1
|
Kumar P, Bharti VK, Kumar K. Effect of short-term exposure to high-altitude hypoxic climate on feed-intake, blood glucose level and physiological responses of native and non-native goat. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:795-806. [PMID: 38374293 DOI: 10.1007/s00484-024-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
The exposure to high altitude and cold stress poses challenges in maintaining normal physiological standards and body homeostasis in non-native animals. To enhance our understanding of the physiology of native and non-native goats in high-altitude environments, we conducted a comparative study to examine the impact of natural hypoxic and cold stress conditions on their feed intake (FIT) and associated changes in physiological responses, including plasma glucose concentration (PGC). The study took place at an altitude of 3505.2 m above mean sea level and involved twenty-two healthy females from two different breeds of goats. This study was conducted over a period of 56 days after the arrival of non-native Black Bengal goats (BBN) and compared with native Changthangi (CHAN) goats. Both groups were extensively reared in a natural high-altitude and cold-stress environment in Leh, India, and were subjected to defined housing and management practices. The parameters evaluated included FIT, PGC, respiration rate, heart rate, pulse rate, and rectal temperature. High altitudes had a significant (p < 0.05) impact on FIT, PGC, respiration rate, heart rate, pulse rate, and rectal temperature in BBN, whereas these parameters remained stable in CHAN throughout the study period. Additionally, the detrimental effects of high-altitude stress were more pronounced in non-native goats compared to native goats. These findings suggest that physiological responses in non-native goats tend to stabilize after an initial period of adverse effects in high-altitude environments. Based on the physiological responses and glucose concentration, it is recommended to pay special attention to the nutrition of non-native goats for up to the third week (21 days) after their arrival in high-altitude areas.
Collapse
Affiliation(s)
- Prabhat Kumar
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India.
- Indira Gandhi Institute of Medical Sciences (IGIMS), Patna, Bihar, India.
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India.
| | - Krishna Kumar
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India
| |
Collapse
|
2
|
Davis JT, Elliott JE, Duke JW, Cristobal A, Lovering AT. Hyperoxia-induced stepwise reduction in blood flow through intrapulmonary, but not intracardiac, shunt during exercise. Am J Physiol Regul Integr Comp Physiol 2023; 325:R96-R105. [PMID: 37184225 PMCID: PMC10292968 DOI: 10.1152/ajpregu.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) (QIPAVA) increases during exercise breathing air, but it has been proposed that QIPAVA is reduced during exercise while breathing a fraction of inspired oxygen ([Formula: see text]) of 1.00. It has been argued that the reduction in saline contrast bubbles through IPAVA is due to altered in vivo microbubble dynamics with hyperoxia reducing bubble stability, rather than closure of IPAVA. To definitively determine whether breathing hyperoxia decreases saline contrast bubble stability in vivo, the present study included individuals with and without patent foramen ovale (PFO) to determine if hyperoxia also eliminates left heart contrast in people with an intracardiac right-to-left shunt. Thirty-two participants consisted of 16 without a PFO; 8 females, 8 with a PFO; 4 females, and 8 with late-appearing left-sided contrast (4 females) completed five, 4-min bouts of constant-load cycle ergometer exercise (males: 250 W, females: 175 W), breathing an [Formula: see text] = 0.21, 0.40, 0.60, 0.80, and 1.00 in a balanced Latin Squares design. QIPAVA was assessed at rest and 3 min into each exercise bout via transthoracic saline contrast echocardiography and our previously used bubble scoring system. Bubble scores at [Formula: see text]= 0.21, 0.40, and 0.60 were unchanged and significantly greater than at [Formula: see text]= 0.80 and 1.00 in those without a PFO. Participants with a PFO had greater bubble scores at [Formula: see text]= 1.00 than those without a PFO. These data suggest that hyperoxia-induced decreases in QIPAVA during exercise occur when [Formula: see text] ≥ 0.80 and is not a result of altered in vivo microbubble dynamics supporting the idea that hyperoxia closes QIPAVA.
Collapse
Affiliation(s)
- James T Davis
- Indiana University School of Medicine, Department of Anatomy, Cell Biology and Physiology Bloomington, Indiana, United States
| | - Jonathan E Elliott
- Veterans Affairs Portland Health Care Systeme, Research Servic, Portland, Oregon, United States
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States
| | - Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States
| | - Alberto Cristobal
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
3
|
Quantification of shunt fraction using contrast ultrasound and indicator dilution in an in vitro model. Respir Physiol Neurobiol 2023; 310:104013. [PMID: 36639005 DOI: 10.1016/j.resp.2023.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Transthoracic saline contrast echocardiography is commonly used to assess intrathoracic shunt flow in vivo. Though the technique has many advantages (safe, simple, repeatable), the measurement technique lacks specificity, and the contrast agent has limited stability. This study sought to determine if the indicator dilution modeling technique could be applied to ultrasound contrast data to quantify shunt fraction and to determine if buoyant force has a significant effect on microbubble pathway determination at a "vascular" bifurcation. A model of the pulmonary circuit was perfused with blood at three distinct flow rates (low, medium and high) over shunt fractions ranging from ∼2-10 %. The buoyancy effect on contrast was quantified using a simplified in vitro model of a vascular bifurcation that had an upper and lower outflow tract where saline contrast formed from carbon monoxide (CO) gas passed through the bifurcation, was collected and quantified. The indicator dilution model was found to have a mean bias of - 3.2 % for the low flow stage, - 2.6 % for the medium flow stage and - 1.4 % for the high flow stage compared to volumetric measurements, suggesting agreement increases with increasing flow rate. Investigations of the buoyant effects revealed that at lower flow rates, contrast bubbles that encounter a bifurcation will favor the upper outflow tract over the lower. However, this effect is reduced by increasing the flow rate two-fold. These data identify that application of indicator dilution theory to contrast ultrasound data and the pathway ultrasound contrast travels in a network of tubules is flow dependent.
Collapse
|
4
|
Kelly T, Brown C, Bryant-Ekstrand M, Lord R, Dawkins T, Drane A, Futral JE, Barak O, Dragun T, Stembridge M, Spajić B, Drviš I, Duke JW, Ainslie PN, Foster GE, Dujic Z, Lovering AT. Blunted hypoxic pulmonary vasoconstriction in apnoea divers. Exp Physiol 2022; 107:1225-1240. [PMID: 35993480 DOI: 10.1113/ep090326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is new and noteworthy? What is the central question of this study? Does the hyperbaric, hypercapnic, acidotic, hypoxic stress of apnoea diving lead to greater pulmonary vasoreactivity and increased right-heart work in apnoea divers? What is the main finding and its importance? Compared to sex- and age-matched controls, Divers had a significantly lower change in total pulmonary resistance in response to short duration isocapnic hypoxia. With oral sildenafil (50 mg), there were no differences in total pulmonary resistance between groups, suggesting Divers can maintain normal pulmonary artery tone in hypoxic conditions. Blunted hypoxic pulmonary vasoconstriction may be beneficial during apnoea diving. ABSTRACT Competitive apnoea divers repetitively dive to depths beyond 50 m. During the final portions of ascent, Divers experience significant hypoxaemia. Additionally, hyperbaria during diving increases thoracic blood volume while simultaneously reducing lung volume, increasing pulmonary artery pressure. We hypothesized that Divers would have exaggerated hypoxic pulmonary vasoconstriction leading to increased right-heart work due to their repetitive hypoxaemia and hyperbaria, and that the administration of sildenafil would have a greater effect in reducing pulmonary resistance in Divers. We recruited 16 Divers and 16 age and sex matched non-diving controls (Controls). Using a double-blinded, placebo-controlled, cross-over design, participants were evaluated for normal cardiac and lung function, then their cardiopulmonary responses to 20-30 minutes of isocapnic hypoxia (end-tidal PO2 = 50 mm Hg) were measured one hour following ingestion of 50 mg sildenafil or placebo. Cardiac structure and cardiopulmonary function were similar at baseline. With placebo, Divers had a significantly smaller increase in total pulmonary resistance than controls after 20-30 minutes isocapnic hypoxia (Δ -3.85 ± 72.85 vs 73.74 ± 91.06 dynes/sec/cm-5 , p = .0222). With sildenafil, Divers and Controls had similarly blunted increases in total pulmonary resistance after 20-30 minutes of hypoxia. Divers also had a significantly lower systemic vascular resistance following sildenafil in normoxia. These data indicate that repetitive apnoea diving leads to a blunted hypoxic pulmonary vasoconstriction. We suggest this is a beneficial adaption allowing for increased cardiac output with reduced right heart work and thus reducing cardiac oxygen utilization under hypoxemic conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tyler Kelly
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Courtney Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | | | - Rachel Lord
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Tony Dawkins
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Aimee Drane
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Joel E Futral
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Otto Barak
- Department of Physiology, University of Novi Sad, Novi Sad, Serbia
| | - Tanja Dragun
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Michael Stembridge
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Boris Spajić
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Ivan Drviš
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
5
|
Schallerer AE, Duke JW, Speros JP, Mangum TS, Norris HC, Beasley KM, Laurie SS, Elliott JE, Davis JT, Lovering AT. Lower transfer factor of the lung for carbon monoxide in women with a patent foramen ovale. Exp Physiol 2022; 107:243-252. [DOI: 10.1113/ep090176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | - Joseph W. Duke
- Department of Biological Sciences Northern Arizona University Flagstaff AZ USA
| | - Julia P. Speros
- Department of Human Physiology University of Oregon Eugene OR USA
| | - Tyler S. Mangum
- Department of Human Physiology University of Oregon Eugene OR USA
| | | | - Kara M. Beasley
- Department of Human Physiology University of Oregon Eugene OR USA
| | - Steven S. Laurie
- KBR, Cardiovascular and Vision Laboratory NASA Johnson Space Center Houston TX USA
| | - Jonathan E. Elliott
- VA Portland Health Care System Portland OR USA
- Department of Neurology Oregon Health & Science University Portland OR USA
| | - James T. Davis
- Department of Kinesiology Recreation, and Sport Indiana State University Terre Haute IN USA
| | | |
Collapse
|
6
|
DiMarco KG, Beasley KM, Shah K, Speros JP, Elliott JE, Laurie SS, Duke JW, Goodman RD, Futral JE, Hawn JA, Roach RC, Lovering AT. No effect of patent foramen ovale on acute mountain sickness and pulmonary pressure in normobaric hypoxia. Exp Physiol 2021; 107:122-132. [PMID: 34907608 DOI: 10.1113/ep089948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
Abstract
What is the central question to this study? Is there a relationship between a patent foramen ovale and the development of acute mountain sickness and an exaggerated increase in pulmonary pressure in response to 7-10 hours of normobaric hypoxia? What is the main finding and its importance? Patent foramen ovale presence did not increase susceptibility to acute mountain sickness or result in an exaggerated increase in pulmonary artery systolic pressure with normobaric hypoxia. This data suggest hypobaric hypoxia is integral to the increased susceptibility to acute mountain sickness previously reported in those with patent foramen ovale, and patent foramen ovale presence alone does not contribute to the hypoxic pulmonary pressor response. ABSTRACT: Acute mountain sickness (AMS) develops following rapid ascent to altitude, but its exact causes remain unknown. A patent foramen ovale (PFO) is a right-to-left intracardiac shunt present in ∼30% of the population that has been shown to increase AMS susceptibility with high altitude hypoxia. Additionally, high altitude pulmonary edema (HAPE), is a severe type of altitude illness characterized by an exaggerated pulmonary pressure response, and there is a greater prevalence of PFO in those with a history of HAPE. However, whether hypoxia, per se, is causing the increased incidence of AMS in those with a PFO and whether a PFO is associated with an exaggerated increase in pulmonary pressure in those without a history of HAPE is unknown. Participants (n = 36) matched for biological sex (18 female) and the presence or absence of a PFO (18 PFO+) were exposed to 7-10 hours of normobaric hypoxia equivalent to 4755 m. Presence and severity of AMS was determined using the Lake Louise AMS scoring system. Pulmonary artery systolic pressure, cardiac output, and total pulmonary resistance were measured using ultrasound. We found no significant association of PFO with incidence or severity of AMS and no association of PFO with arterial oxygen saturation. Additionally, there was no effect of a PFO on pulmonary pressure, cardiac output, or total pulmonary resistance. These data suggest that hypobaric hypoxia is necessary for those with a PFO to have increased incidence of AMS and that presence of PFO is not associated with an exaggerated pulmonary pressor response. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kaitlyn G DiMarco
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Kara M Beasley
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Karina Shah
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Julia P Speros
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR, USA.,Oregon Health and Science University, Department of Neurology, Portland, OR, USA
| | - Steven S Laurie
- KBR, Cardiovascular and Vision Laboratory, NASA Johnson Space Center, Houston, TX, USA
| | - Joseph W Duke
- Northern Arizona University, Department of Biological Sciences, Flagstaff, AZ, USA
| | | | | | - Jerold A Hawn
- Oregon Heart and Vascular Institute, Springfield, OR, USA
| | - Robert C Roach
- University of Colorado Anschutz Medical Campus, Altitude Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Aurora, CO, USA
| | - Andrew T Lovering
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| |
Collapse
|
7
|
Stembridge M, Hoiland RL, Williams AM, Howe CA, Donnelly J, Dawkins TG, Drane A, Tymko MM, Gasho C, Anholm J, Simpson LL, Moore JP, Bailey DM, MacLeod DB, Ainslie PN. The influence of hemoconcentration on hypoxic pulmonary vasoconstriction in acute, prolonged, and lifelong hypoxemia. Am J Physiol Heart Circ Physiol 2021; 321:H738-H747. [PMID: 34448634 DOI: 10.1152/ajpheart.00357.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemoconcentration can influence hypoxic pulmonary vasoconstriction (HPV) via increased frictional force and vasoactive signaling from erythrocytes, but whether the balance of these mechanism is modified by the duration of hypoxia remains to be determined. We performed three sequential studies: 1) at sea level, in normoxia and isocapnic hypoxia with and without isovolumic hemodilution (n = 10, aged 29 ± 7 yr); 2) at altitude (6 ± 2 days acclimatization at 5,050 m), before and during hypervolumic hemodilution (n = 11, aged 27 ± 5 yr) with room air and additional hypoxia [fraction of inspired oxygen ([Formula: see text])= 0.15]; and 3) at altitude (4,340 m) in Andean high-altitude natives with excessive erythrocytosis (EE; n = 6, aged 39 ± 17 yr), before and during isovolumic hemodilution with room air and hyperoxia (end-tidal Po2 = 100 mmHg). At sea level, hemodilution mildly increased pulmonary artery systolic pressure (PASP; +1.6 ± 1.5 mmHg, P = 0.01) and pulmonary vascular resistance (PVR; +0.7 ± 0.8 wu, P = 0.04). In contrast, after acclimation to 5,050 m, hemodilution did not significantly alter PASP (22.7 ± 5.2 vs. 24.5 ± 5.2 mmHg, P = 0.14) or PVR (2.2 ± 0.9 vs. 2.3 ± 1.2 wu, P = 0.77), although both remained sensitive to additional acute hypoxia. In Andeans with EE at 4,340 m, hemodilution lowered PVR in room air (2.9 ± 0.9 vs. 2.3 ± 0.8 wu, P = 0.03), but PASP remained unchanged (31.3 ± 6.7 vs. 30.9 ± 6.9 mmHg, P = 0.80) due to an increase in cardiac output. Collectively, our series of studies reveal that HPV is modified by the duration of exposure and the prevailing hematocrit level. In application, these findings emphasize the importance of accounting for hematocrit and duration of exposure when interpreting the pulmonary vascular responses to hypoxemia.NEW & NOTEWORTHY Red blood cell concentration influences the pulmonary vasculature via direct frictional force and vasoactive signaling, but whether the magnitude of the response is modified with duration of exposure is not known. By assessing the pulmonary vascular response to hemodilution in acute normobaric and prolonged hypobaric hypoxia in lowlanders and lifelong hypobaric hypoxemia in Andean natives, we demonstrated that a reduction in red cell concentration augments the vasoconstrictive effects of hypoxia in lowlanders. In high-altitude natives, hemodilution lowered pulmonary vascular resistance, but a compensatory increase in cardiac output following hemodilution rendered PASP unchanged.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexandra M Williams
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.,Faculty of Medicine, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Joseph Donnelly
- Department of Anaesthesiology, University of Auckland, Auckland, New Zealand
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Aimee Drane
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.,Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, California
| | - James Anholm
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, California
| | - Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, United Kingdom
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, United Kingdom
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - David B MacLeod
- Human Pharmacology and Physiology Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
8
|
Hinke CF, Jörres RA, Alter P, Bals R, Bornitz F, Kreuter M, Herth FJF, Kahnert K, Kellerer C, Watz H, Budweiser S, Trudzinski FC. Prognostic Value of Oxygenated Hemoglobin Assessed during Acute Exacerbations of Chronic Pulmonary Disease. Respiration 2021; 100:387-394. [PMID: 33550305 DOI: 10.1159/000513440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oxygenated hemoglobin(OxyHem) is a simple-to-measure marker of oxygen content capable of predicting all-cause mortality in stable chronic obstructive pulmonary disease (COPD). OBJECTIVES We aimed to analyze its predictive value during acute exacerbations of COPD (AECOPD). METHODS In this retrospective study, data from 227 patients discharged after severe AECOPD at RoMed Clinical Center Rosenheim, Germany, between January 2012 and March 2018, was analyzed. OxyHem (hemoglobin concentration [Hb] × fractional SpO2, g/dL) was calculated from oxygen saturation measured by pulse oximetry and hemoglobin assessed within 24 h after admission. The follow-up (1.7 ± 1.5 years) covered all-cause mortality, including readmissions for severe AECOPD. RESULTS During the follow-up period, 127 patients died, 56 due to AECOPD and 71 due to other reasons. Survivors and non-survivors showed differences in age, FVC % predicted, C-reactive protein, hemoglobin, Cr, Charlson Comorbidity Index (CCI), and OxyHem (p < 0.05 each). Significant independent predictors of survival were BMI, Cr or CCI, FEV1 % predicted or FVC % predicted, Hb, or OxyHem. The predictive value of OxyHem (p = 0.006) was superior to that of Hb or SpO2 and independent of oxygen supply during blood gas analysis. OxyHem was also predictive when using a cutoff value of 12.1 g/dL identified via receiver operating characteristic curves in analyses including either the CCI (hazard ratio 1.85; 95% CI 1.20, 2.84; p = 0.005) or Cr (2.04; 95% CI 1.35, 3.10; p = 0.001) as covariates. CONCLUSION The concentration of OxyHem provides independent, easy-to-assess information on long-term mortality risk in COPD, even if measured during acute exacerbations. It therefore seems worth to be considered for broader clinical use.
Collapse
Affiliation(s)
- Clemens F Hinke
- Division of Pulmonary and Respiratory Medicine, Department of Internal Medicine III, RoMed Clinical Center Rosenheim, Rosenheim, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social, and Environmental Medicine, Ludwig Maximilians University (LMU), Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Critical Care Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Florian Bornitz
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Kreuter
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Felix J F Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Kathrin Kahnert
- Department of Internal Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christina Kellerer
- School of Medicine, Technical University of Munich, Institute of General Practice and Health Services Research, Munich, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Stephan Budweiser
- Division of Pulmonary and Respiratory Medicine, Department of Internal Medicine III, RoMed Clinical Center Rosenheim, Rosenheim, Germany
| | - Franziska C Trudzinski
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany,
| |
Collapse
|
9
|
Boulet LM, Vermeulen TD, Cotton PD, Foster GE. Influence of blood Po 2 on the stability of agitated saline contrast. J Appl Physiol (1985) 2020; 129:1341-1347. [PMID: 33054656 DOI: 10.1152/japplphysiol.00488.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The utility of transthoracic saline contrast echocardiography (TTSCE) to assess blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) in humans is limited due to the potential destabilizing effects of the gas concentration gradients established in varied blood-gas environments. This study assessed the specific effect of a hyperoxic and mixed venous blood-gas environment on the stability of saline contrast. We hypothesized that the rate of contrast mass lost in hyperoxic blood would be similar to mixed venous due to the establishment of equal and opposing gas gradients (O2, N2, CO2) created when the partial pressure of dissolved gases is manipulated. Using an in vitro model of the pulmonary circulation perfused with defibrinated sheep blood and a membrane oxygenator to control blood gases, we assessed the percent contrast conserved (an index of contrast stability) between inflow and outflow sites at multiple flow rates (1.8, 2.8, 4.3, and 6.8 L/min) in a hyperoxic (Po2: 646 ± 16 mmHg; Pco2: 0 ± 0 mmHg) and a mixed venous blood gas condition (Po2: 35 ± 3 mmHg; Pco2: 40 ± 0 mmHg). We found significant contrast decay with time in both conditions, with slightly higher contrast conservation in the hyperoxia trials (64 ± 32%) versus the mixed venous trials (55 ± 21%). These findings suggest that contrast stability is not likely a factor affecting the interpretation of TTSCE performed in healthy humans breathing hyperoxia and lends support to the existence of a local O2-dependent mechanism contributing to the regulation of Q̇IPAVA.NEW & NOTEWORTHY Hyperoxic blood has a small stabilizing effect on agitated saline contrast compared with mixed venous blood, lending support to studies that show the reversal of exercise-induced blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) with hyperoxia. These data support the possible presence of a local O2-dependent regulatory mechanism within the pulmonary vasculature that may play a role in Q̇IPAVA regulation.
Collapse
Affiliation(s)
- Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Paul D Cotton
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
10
|
Duke JW, Beasley KM, Speros JP, Elliott JE, Laurie SS, Goodman RD, Futral E, Hawn JA, Lovering AT. Impaired pulmonary gas exchange efficiency, but normal pulmonary artery pressure increases, with hypoxia in men and women with a patent foramen ovale. Exp Physiol 2020; 105:1648-1659. [PMID: 32627890 DOI: 10.1113/ep088750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do individuals with a patent foramen ovale (PFO+ ) have a larger alveolar-to-arterial difference in P O 2 ( A - a D O 2 ) than those without (PFO- ) and/or an exaggerated increase in pulmonary artery systolic pressure (PASP) in response to hypoxia? What is the main finding and its importance? PFO+ had a greater A - a D O 2 while breathing air, 16% and 14% O2 , but not 12% or 10% O2 . PASP increased equally in hypoxia between PFO+ and PFO- . These data suggest that PFO+ may not have an exaggerated acute increase in PASP in response to hypoxia. ABSTRACT Patent foramen ovale (PFO) is present in 30-40% of the population and is a potential source of right-to-left shunt. Accordingly, those with a PFO (PFO+ ) may have a larger alveolar-to-arterial difference in P O 2 ( A - a D O 2 ) than those without (PFO- ) in normoxia and with mild hypoxia. Likewise, PFO is associated with high-altitude pulmonary oedema, a condition known to have an exaggerated pulmonary pressure response to hypoxia. Thus, PFO+ may also have exaggerated pulmonary pressure increases in response to hypoxia. Therefore, the purposes of the present study were to systematically determine whether or not: (1) the A - a D O 2 was greater in PFO+ than in PFO- in normoxia and mild to severe hypoxia and (2) the increase in pulmonary artery systolic pressure (PASP) in response to hypoxia was greater in PFO+ than in PFO- . We measured arterial blood gases and PASP via ultrasound in healthy PFO+ (n = 15) and PFO- (n = 15) humans breathing air and 30 min after breathing four levels of hypoxia (16%, 14%, 12%, 10% O2 , randomized and balanced order) at rest. The A - a D O 2 was significantly greater in PFO+ compared to PFO- while breathing air (2.1 ± 0.7 vs. 0.4 ± 0.3 Torr), 16% O2 (1.8 ± 1.2 vs. 0.7 ± 0.8 Torr) and 14% O2 (2.3 ± 1.2 vs. 0.7 ± 0.6 Torr), but not 12% or 10% O2 . We found no effect of PFO on PASP at any level of hypoxia. We conclude that PFO influences pulmonary gas exchange efficiency with mild hypoxia, but not the acute increase in PASP in response to hypoxia.
Collapse
Affiliation(s)
- Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kara M Beasley
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Julia P Speros
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Steven S Laurie
- KBR, Cardiovascular and Vision Laboratory, NASA Johnson Space Center, Houston, TX, USA
| | | | - Eben Futral
- Oregon Heart and Vascular Institute, Springfield, OR, USA
| | - Jerold A Hawn
- Oregon Heart and Vascular Institute, Springfield, OR, USA
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
11
|
Associations of oxygenated hemoglobin with disease burden and prognosis in stable COPD: Results from COSYCONET. Sci Rep 2020; 10:10544. [PMID: 32601330 PMCID: PMC7324620 DOI: 10.1038/s41598-020-67197-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
We studied whether in patients with stable COPD blood gases (BG), especially oxygenated hemoglobin (OxyHem) as a novel biomarker confer information on disease burden and prognosis and how this adds to the information provided by the comorbidity pattern and systemic inflammation. Data from 2137 patients (GOLD grades 1–4) of the baseline dataset of the COSYCONET COPD cohort were used. The associations with dyspnea, exacerbation history, BODE-Index (cut-off ≤2) and all-cause mortality over 3 years of follow-up were determined by logistic and Cox regression analyses, with sex, age, BMI and pack years as covariates. Predictive values were evaluated by ROC curves. Capillary blood gases included SaO2, PaO2, PaCO2, pH, BE and the concentration of OxyHem [haemoglobin (Hb) x fractional SaO2, g/dL] as a simple-to-measure correlate of oxygen content. Inflammatory markers were WBC, CRP, IL-6 and -8, TNF-alpha and fibrinogen, and comorbidities comprised a broad panel including cardiac and metabolic disorders. Among BG, OxyHem was associated with dyspnoea, exacerbation history, BODE-Index and mortality. Among inflammatory markers and comorbidities, only WBC and heart failure were consistently related to all outcomes. ROC analyses indicated that OxyHem provided information of a magnitude comparable to that of WBC, with optimal cut-off values of 12.5 g/dL and 8000/µL, respectively. Regarding mortality, OxyHem also carried independent, additional information, showing a hazard ratio of 2.77 (95% CI: 1.85–4.15, p < 0.0001) for values <12.5 g/dL. For comparison, the hazard ratio for WBC > 8000/µL was 2.33 (95% CI: 1.60–3.39, p < 0.0001). In stable COPD, the concentration of oxygenated hemoglobin provided additional information on disease state, especially mortality risk. OxyHem can be calculated from hemoglobin concentration and oxygen saturation without the need for the measurement of PaO2. It thus appears well suited for clinical use with minimal equipment, especially for GPs.
Collapse
|
12
|
von Siemens SM, Perneczky R, Vogelmeier CF, Behr J, Kauffmann-Guerrero D, Alter P, Trudzinski FC, Bals R, Grohé C, Söhler S, Waschki B, Lutter JI, Welte T, Jörres RA, Kahnert K. The association of cognitive functioning as measured by the DemTect with functional and clinical characteristics of COPD: results from the COSYCONET cohort. Respir Res 2019; 20:257. [PMID: 31727165 PMCID: PMC6854705 DOI: 10.1186/s12931-019-1217-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023] Open
Abstract
Alterations of cognitive functions have been described in COPD. Our study aimed to disentangle the relationship between the degree of cognitive function and COPD characteristics including quality of life (QoL). Data from 1969 COPD patients of the COSYCONET cohort (GOLD grades 1–4; 1216 male/ 753 female; mean (SD) age 64.9 ± 8.4 years) were analysed using regression and path analysis. The DemTect screening tool was used to measure cognitive function, and the St. George‘s respiratory questionnaire (SGRQ) to assess disease-specific QoL. DemTect scores were < 9 points in 1.6% of patients and < 13 points in 12% when using the original evaluation algorithm distinguishing between < 60 or > =60 years of age. For statistical reasons, we used the average of both algorithms independent of age in all subsequent analyses. The DemTect scores were associated with oxygen content, 6-min-walking distance (6-MWD), C-reactive protein (CRP), modified Medical Research Council dyspnoea scale (mMRC) and the SGRQ impact score. Conversely, the SGRQ impact score was independently associated with 6-MWD, FVC, mMRC and DemTect. These results were combined into a path analysis model to account for direct and indirect effects. The DemTect score had a small, but independent impact on QoL, irrespective of the inclusion of COPD-specific influencing factors or a diagnosis of cognitive impairment. We conclude that in patients with stable COPD lower oxygen content of blood as a measure of peripheral oxygen supply, lower exercise capacity in terms of 6-MWD, and higher CRP levels were associated with reduced cognitive capacity. Furthermore, a reduction in cognitive capacity was associated with reduced disease-specific quality of life. As a potential clinical implication of this work, we suggest to screen especially patients with low oxygen content and low 6-MWD for cognitive impairment.
Collapse
Affiliation(s)
- Sarah Marietta von Siemens
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M), Ludwig-Maximilians-Universität München, Ziemssenstr 1, 80336, Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Disorders (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Baldingerstrasse, 35043, Marburg, Germany
| | - Jürgen Behr
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, Member of the German Center for Lung Research, Ziemssenstr. 1, 80336, Munich, Germany.,Asklepios Fachkliniken München-Gauting, Robert-Koch-Allee 2, 82131, Gauting, Germany
| | - Diego Kauffmann-Guerrero
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, Member of the German Center for Lung Research, Ziemssenstr. 1, 80336, Munich, Germany
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Baldingerstrasse, 35043, Marburg, Germany
| | - Franziska C Trudzinski
- Department of Internal Medicine V - Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Kirrberger Straße 1, 66424, Homburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Kirrberger Straße 1, 66424, Homburg, Germany
| | - Christian Grohé
- Evangelische Lungenklinik, Lindenberger Weg 27, 13125, Berlin, Germany
| | - Sandra Söhler
- ASCONET Study Coordination Office, University of Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Benjamin Waschki
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany.,LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Johanna I Lutter
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Ingolstädter Landstr. 1, 85764, Munich, Germany
| | - Tobias Welte
- Department of Pneumology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M), Ludwig-Maximilians-Universität München, Ziemssenstr 1, 80336, Munich, Germany
| | - Kathrin Kahnert
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, Member of the German Center for Lung Research, Ziemssenstr. 1, 80336, Munich, Germany.
| | | |
Collapse
|
13
|
Carter EA, Koch S, O'Donovan JP, Sheel AW, Milsom WK, Koehle MS. Perfusion of Intrapulmonary Arteriovenous Anastomoses Is Not Related to VO 2max in Hypoxia and Is Unchanged by Oral Sildenafil. High Alt Med Biol 2019; 20:399-406. [PMID: 31618060 DOI: 10.1089/ham.2019.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Perfusion of intrapulmonary arteriovenous anastomoses (IPAVA) is increased during exercise and in hypoxia and is associated with variations in oxygen saturation (SPO2), resulting in blood bypassing the pulmonary microcirculation. Sildenafil is a pulmonary vasodilator that improves SPO2 and endurance performance in hypoxia. The purpose of this study was to determine if 50 mg sildenafil would reduce IPAVA perfusion (QIPAVA) and if the decrement in maximal exercise capacity (VO2max) in hypoxia is related to QIPAVA. We hypothesized that during progressive levels of hypoxia at rest (FIO2 = 0.21, 0.14, 0.12), sildenafil would increase SPO2 and reduce bubble score (estimate of QIPAVA) compared to placebo, and that the decrement in VO2max in hypoxia would be positively correlated with bubble score at rest in hypoxia. Materials and Methods: Fourteen endurance-trained men performed a graded maximal exercise test at sea level and at a simulated altitude of 3000 m, followed by two experimental visits where, after randomly ingesting sildenafil or placebo, they underwent agitated saline contrast echocardiography during progressive levels of hypoxia at rest. Results: All participants experienced a decrement in power output in hypoxia that ranged from 9% to 19% lower than sea level values. Compared to normoxia, bubble score increased significantly in hypoxia (p < 0.001) with no effect of sildenafil (p = 0.580). There was a negative correlation between SPO2 and bubble score (p < 0.001). The decrement in peak power output at VO2max in hypoxia was unrelated to IPAVA perfusion in resting hypoxia (p = 0.32). Several participants demonstrated QIPAVA greater than zero in room air, indicating that arterial hypoxemia may not be the sole mechanism for QIPAVA. Conclusion: These results indicate that the VO2max decrement caused by hypoxia is not related to QIPAVA and that sildenafil does not improve VO2max in hypoxia through modulation of QIPAVA.
Collapse
Affiliation(s)
- Eric A Carter
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Sarah Koch
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - James P O'Donovan
- Sports Medicine Department, Sports Surgery Clinic, Santry, Ireland.,Division of Sport and Exercise Medicine, Department of Family Practice, University of British Columbia, Vancouver, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Michael S Koehle
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,Division of Sport and Exercise Medicine, Department of Family Practice, University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Trudzinski FC, Kahnert K, Vogelmeier CF, Alter P, Seiler F, Fähndrich S, Watz H, Welte T, Speer T, Zewinger S, Biertz F, Kauczor HU, Jörres RA, Bals R. Combined effects of lung function, blood gases and kidney function on the exacerbation risk in stable COPD: Results from the COSYCONET cohort. Respir Med 2019; 154:18-26. [PMID: 31203096 DOI: 10.1016/j.rmed.2019.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 11/15/2022]
Abstract
RATIONALE Alterations of acid-base metabolism are an important outcome predictor in acute exacerbations of COPD, whereas sufficient metabolic compensation and adequate renal function are associated with decreased mortality. In stable COPD there is, however, only limited information on the combined role of acid-base balance, blood gases, renal and respiratory function on exacerbation risk grading. METHODS We used baseline data of the COPD cohort COSYCONET, applying linear and logistic regression analyses, the results of which were implemented into a comprehensive structural equation model. As most informative parameters it comprised the estimated glomerular filtration rate (eGFR), lung function defined via forced expiratory volume in 1 s (FEV1), intrathoracic gas volume (ITGV) and (diffusing capacity for carbon monoxide (DLCO), moreover arterial oxygen content (CaO2), partial pressure of oxygen (PaCO2), base exess (BE) and exacerbation risk according to GOLD criteria. All measures were adjusted for age, gender, body-mass index, the current smoking status and pack years. RESULTS 1506 patients with stable COPD (GOLD grade 1-4; mean age 64.5 ± 8.1 y; mean FEV1 54 ± 18 %predicted, mean eGFR 82.3 ± 16.9 mL/min/1.73 m2) were included. BE was linked to eGFR, lung function and PaCO2 and played a role as indirect predictor of exacerbation risk via these measures; moreover, eGFR was directly linked to exacerbation risk. These associations remained significant after taking into account medication (diuretics, oral and inhaled corticosteroids), whereby corticosteroids had effects on exacerbation risk and lung function, diuretics on eGFR, BE and lung function. CONCLUSION Even in stable COPD acid-base metabolism plays a key integrative role in COPD risk assessment despite rather small deviations from normality. It partially mediates the effects of impairments in kidney function, which are also directly linked to exacerbation risk.
Collapse
Affiliation(s)
- F C Trudzinski
- Department of Internal Medicine V - Pulmonology, Allergology, Critical Care Care Medicine, Saarland University Hospital, Homburg, Germany.
| | - K Kahnert
- Department of Internal Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - C F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - P Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - F Seiler
- Department of Internal Medicine V - Pulmonology, Allergology, Critical Care Care Medicine, Saarland University Hospital, Homburg, Germany
| | - S Fähndrich
- Department of Pneumology, University Hospital Freiburg, Freiburg, Germany
| | - H Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North, Member of the German Center for Lung Research, Grosshansdorf, Germany
| | - T Welte
- Clinic for Pneumology, Hannover Medical School, Member of the German Center for Lung Research, Hannover, Germany
| | - T Speer
- Department of Internal Medicine IV - Nephrology, Saarland University Hospital, Homburg, Germany
| | - S Zewinger
- Department of Internal Medicine IV - Nephrology, Saarland University Hospital, Homburg, Germany
| | - F Biertz
- Institute for Biostatistics, Hannover Medical School, Hannover, Germany
| | - H-U Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Member of the German Center of Lung Research, Heidelberg, Germany
| | - R A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig Maximilians University (LMU), Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - R Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Critical Care Care Medicine, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
15
|
Gawecki F, Myers J, Shovlin CL. Veterans Specific Activity Questionnaire (VSAQ): a new and efficient method of assessing exercise capacity in patients with pulmonary arteriovenous malformations. BMJ Open Respir Res 2019; 6:e000351. [PMID: 30956797 PMCID: PMC6424292 DOI: 10.1136/bmjresp-2018-000351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 11/04/2022] Open
Abstract
Introduction Assessment of performance status is an important component of clinical management of patients with pulmonary arteriovenous malformations (PAVMs). Usual methods are time-consuming and insensitive to variations within normal or supranormal exercise capacity. Methods The Veterans Specific Activity Questionnaire (VSAQ) was modified to facilitate completion by patients independently. Patient-reported activity limitations were converted to the Medical Research Council (MRC) Dyspnoea Scale, New York Heart Association (NYHA) classification and metabolic equivalents (METs) in which 1 MET equals the consumption of 3.5 mL O2 per kilogram of body weight per minute. Results The study population consisted of 71 patients with PAVMs aged 20-85 (median 52) years. Oxygen saturation (SaO2) was 80%-99.5 % (median 96%), and haemoglobin was 73-169 g/L in women and 123-197 g/L in men (p<0.0001). Arterial oxygen content (CaO2) (1.34 × [haemoglobin × SaO2]/100) was maintained unless iron deficiency was present. Most patients (49/71, 69%) did not need to stop until activities more energetic than walking briskly at 4 mph were achieved (6.4 km per hour, VSAQ >5, MRC Dyspnoea Scale 1 or 2, NYHA class I). SaO2 was inversely associated with the MRC Dyspnoea Scale and NYHA class, but not the VSAQ. Raw VSAQ scores captured a marked difference between men and women. METs were also higher in men at 3.97-15.55 (median 8.84) kcal/kg/min, compared with 1.33-14.4 (median 8.25) kcal/kg/min (p=0.0039). There was only a modest association between METs and SaO2 (p=0.044), but a stronger association between METs and haemoglobin (p =0.001). In crude and sex-adjusted regression, the CaO2 was more strongly associated with METs than either SaO2 or haemoglobin in isolation. Conclusion The VSAQ, capturing patient-reported outcome measures, is an efficient and quantifiable measure of exercise capacity that can be readily employed in clinical services particularly where patients have normal to high exercise tolerance. In the PAVM population, exercise capacity reflects haemoglobin and CaO2 more than SaO2, even where SaO2 measurements are low.
Collapse
Affiliation(s)
- Filip Gawecki
- Imperial College School of Medicine, London, UK.,NHLI Respiratory Sciences, Imperial College London, London, UK
| | - Jonathan Myers
- Department of Cardiology, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Claire L Shovlin
- NHLI Vascular Sciences, Imperial College London, London, UK.,Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
16
|
Stembridge M, Ainslie PN, Boulet LM, Anholm J, Subedi P, Tymko MM, Willie CK, Cooper SM, Shave R. The independent effects of hypovolaemia and pulmonary vasoconstriction on ventricular function and exercise capacity during acclimatisation to 3800 m. J Physiol 2018; 597:1059-1072. [PMID: 29808473 DOI: 10.1113/jp275278] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We sought to determine the isolated and combined influence of hypovolaemia and hypoxic pulmonary vasoconstriction on the decrease in left ventricular (LV) function and maximal exercise capacity observed under hypobaric hypoxia. We performed echocardiography and maximal exercise tests at sea level (344 m), and following 5-10 days at the Barcroft Laboratory (3800 m; White Mountain, California) with and without (i) plasma volume expansion to sea level values and (ii) administration of the pulmonary vasodilatator sildenafil in a double-blinded and placebo-controlled trial. The high altitude-induced reduction in LV filling and ejection was abolished by plasma volume expansion but to a lesser extent by sildenafil administration; however, neither intervention had a positive effect on maximal exercise capacity. Both hypovolaemia and hypoxic pulmonary vasoconstriction play a role in the reduction of LV filling at 3800 m, but the increase in LV filling does not influence exercise capacity at this moderate altitude. ABSTRACT We aimed to determine the isolated and combined contribution of hypovolaemia and hypoxic pulmonary vasoconstriction in limiting left ventricular (LV) function and exercise capacity under chronic hypoxaemia at high altitude. In a double-blinded, randomised and placebo-controlled design, 12 healthy participants underwent echocardiography at rest and during submaximal exercise before completing a maximal test to exhaustion at sea level (SL; 344 m) and after 5-10 days at 3800 m. Plasma volume was normalised to SL values, and hypoxic pulmonary vasoconstriction was reversed by administration of sildenafil (50 mg) to create four unique experimental conditions that were compared with SL values: high altitude (HA), Plasma Volume Expansion (HA-PVX), Sildenafil (HA-SIL) and Plasma Volume Expansion with Sildenafil (HA-PVX-SIL). High altitude exposure reduced plasma volume by 11% (P < 0.01) and increased pulmonary artery systolic pressure (19.6 ± 4.3 vs. 26.0 ± 5.4, P < 0.001); these differences were abolished by PVX and SIL respectively. LV end-diastolic volume (EDV) and stroke volume (SV) were decreased upon ascent to high altitude, but were comparable to sea level in the HA-PVX trial. LV EDV and SV were also elevated in the HA-SIL and HA-PVX-SIL trials compared to HA, but to a lesser extent. Neither PVX nor SIL had a significant effect on the LV EDV and SV response to exercise, or the maximal oxygen consumption or peak power output. In summary, at 3800 m both hypovolaemia and hypoxic pulmonary vasoconstriction contribute to the decrease in LV filling, but restoring LV filling does not confer an improvement in maximal exercise performance.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Lindsey M Boulet
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - James Anholm
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Prajan Subedi
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Michael M Tymko
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Christopher K Willie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Stephen-Mark Cooper
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Rob Shave
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK.,Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
17
|
Petrassi FA, Davis JT, Beasley KM, Evero O, Elliott JE, Goodman RD, Futral JE, Subudhi A, Solano-Altamirano JM, Goldman S, Roach RC, Lovering AT. AltitudeOmics: effect of reduced barometric pressure on detection of intrapulmonary shunt, pulmonary gas exchange efficiency, and total pulmonary resistance. J Appl Physiol (1985) 2018; 124:1363-1376. [PMID: 29357511 PMCID: PMC6008081 DOI: 10.1152/japplphysiol.00474.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/06/2017] [Accepted: 12/10/2017] [Indexed: 11/22/2022] Open
Abstract
Blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA) occurs in healthy humans at rest and during exercise when breathing hypoxic gas mixtures at sea level and may be a source of right-to-left shunt. However, at high altitudes, QIPAVA is reduced compared with sea level, as detected using transthoracic saline contrast echocardiography (TTSCE). It remains unknown whether the reduction in QIPAVA (i.e., lower bubble scores) at high altitude is due to a reduction in bubble stability resulting from the lower barometric pressure (PB) or represents an actual reduction in QIPAVA. To this end, QIPAVA, pulmonary artery systolic pressure (PASP), cardiac output (QT), and the alveolar-to-arterial oxygen difference (AaDO2) were assessed at rest and during exercise (70-190 W) in the field (5,260 m) and in the laboratory (1,668 m) during four conditions: normobaric normoxia (NN; [Formula: see text] = 121 mmHg, PB = 625 mmHg; n = 8), normobaric hypoxia (NH; [Formula: see text] = 76 mmHg, PB = 625 mmHg; n = 7), hypobaric normoxia (HN; [Formula: see text] = 121 mmHg, PB = 410 mmHg; n = 8), and hypobaric hypoxia (HH; [Formula: see text] = 75 mmHg, PB = 410 mmHg; n = 7). We hypothesized QIPAVA would be reduced during exercise in isooxic hypobaria compared with normobaria and that the AaDO2 would be reduced in isooxic hypobaria compared with normobaria. Bubble scores were greater in normobaric conditions, but the AaDO2 was similar in both isooxic hypobaria and normobaria. Total pulmonary resistance (PASP/QT) was elevated in HN and HH. Using mathematical modeling, we found no effect of hypobaria on bubble dissolution time within the pulmonary transit times under consideration (<5 s). Consequently, our data suggest an effect of hypobaria alone on pulmonary blood flow. NEW & NOTEWORTHY Blood flow through intrapulmonary arteriovenous anastomoses, detected by transthoracic saline contrast echocardiography, was reduced during exercise in acute hypobaria compared with normobaria, independent of oxygen tension, whereas pulmonary gas exchange efficiency was unaffected. Modeling the effect(s) of reduced air density on contrast bubble lifetime did not result in a significantly reduced contrast stability. Interestingly, total pulmonary resistance was increased by hypobaria, independent of oxygen tension, suggesting that pulmonary blood flow may be changed by hypobaria.
Collapse
Affiliation(s)
- Frank A Petrassi
- Department of Kinesiology, Recreation, and Sport, Indiana State University, Terre Haute, Indiana
| | - James T Davis
- Department of Kinesiology, Recreation, and Sport, Indiana State University, Terre Haute, Indiana
| | - Kara M Beasley
- Department of Kinesiology, Recreation, and Sport, Indiana State University, Terre Haute, Indiana
| | - Oghenero Evero
- Altitude Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Denver, Colorado
| | - Jonathan E Elliott
- Department of Kinesiology, Recreation, and Sport, Indiana State University, Terre Haute, Indiana
| | - Randall D Goodman
- Oregon Heart and Vascular Institute, Echocardiography, Springfield, Oregon
| | - Joel E Futral
- Oregon Heart and Vascular Institute, Echocardiography, Springfield, Oregon
| | - Andrew Subudhi
- Altitude Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Denver, Colorado
| | | | - Saul Goldman
- Department of Chemistry, University of Guelph , Guelph, Ontario , Canada
| | - Robert C Roach
- Altitude Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Denver, Colorado
| | - Andrew T Lovering
- Department of Kinesiology, Recreation, and Sport, Indiana State University, Terre Haute, Indiana
| |
Collapse
|
18
|
Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1-R27. [PMID: 29488785 DOI: 10.1152/ajpregu.00165.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular oxygen (O2) is a vital element in human survival and plays a major role in a diverse range of biological and physiological processes. Although normobaric hyperoxia can increase arterial oxygen content ([Formula: see text]), it also causes vasoconstriction and hence reduces O2 delivery in various vascular beds, including the heart, skeletal muscle, and brain. Thus, a seemingly paradoxical situation exists in which the administration of oxygen may place tissues at increased risk of hypoxic stress. Nevertheless, with various degrees of effectiveness, and not without consequences, supplemental oxygen is used clinically in an attempt to correct tissue hypoxia (e.g., brain ischemia, traumatic brain injury, carbon monoxide poisoning, etc.) and chronic hypoxemia (e.g., severe COPD, etc.) and to help with wound healing, necrosis, or reperfusion injuries (e.g., compromised grafts). Hyperoxia has also been used liberally by athletes in a belief that it offers performance-enhancing benefits; such benefits also extend to hypoxemic patients both at rest and during rehabilitation. This review aims to provide a comprehensive overview of the effects of hyperoxia in humans from the "bench to bedside." The first section will focus on the basic physiological principles of partial pressure of arterial O2, [Formula: see text], and barometric pressure and how these changes lead to variation in regional O2 delivery. This review provides an overview of the evidence for and against the use of hyperoxia as an aid to enhance physical performance. The final section addresses pathophysiological concepts, clinical studies, and implications for therapy. The potential of O2 toxicity and future research directions are also considered.
Collapse
Affiliation(s)
| | - Geoff B Coombs
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Otto F Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split , Split , Croatia
| | - Mypinder S Sekhon
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada.,Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia , Vancouver, British Columbia , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| |
Collapse
|
19
|
Shovlin CL, Condliffe R, Donaldson JW, Kiely DG, Wort SJ. British Thoracic Society Clinical Statement on Pulmonary Arteriovenous Malformations. Thorax 2017; 72:1154-1163. [DOI: 10.1136/thoraxjnl-2017-210764] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023]
|
20
|
Duke JW, Elliott JE, Laurie SS, Voelkel T, Gladstone IM, Fish MB, Lovering AT. Bubble and macroaggregate methods differ in detection of blood flow through intrapulmonary arteriovenous anastomoses in upright and supine hypoxia in humans. J Appl Physiol (1985) 2017; 123:1592-1598. [PMID: 28970204 DOI: 10.1152/japplphysiol.00673.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) increases in healthy humans breathing hypoxic gas and is potentially dependent on body position. Previous work in subjects breathing room air has shown an effect of body position when Q̇IPAVA is detected with transthoracic saline contrast echocardiography (TTSCE). However, the potential effect of body position on Q̇IPAVA has not been investigated when subjects are breathing hypoxic gas or with a technique capable of quantifying Q̇IPAVA. Thus the purpose of this study was to quantify the effect of body position on Q̇IPAVA when breathing normoxic and hypoxic gas at rest. We studied Q̇IPAVA with TTSCE and quantified Q̇IPAVA with filtered technetium-99m-labeled macroaggregates of albumin (99mTc-MAA) in seven healthy men breathing normoxic and hypoxic (12% O2) gas at rest while supine and upright. On the basis of previous work using TTSCE, we hypothesized that the quantified Q̇IPAVA would be greatest with hypoxia in the supine position. We found that Q̇IPAVA quantified with 99mTc-MAA significantly increased while subjects breathed hypoxic gas in both supine and upright body positions (ΔQ̇IPAVA = 0.7 ± 0.4 vs. 2.5 ± 1.1% of cardiac output, respectively). Q̇IPAVA detected with TTSCE increased from normoxia in supine hypoxia but not in upright hypoxia (median hypoxia bubble score of 2 vs. 0, respectively). Surprisingly, Q̇IPAVA magnitude was greatest in upright hypoxia, when Q̇IPAVA was undetectable with TTSCE. These findings suggest that the relationship between TTSCE and 99mTc-MAA is more complex than previously appreciated, perhaps because of the different physical properties of bubbles and MAA in solution. NEW & NOTEWORTHY Using saline contrast bubbles and radiolabeled macroaggregrates (MAA), we detected and quantified, respectively, hypoxia-induced blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) in supine and upright body positions in healthy men. Upright hypoxia resulted in the largest magnitude of Q̇IPAVA quantified with MAA but the lowest Q̇IPAVA detected with saline contrast bubbles. These surprising results suggest that the differences in physical properties between saline contrast bubbles and MAA in blood may affect their behavior in vivo.
Collapse
Affiliation(s)
- Joseph W Duke
- Department of Biological Sciences, Northern Arizona University , Flagstaff, Arizona
| | | | | | - Thomas Voelkel
- Department of Nuclear Medicine, Sacred Heart Medical Center , Springfield, Oregon
| | - Igor M Gladstone
- Department of Pediatrics, Oregon Health and Sciences University , Portland, Oregon
| | - Mathews B Fish
- Department of Nuclear Medicine, Sacred Heart Medical Center , Springfield, Oregon
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| |
Collapse
|
21
|
Dupuis-Girod S, Cottin V, Shovlin CL. The Lung in Hereditary Hemorrhagic Telangiectasia. Respiration 2017; 94:315-330. [PMID: 28850955 DOI: 10.1159/000479632] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a dominantly inherited genetic vascular disorder with an estimated prevalence of 1 in 6,000, characterized by recurrent epistaxis, cutaneous telangiectasia, and arteriovenous malformations (AVMs) that affect many organs including the lungs, gastrointestinal tract, liver, and brain. Its diagnosis is based on the Curaçao criteria, and is considered definite if at least 3 of the 4 following criteria are fulfilled: (1) spontaneous and recurrent epistaxis, (2) telangiectasia, (3) a family history, and (4) pulmonary, liver, cerebral, spinal, or gastrointestinal AVMs. The focus of this review is on delineating how HHT affects the lung.
Collapse
Affiliation(s)
- Sophie Dupuis-Girod
- Service de génétique - centre de référence national pour la maladie de Rendu-Osler, Hôpital Femme-Mère-Enfants, Hospices Civils de Lyon, Bron, France
| | | | | |
Collapse
|
22
|
O'Halloran KD. High adventure shunts old notions of pulmonary vascular control during hypoxic exercise: contrasting views that might just burst your bubble! Exp Physiol 2017; 102:617-618. [PMID: 28393420 DOI: 10.1113/ep086376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Duke JW, Elliott JE, Laurie SS, Voelkel T, Gladstone IM, Fish MB, Lovering AT. Relationship between quantitative and descriptive methods of studying blood flow through intrapulmonary arteriovenous anastomoses during exercise. Respir Physiol Neurobiol 2017; 243:47-54. [PMID: 28536067 DOI: 10.1016/j.resp.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Several methods exist to study intrapulmonary arteriovenous anastomoses (IPAVA) in humans. Transthoracic saline contrast echocardiography (TTSCE), i.e., bubble scores, is minimally-invasive, but cannot be used to quantify the magnitude of blood flow through IPAVA (QIPAVA). Radiolabeled macroaggregates of albumin (99mTc-MAA) have been used to quantify QIPAVA in humans, but this requires injection of radioactive particles. Previous work has shown agreement between 99mTc-MAA and TTSCE, but this has not been tested simultaneously in the same group of subjects. Thus, the purpose of this study was to determine if there was a relationship between QIPAVA quantified with 99mTc-MAA and bubble scores obtained with TTSCE. To test this, we used 99mTc-MAA and TTSCE to quantify and detect QIPAVA at rest and during exercise in humans. QIPAVA significantly increased from rest to exercise using 99mTc-MAA and TTSCE and there was a moderately-strong, but significant relationship between methods. Our data suggest that high bubble scores generally correspond with large QIPAVA quantified with 99mTc-MAA during exercise.
Collapse
Affiliation(s)
- Joseph W Duke
- Northern Arizona University, Department of Biological Sciences, Flagstaff, AZ, USA.
| | | | | | - Thomas Voelkel
- Sacred Heart Medical Center, Department of Nuclear Medicine, Springfield, OR, USA
| | - Igor M Gladstone
- Oregon Health and Sciences University, Department of Pediatrics, Portland, OR, USA
| | - Mathews B Fish
- Sacred Heart Medical Center, Department of Nuclear Medicine, Springfield, OR, USA
| | - Andrew T Lovering
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| |
Collapse
|
24
|
Boulet LM, Lovering AT, Tymko MM, Day TA, Stembridge M, Nguyen TA, Ainslie PN, Foster GE. Reduced blood flow through intrapulmonary arteriovenous anastomoses during exercise in lowlanders acclimatizing to high altitude. Exp Physiol 2017; 102:670-683. [PMID: 28370674 DOI: 10.1113/ep086182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/27/2017] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to determine, using the technique of agitated saline contrast echocardiography, whether exercise after 4-7 days at 5050 m would affect blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) compared with exercise at sea level. What is the main finding and its importance? Despite a significant increase in both cardiac output and pulmonary pressure during exercise at high altitude, there is very little Q̇IPAVA at rest or during exercise after 4-7 days of acclimatization. Mathematical modelling suggests that bubble instability at high altitude is an unlikely explanation for the reduced Q̇IPAVA. Blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) is elevated during exercise at sea level (SL) and at rest in acute normobaric hypoxia. After high altitude (HA) acclimatization, resting Q̇IPAVA is similar to that at SL, but it is unknown whether this is true during exercise at HA. We reasoned that exercise at HA (5050 m) would exacerbate Q̇IPAVA as a result of heightened pulmonary arterial pressure. Using a supine cycle ergometer, seven healthy adults free from intracardiac shunts underwent an incremental exercise test at SL [25, 50 and 75% of SL peak oxygen consumption (V̇O2 peak )] and at HA (25 and 50% of SL V̇O2 peak ). Echocardiography was used to determine cardiac output (Q̇) and pulmonary artery systolic pressure (PASP), and agitated saline contrast was used to determine Q̇IPAVA (bubble score; 0-5). The principal findings were as follows: (i) Q̇ was similar at SL rest (3.9 ± 0.47 l min-1 ) compared with HA rest (4.5 ± 0.49 l min-1 ; P = 0.382), but increased from rest during both SL and HA exercise (P < 0.001); (ii) PASP increased from SL rest (19.2 ± 0.7 mmHg) to HA rest (33.7 ± 2.8 mmHg; P = 0.001) and, compared with SL, PASP was further elevated during HA exercise (P = 0.003); (iii) Q̇IPAVA was increased from SL rest (0) to HA rest (median = 1; P = 0.04) and increased from resting values during SL exercise (P < 0.05), but was unchanged during HA exercise (P = 0.91), despite significant increases in Q̇ and PASP. Theoretical modelling of microbubble dissolution suggests that the lack of Q̇IPAVA in response to exercise at HA is unlikely to be caused by saline contrast instability.
Collapse
Affiliation(s)
- Lindsey M Boulet
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Michael M Tymko
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Mike Stembridge
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, UK
| | - Trang Anh Nguyen
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada.,Department of Biomedical Engineering, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Philip N Ainslie
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
25
|
Hackett HK, Boulet LM, Dominelli PB, Foster GE. A methodological approach for quantifying and characterizing the stability of agitated saline contrast: implications for quantifying intrapulmonary shunt. J Appl Physiol (1985) 2016; 121:568-76. [PMID: 27365283 DOI: 10.1152/japplphysiol.00422.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/27/2016] [Indexed: 12/26/2022] Open
Abstract
Agitated saline contrast echocardiography is often used to determine blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA). We applied indicator dilution theory to time-acoustic intensity curves obtained from a bolus injection of hand-agitated saline contrast to acquire a quantitative index of contrast mass. Using this methodology and an in vitro model of the pulmonary circulation, the purpose of this study was to determine the effect of transit time and gas composition [air vs. sulphur hexafluoride (SF6)] on contrast conservation between two detection sites separated by a convoluted network of vessels. We hypothesized that the contrast lost between the detection sites would increase with transit times and be reduced by using contrast bubbles composed of SF6 Changing the flow and/or reducing the volume of the circulatory network manipulated transit time. Contrast conservation was measured as the ratio of outflow and inflow contrast masses. For air, 53.2 ± 3.4% (SE) of contrast was conserved at a transit time of 9.25 ± 0.02 s but dropped to 16.0 ± 1.0% at a transit time of 10.17 ± 0.06 s. Compared with air, SF6 contrast conservation was significantly greater (P < 0.05) with 114.3 ± 2.9% and 73.7 ± 3.3% of contrast conserved at a transit time of 10.39 ± 0.02 s and 13.46 ± 0.04 s, respectively. In summary, time-acoustic intensity curves can quantify agitated saline contrast, but loss of contrast due to bubble dissolution makes measuring Q̇IPAVA across varying transit time difficult. Agitated saline composed of SF6 is stabilized and may be a suitable alternative for Q̇IPAVA measurement.
Collapse
Affiliation(s)
- Heather K Hackett
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada; and
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada; and
| | - Paolo B Dominelli
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada; and
| |
Collapse
|