fischer Brown Norway (FBN) rats. The density of PNs on GABAergic and non-GABAergic cells in the three major subdivisions of the IC was quantified. Results first demonstrate that the density of PNs in the FBN IC increase with age. The greatest increases of PN density from young to old age occurred in the central IC (67% increase) and dorsal IC (117% increase). Second, in the young IC, PNs surround non-GABAergic and GABAergic cells with the majority of PNs surrounding the former. The increase of PNs with age in the IC occurred on both non-GABAergic and GABAergic populations. The average density of PN-surrounded non-GABAergic cells increased from 84.9 PNs/mm2 in the young to 134.2 PNs/mm2 in the old. While the density of PN-surrounded GABAergic cells increased from 26 PNs/mm2 in the young to 40.6 PNs/mm2 in the old. The causality is unclear, but increases in PN density in old age may play a role in altered auditory processing in the elderly, or may lead to further changes in IC plasticity.
Collapse
Affiliation(s)
- Amir M Mafi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Lindsay N Hofer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Matthew G Russ
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
34
|
Giamanco KA, Matthews RT. The Role of BEHAB/Brevican in the Tumor Microenvironment: Mediating Glioma Cell Invasion and Motility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:117-132. [PMID: 32845505 DOI: 10.1007/978-3-030-48457-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are the most common tumors in the central nervous system (CNS) and, unfortunately, are also the most deadly. The lethal nature of malignant gliomas is due in large part to their unique and distinctive ability to invade the surrounding neural tissue. The invasive and dispersive nature of these tumors makes them particularly challenging to treat, and currently there are no effective therapies for malignant gliomas. The brain tumor microenvironment plays a particularly important role in mediating the invasiveness of gliomas, and, therefore, understanding its function is key to developing novel therapies to treat these deadly tumors. A defining aspect of the tumor microenvironment of gliomas is the unique composition of the extracellular matrix that enables tumors to overcome the typically inhibitory environment found in the CNS. One conspicuous component of the glioma tumor microenvironment is the neural-specific ECM molecule, brain-enriched hyaluronan binding (BEHAB)/brevican (B/b). B/b is highly overexpressed in gliomas, and its expression in these tumors contributes importantly to the tumor invasiveness and aggressiveness. However, B/b is a complicated protein with multiple splice variants, cleavage products, and glycoforms that contribute to its complex functions in these tumors and provide unique targets for tumor therapy. Here we review the role of B/b in glioma tumor microenvironment and explore targeting of this protein for glioma therapy.
Collapse
Affiliation(s)
- Kristin A Giamanco
- Department of Biological and Environmental Sciences, Western Connecticut State University, Danbury, CT, USA
| | - Russell T Matthews
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
35
|
The Effect of Hapln4 Link Protein Deficiency on Extracellular Space Diffusion Parameters and Perineuronal Nets in the Auditory System During Aging. Neurochem Res 2019; 45:68-82. [PMID: 31664654 DOI: 10.1007/s11064-019-02894-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Hapln4 is a link protein which stabilizes the binding between lecticans and hyaluronan in perineuronal nets (PNNs) in specific brain regions, including the medial nucleus of the trapezoid body (MNTB). The aim of this study was: (1) to reveal possible age-related alterations in the extracellular matrix composition in the MNTB and inferior colliculus, which was devoid of Hapln4 and served as a negative control, (2) to determine the impact of the Hapln4 deletion on the values of the ECS diffusion parameters in young and aged animals and (3) to verify that PNNs moderate age-related changes in the ECS diffusion, and that Hapln4-brevican complex is indispensable for the correct protective function of the PNNs. To achieve this, we evaluated the ECS diffusion parameters using the real-time iontophoretic method in the selected region in young adult (3 to 6-months-old) and aged (12 to 18-months-old) wild type and Hapln4 knock-out (KO) mice. The results were correlated with an immunohistochemical analysis of the ECM composition and astrocyte morphology. We report that the ECM composition is altered in the aged MNTB and aging is a critical point, revealing the effect of Hapln4 deficiency on the ECS diffusion. All of our findings support the hypothesis that the ECM changes in the MNTB of aged KO animals affect the ECS parameters indirectly, via morphological changes of astrocytes, which are in direct contact with synapses and can be influenced by the ongoing synaptic transmission altered by shifts in the ECM composition.
Collapse
|
36
|
Müller NIC, Sonntag M, Maraslioglu A, Hirtz JJ, Friauf E. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity. J Physiol 2019; 597:5469-5493. [PMID: 31529505 DOI: 10.1113/jp277757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Loss of the calcium sensor otoferlin disrupts neurotransmission from inner hair cells. Central auditory nuclei are functionally denervated in otoferlin knockout mice (Otof KOs) via gene ablation confined to the periphery. We employed juvenile and young adult Otof KO mice (postnatal days (P)10-12 and P27-49) as a model for lacking spontaneous activity and deafness, respectively. We studied the impact of peripheral activity on synaptic refinement in the sound localization circuit from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO). MNTB in vivo recordings demonstrated drastically reduced spontaneous spiking and deafness in Otof KOs. Juvenile KOs showed impaired synapse elimination and strengthening, manifested by broader MNTB-LSO inputs, imprecise MNTB-LSO topography and weaker MNTB-LSO fibres. The impairments persisted into young adulthood. Further functional refinement after hearing onset was undetected in young adult wild-types. Collectively, activity deprivation confined to peripheral protein loss impairs functional MNTB-LSO refinement during a critical prehearing period. ABSTRACT Circuit refinement is critical for the developing sound localization pathways in the auditory brainstem. In prehearing mice (hearing onset around postnatal day (P)12), spontaneous activity propagates from the periphery to central auditory nuclei. At the glycinergic projection from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) of neonatal mice, super-numerous MNTB fibres innervate a given LSO neuron. Between P4 and P9, MNTB fibres are functionally eliminated, whereas the remaining fibres are strengthened. Little is known about MNTB-LSO circuit refinement after P20. Moreover, MNTB-LSO refinement upon activity deprivation confined to the periphery is largely unexplored. This leaves a considerable knowledge gap, as deprivation often occurs in patients with congenital deafness, e.g. upon mutations in the otoferlin gene (OTOF). Here, we analysed juvenile (P10-12) and young adult (P27-49) otoferlin knockout (Otof KO) mice with respect to MNTB-LSO refinement. MNTB in vivo recordings revealed drastically reduced spontaneous activity and deafness in knockouts (KOs), confirming deprivation. As RNA sequencing revealed Otof absence in the MNTB and LSO of wild-types, Otof loss in KOs is specific to the periphery. Functional denervation impaired MNTB-LSO synapse elimination and strengthening, which was assessed by glutamate uncaging and electrical stimulation. Impaired elimination led to imprecise MNTB-LSO topography. Impaired strengthening was associated with lower quantal content per MNTB fibre. In young adult KOs, the MNTB-LSO circuit remained unrefined. Further functional refinement after P12 appeared absent in wild-types. Collectively, we provide novel insights into functional MNTB-LSO circuit maturation governed by a cochlea-specific protein. The central malfunctions in Otof KOs may have implications for patients with sensorineuronal hearing loss.
Collapse
Affiliation(s)
- Nicolas I C Müller
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Mandy Sonntag
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, D-04103, Leipzig, Germany
| | - Ayse Maraslioglu
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Jan J Hirtz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.,Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| |
Collapse
|
37
|
Quraishe S, Newman T, Anderson L. Auditory temporal acuity improves with age in the male mouse auditory thalamus: A role for perineuronal nets? J Neurosci Res 2019; 98:1780-1799. [PMID: 31562661 DOI: 10.1002/jnr.24537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 11/09/2022]
Abstract
The ability to perceive and interpret environmental sound accurately is conserved across many species and is fundamental for understanding communication via vocalizations. Auditory acuity and temporally controlled neuronal firing underpin this ability. Deterioration in neuronal firing precision likely contributes to poorer hearing performance, yet the role of neural processing by key nuclei in the central auditory pathways is not fully understood. Here, we record from the auditory thalamus (medial geniculate body [MGB]) of young and middle-aged, normally hearing male CBA/Ca mice. We report changes in temporal processing of auditory stimuli, with neurons recorded from ventral and medial MGB subdivisions of older animals more likely to synchronize to rapid temporally varying stimuli. MGB subdivisions also showed increased probability of neuronal firing and shorter response latencies to clicks in older animals. Histological investigation of neuronal extracellular specializations, perineuronal nets (PNNs) and axonal coats, in the MGB identified greater organization of PNNs around MGB neurons and the presence of axonal coats within older animals. This supports the observation that neural responses recorded from ventral and medial MGB of older mice were more likely to synchronize to temporally varying stimuli presented at faster repetition rates than those recorded from young adult animals. These changes are observed in animals with normal hearing thresholds, confirming that neural processing differs between the MGB subdivisions and such processing is associated with age-related changes to PNNs. Understanding these age-related changes and how they occur have important implications for the design of effective therapeutic interventions to improve speech intelligibility into later life.
Collapse
Affiliation(s)
- Shmma Quraishe
- School of Biological Sciences, B85, University of Southampton, Southampton, UK
| | - Tracey Newman
- Clinical and Experimental Sciences, B85, University of Southampton, Southampton, UK
| | | |
Collapse
|
38
|
Hayashi MK, Nishioka T, Shimizu H, Takahashi K, Kakegawa W, Mikami T, Hirayama Y, Koizumi S, Yoshida S, Yuzaki M, Tammi M, Sekino Y, Kaibuchi K, Shigemoto-Mogami Y, Yasui M, Sato K. Hyaluronan synthesis supports glutamate transporter activity. J Neurochem 2019; 150:249-263. [PMID: 31188471 DOI: 10.1111/jnc.14791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 11/28/2022]
Abstract
Hyaluronan is synthesized, secreted, and anchored by hyaluronan synthases (HAS) at the plasma membrane and comprises the backbone of perineuronal nets around neuronal soma and dendrites. However, the molecular targets of hyaluronan to regulate synaptic transmission in the central nervous system have not been fully identified. Here, we report that hyaluronan is a negative regulator of excitatory signals. At excitatory synapses, glutamate is removed by glutamate transporters to turn off the signal and prevent excitotoxicity. Hyaluronan synthesized by HAS supports the activity of glial glutamate transporter 1 (GLT1). GLT1 also retracted from cellular processes of cultured astrocytes after hyaluronidase treatment and hyaluronan synthesis inhibition. A serial knockout study showed that all three HAS subtypes recruit GLT1 to cellular processes. Furthermore, hyaluronidase treatment activated neurons in a dissociated rat hippocampal culture and caused neuronal damage due to excitotoxicity. Our findings reveal that hyaluronan helps to turn off excitatory signals by supporting glutamate clearance. Cover Image for this issue: doi: 10.1111/jnc.14516.
Collapse
Affiliation(s)
- Mariko Kato Hayashi
- Medical School, International University of Health and Welfare, Narita, Chiba, Japan.,Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hideo Shimizu
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kanako Takahashi
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuri Mikami
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yuri Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sachiko Yoshida
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Markku Tammi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Yuko Sekino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yukari Shigemoto-Mogami
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Sato
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
39
|
Reichelt AC, Hare DJ, Bussey TJ, Saksida LM. Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential. Trends Neurosci 2019; 42:458-470. [DOI: 10.1016/j.tins.2019.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
|
40
|
Neuner SM, Ding S, Kaczorowski CC. Knockdown of heterochromatin protein 1 binding protein 3 recapitulates phenotypic, cellular, and molecular features of aging. Aging Cell 2019; 18:e12886. [PMID: 30549219 PMCID: PMC6351847 DOI: 10.1111/acel.12886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Identifying genetic factors that modify an individual's susceptibility to cognitive decline in aging is critical to understanding biological processes involved and mitigating risk associated with a number of age‐related disorders. Recently, heterochromatin protein 1 binding protein 3 (Hp1bp3) was identified as a mediator of cognitive aging. Here, we provide a mechanistic explanation for these findings and show that targeted knockdown of Hp1bp3 in the hippocampus by 50%–75% is sufficient to induce cognitive deficits and transcriptional changes reminiscent of those observed in aging and Alzheimer's disease brains. Specifically, neuroinflammatory‐related pathways become activated following Hp1bp3 knockdown in combination with a robust decrease in genes involved in synaptic activity and neuronal function. To test the hypothesis that Hp1bp3 mediates susceptibility to cognitive deficits via a role in neuronal excitability, we performed slice electrophysiology demonstrate transcriptional changes after Hp1bp3 knockdown manifest functionally as a reduction in hippocampal neuronal intrinsic excitability and synaptic plasticity. In addition, as Hp1bp3 is a known mediator of miRNA biogenesis, here we profile the miRNA transcriptome and identify mir‐223 as a putative regulator of a portion of observed mRNA changes, particularly those that are inflammatory‐related. In summary, work here identifies Hp1bp3 as a critical mediator of aging‐related changes at the phenotypic, cellular, and molecular level and will help inform the development of therapeutics designed to target either Hp1bp3 or its downstream effectors in order to promote cognitive longevity.
Collapse
Affiliation(s)
- Sarah M. Neuner
- The Jackson Laboratory Bar Harbor Maine
- Neuroscience Institute University of Tennessee Health Science Center Memphis Tennessee
| | | | | |
Collapse
|
41
|
Inhibitory Projections from the Inferior Colliculus to the Medial Geniculate body Originate from Four Subtypes of GABAergic Cells. eNeuro 2018; 5:eN-NWR-0406-18. [PMID: 30456294 PMCID: PMC6240760 DOI: 10.1523/eneuro.0406-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022] Open
Abstract
GABAergic cells constitute 20-40% of the cells that project from the inferior colliculus [(IC) a midbrain auditory hub] to the medial geniculate body [(MG) the main auditory nucleus of the thalamus]. Four subtypes of GABAergic IC cells have been identified based on their association with perineuronal nets (PNs) and dense rings of axosomatic terminals expressing vesicular glutamate transporter 2 (VGLUT2 rings). These subtypes differ in their soma size and distribution within the IC. Based on previous work emphasizing large GABAergic cells as the origin of GABAergic IC-MG projections, we hypothesized that GABAergic IC cells surrounded by PNs and VGLUT2 rings, which tend to have larger somas, were more likely to project to the MG than smaller cells lacking these extracellular markers. Here, we injected retrograde tract tracers into the MG of guinea pigs of either sex and analyzed retrogradely labeled GABAergic cells in the ipsilateral IC for soma size and association with PNs and/or VGLUT2 rings. We found a range of GABAergic soma sizes present within the IC-MG pathway, which were reflective of the full range of GABAergic soma sizes present within the IC. Further, we found that all four subtypes of GABAergic IC cells participate in the IC-MG pathway, and that GABAergic cells lacking PNs and VGLUT2 rings were more prevalent within the pathway than would be expected based on their overall prevalence in the IC. These results may provide an anatomical substrate for the multiple roles of inhibition in the IC-MG pathway, which have emerged in electrophysiological studies.
Collapse
|
42
|
Edamatsu M, Miyano R, Fujikawa A, Fujii F, Hori T, Sakaba T, Oohashi T. Hapln4/Bral2 is a selective regulator for formation and transmission of GABAergic synapses between Purkinje and deep cerebellar nuclei neurons. J Neurochem 2018; 147:748-763. [PMID: 30125937 DOI: 10.1111/jnc.14571] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022]
Abstract
Purkinje cells (PCs) convey the sole output of the cerebellar cortex to the deep cerebellar nuclei (DCN). DCN neurons are enwrapped in densely organized extracellular matrix structures, known as perineuronal nets (PNNs). PNNs are typically found around fast-spiking GABAergic interneurons expressing parvalbumin but interestingly also exist surrounding other neurons, such as the neurons in the DCN and medial nucleus of the trapezoid body, which are the post-synaptic neurons of large axo-somatic synapses adapted for fast signaling. This characteristic localization prompted the hypothesis that PNNs might play a role in the maintenance and formation of large fast-signaling synapses. To elucidate the role of the PNN at these synapses, we investigated the electrophysiological and morphological properties of DCN synapses in hyaluronan and proteoglycan binding link protein 4 (Hapln4/Bral2) knockout (KO) mice around postnatal day (P)14. Hapln4/Bral2 is important for PNN structure, as it stabilizes the interaction between hyaluronan and proteoglycan. Here, using immunohistochemistry we show that Hapln4/Bral2 localized closely with GABAergic terminals. In DCN neurons of Hapln4/Bral2 KO mice, inhibitory synaptic strengths were reduced as compared to those in wild-type mice, whereas the properties of excitatory synapses were unaffected. The reduced IPSC amplitudes were mainly because of reduced numbers of releasable vesicles. Moreover, Hapln4/Bral2 deficiency reduced the number of PC GABAergic terminals in the DCN. These results demonstrate that Hapln4/Bral2 is a PNN component that selectively contributes to formation and transmission of PC-DCN synapses in the cerebellum. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Midori Edamatsu
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Rinako Miyano
- Graduate School of Brain Science, Doshisha University, Kyo-Tanabe, Kyoto, Japan
| | - Atsushi Fujikawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Fuminari Fujii
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tetsuya Hori
- Faculty of Life and Medical Sciences, Department of Neurophysiology, Doshisha University, Kyo-Tanabe, Kyoto, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyo-Tanabe, Kyoto, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| |
Collapse
|
43
|
Sonntag M, Blosa M, Schmidt S, Reimann K, Blum K, Eckrich T, Seeger G, Hecker D, Schick B, Arendt T, Engel J, Morawski M. Synaptic coupling of inner ear sensory cells is controlled by brevican-based extracellular matrix baskets resembling perineuronal nets. BMC Biol 2018; 16:99. [PMID: 30253762 PMCID: PMC6156866 DOI: 10.1186/s12915-018-0566-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/15/2018] [Indexed: 02/08/2023] Open
Abstract
Background Perineuronal nets (PNNs) are specialized aggregations of extracellular matrix (ECM) molecules surrounding specific neurons in the central nervous system (CNS). PNNs are supposed to control synaptic transmission and are frequently associated with neurons firing at high rates, including principal neurons of auditory brainstem nuclei. The origin of high-frequency activity of auditory brainstem neurons is the indefatigable sound-driven transmitter release of inner hair cells (IHCs) in the cochlea. Results Here, we show that synaptic poles of IHCs are ensheathed by basket-like ECM complexes formed by the same molecules that constitute PNNs of neurons in the CNS, including brevican, aggreccan, neurocan, hyaluronan, and proteoglycan link proteins 1 and 4 and tenascin-R. Genetic deletion of brevican, one of the main components, resulted in a massive degradation of ECM baskets at IHCs, a significant impairment in spatial coupling of pre- and postsynaptic elements and mild impairment of hearing. Conclusions These ECM baskets potentially contribute to control of synaptic transmission at IHCs and might be functionally related to PNNs of neurons in the CNS. Electronic supplementary material The online version of this article (10.1186/s12915-018-0566-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mandy Sonntag
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Maren Blosa
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sophie Schmidt
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Katja Reimann
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Tobias Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Gudrun Seeger
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Dietmar Hecker
- Department of Otorhinolaryngology, School of Medicine, Saarland University, Homburg, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, School of Medicine, Saarland University, Homburg, Germany
| | - Thomas Arendt
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Markus Morawski
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
44
|
Neurotransmitter- and Release-Mode-Specific Modulation of Inhibitory Transmission by Group I Metabotropic Glutamate Receptors in Central Auditory Neurons of the Mouse. J Neurosci 2018; 38:8187-8199. [PMID: 30093538 DOI: 10.1523/jneurosci.0603-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Neuromodulation mediated by metabotropic glutamate receptors (mGluRs) regulates many brain functions. However, the functions of mGluRs in the auditory system under normal and diseased states are not well understood. The medial nucleus of the trapezoid body (MNTB) is a critical nucleus in the auditory brainstem nuclei involved in sound localization. In addition to the classical calyx excitatory inputs, MNTB neurons also receive synaptic inhibition and it remains entirely unknown how this inhibition is regulated. Here, using whole-cell voltage clamp in brain slices, we investigated group I mGluR (mGluR I)-mediated modulation of the glycinergic and GABAergic inputs to MNTB neurons in both WT mice and a fragile X syndrome (FXS) mouse model (both sexes) in which the fragile X mental retardation gene 1 is knocked out (Fmr1 KO), causing exaggerated activity of mGluR I and behavioral phenotypes. Activation of mGluR I by (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) increased the frequency and amplitude of glycinergic spontaneous IPSCs (sIPSCs) in both WT and Fmr1 KO neurons in a voltage-gated sodium channel-dependent fashion, but did not modulate glycinergic evoked IPSCs (eIPSCs). In contrast, 3,5-DHPG did not affect GABAergic sIPSCs, but did suppress eIPSCs in WT neurons via endocannabinoid signaling. In the KO, the effect of 3,5-DHPG on GABAergic eIPSCs was highly variable, which supports the notion of impaired GABAergic signaling in the FXS model. The differential modulation of sIPSC and eIPSC and differential modulation of glycinergic and GABAergic transmission suggest distinct mechanisms responsible for spontaneous and evoked release of inhibitory transmitters and their modulation through the mGluR I signaling pathway.SIGNIFICANCE STATEMENT Neurons communicate with each other through the release of neurotransmitters, which assumes two basic modes, spontaneous and evoked release. These two release modes are believed to function using the same vesicle pool and machinery. Recent works have challenged this dogma, pointing to distinct vesicle release mechanisms underlying the two release modes. Here, we provide the first evidence in the central auditory system supporting this novel concept. We discovered neural-transmitter- and release-mode-specific neuromodulation of inhibitory transmission by metabotropic glutamate receptors and revealed part of the signaling pathways underlying this differential modulation. The results establish the foundation for a multitude of directions to study physiological significance of different release modes in auditory processing.
Collapse
|
45
|
Wen TH, Binder DK, Ethell IM, Razak KA. The Perineuronal 'Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders. Front Mol Neurosci 2018; 11:270. [PMID: 30123106 PMCID: PMC6085424 DOI: 10.3389/fnmol.2018.00270] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Perineuronal nets (PNN) are extracellular matrix (ECM) assemblies that preferentially ensheath parvalbumin (PV) expressing interneurons. Converging evidence indicates that PV cells and PNN are impaired in a variety of neurological disorders. PNN development and maintenance is necessary for a number of processes within the CNS, including regulation of GABAergic cell function, protection of neurons from oxidative stress, and closure of developmental critical period plasticity windows. Understanding PNN functions may be essential for characterizing the mechanisms of altered cortical excitability observed in neurodegenerative and neurodevelopmental disorders. Indeed, PNN abnormalities have been observed in post-mortem brain tissues of patients with schizophrenia and Alzheimer’s disease. There is impaired development of PNNs and enhanced activity of its key regulator matrix metalloproteinase-9 (MMP-9) in Fragile X Syndrome, a common genetic cause of autism. MMP-9, a protease that cleaves ECM, is differentially regulated in a number of these disorders. Despite this, few studies have addressed the interactions between PNN expression, MMP-9 activity and neuronal excitability. In this review, we highlight the current evidence for PNN abnormalities in CNS disorders associated with altered network function and MMP-9 levels, emphasizing the need for future work targeting PNNs in pathophysiology and therapeutic treatment of neurological disorders.
Collapse
Affiliation(s)
- Teresa H Wen
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Psychology Graduate Program, Department of Psychology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
46
|
Weinrich L, Sonntag M, Arendt T, Morawski M. Neuroanatomical characterization of perineuronal net components in the human cochlear nucleus and superior olivary complex. Hear Res 2018; 367:32-47. [PMID: 30025262 DOI: 10.1016/j.heares.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
The human auditory brainstem, especially the cochlear nucleus (CN) and the superior olivary complex (SOC) are characterized by a high density of neurons associated with perineuronal nets (PNs). PNs build a specific form of extracellular matrix surrounding the neuronal somata, proximal dendrites and axon initial segments. They restrict synaptic plasticity and control high-frequency synaptic activity, a prominent characteristic of neurons of the auditory brainstem. The distribution of PNs within the auditory brainstem has been investigated in a number of mammalian species. However, much less is known regarding PNs in the human auditory brainstem. The present study aimed at the immunohistochemical identification of PNs in the cochlear nucleus (CN) and superior olivary complex (SOC) in the human brainstem. We focused on the complex nature and molecular variability of PNs in the CN and SOC by using specific antibodies against the main PN components (aggrecan, brevican, neurocan and hyaluronan and proteoglycan link protein 1). Virtually all subnuclei within the ventral CN and SOC were found to be associated with PNs. Direct comparison between gerbil and human yielded similar fine structure of PNs and confirmed the typical tight interdigitation of PNs with synaptic terminals in both species. Noticeably, an elaborate combination of immunohistochemical labelings clearly supports the still debated existence of the medial nucleus of trapezoid body (MNTB) in the human brain. In conclusion, the present study demonstrates that PNs form a prominent extracellular structure on CN and SOC neurons in the human brain, potentially stabilizing synaptic contacts, which is in agreement with many other mammalian species.
Collapse
Affiliation(s)
- Luise Weinrich
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Mandy Sonntag
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
47
|
McDonald AJ, Hamilton PG, Barnstable CJ. Perineuronal nets labeled by monoclonal antibody VC1.1 ensheath interneurons expressing parvalbumin and calbindin in the rat amygdala. Brain Struct Funct 2018; 223:1133-1148. [PMID: 29094304 PMCID: PMC5871560 DOI: 10.1007/s00429-017-1542-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023]
Abstract
Perineuronal nets (PNNs) are specialized condensations of extracellular matrix that ensheath particular neuronal subpopulations in the brain and spinal cord. PNNs regulate synaptic plasticity, including the encoding of fear memories by the amygdala. The present immunohistochemical investigation studied PNN structure and distribution, as well as the neurochemistry of their ensheathed neurons, in the rat amygdala using monoclonal antibody VC1.1, which recognizes a glucuronic acid 3-sulfate glycan associated with PNNs in the cerebral cortex. VC1.1+ PNNs surrounded the cell bodies and dendrites of a subset of nonpyramidal neurons in cortex-like portions of the amygdala (basolateral amygdalar complex, cortical nuclei, nucleus of the lateral olfactory tract, and amygdalohippocampal region). There was also significant neuropilar VC1.1 immunoreactivity, whose density varied in different amygdalar nuclei. Cell counts in the basolateral nucleus revealed that virtually all neurons ensheathed by VC1.1+ PNNs were parvalbumin-positive (PV+) interneurons, and these VC1.1+/PV+ cells constituted 60% of all PV+ interneurons, including all of the larger PV+ neurons. Approximately 70% of VC1.1+ neurons were calbindin-positive (CB+), and these VC1.1+/CB+ cells constituted about 40% of all CB+ neurons. Colocalization of VC1.1 with Vicia villosa agglutinin (VVA) binding, which stains terminal N-acetylgalactosamines, revealed that VC1.1+ PNNs were largely a subset of VVA+ PNNs. This investigation provides baseline data regarding PNNs in the rat which should be useful for future studies of their function in this species.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Patricia G Hamilton
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
48
|
Miyata S, Nadanaka S, Igarashi M, Kitagawa H. Structural Variation of Chondroitin Sulfate Chains Contributes to the Molecular Heterogeneity of Perineuronal Nets. Front Integr Neurosci 2018; 12:3. [PMID: 29456495 PMCID: PMC5801575 DOI: 10.3389/fnint.2018.00003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/15/2018] [Indexed: 01/02/2023] Open
Abstract
Aggrecan, a chondroitin sulfate (CS) proteoglycan, forms lattice-like extracellular matrix structures called perineuronal nets (PNNs). Neocortical PNNs primarily ensheath parvalbumin-expressing inhibitory neurons (parvalbumin, PV cells) late in brain development. Emerging evidence indicates that PNNs promote the maturation of PV cells by enhancing the incorporation of homeobox protein Otx2 and regulating experience-dependent neural plasticity. Wisteria floribunda agglutinin (WFA), an N-acetylgalactosamine-specific plant lectin, binds to the CS chains of aggrecan and has been widely used to visualize PNNs. Although PNNs show substantial molecular heterogeneity, the importance of this heterogeneity in neural plasticity remains unknown. Here, in addition to WFA lectin, we used the two monoclonal antibodies Cat315 and Cat316, both of which recognize the glycan structures of aggrecan, to investigate the molecular heterogeneity of PNNs. WFA detected the highest number of PNNs in all cortical layers, whereas Cat315 and Cat316 labeled only a subset of PNNs. WFA+, Cat315+, and Cat316+ PNNs showed different laminar distributions in the adult visual cortex. WFA, Cat315 and Cat316 detected distinct, but partially overlapping, populations of PNNs. Based on the reactivities of these probes, we categorized PNNs into four groups. We found that two subpopulation of PNNs, one with higher and one with lower WFA-staining are differentially labeled by Cat316 and Cat315, respectively. CS chains recognized by Cat316 were diminished in mice deficient in an enzyme involved in the initiation of CS-biosynthesis. Furthermore, WFA+ and Cat316+ aggrecan were spatially segregated and formed microdomains in a single PNN. Otx2 co-localized with Cat316+ but not with WFA+ aggrecan in PNNs. Our results suggest that the heterogeneity of PNNs around PV cells may affect the functional maturation of these cells.
Collapse
Affiliation(s)
- Shinji Miyata
- Laboratory of Molecular Bioregulation, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Satomi Nadanaka
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences and Trans-disciplinary Program, Niigata University, Niigata, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
49
|
Beebe NL, Schofield BR. Perineuronal nets in subcortical auditory nuclei of four rodent species with differing hearing ranges. J Comp Neurol 2018; 526:972-989. [PMID: 29277975 DOI: 10.1002/cne.24383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/20/2017] [Accepted: 12/09/2017] [Indexed: 12/19/2022]
Abstract
Perineuronal nets (PNs) are aggregates of extracellular matrix molecules that surround some neurons in the brain. While PNs occur widely across many cortical areas, subcortical PNs are especially associated with motor and auditory systems. The auditory system has recently been suggested as an ideal model system for studying PNs and their functions. However, descriptions of PNs in subcortical auditory areas vary, and it is unclear whether the variation reflects species differences or differences in staining techniques. Here, we used two staining techniques (one lectin stain and one antibody stain) to examine PN distribution in the subcortical auditory system of four different species: guinea pigs (Cavia porcellus), mice (Mus musculus, CBA/CaJ strain), Long-Evans rats (Rattus norvegicus), and naked mole-rats (Heterocephalus glaber). We found that some auditory nuclei exhibit dramatic differences in PN distribution among species while other nuclei have consistent PN distributions. We also found that PNs exhibit molecular heterogeneity, and can stain with either marker individually or with both. PNs within a given nucleus can be heterogeneous or homogenous in their staining patterns. We compared PN staining across the frequency axes of tonotopically organized nuclei and among species with different hearing ranges. PNs were distributed non-uniformly across some nuclei, but only rarely did this appear related to the tonotopic axis. PNs were prominent in all four species; we found no systematic relationship between the hearing range and the number, staining patterns or distribution of PNs in the auditory nuclei.
Collapse
Affiliation(s)
- Nichole L Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| |
Collapse
|
50
|
Saied-Santiago K, Bülow HE. Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 2018; 247:54-74. [PMID: 28736980 PMCID: PMC5866094 DOI: 10.1002/dvdy.24555] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
The nervous system coordinates the functions of most multicellular organisms and their response to the surrounding environment. Its development involves concerted cellular interactions, including migration, axon guidance, and synapse formation. These processes depend on the molecular constituents and structure of the extracellular matrices (ECM). An essential component of ECMs are proteoglycans, i.e., proteins containing unbranched glycan chains known as glycosaminoglycans (GAGs). A defining characteristic of GAGs is their enormous molecular diversity, created by extensive modifications of the glycans during their biosynthesis. GAGs are widely expressed, and their loss can lead to catastrophic neuronal defects. Despite their importance, we are just beginning to understand the function and mechanisms of GAGs in neuronal development. In this review, we discuss recent evidence suggesting GAGs have specific roles in neuronal patterning and synaptogenesis. We examine the function played by the complex modifications present on GAG glycans and their roles in regulating different aspects of neuronal patterning. Moreover, the review considers the function of proteoglycan core proteins in these processes, stressing their likely role as co-receptors of different signaling pathways in a redundant and context-dependent manner. We conclude by discussing challenges and future directions toward a better understanding of these fascinating molecules during neuronal development. Developmental Dynamics 247:54-74, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|