1
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Kataoka Y, Sales ARK, Rodrigues AG, Goes-Santos BR, Azevedo LF, Groehs RV, Silva EO, Santos LS, Oliveira PA, Jordão CP, Andrade ACM, Lobo DML, Rondon E, Toschi-Dias E, Alves MJNN, Almeida DR, Negrão CE. Abnormal neurovascular control during central and peripheral chemoreceptors stimulation in heart failure patients with preserved ejection fraction. Clin Auton Res 2024; 34:363-374. [PMID: 38878143 DOI: 10.1007/s10286-024-01041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/20/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE Central and peripheral chemoreceptors are hypersensitized in patients with heart failure with reduced ejection fraction. Whether this autonomic alteration occurs in patients with heart failure with preserved ejection fraction (HFpEF) remains little known. We test the hypothesis that the central and peripheral chemoreflex control of muscle sympathetic nerve activity (MSNA) is altered in HFpEF. METHODS Patients aged 55-80 years with symptoms of heart failure, body mass index ≤ 35 kg/m2, left ventricular ejection fraction > 50%, left atrial volume index > 34 mL/m2, left ventricular early diastolic filling velocity and early diastolic tissue velocity of mitral annulus ratio (E/e' index) ≥ 13, and BNP levels > 35 pg/mL were included in the study (HFpEF, n = 9). Patients without heart failure with preserved ejection fraction (non-HFpEF, n = 9), aged-paired, were also included in the study. Peripheral chemoreceptors stimulation (10% O2 and 90% N2, with CO2 titrated) and central chemoreceptors stimulation (7% CO2 and 93% O2) were conducted for 3 min. MSNA was evaluated by microneurography technique, and forearm blood flow (FBF) by venous occlusion plethysmography. RESULTS During hypoxia, MSNA responses were greater (p < 0.001) and FBF responses were lower in patients with HFpEF (p = 0.006). Likewise, MSNA responses during hypercapnia were higher (p < 0.001) and forearm vascular conductance (FVC) levels were lower (p = 0.030) in patients with HFpEF. CONCLUSIONS Peripheral and central chemoreflex controls of MSNA are hypersensitized in patients with HFpEF, which seems to contribute to the increase in MSNA in these patients. In addition, peripheral and central chemoreceptors stimulation in patients with HFpEF causes muscle vasoconstriction.
Collapse
Affiliation(s)
- Yufuko Kataoka
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Allan R K Sales
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Amanda G Rodrigues
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
- Research and Education Institute, Hospital Sirio Libanes, São Paulo, Brazil
| | - Beatriz R Goes-Santos
- School of Physical Education, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luciene F Azevedo
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Raphaela V Groehs
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Edna O Silva
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Luciana S Santos
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Patricia A Oliveira
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Camila P Jordão
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Ana C M Andrade
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Denise M L Lobo
- Physiotherapy Unit, Fametro University Center (Unifametro), Fortaleza, Ceará, Brazil
| | - Eduardo Rondon
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Edgar Toschi-Dias
- Psychology, Development and Public Policy Program, Catholic University of Santos, São Paulo, Brazil
| | - Maria Janieire N N Alves
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Dirceu R Almeida
- Division of Cardiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos E Negrão
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil.
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Díaz-Jara E, Pereyra K, Vicencio S, Olesen MA, Schwarz KG, Toledo C, Díaz HS, Quintanilla RA, Del Rio R. Superoxide dismutase 2 deficiency is associated with enhanced central chemoreception in mice: Implications for breathing regulation. Redox Biol 2024; 69:102992. [PMID: 38142585 PMCID: PMC10788617 DOI: 10.1016/j.redox.2023.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
AIMS In mammals, central chemoreception plays a crucial role in the regulation of breathing function in both health and disease conditions. Recently, a correlation between high levels of superoxide anion (O2.-) in the Retrotrapezoid nucleus (RTN), a main brain chemoreceptor area, and enhanced central chemoreception has been found in rodents. Interestingly, deficiency in superoxide dismutase 2 (SOD2) expression, a pivotal antioxidant enzyme, has been linked to the development/progression of several diseases. Despite, the contribution of SOD2 on O2.- regulation on central chemoreceptor function is unknown. Accordingly, we sought to determine the impact of partial deletion of SOD2 expression on i) O2.-accumulation in the RTN, ii) central ventilatory chemoreflex function, and iii) disordered-breathing. Finally, we study cellular localization of SOD2 in the RTN of healthy mice. METHODS Central chemoreflex drive and breathing function were assessed in freely moving heterozygous SOD2 knockout mice (SOD2+/- mice) and age-matched control wild type (WT) mice by whole-body plethysmography. O2.- levels were determined in RTN brainstem sections and brain isolated mitochondria, while SOD2 protein expression and tissue localization were determined by immunoblot, RNAseq and immunofluorescent staining, respectively. RESULTS Our results showed that SOD2+/- mice displayed reductions in SOD2 levels and high O2.- formation and mitochondrial dysfunction within the RTN compared to WT. Additionally, SOD2+/- mice displayed a heightened ventilatory response to hypercapnia and exhibited overt signs of altered breathing patterns. Both, RNAseq analysis and immunofluorescence co-localization studies showed that SOD2 expression was confined to RTN astrocytes but not to RTN chemoreceptor neurons. Finally, we found that SOD2+/- mice displayed alterations in RTN astrocyte morphology compared to RTN astrocytes from WT mice. INNOVATION & CONCLUSION These findings provide first evidence of the role of SOD2 in the regulation of O2.- levels in the RTN and its potential contribution on the regulation of central chemoreflex function. Our results suggest that reductions in the expression of SOD2 in the brain may contribute to increase O2.- levels in the RTN being the outcome a chronic surge in central chemoreflex drive and the development/maintenance of altered breathing patterns. Overall, dysregulation of SOD2 and the resulting increase in O2.- levels in brainstem respiratory areas can disrupt normal respiratory control mechanisms and contribute to breathing dysfunction seen in certain disease conditions characterized by high oxidative stress.
Collapse
Affiliation(s)
- Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Katherine Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sinay Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Physiology, Universidad Austral de Chile, Valdivia, Chile.
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile; Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
4
|
Bunsawat K, Skow RJ, Kaur J, Wray DW. Neural control of the circulation during exercise in heart failure with reduced and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H998-H1011. [PMID: 37682236 PMCID: PMC10907034 DOI: 10.1152/ajpheart.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Patients with heart failure with reduced (HFrEF) and preserved ejection fraction (HFpEF) exhibit severe exercise intolerance that may be due, in part, to inappropriate cardiovascular and hemodynamic adjustments to exercise. Several neural mechanisms and locally released vasoactive substances work in concert through complex interactions to ensure proper adjustments to meet the metabolic demands of the contracting skeletal muscle. Specifically, accumulating evidence suggests that disease-related alterations in neural mechanisms (e.g., central command, exercise pressor reflex, arterial baroreflex, and cardiopulmonary baroreflex) contribute to heightened sympathetic activation and impaired ability to attenuate sympathetic vasoconstrictor responsiveness that may contribute to reduced skeletal muscle blood flow and severe exercise intolerance in patients with HFrEF. In contrast, little is known regarding these important aspects of physiology in patients with HFpEF, though emerging data reveal heightened sympathetic activation and attenuated skeletal muscle blood flow during exercise in this patient population that may be attributable to dysregulated neural control of the circulation. The overall goal of this review is to provide a brief overview of the current understanding of disease-related alterations in the integrative neural cardiovascular responses to exercise in both HFrEF and HFpEF phenotypes, with a focus on sympathetic nervous system regulation during exercise.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Shanks J, Pachen M, Chang JWH, George B, Ramchandra R. Cardiac Vagal Nerve Activity Increases During Exercise to Enhance Coronary Blood Flow. Circ Res 2023; 133:559-571. [PMID: 37641938 DOI: 10.1161/circresaha.123.323017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The phrase complete vagal withdrawal is often used when discussing autonomic control of the heart during exercise. However, more recent studies have challenged this assumption. We hypothesized that cardiac vagal activity increases during exercise and maintains cardiac function via transmitters other than acetylcholine. METHODS Chronic direct recordings of cardiac vagal nerve activity, cardiac output, coronary artery blood flow, and heart rate were recorded in conscious adult sheep during whole-body treadmill exercise. Cardiac innervation of the left cardiac vagal branch was confirmed with lipophilic tracer dyes (DiO). Sheep were exercised with pharmacological blockers of acetylcholine (atropine, 250 mg), VIP (vasoactive intestinal peptide; [4Cl-D-Phe6,Leu17]VIP 25 µg), or saline control, randomized on different days. In a subset of sheep, the left cardiac vagal branch was denervated. RESULTS Neural innervation from the cardiac vagal branch is seen at major cardiac ganglionic plexi, and within the fat pads associated with the coronary arteries. Directly recorded cardiac vagal nerve activity increased during exercise. Left cardiac vagal branch denervation attenuated the maximum changes in coronary artery blood flow (maximum exercise, control: 63.5±5.9 mL/min, n=8; cardiac vagal denervated: 32.7±5.6 mL/min, n=6, P=2.5×10-7), cardiac output, and heart rate during exercise. Atropine did not affect any cardiac parameters during exercise, but VIP antagonism significantly reduced coronary artery blood flow during exercise to a similar level to vagal denervation. CONCLUSIONS Our study demonstrates that cardiac vagal nerve activity actually increases and is crucial for maintaining cardiac function during exercise. Furthermore, our findings show the dynamic modulation of coronary artery blood flow during exercise is mediated by VIP.
Collapse
Affiliation(s)
- Julia Shanks
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Grafton, New Zealand
| | - Mridula Pachen
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Grafton, New Zealand
| | - Joshua W-H Chang
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Grafton, New Zealand
| | - Bindu George
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Grafton, New Zealand
| | - Rohit Ramchandra
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Grafton, New Zealand
| |
Collapse
|
6
|
Wu Y, Chen L, Zhong F, Zhou K, Lu C, Cheng X, Wang S. Cognitive impairment in patients with heart failure: molecular mechanism and therapy. Heart Fail Rev 2023:10.1007/s10741-022-10289-9. [PMID: 36593370 DOI: 10.1007/s10741-022-10289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
Heart failure (HF) is associated with multiple organ dysfunction and many comorbidities. Its incidence is high among the elderly and is a major health burden worldwide. Cognitive impairment (CI) is highly prevalent in older patients with HF, which is an abnormality in one or more of the items of cognition, attention, memory, language, psychomotor function, and visual spatial acuity. Studies have shown that the incidence of CI in HF patients is between 13 and 54%, and patients with both conditions have poor self-care ability and prognosis, as well as increased mortality rates. However, the mechanisms of CI development in HF patients are still unclear. In this review, we describe the epidemiology and risk factors as well as measures of improving CI in HF patients. We update the latest pathophysiological mechanisms related to the neurocognitive changes in HF patients, expounding on the mechanisms associated with the development of CI in HF patients.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Anesthesiology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Liwen Chen
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Feng Zhong
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Kaiyi Zhou
- Department of Anesthesiology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Chao Lu
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Xiao Cheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sheng Wang
- Department of Anesthesiology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China.
| |
Collapse
|
7
|
Pereyra K, Díaz-Jara E, Arias P, Bravo L, Toledo C, Schwarz K, Del Rio R. Role of Peripheral Chemoreceptors on Enhanced Central Chemoreflex Drive in Nonischemic Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:107-114. [PMID: 37322341 DOI: 10.1007/978-3-031-32371-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heart failure (HF) is a prevalent disease in elderly population. Potentiation of the ventilatory chemoreflex drive plays a pivotal role in disease progression, at least in part, through their contribution to the generation/maintenance of breathing disorders. Peripheral and central chemoreflexes are mainly regulated by carotid body (CB) and the retrotrapezoid nuclei (RTN), respectively. Recent evidence showed an enhanced central chemoreflex drive in rats with nonischemic HF along with breathing disorders. Importantly, increase activity from RTN chemoreceptors contribute to the potentiation of central chemoreflex response to hypercapnia. The precise mechanism driving RTN potentiation in HF is still elusive. Since interdependency of RTN and CB chemoreceptors has been described, we hypothesized that CB afferent activity is required to increase RTN chemosensitivity in the setting of HF. Accordingly, we studied central/peripheral chemoreflex drive and breathing disorders in HF rats with and without functional CBs (CB denervation). We found that CB afferent activity was required to increase central chemoreflex drive in HF. Indeed, CB denervation restored normal central chemoreflex drive and reduced the incidence of apneas by twofold. Our results support the notion that CB afferent activity plays an important role in central chemoreflex potentiation in rats with HF.
Collapse
Affiliation(s)
- Katherin Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Arias
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liena Bravo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
8
|
Toledo C, Andrade DC, Diaz-Jara E, Ortolani D, Bernal-Santander I, Schwarz KG, Ortiz FC, Marcus NJ, Oliveira LM, Takakura AC, Moreira TS, Del Rio R. Cardiorespiratory alterations following intermittent photostimulation of RVLM C1 neurons: Implications for long-term blood pressure, breathing and sleep regulation in freely moving rats. Acta Physiol (Oxf) 2022; 236:e13864. [PMID: 35959519 DOI: 10.1111/apha.13864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/29/2023]
Abstract
AIM Sympathoexcitation and sleep-disordered breathing are common contributors for disease progression. Catecholaminergic neurons from the rostral ventrolateral medulla (RVLM-C1) modulate sympathetic outflow and have anatomical projections to respiratory neurons; however, the contribution of highly selective activation of RVLM-C1 neurons on long-term autonomic and breathing (dys)regulation remains to be understood. METHODS To explore this relationship, a lentiviral vector carrying the light-sensitive cation channel channelrhodopsin-2 (LVV-PRSX8-ChR2-YFP) was unilaterally injected into the RVLM of healthy rats. On the contralateral side, LVV-PRSX8-ChR2-YFP was co-injected with a specific immunotoxin (DβH-SAP) targeted to eliminate C1 neurons. RESULTS Intermittent photostimulation of RVLM-C1 in vivo, in unrestrained freely moving rats, elicited long-term facilitation of the sympathetic drive, a rise in blood pressure and sympatho-respiratory coupling. In addition, photoactivation of RVLM-C1 induced long-lasting ventilatory instability, characterized by oscillations in tidal volume and increased breathing variability, but only during non-rapid eye movement sleep. These effects were not observed when photostimulation of the RVLM was performed in the presence of DβH-SAP toxin. CONCLUSIONS The finding that intermittent activation of RVLM-C1 neurons induces autonomic and breathing dysfunction suggest that episodic stimulation of RVLM-C1 may serve as a pathological substrate for the long-term development of cardiorespiratory disorders.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Diaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Bernal-Santander
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad, Autónoma de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, Iowa, USA
| | - Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
9
|
Kulej-Lyko K, Niewinski P, Tubek S, Krawczyk M, Kosmala W, Ponikowski P. Inhibition of peripheral chemoreceptors improves ventilatory efficiency during exercise in heart failure with preserved ejection fraction − a role of tonic activity and acute reflex response. Front Physiol 2022; 13:911636. [PMID: 36111161 PMCID: PMC9470150 DOI: 10.3389/fphys.2022.911636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral chemoreceptors (PChRs) play a significant role in maintaining adequate oxygenation in the bloodstream. PChRs functionality comprises two components: tonic activity (PChT) which regulates ventilation during normoxia and acute reflex response (peripheral chemosensitivity, PChS), which increases ventilation following a specific stimulus. There is a clear link between augmented PChS and exercise intolerance in patients with heart failure with reduced ejection fraction. It has been also shown that inhibition of PChRs leads to the improvement in exercise capacity. However, it has not been established yet: 1) whether similar mechanisms take part in heart failure with preserved ejection fraction (HFpEF) and 2) which component of PChRs functionality (PChT vs. PChS) is responsible for the benefit seen after the acute experimental blockade. To answer those questions we enrolled 12 stable patients with HFpEF. All participants underwent an assessment of PChT (attenuation of minute ventilation in response to low-dose dopamine infusion), PChS (enhancement of minute ventilation in response to hypoxia) and a symptom-limited cardiopulmonary exercise test on cycle ergometer. All tests were placebo-controlled, double-blinded and performed in a randomized order. Under resting conditions and at normoxia dopamine attenuated minute ventilation and systemic vascular resistance (p = 0.03 for both). These changes were not seen with placebo. Dopamine also decreased ventilatory and mean arterial pressure responses to hypoxia (p < 0.05 for both). Inhibition of PChRs led to a decrease in V˙E/V˙CO2 comparing to placebo (36 ± 3.6 vs. 34.3 ± 3.7, p = 0.04), with no effect on peak oxygen consumption. We found a significant relationship between PChT and the relative decrement of V˙E/V˙CO2 on dopamine comparing to placebo (R = 0.76, p = 0.005). There was a trend for correlation between PChS (on placebo) and V˙E/V˙CO2 during placebo infusion (R = 0.56, p = 0.059), but the relative improvement in V˙E/V˙CO2 was not related to the change in PChS (dopamine vs. placebo). We did not find a significant relationship between PChT and PChS. In conclusion, inhibition of PChRs in HFpEF population improves ventilatory efficiency during exercise. Increased PChS is associated with worse (higher) V˙E/V˙CO2, whereas PChT predicts an improvement in V˙E/V˙CO2 after PChRs inhibition. This results may be meaningful for patient selection in further clinical trials involving PChRs modulation.
Collapse
Affiliation(s)
- Katarzyna Kulej-Lyko
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
- *Correspondence: Katarzyna Kulej-Lyko,
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | | | - Wojciech Kosmala
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| |
Collapse
|
10
|
Toledo C, Díaz-Jara E, Diaz HS, Schwarz KG, Pereyra KV, Las Heras A, Rios-Gallardo A, Andrade DC, Moreira T, Takakura A, Marcus NJ, Del Rio R. Medullary astrocytes mediate irregular breathing patterns generation in chronic heart failure through purinergic P2X7 receptor signalling. EBioMedicine 2022; 80:104044. [PMID: 35533501 PMCID: PMC9097632 DOI: 10.1016/j.ebiom.2022.104044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/05/2022] Open
Abstract
Background Breathing disorders (BD) (apnoeas/hypopneas, periodic breathing) are highly prevalent in chronic heart failure (CHF) and are associated with altered central respiratory control. Ample evidence identifies the retrotrapezoid nucleus (RTN) as an important chemosensitivity region for ventilatory control and generation of BD in CHF, however little is known about the cellular mechanisms underlying the RTN/BD relationship. Within the RTN, astrocyte‐mediated purinergic signalling modulates respiration, but the potential contribution of RTN astrocytes to BD in CHF has not been explored. Methods Selective neuron and/or astrocyte-targeted interventions using either optogenetic and chemogenetic manipulations in the RTN of CHF rats were used to unveil the contribution of the RTN on the development/maintenance of BD, the role played by astrocytes in BD and the molecular mechanism underpinning these alterations. Findings We showed that episodic photo-stimulation of RTN neurons triggered BD in healthy rats, and that RTN neurons ablation in CHF animals eliminates BD. Also, we found a reduction in astrocytes activity and ATP bioavailability within the RTN of CHF rats, and that chemogenetic restoration of normal RTN astrocyte activity and ATP levels improved breathing regularity in CHF. Importantly, P"X/ P2X7 receptor (P2X7r) expression was reduced in RTN astrocytes from CHF rats and viral vector-mediated delivery of human P2X7 P2X7r into astrocytes increases ATP bioavailability and abolished BD. Interpretation Our results support that RTN astrocytes play a pivotal role on BD generation and maintenance in the setting CHF by a mechanism encompassing P2X7r signalling. Funding This study was funded by the National Research and Development Agency of Chile (ANID).
Collapse
|
11
|
Toledo C, Ortolani D, Ortiz FC, Marcus NJ, Del Rio R. Potential Role of the Retrotrapezoid Nucleus in Mediating Cardio-Respiratory Dysfunction in Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:863963. [PMID: 35492622 PMCID: PMC9039230 DOI: 10.3389/fphys.2022.863963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023] Open
Abstract
A strong association between chemoreflex hypersensitivity, disordered breathing, and elevated sympathetic activity has been shown in experimental and human heart failure (HF). The contribution of chemoreflex hypersensitivity in HF pathophysiology is incompletely understood. There is ample evidence that increased peripheral chemoreflex drive in HF with reduced ejection fraction (HFrEF; EF<40%) leads to pathophysiological changes in autonomic and cardio-respiratory control, but less is known about the neural mechanisms mediating cardio-respiratory disturbances in HF with preserved EF (HFpEF; EF>50%). Importantly, it has been shown that activation of the central chemoreflex worsens autonomic dysfunction in experimental HFpEF, an effect mediated in part by the activation of C1 catecholaminergic neurons neighboring the retrotrapezoid nucleus (RTN), an important region for central chemoreflex control of respiratory and autonomic function. Accordingly, the main purpose of this brief review is to discuss the possible role played by activation of central chemoreflex pathways on autonomic function and its potential role in precipitating disordered breathing in HFpEF. Improving understanding of the contribution of the central chemoreflex to the pathophysiology of HFpEF may help in development of novel interventions intended to improve cardio-respiratory outcomes in HFpEF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Domiziana Ortolani
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Facultad de Ciencias de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, United States
| | - Rodrigo Del Rio
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Rodrigo Del Rio,
| |
Collapse
|
12
|
Schwarz KG, Pereyra KV, Toledo C, Andrade DC, Díaz HS, Díaz-Jara E, Ortolani D, Rios-Gallardo A, Arias P, Las Heras A, Vera I, Ortiz FC, Inestrosa NC, Vio CP, Del Rio R. Effects of enriched-potassium diet on cardiorespiratory outcomes in experimental non-ischemic chronic heart failure. Biol Res 2021; 54:43. [PMID: 34952651 PMCID: PMC8710008 DOI: 10.1186/s40659-021-00365-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Chronic heart failure (CHF) is a global health problem. Increased sympathetic outflow, cardiac arrhythmogenesis and irregular breathing patterns have all been associated with poor outcomes in CHF. Several studies showed that activation of the renin-angiotensin system (RAS) play a key role in CHF pathophysiology. Interestingly, potassium (K+) supplemented diets showed promising results in normalizing RAS axis and autonomic dysfunction in vascular diseases, lowering cardiovascular risk. Whether subtle increases in dietary K+ consumption may exert similar effects in CHF has not been previously tested. Accordingly, we aimed to evaluate the effects of dietary K+ supplementation on cardiorespiratory alterations in rats with CHF. Methods Adult male Sprague–Dawley rats underwent volume overload to induce non-ischemic CHF. Animals were randomly allocated to normal chow diet (CHF group) or supplemented K+ diet (CHF+K+ group) for 6 weeks. Cardiac arrhythmogenesis, sympathetic outflow, baroreflex sensitivity, breathing disorders, chemoreflex function, respiratory–cardiovascular coupling and cardiac function were evaluated. Results Compared to normal chow diet, K+ supplemented diet in CHF significantly reduced arrhythmia incidence (67.8 ± 15.1 vs. 31.0 ± 3.7 events/hour, CHF vs. CHF+K+), decreased cardiac sympathetic tone (ΔHR to propranolol: − 97.4 ± 9.4 vs. − 60.8 ± 8.3 bpm, CHF vs. CHF+K+), restored baroreflex function and attenuated irregular breathing patterns. Additionally, supplementation of the diet with K+ restores normal central respiratory chemoreflex drive and abrogates pathological cardio-respiratory coupling in CHF rats being the outcome an improved cardiac function. Conclusion Our findings support that dietary K+ supplementation in non-ischemic CHF alleviate cardiorespiratory dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00365-z.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Fisiología y Medicina de Altura, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Rios-Gallardo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Paulina Arias
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexandra Las Heras
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Vera
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos P Vio
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Díaz-Jara E, Díaz HS, Rios-Gallardo A, Ortolani D, Andrade DC, Toledo C, Pereyra KV, Schwarz K, Ramirez G, Ortiz FC, Andía ME, Del Rio R. Exercise training reduces brainstem oxidative stress and restores normal breathing function in heart failure. Free Radic Biol Med 2021; 172:470-481. [PMID: 34216779 DOI: 10.1016/j.freeradbiomed.2021.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
Enhanced central chemoreflex drive and irregular breathing are both hallmarks in heart failure (HF) and closely related to disease progression. Central chemoreceptor neurons located within the retrotrapezoid nucleus (RTN) are known to play a role in breathing alterations in HF. It has been shown that exercise (EX) effectively reduced reactive oxygen species (ROS) in HF rats. However, the link between EX and ROS, particularly at the RTN, with breathing alterations in HF has not been previously addressed. Accordingly, we aimed to determine: i) ROS levels in the RTN in HF and its association with chemoreflex drive, ii) whether EX improves chemoreflex/breathing function by reducing ROS levels, and iii) determine molecular alterations associated with ROS generation within the RTN of HF rats and study EX effects on these pathways. Adult male Sprague-Dawley rats were allocated into 3 experimental groups: Sham (n = 5), volume overloaded HF (n = 6) and HF (n = 8) rats that underwent EX training for 6 weeks (60 min/day, 25 m/min, 10% inclination). At 8 weeks post-HF induction, breathing patterns and chemoreflex function were analyzed by unrestrained plethysmography. ROS levels and anti/pro-oxidant enzymes gene expression were analyzed in the RTN. Our results showed that HF rats have high ROS levels in the RTN which were closely linked to the enhanced central chemoreflex and breathing disorders. Also, HF rats displayed decreased expression of antioxidant genes in the RTN compared with control rats. EX training increases antioxidant defense in the RTN, reduces ROS formation and restores normal central chemoreflex drive and breathing regularity in HF rats. This study provides evidence for a role of ROS in central chemoreception in the setting of HF and support the use of EX to reduce ROS in the brainstem of HF animals and reveal its potential as an effective mean to normalize chemoreflex and breathing function in HF.
Collapse
Affiliation(s)
- Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Angélica Rios-Gallardo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile.
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, 1270300, Antofagasta, Chile.
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile.
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Karla Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Gigliola Ramirez
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Fernando C Ortiz
- Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile.
| | - Marcelo E Andía
- Radiology Department & ANID - Millennium Nucleus for Cardiovascular Magnetic Resonance, 8331150, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile; Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| |
Collapse
|
14
|
Andrade DC, Díaz-Jara E, Toledo C, Schwarz KG, Pereyra KV, Díaz HS, Marcus NJ, Ortiz FC, Ríos-Gallardo AP, Ortolani D, Del Rio R. Exercise intolerance in volume overload heart failure is associated with low carotid body mediated chemoreflex drive. Sci Rep 2021; 11:14458. [PMID: 34262072 PMCID: PMC8280104 DOI: 10.1038/s41598-021-93791-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Mounting an appropriate ventilatory response to exercise is crucial to meeting metabolic demands, and abnormal ventilatory responses may contribute to exercise-intolerance (EX-inT) in heart failure (HF) patients. We sought to determine if abnormal ventilatory chemoreflex control contributes to EX-inT in volume-overload HF rats. Cardiac function, hypercapnic (HCVR) and hypoxic (HVR) ventilatory responses, and exercise tolerance were assessed at the end of a 6 week exercise training program. At the conclusion of the training program, exercise tolerant HF rats (HF + EX-T) exhibited improvements in cardiac systolic function and reductions in HCVR, sympathetic tone, and arrhythmias. In contrast, HF rats that were exercise intolerant (HF + EX-inT) exhibited worse diastolic dysfunction, and showed no improvements in cardiac systolic function, HCVR, sympathetic tone, or arrhythmias at the conclusion of the training program. In addition, HF + EX-inT rats had impaired HVR which was associated with increased arrhythmia susceptibility and mortality during hypoxic challenges (~ 60% survival). Finally, we observed that exercise tolerance in HF rats was related to carotid body (CB) function as CB ablation resulted in impaired exercise capacity in HF + EX-T rats. Our results indicate that: (i) exercise may have detrimental effects on cardiac function in HF-EX-inT, and (ii) loss of CB chemoreflex sensitivity contributes to EX-inT in HF.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Dept. of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Fernando C Ortiz
- Mechanism of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Angélica P Ríos-Gallardo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
15
|
Pereyra KV, Schwarz KG, Andrade DC, Toledo C, Rios-Gallardo A, Díaz-Jara E, Bastías SS, Ortiz FC, Ortolani D, Del Rio R. Paraquat herbicide diminishes chemoreflex sensitivity, induces cardiac autonomic imbalance and impair cardiac function in rats. Am J Physiol Heart Circ Physiol 2021; 320:H1498-H1509. [PMID: 33513085 DOI: 10.1152/ajpheart.00710.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/21/2021] [Indexed: 11/22/2022]
Abstract
Paraquat (PQT) herbicide is widely used in agricultural practices despite being highly toxic to humans. It has been proposed that PQT exposure may promote cardiorespiratory impairment. However, the physiological mechanisms involved in cardiorespiratory dysfunction following PQT exposure are poorly known. We aimed to determine the effects of PQT on ventilatory chemoreflex control, cardiac autonomic control, and cardiac function in rats. Male Sprague-Dawley rats received two injections/week of PQT (5 mg·kg-1 ip) for 4 wk. Cardiac function was assessed through echocardiography and pressure-volume loops. Ventilatory function was evaluated using whole body plethysmography. Autonomic control was indirectly evaluated by heart rate variability (HRV). Cardiac electrophysiology (EKG) and exercise capacity were also measured. Four weeks of PQT administration markedly enlarged the heart as evidenced by increases in ventricular volumes and induced cardiac diastolic dysfunction. Indeed, end-diastolic pressure was significantly higher in PQT rats compared with control (2.42 ± 0.90 vs. 4.01 ± 0.92 mmHg, PQT vs. control, P < 0.05). In addition, PQT significantly reduced both the hypercapnic and hypoxic ventilatory chemoreflex response and induced irregular breathing. Also, PQT induced autonomic imbalance and reductions in the amplitude of EKG waves. Finally, PQT administration impaired exercise capacity in rats as evidenced by a ∼2-fold decrease in times-to-fatigue compared with control rats. Our results showed that 4 wk of PQT treatment induces cardiorespiratory dysfunction in rats and suggests that repetitive exposure to PQT may induce harmful mid/long-term cardiovascular, respiratory, and cardiac consequences.NEW & NOREWORTHY Paraquat herbicide is still employed in agricultural practices in several countries. Here, we showed for the first time that 1 mo paraquat administration results in cardiac adverse remodeling, blunts ventilatory chemoreflex drive, and promotes irregular breathing at rest in previously healthy rats. In addition, paraquat exposure induced cardiac autonomic imbalance and cardiac electrophysiology alterations. Lastly, cardiac diastolic dysfunction was overt in rats following 1 mo of paraquat treatment.
Collapse
Affiliation(s)
- Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Angélica Rios-Gallardo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sussy S Bastías
- Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Fernando C Ortiz
- Mechanism of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
16
|
Díaz HS, Andrade DC, Toledo C, Schwarz KG, Pereyra KV, Díaz-Jara E, Marcus NJ, Del Rio R. Inhibition of Brainstem Endoplasmic Reticulum Stress Rescues Cardiorespiratory Dysfunction in High Output Heart Failure. Hypertension 2020; 77:718-728. [PMID: 33307852 DOI: 10.1161/hypertensionaha.120.16056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence shows that chronic activation of catecholaminergic neurons of the rostral ventrolateral medulla is crucial in promoting autonomic imbalance and cardiorespiratory dysfunction in high output heart failure (HF). Brainstem endoplasmic reticulum stress (ERS) is known to promote cardiovascular dysfunction; however, no studies have addressed the potential role of brainstem ERS in cardiorespiratory dysfunction in high output HF. In this study, we assessed the presence of brainstem ERS and its potential role in cardiorespiratory dysfunction in an experimental model of HF induced by volume overload. High output HF was surgically induced via creation of an arterio-venous fistula in adult male Sprague-Dawley rats. Tauroursodeoxycholic acid (TUDCA), an inhibitor of ERS, or vehicle was administered intracerebroventricularly for 4 weeks post-HF induction. Compared with vehicle treatment, TUDCA improved cardiac autonomic balance (LFHRV/HFHRV ratio, 3.02±0.29 versus 1.14±0.24), reduced cardiac arrhythmia incidence (141.5±26.7 versus 35.67±12.5 events/h), and reduced abnormal respiratory patterns (Apneas: 11.83±2.26 versus 4.33±1.80 events/h). TUDCA administration (HF+Veh versus HF+TUDCA, P<0.05) attenuated cardiac hypertrophy (HW/BW 4.4±0.3 versus 4.0±0.1 mg/g) and diastolic dysfunction. Analysis of rostral ventrolateral medulla gene expression confirmed the presence of ERS, inflammation, and activation of renin-angiotensin system pathways in high output HF and showed that TUDCA treatment completely abolished ERS and ERS-related signaling. Taken together, these results support the notion that ERS plays a role in cardiorespiratory dysfunction in high output HF and more importantly that reducing brain ERS with TUDCA treatment has a potent salutary effect on cardiac function in this model.
Collapse
Affiliation(s)
- Hugo S Díaz
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - David C Andrade
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile (D.C.A.)
| | - Camilo Toledo
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Karla G Schwarz
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Envejecimiento y Regeneración (CARE) (K.G.S., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Katherin V Pereyra
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Esteban Díaz-Jara
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, IA (N.J.M.)
| | - Rodrigo Del Rio
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Envejecimiento y Regeneración (CARE) (K.G.S., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile (R.D.R.)
| |
Collapse
|
17
|
Pagel PS, Tawil JN, Boettcher BT, Izquierdo DA, Lazicki TJ, Crystal GJ, Freed JK. Heart Failure With Preserved Ejection Fraction: A Comprehensive Review and Update of Diagnosis, Pathophysiology, Treatment, and Perioperative Implications. J Cardiothorac Vasc Anesth 2020; 35:1839-1859. [PMID: 32747202 DOI: 10.1053/j.jvca.2020.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Almost three-quarters of all heart failure patients who are older than 65 have heart failure with preserved ejection fraction (HFpEF). The proportion and hospitalization rate of patients with HFpEF are increasing steadily relative to patients in whom heart failure occurs as result of reduced ejection fraction. The predominance of the HFpEF phenotype most likely is explained by the prevalence of medical conditions associated with an aging population. A multitude of age-related, medical, and lifestyle risk factors for HFpEF have been identified as potential causes for the sustained low-grade proinflammatory state that accelerates disease progression. Profound left ventricular (LV) systolic and diastolic stiffening, elevated LV filling pressures, reduced arterial compliance, left atrial hypertension, pulmonary venous congestion, and microvascular dysfunction characterize HFpEF, but pulmonary arterial hypertension, right ventricular dilation and dysfunction, and atrial fibrillation also frequently occur. These cardiovascular features make patients with HFpEF exquisitely sensitive to the development of hypotension in response to acute declines in LV preload or afterload that may occur during or after surgery. With the exception of symptom mitigation, lifestyle modifications, and rigorous control of comorbid conditions, few long-term treatment options exist for these unfortunate individuals. Patients with HFpEF present for surgery on a regular basis, and anesthesiologists need to be familiar with this heterogeneous and complex clinical syndrome to provide successful care. In this article, the authors review the diagnosis, pathophysiology, and treatment of HFpEF and also discuss its perioperative implications.
Collapse
Affiliation(s)
- Paul S Pagel
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI.
| | - Justin N Tawil
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Brent T Boettcher
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - David A Izquierdo
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Timothy J Lazicki
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - George J Crystal
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
| | - Julie K Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
18
|
Yang HJ, Kong B, Shuai W, Zhang JJ, Huang H. Knockout of MD1 contributes to sympathetic hyperactivity and exacerbates ventricular arrhythmias following heart failure with preserved ejection fraction via NLRP3 inflammasome activation. Exp Physiol 2020; 105:966-978. [PMID: 32240565 DOI: 10.1113/ep088390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? In this study, we investigated whether MD1 interacted with the sympathetic nerves in ventricular arrhythmia (VA) during heart failure with preserved ejection fraction (HFpEF). What is the main finding and its importance? Mice with HFpEF showed increased susceptibility to VA, adverse electrical remodelling, impaired heart rate variability, enhanced sympathetic hyperactivity, activation of the NLRP3 inflammasome and increased interleukin-1β release. These changes induced by HFpEF were exacerbated by MD1 deficiency. ABSTRACT Sympathetic hyperactivity can promote malignant ventricular arrhythmia (VA), and myeloid differentiation 1 (MD1) has been reported to play an important role in obesity-induced VA. However, it is not known whether an interaction of MD1 with sympathetic hyperactivity contributes to the VA induced by heart failure with preserved ejection fraction (HFpEF). The aim of this study was to investigate the potential interaction between MD1 and sympathetic hyperactivity in HFpEF-induced VA and the underlying mechanism. Eight-week-old MD1-knockout (MD1-KO) and wild-type (WT) mice were subjected to a model of HFpEF induced by uninephrectomy, a continuous saline or d-aldosterone infusion and provision of drinking water containing 1.0% sodium chloride for 4 weeks. Echocardiography and haemodynamics were used to verify the model of HFpEF. An isolated electrophysiological study was performed to assess the susceptibility to VA. Four weeks later, the mice with HFpEF showed an increased heart weight to tibia length ratio, decreased left ventricular minimum rates of pressure rise (dP/dtmin ), increased τ, lung weight to tibia length ratio and preserved left ventricular ejection fraction compared with WT mice. The mice with HFpEF exhibited increased susceptibility to VA, as shown by the shortened effective refractory period, prolonged action potential duration (APD), increased APD alternans threshold and higher incidence of VA. Moreover, we also found that mice with HFpEF showed impaired heart rate variability, sympathetic hyperactivity, activation of the NLRP3 inflammasome and increased interleukin-1β release. These changes induced by HFpEF were exacerbated by MD1 deficiency. We conclude that MD1-KO contributes to sympathetic hyperactivity and facilitates VA in HFpEF via activation of the NLRP3 inflammasome. Treatment targeting MD1 and NLRP3 might decrease the risk of HFpEF-induced VA.
Collapse
Affiliation(s)
- Hong-Jie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuchang, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuchang, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuchang, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuchang, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuchang, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuchang, Wuhan, China
| | - Jing-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuchang, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuchang, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuchang, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuchang, Wuhan, China
| |
Collapse
|
19
|
Lucero CM, Andrade DC, Toledo C, Díaz HS, Pereyra KV, Diaz-Jara E, Schwarz KG, Marcus NJ, Retamal MA, Quintanilla RA, Del Rio R. Cardiac remodeling and arrhythmogenesis are ameliorated by administration of Cx43 mimetic peptide Gap27 in heart failure rats. Sci Rep 2020; 10:6878. [PMID: 32327677 PMCID: PMC7181683 DOI: 10.1038/s41598-020-63336-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/03/2020] [Indexed: 11/20/2022] Open
Abstract
Alterations in connexins and specifically in 43 isoform (Cx43) in the heart have been associated with a high incidence of arrhythmogenesis and sudden death in several cardiac diseases. We propose to determine salutary effect of Cx43 mimetic peptide Gap27 in the progression of heart failure. High-output heart failure was induced by volume overload using the arterio-venous fistula model (AV-Shunt) in adult male rats. Four weeks after AV-Shunt surgery, the Cx43 mimetic peptide Gap27 or scrambled peptide, were administered via osmotic minipumps (AV-ShuntGap27 or AV-ShuntScr) for 4 weeks. Cardiac volumes, arrhythmias, function and remodeling were determined at 8 weeks after AV-Shunt surgeries. At 8th week, AV-ShuntGap27 showed a marked decrease in the progression of cardiac deterioration and showed a significant improvement in cardiac functions measured by intraventricular pressure-volume loops. Furthermore, AV-ShuntGap27 showed less cardiac arrhythmogenesis and cardiac hypertrophy index compared to AV-ShuntScr. Gap27 treatment results in no change Cx43 expression in the heart of AV-Shunt rats. Our results strongly suggest that Cx43 play a pivotal role in the progression of cardiac dysfunction and arrhythmogenesis in high-output heart failure; furthermore, support the use of Cx43 mimetic peptide Gap27 as an effective therapeutic tool to reduce the progression of cardiac dysfunction in high-output heart failure.
Collapse
Affiliation(s)
- Claudia M Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Diaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Mauricio A Retamal
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Clínica Alemana Facultad de Medicina, Santiago, Chile
| | | | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia de Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
20
|
Debi RA, Spector SP. Heart to breathe: partial ablation of rostral ventrolateral medulla catecholaminergic neurons mediates disordered breathing in volume overload heart failure rats. J Physiol 2020; 598:447-449. [PMID: 31900936 DOI: 10.1113/jp279368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ryan Andrew Debi
- York University, Biology, 4700 Keele St., Toronto, Ontario, M3J 1P3, Canada
| | | |
Collapse
|
21
|
Díaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R. Neuroinflammation in heart failure: new insights for an old disease. J Physiol 2020; 598:33-59. [PMID: 31671478 DOI: 10.1113/jp278864] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 08/25/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome affecting roughly 26 million people worldwide. Increased sympathetic drive is a hallmark of HF and is associated with disease progression and higher mortality risk. Several mechanisms contribute to enhanced sympathetic activity in HF, but these pathways are still incompletely understood. Previous work suggests that inflammation and activation of the renin-angiotensin system (RAS) increases sympathetic drive. Importantly, chronic inflammation in several brain regions is commonly observed in aged populations, and a growing body of evidence suggests neuroinflammation plays a crucial role in HF. In animal models of HF, central inhibition of RAS and pro-inflammatory cytokines normalizes sympathetic drive and improves cardiac function. The precise molecular and cellular mechanisms that lead to neuroinflammation and its effect on HF progression remain undetermined. This review summarizes the most recent advances in the field of neuroinflammation and autonomic control in HF. In addition, it focuses on cellular and molecular mediators of neuroinflammation in HF and in particular on brain regions involved in sympathetic control. Finally, we will comment on what is known about neuroinflammation in the context of preserved vs. reduced ejection fraction HF.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
22
|
Toledo C, Andrade DC, Díaz HS, Pereyra KV, Schwarz KG, Díaz-Jara E, Oliveira LM, Takakura AC, Moreira TS, Schultz HD, Marcus NJ, Del Rio R. Rostral ventrolateral medullary catecholaminergic neurones mediate irregular breathing pattern in volume overload heart failure rats. J Physiol 2019; 597:5799-5820. [PMID: 31642520 DOI: 10.1113/jp278845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/14/2019] [Indexed: 08/25/2023] Open
Abstract
KEY POINTS A strong association between disordered breathing patterns, elevated sympathetic activity, and enhanced central chemoreflex drive has been shown in experimental and human heart failure (HF). The aim of this study was to determine the contribution of catecholaminergic rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) to both haemodynamic and respiratory alterations in HF. Apnoea/hypopnoea incidence (AHI), breathing variability, respiratory-cardiovascular coupling, cardiac autonomic control and cardiac function were analysed in HF rats with or without selective ablation of RVLM-C1 neurones. Partial lesion (∼65%) of RVLM-C1 neurones reduces AHI, respiratory variability, and respiratory-cardiovascular coupling in HF rats. In addition, the deleterious effects of central chemoreflex activation on cardiac autonomic balance and cardiac function in HF rats was abolished by ablation of RVLM-C1 neurones. Our findings suggest that RVLM-C1 neurones play a pivotal role in breathing irregularities in volume overload HF, and mediate the sympathetic responses induced by acute central chemoreflex activation. ABSTRACT Rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) modulate sympathetic outflow and breathing under normal conditions. Heart failure (HF) is characterized by chronic RVLM-C1 activation, increased sympathetic activity and irregular breathing patterns. Despite studies showing a relationship between RVLM-C1 and sympathetic activity in HF, no studies have addressed a potential contribution of RVLM-C1 neurones to irregular breathing in this context. Thus, the aim of this study was to determine the contribution of RVLM-C1 neurones to irregular breathing patterns in HF. Sprague-Dawley rats underwent surgery to induce volume overload HF. Anti-dopamine β-hydroxylase-saporin toxin (DβH-SAP) was used to selectively lesion RVLM-C1 neurones. At 8 weeks post-HF induction, breathing pattern, blood pressures (BP), respiratory-cardiovascular coupling (RCC), central chemoreflex function, cardiac autonomic control and cardiac function were studied. Reduction (∼65%) of RVLM-C1 neurones resulted in attenuation of irregular breathing, decreased apnoea-hypopnoea incidence (11.1 ± 2.9 vs. 6.5 ± 2.5 events h-1 ; HF+Veh vs. HF+DβH-SAP; P < 0.05) and improved cardiac autonomic control in HF rats. Pathological RCC was observed in HF rats (peak coherence >0.5 between breathing and cardiovascular signals) and was attenuated by DβH-SAP treatment (coherence: 0.74 ± 0.12 vs. 0.54 ± 0.10, HF+Veh vs. HF+DβH-SAP rats; P < 0.05). Central chemoreflex activation had deleterious effects on cardiac function and cardiac autonomic control in HF rats that were abolished by lesion of RVLM-C1 neurones. Our findings reveal that RVLM-C1 neurones play a major role in irregular breathing patterns observed in volume overload HF and highlight their contribution to cardiac dysautonomia and deterioration of cardiac function during chemoreflex activation.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Williams SM, Eleftheriadou A, Alam U, Cuthbertson DJ, Wilding JPH. Cardiac Autonomic Neuropathy in Obesity, the Metabolic Syndrome and Prediabetes: A Narrative Review. Diabetes Ther 2019; 10:1995-2021. [PMID: 31552598 PMCID: PMC6848658 DOI: 10.1007/s13300-019-00693-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac autonomic neuropathy (CAN) is a major complication of type 1 and type 2 diabetes mellitus (T1DM and T2DM). The increased morbidity, cardiovascular and all-cause mortality associated with CAN is established from numerous epidemiological studies. However, CAN is increasingly recognised in people with prediabetes (pre-DM) and the metabolic syndrome (MetS) with a reported prevalence up to 11% and 24% respectively. CAN is associated with components of MetS including hypertension and obesity, predating hyperglycaemia. The aetiology of CAN is multifactorial and there is a reciprocal relationship with insulin resistance and MetS. Obstructive sleep apnoea (OSA) is also associated with CAN possibly through MetS and an independent mechanism. An estimated global prevalence of the impaired glucose tolerance (IGT) form of pre-DM of 587 million people by 2045 means CAN will become a major clinical problem. CAN is independently associated with silent myocardial ischaemia, major cardiovascular events, myocardial dysfunction and cardiovascular mortality. Screening for CAN in pre-DM using risk scores with analysis of heart rate variability (HRV) or Sudoscan is important to allow earlier treatment at a reversible stage. The link between obesity and CAN highlights the therapeutic potential of lifestyle interventions including diet and physical activity to reverse MetS and prevent CAN. Weight loss achieved using these dietary and exercise lifestyle interventions improves the sympathetic and parasympathetic HRV indices of cardiac autonomic function. Further research is needed to identify high-risk populations of people with pre-DM or obesity that might benefit from targeted pharmacotherapy including metformin, sodium/glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) analogues. Bariatric surgery also improves HRV through weight loss which might also prevent CAN in severe obesity. This article reviews the literature on CAN in obesity, pre-DM and MetS, to help determine a rationale for screening, early intervention treatment and formulate future research questions in this highly prevalent condition.
Collapse
Affiliation(s)
| | | | - Uazman Alam
- Diabetes and Neuropathy Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, UK
- Royal Liverpool and Broadgreen University NHS Hospital Trust, Liverpool, UK
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, UK
| | - Daniel J Cuthbertson
- Obesity and Endocrinology Research, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - John P H Wilding
- Obesity and Endocrinology Research, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
24
|
Díaz HS, Andrade DC, Toledo C, Pereyra KV, Schwarz KG, Díaz-Jara E, Lucero C, Arce-Álvarez A, Schultz HD, Silva JN, Takakura AC, Moreira TS, Marcus NJ, Del Rio R. Episodic stimulation of central chemoreceptor neurons elicits disordered breathing and autonomic dysfunction in volume overload heart failure. Am J Physiol Lung Cell Mol Physiol 2019; 318:L27-L40. [PMID: 31617729 PMCID: PMC6985876 DOI: 10.1152/ajplung.00007.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enhanced central chemoreflex (CC) gain is observed in volume overload heart failure (HF) and is correlated with autonomic dysfunction and breathing disorders. The aim of this study was to determine the role of the CC in the development of respiratory and autonomic dysfunction in HF. Volume overload was surgically created to induce HF in male Sprague-Dawley rats. Radiotelemetry transmitters were implanted for continuous monitoring of blood pressure and heart rate. After recovering from surgery, conscious unrestrained rats were exposed to episodic hypercapnic stimulation [EHS; 10 cycles/5 min, inspiratory fraction of carbon dioxide (FICO2) 7%] in a whole body plethysmograph for recording of cardiorespiratory function. To determine the contribution of CC to cardiorespiratory variables, selective ablation of chemoreceptor neurons within the retrotrapezoid nucleus (RTN) was performed via injection of saporin toxin conjugated to substance P (SSP-SAP). Vehicle-treated rats (HF+Veh and Sham+Veh) were used as controls for SSP-SAP experiments. Sixty minutes post-EHS, minute ventilation was depressed in sham animals relative to HF animals (ΔV̇e: -5.55 ± 2.10 vs. 1.24 ± 1.35 mL/min 100 g, P < 0.05; Sham+Veh vs. HF+Veh). Furthermore, EHS resulted in autonomic imbalance, cardiorespiratory entrainment, and ventilatory disturbances in HF+Veh but not Sham+Veh rats, and these effects were significantly attenuated by SSP-SAP treatment. Also, the apnea-hypopnea index (AHI) was significantly lower in HF+SSP-SAP rats compared with HF+Veh rats (AHI: 5.5 ± 0.8 vs. 14.4 ± 1.3 events/h, HF+SSP-SAP vs. HF+Veh, respectively, P < 0.05). Finally, EHS-induced respiratory-cardiovascular coupling in HF rats depends on RTN chemoreceptor neurons because it was reduced by SSP-SAP treatment. Overall, EHS triggers ventilatory plasticity and elicits cardiorespiratory abnormalities in HF that are largely dependent on RTN chemoreceptor neurons.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio (CIFE), Universidad Mayor, Santiago, Chile
| | - Camilo Toledo
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Arce-Álvarez
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, Nebraska
| | - Josiane N Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, Iowa
| | - Rodrigo Del Rio
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
25
|
de Araújo EV, Guimarães KSDL, Magnani M, Cruz JC, Vidal H, Braga VDA, de Brito Alves JL. Maternal dyslipidemia during pregnancy and lactation increases blood pressure and disrupts cardiorespiratory and glucose hemostasis in female rat offspring. Appl Physiol Nutr Metab 2019; 44:925-936. [DOI: 10.1139/apnm-2018-0756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypertension and metabolic disorders evidenced in adults who have been exposed to nutritional insults during early life may be sex-dependent. We evaluated if blood pressure (BP), cardiorespiratory control, and metabolic parameters are affected in female offspring (FO) from dams fed a dyslipidaemic diet during pregnancy and lactation. FO was obtained from dams who received control (CTL) or dyslipidaemic diets during pregnancy and lactation. The effects of a maternal dyslipidaemic diet on BP, cardiorespiratory control, and biochemical parameters were assessed at 30 and 90 days of age. The experimental protocol based on a dyslipidaemic diet intervention was effective in developing maternal dyslipidemia. At 30 days of age, the FO from dyslipidaemic dams displayed disordered respiratory pattern, enhanced ventilatory response to hypercapnia (P < 0.05), and increased serum levels of total cholesterol and triglycerides (P < 0.05) when compared with CTL female offspring. At 90 days of age, FO from dyslipidaemic dams had augmented BP (P < 0.05), exacerbated cardiorespiratory responses to hypercapnia (P < 0.05), enhanced pressor responses to peripheral chemoreflex activation (P < 0.05), impaired baroreflex (P < 0.05), and larger delta variations in arterial pressure after ganglionic blockade (P < 0.05). Furthermore, during oral glucose and insulin tolerance tests, FO from dyslipidaemic dams exhibited altered glucose tolerance and insulin sensitivity (P < 0.05) when compared with FO from CTL dams. Altered breathing linked to enhanced central and peripheral chemosensitivity, impaired baroreflex, and augmented sympathetic tone may be predisposing factors for increased BP and metabolic disorders in female offspring from dyslipidaemic dams.
Collapse
Affiliation(s)
- Emmanuel Veríssimo de Araújo
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
- Biotechnology Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | | | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | - Josiane Campos Cruz
- Biotechnology Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Hubert Vidal
- Univ-Lyon, CarMeN (Cardio, Metabolism, Diabetes and Nutrition) Laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| |
Collapse
|
26
|
Toledo C, Lucero C, Andrade DC, Díaz HS, Schwarz KG, Pereyra KV, Arce-Álvarez A, López NA, Martinez M, Inestrosa NC, Del Rio R. Cognitive impairment in heart failure is associated with altered Wnt signaling in the hippocampus. Aging (Albany NY) 2019; 11:5924-5942. [PMID: 31447429 PMCID: PMC6738419 DOI: 10.18632/aging.102150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Age represents the highest risk factor for death due to cardiovascular disease. Heart failure (HF) is the most common cardiovascular disease in elder population and it is associated with cognitive impairment (CI), diminishing learning and memory process affecting life quality and mortality in these patients. In HF, CI has been associated with inadequate O2 supply to the brain; however, an important subset of HF patients displays CI with almost no alteration in cerebral blood flow. Importantly, nothing is known about the pathophysiological mechanisms underpinning CI in HF with no change in brain tissue perfusion. Here, we aimed to study memory performance and learning function in a rodent model of HF that shows no change in blood flow going to the brain. We found that HF rats presented learning impairments and memory loss. In addition, HF rats displayed a decreased level of Wnt/β-catenin signaling downstream elements in the hippocampus, one pathway implicated largely in aging diseases. Taken together, our results suggest that in HF rats CI is associated with dysfunction of the Wnt/β-catenin signaling pathway. The mechanisms involved in the alterations of Wnt/β-catenin signaling in HF and its contribution to the development/maintenance of CI deserves future investigations.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Arce-Álvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás A López
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milka Martinez
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
27
|
Toledo C, Andrade DC, Díaz HS, Inestrosa NC, Del Rio R. Neurocognitive Disorders in Heart Failure: Novel Pathophysiological Mechanisms Underpinning Memory Loss and Learning Impairment. Mol Neurobiol 2019; 56:8035-8051. [PMID: 31165973 DOI: 10.1007/s12035-019-01655-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Heart failure (HF) is a major public health issue affecting more than 26 million people worldwide. HF is the most common cardiovascular disease in elder population; and it is associated with neurocognitive function decline, which represent underlying brain pathology diminishing learning and memory faculties. Both HF and neurocognitive impairment are associated with recurrent hospitalization episodes and increased mortality rate in older people, but particularly when they occur simultaneously. Overall, the published studies seem to confirm that HF patients display functional impairments relating to attention, memory, concentration, learning, and executive functioning compared with age-matched controls. However, little is known about the molecular mechanisms underpinning neurocognitive decline in HF. The present review round step recent evidence related to the possible molecular mechanism involved in the establishment of neurocognitive disorders during HF. We will make a special focus on cerebral ischemia, neuroinflammation and oxidative stress, Wnt signaling, and mitochondrial DNA alterations as possible mechanisms associated with cognitive decline in HF. Also, we provide an integrative mechanism linking pathophysiological hallmarks of altered cardiorespiratory control and the development of cognitive dysfunction in HF patients. Graphical Abstract Main molecular mechanisms involved in the establishment of cognitive impairment during heart failure. Heart failure is characterized by chronic activation of brain areas responsible for increasing cardiac sympathetic load. In addition, HF patients also show neurocognitive impairment, suggesting that the overall mechanisms that underpin cardiac sympathoexcitation may be related to the development of cognitive disorders in HF. In low cardiac output, HF cerebral infarction due to cardiac mural emboli and cerebral ischemia due to chronic or intermittent cerebral hypoperfusion has been described as a major mechanism related to the development of CI. In addition, while acute norepinephrine (NE) release may be relevant to induce neural plasticity in the hippocampus, chronic or tonic release of NE may exert the opposite effects due to desensitization of the adrenergic signaling pathway due to receptor internalization. Enhanced chemoreflex drive is a major source of sympathoexcitation in HF, and this phenomenon elevates brain ROS levels and induces neuroinflammation through breathing instability. Importantly, both oxidative stress and neuroinflammation can induce mitochondrial dysfunction and vice versa. Then, this ROS inflammatory pathway may propagate within the brain and potentially contribute to the development of cognitive impairment in HF through the activation/inhibition of key molecular pathways involved in neurocognitive decline such as the Wnt signaling pathway.
Collapse
Affiliation(s)
- C Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de investigación en fisiología del ejercicio, Universidad Mayor, Santiago, Chile
| | - H S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - N C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - R Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
28
|
Palau P, Domínguez E, Ramón JM, López L, Briatore AE, Tormo JP, Ventura B, Chorro FJ, Núñez J. Home-based inspiratory muscle training for management of older patients with heart failure with preserved ejection fraction: does baseline inspiratory muscle pressure matter? Eur J Cardiovasc Nurs 2019; 18:621-627. [PMID: 31148459 DOI: 10.1177/1474515119855183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Heart failure with preserved ejection fraction is a clinical syndrome characterised by reduced exercise capacity. Some evidence has shown that a simple and home-based programme of inspiratory muscle training offers promising results in terms of aerobic capacity improvement in patients with heart failure with preserved ejection fraction. This study aimed to investigate whether the baseline inspiratory muscle function predicts the changes in aerobic capacity (measured as peak oxygen uptake; peak VO2) after a 12-week home-based programme of inspiratory muscle training in patients with heart failure with preserved ejection fraction. METHODS A total of 45 stable symptomatic patients with heart failure with preserved ejection fraction and New York Heart Association II-III received a 12-week home-based programme of inspiratory muscle training between June 2015 and December 2016. They underwent cardiopulmonary exercise testing and measurements of maximum inspiratory pressure pre and post-inspiratory muscle training. Maximum inspiratory pressure and peak VO2 were registered in both visits. Multivariate linear regression analysis was used to assess the association between changes in peak VO2 (Δ-peakVO2) and baseline predicted maximum inspiratory pressure (pp-MIP). RESULTS The median (interquartile range) age was 73 (68-77) years, 47% were women and 35.6% displayed New York Heart Association III. The mean peak VO2 at baseline and Δ-peakVO2 post-training were 10.4±2.8 ml/min/kg and +2.2±1.3 ml/min/kg (+21.3%), respectively. The median (interquartile range) of pp-MIP and Δ-MIP were 71% (64-92) and 39.2 (26.7-80.4) cmH2O, respectively. After a multivariate analysis, baseline pp-MIP was not associated with Δ-peakVO2 (β coefficient 0.005, 95% confidence interval -0.009-0.019, P=0.452). CONCLUSIONS In symptomatic and deconditioned older patients with heart failure with preserved ejection fraction, a home-based inspiratory muscle training programme improves aerobic capacity regardless of the baseline maximum inspiratory pressure.
Collapse
Affiliation(s)
- Patricia Palau
- Servicio de Cardiología. Hospital General Universitario de Castellón. Universitat Jaume I, Spain
| | - Eloy Domínguez
- Servicio de Cardiología. Hospital General Universitario de Castellón. Universitat Jaume I, Spain
| | - José María Ramón
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA. Universitat de València. Spain
| | - Laura López
- Departamento de Fisioterapia, Universitat de València, Spain
| | - Antonio Ernesto Briatore
- Servicio de Cardiología. Hospital General Universitario de Castellón. Universitat Jaume I, Spain
| | - J Pablo Tormo
- Servicio de Cardiología. Hospital General Universitario de Castellón. Universitat Jaume I, Spain
| | - Bruno Ventura
- Servicio de Cardiología. Hospital General Universitario de Castellón. Universitat Jaume I, Spain
| | - Francisco J Chorro
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA. Universitat de València. Spain.,Servicio de Cardiología, Hospital Clínico Universitario, CIBERCV, Spain
| | - Julio Núñez
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA. Universitat de València. Spain.,Servicio de Cardiología, Hospital Clínico Universitario, CIBERCV, Spain
| |
Collapse
|
29
|
Abstract
Heart failure (HF) is one of the most prevalent cardiovascular diseases and is associated with high morbidity and mortality. Mechanistically, HF is characterized by an overactive sympathetic nervous system and parasympathetic withdrawal, and this autonomic imbalance contributes to the progression of the disease. As such, modulation of autonomic nervous system by device-based therapy is an attractive treatment target. In this review, we discuss the role of autonomic nervous system dysfunction in the pathogenesis of HF and present the available evidence regarding vagus nerve stimulation for HF, with special emphasis on optimization of stimulation parameters. Finally, we discuss future avenues of research for neuromodulation in patients with HF.
Collapse
Affiliation(s)
- Zain UA Asad
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
30
|
Andrade DC, Toledo C, Díaz HS, Lucero C, Arce-Álvarez A, Oliveira LM, Takakura AC, Moreira TS, Schultz HD, Marcus NJ, Alcayaga J, Del Rio R. Ablation of brainstem C1 neurons improves cardiac function in volume overload heart failure. Clin Sci (Lond) 2019; 133:393-405. [PMID: 30626730 DOI: 10.1042/cs20180589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 08/25/2023]
Abstract
Activation of the sympathetic nervous system is a hallmark of heart failure (HF) and is positively correlated with disease progression. Catecholaminergic (C1) neurons located in the rostral ventrolateral medulla (RVLM) are known to modulate sympathetic outflow and are hyperactivated in volume overload HF. However, there is no conclusive evidence showing a contribution of RVLM-C1 neurons to the development of cardiac dysfunction in the setting of HF. Therefore, the aim of this study was to determine the role of RVLM-C1 neurons in cardiac autonomic control and deterioration of cardiac function in HF rats. A surgical arteriovenous shunt was created in adult male Sprague-Dawley rats to induce HF. RVLM-C1 neurons were selectively ablated using cell-specific immunotoxin (dopamine-β hydroxylase saporin [DβH-SAP]) and measures of cardiac autonomic tone, function, and arrhythmia incidence were evaluated. Cardiac autonomic imbalance, arrhythmogenesis and cardiac dysfunction were present in HF rats and improved after DβH-SAP toxin treatment. Most importantly, the progressive decline in fractional shortening observed in HF rats was reduced by DβH-SAP toxin. Our results unveil a pivotal role played by RVLM-C1 neurons in cardiac autonomic imbalance, arrhythmogenesis and cardiac dysfunction in volume overload-induced HF.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Arce-Álvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Escuela de Kinesiología, Facultad de Salud, Universidad Católica Silva Henríquez, Santiago, Chile
| | - Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brasil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brasil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brasil
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha NE, U.S.A
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines IA, U.S.A
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
31
|
Autonomic Neuromodulation Acutely Ameliorates Left Ventricular Strain in Humans. J Cardiovasc Transl Res 2018; 12:221-230. [PMID: 30560316 DOI: 10.1007/s12265-018-9853-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Low-level transcutaneous vagus nerve stimulation at the tragus (LLTS) is anti-adrenergic. We aimed to evaluate the acute effects of LLTS on left ventricular (LV) function and autonomic tone. Patients with diastolic dysfunction and preserved LV ejection fraction were enrolled in a prospective, randomized, double-blind, 2 × 2 cross-over study. Patients received two separate, 1-h sessions, at least 1 day apart, of active LLTS (20 Hz, 1 mA below the discomfort threshold) and sham stimulation. Echocardiography was performed after LLTS or sham stimulation to assess cardiac function. A 5-min ECG was performed to assess heart rate variability (HRV). Twenty-four patients were enrolled. LV global longitudinal strain improved by 1.8 ± 0.9% during active LLTS compared to sham stimulation (p = 0.001). Relative to baseline, HRV frequency domain components (low frequency, high frequency, and their ratio) were favorably altered after LLTS compared to sham stimulation (all p < 0.05). We concluded that LLTS acutely ameliorates cardiac mechanics by modulating the autonomic tone. Trial registration: NCT02983448.
Collapse
|
32
|
Trembach N, Zabolotskikh I. Arterial baroreflex sensitivity: Relationship with peripheral chemoreflex in patients with chronic heart failure. Artery Res 2018. [DOI: 10.1016/j.artres.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
33
|
Andrade DC, Arce-Alvarez A, Toledo C, Díaz HS, Lucero C, Quintanilla RA, Schultz HD, Marcus NJ, Amann M, Del Rio R. Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter? Am J Physiol Heart Circ Physiol 2017; 314:H464-H474. [PMID: 29167119 DOI: 10.1152/ajpheart.00407.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart failure (HF) is a global public health problem that, independent of its etiology [reduced (HFrEF) or preserved ejection fraction (HFpEF)], is characterized by functional impairments of cardiac function, chemoreflex hypersensitivity, baroreflex sensitivity (BRS) impairment, and abnormal autonomic regulation, all of which contribute to increased morbidity and mortality. Exercise training (ExT) has been identified as a nonpharmacological therapy capable of restoring normal autonomic function and improving survival in patients with HFrEF. Improvements in autonomic function after ExT are correlated with restoration of normal peripheral chemoreflex sensitivity and BRS in HFrEF. To date, few studies have addressed the effects of ExT on chemoreflex control, BRS, and cardiac autonomic control in HFpEF; however, there are some studies that have suggested that ExT has a beneficial effect on cardiac autonomic control. The beneficial effects of ExT on cardiac function and autonomic control in HF may have important implications for functional capacity in addition to their obvious importance to survival. Recent studies have suggested that the peripheral chemoreflex may also play an important role in attenuating exercise intolerance in HFrEF patients. The role of the central/peripheral chemoreflex, if any, in mediating exercise intolerance in HFpEF has not been investigated. The present review focuses on recent studies that address primary pathophysiological mechanisms of HF (HFrEF and HFpEF) and the potential avenues by which ExT exerts its beneficial effects.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Alexis Arce-Alvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | | | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University , Des Moines, Iowa
| | - Markus Amann
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes , Punta Arenas , Chile.,Centro de Envejecimiento y Regeneracion, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Andrade DC, Arce-Alvarez A, Toledo C, Díaz HS, Lucero C, Schultz HD, Marcus NJ, Del Rio R. Exercise training improves cardiac autonomic control, cardiac function, and arrhythmogenesis in rats with preserved-ejection fraction heart failure. J Appl Physiol (1985) 2017; 123:567-577. [DOI: 10.1152/japplphysiol.00189.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/24/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic heart failure is characterized by autonomic imbalance, cardiac dysfunction, and arrhythmogenesis. It has been shown that exercise training (ExT) improves central nervous system oxidative stress, autonomic control, and cardiac function in heart failure with reduced ejection fraction; however, to date no comprehensive studies have addressed the effects of ExT, if any, on oxidative stress in brain stem cardiovascular areas, cardiac autonomic balance, arrhythmogenesis, and cardiac function in heart failure with preserved ejection fraction (HFpEF). We hypothesize that ExT reduces brain stem oxidative stress, improves cardiac autonomic control and cardiac function, and reduces arrhythmogenesis in HFpEF rats. Rats underwent sham treatment or volume overload to induce HFpEF. ExT (60 min/day, 25 m/min, 10% inclination) was performed for 6 wk starting at the second week after HFpEF induction. Rats were randomly allocated into Sham+sedentary (Sed) ( n = 8), Sham+ExT ( n = 6), HFpEF+Sed ( n = 8), and HFpEF+ExT ( n = 8) groups. Compared with the HFpEF+Sed condition, HFpEF+ExT rats displayed reduced NAD(P)H oxidase activity and oxidative stress in the rostral ventrolateral medulla (RVLM), improved cardiac autonomic balance, and reduced arrhythmogenesis. Furthermore, a threefold improvement in cardiac function was observed in HFpEF+ExT rats. These novel findings suggest that moderate-intensity ExT is an effective means to attenuate the progression of HFpEF through improvement in RVLM redox state, cardiac autonomic control, and cardiac function. NEW & NOTEWORTHY In the present study, we found that exercise reduced oxidative stress in key brain stem areas related to autonomic control, improved sympathovagal control of the heart, reduced cardiac arrhythmias, and delayed deterioration of cardiac function in rats with heart failure with preserved ejection fraction (HFpEF). Our results provide strong evidence for the therapeutic efficacy of exercise training in HFpEF.
Collapse
Affiliation(s)
- David C. Andrade
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Alexis Arce-Alvarez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Hugo S. Díaz
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, Iowa
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
35
|
Shillcutt SK, Chacon MM, Brakke TR, Roberts EK, Schulte TE, Markin N. Heart Failure With Preserved Ejection Fraction: A Perioperative Review. J Cardiothorac Vasc Anesth 2017; 31:1820-1830. [PMID: 28869075 DOI: 10.1053/j.jvca.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Sasha K Shillcutt
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE.
| | - M Megan Chacon
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE
| | - Tara R Brakke
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE
| | - Ellen K Roberts
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE
| | - Thomas E Schulte
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE
| | - Nicholas Markin
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE
| |
Collapse
|
36
|
Toschi-Dias E, Rondon MUPB, Cogliati C, Paolocci N, Tobaldini E, Montano N. Contribution of Autonomic Reflexes to the Hyperadrenergic State in Heart Failure. Front Neurosci 2017; 11:162. [PMID: 28424575 PMCID: PMC5372354 DOI: 10.3389/fnins.2017.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
Heart failure (HF) is a complex syndrome representing the clinical endpoint of many cardiovascular diseases of different etiology. Given its prevalence, incidence and social impact, a better understanding of HF pathophysiology is paramount to implement more effective anti-HF therapies. Based on left ventricle (LV) performance, HF is currently classified as follows: (1) with reduced ejection fraction (HFrEF); (2) with mid-range EF (HFmrEF); and (3) with preserved EF (HFpEF). A central tenet of HFrEF pathophysiology is adrenergic hyperactivity, featuring increased sympathetic nerve discharge and a progressive loss of rhythmical sympathetic oscillations. The role of reflex mechanisms in sustaining adrenergic abnormalities during HFrEF is increasingly well appreciated and delineated. However, the same cannot be said for patients affected by HFpEF or HFmrEF, whom also present with autonomic dysfunction. Neural mechanisms of cardiovascular regulation act as “controller units,” detecting and adjusting for changes in arterial blood pressure, blood volume, and arterial concentrations of oxygen, carbon dioxide and pH, as well as for humoral factors eventually released after myocardial (or other tissue) ischemia. They do so on a beat-to-beat basis. The central dynamic integration of all these afferent signals ensures homeostasis, at rest and during states of physiological or pathophysiological stress. Thus, the net result of information gathered by each controller unit is transmitted by the autonomic branch using two different codes: intensity and rhythm of sympathetic discharges. The main scope of the present article is to (i) review the key neural mechanisms involved in cardiovascular regulation; (ii) discuss how their dysfunction accounts for the hyperadrenergic state present in certain forms of HF; and (iii) summarize how sympathetic efferent traffic reveal central integration among autonomic mechanisms under physiological and pathological conditions, with a special emphasis on pathophysiological characteristics of HF.
Collapse
Affiliation(s)
- Edgar Toschi-Dias
- Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão Paulo, Brazil.,Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | | | - Chiara Cogliati
- Medicina ad Indirizzo Fisiopatologico, ASST Fatebenefratelli SaccoMilan, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical InstitutionsBaltimore, MD, USA.,Dipartimento di Medicina Sperimentale, Universita' degli Studi di PerugiaPerugia, Italy
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,Dipartimento di Dipartimento Scienze cliniche e di comunità, Università degli Studi di MilanoMilan, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,Dipartimento di Dipartimento Scienze cliniche e di comunità, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|