1
|
Craige SM, Mammel RK, Amiri N, Willoughby OS, Drake JC. Interplay of ROS, mitochondrial quality, and exercise in aging: Potential role of spatially discrete signaling. Redox Biol 2024; 77:103371. [PMID: 39357424 PMCID: PMC11474192 DOI: 10.1016/j.redox.2024.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA.
| | - Rebecca K Mammel
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA
| | - Niloufar Amiri
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA; Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, 24061, USA
| | - Orion S Willoughby
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA.
| |
Collapse
|
2
|
Loo J, Gunasekaran G, Tan JK, Goon JA. Elucidating the effective age for dietary restriction and the key metabolites involved. Exp Gerontol 2024; 197:112601. [PMID: 39362416 DOI: 10.1016/j.exger.2024.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Dietary restriction (DR) extends lifespan in various species, but its effect at different ages, especially when started later, is unclear. This study used Caenorhabditis elegans to explore the impact of DR at different ages. Worms were divided into control and DR groups, with daily survival monitored. To confirm the occurrence of DR, the expression of DR-sensitive genes namely acdh-1, pyk-1, pck-2 and cts-1 were determined using RT-qPCR. Liquid chromatography mass spectrometry (LC-MS) was employed to observe the changes in metabolites affected by DR. The results indicated that young worms subjected to mild DR displayed the longest lifespan, highlighting the effectiveness of initiating DR at a young age. Increased expression of acdh-1 and pck-2 suggests activation of beta-oxidation and gluconeogenesis, while decreased cts-1 expression indicates a reduced citric acid cycle, further supporting the observed effects of DR in these worms. Metabolomic results indicated that DR decreased the activity of mechanistic Target of Rapamycin (mTOR) and the synthesis of amino acids namely leucine, tyrosine and tryptophan to conserve energy for cell repair and survival. DR also decreased levels of N-acetyl-L-methionine and S-adenosyl-methionine (SAM) in methionine metabolism, thereby promoting autophagy, reducing inflammation, and facilitating the removal of damaged cells and proteins. In conclusion, initiating dietary restriction early in life extends the lifespan by modulating amino acid metabolism and enhancing the autophagy pathway, thereby maintaining cellular wellbeing.
Collapse
Affiliation(s)
- Jazween Loo
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Geetha Gunasekaran
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Jackson MJ. Exercise-induced adaptations to homeostasis of reactive oxygen species in skeletal muscle. Free Radic Biol Med 2024; 225:494-500. [PMID: 39427746 DOI: 10.1016/j.freeradbiomed.2024.10.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Reactive oxygen species are generated by multiple mechanisms during contractile activity in exercising skeletal muscle and are recognised to play a role in signaling adaptations to the contractions. The sources of the superoxide and hydrogen peroxide generated are now relatively well understood but how the resulting low concentrations of hydrogen peroxide induce activation of multiple signaling pathways remains obscure. Several theories are presented together with accumulating evidence that 2-Cys peroxiredoxins may play a role of "effector" proteins in mediating the signaling actions of hydrogen peroxide. Identification of the mechanisms underlying these pathways offers the potential in the longer term for development of novel interventions to maintain exercise responses in the elderly with the potential to maintain muscle mass and function and consequent quality of life.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
4
|
Martínez de Toda I, Félix J, Díaz-Del Cerro E, De la Fuente M. Intracellular cytokines in peritoneal leukocytes relate to lifespan in aging and long-lived female mice. Biogerontology 2024; 25:837-849. [PMID: 38748335 PMCID: PMC11374870 DOI: 10.1007/s10522-024-10110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/24/2024] [Indexed: 09/05/2024]
Abstract
Peritoneal immune cell function is a reliable indicator of aging and longevity in mice and inflammaging is associated with a shorter lifespan. Nevertheless, it is unknown if the content of cytokines in these immune cells is linked to individual differences in lifespan. Therefore, this work aimed to investigate different peritoneal leukocyte populations and their content in intracellular pro-inflammatory (TNF and IL-6) and anti-inflammatory (IL-10) cytokines by flow cytometry in adult (10 months-old, n = 8) and old (18 months-old, n = 20) female Swiss/ICR mice. In addition, old mice were monitored longitudinally throughout their aging process, and the same markers were analyzed at the very old (24 months-old, n = 8) and long-lived (30 months-old, n = 4) ages. The longitudinal follow-up allowed us to relate the investigated parameters to individual lifespans. The results show that long-lived female mice exhibit an adult-like profile in most parameters investigated but also display specific immune adaptations, such as increased CD4+ and CD8+ T cells containing the pro-inflammatory TNF cytokine and CD4+ T cells and macrophages containing the anti-inflammatory cytokine IL-10. These adaptations may underlie their exceptional longevity. In addition, a negative correlation was obtained between the percentage of cytotoxic T cells, KLRG-1/CD4, large peritoneal macrophages, and the percentage of CD4+ T cells containing IL-6 and macrophages containing IL-10 in old age and lifespan, whereas a positive correlation was found between the CD4/CD8 ratio and the longevity of the animals at the same age. These results highlight the crucial role of peritoneal leukocytes in inflammaging and longevity.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain.
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain.
| | - Judith Félix
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain
| | - Mónica De la Fuente
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain
| |
Collapse
|
5
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
6
|
Galli F, Bartolini D, Ronco C. Oxidative stress, defective proteostasis and immunometabolic complications in critically ill patients. Eur J Clin Invest 2024; 54:e14229. [PMID: 38676423 DOI: 10.1111/eci.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Oxidative stress (OS) develops in critically ill patients as a metabolic consequence of the immunoinflammatory and degenerative processes of the tissues. These induce increased and/or dysregulated fluxes of reactive species enhancing their pro-oxidant activity and toxicity. At the same time, OS sustains its own inflammatory and immunometabolic pathogenesis, leading to a pervasive and vitious cycle of events that contribute to defective immunity, organ dysfunction and poor prognosis. Protein damage is a key player of these OS effects; it generates increased levels of protein oxidation products and misfolded proteins in both the cellular and extracellular environment, and contributes to forms DAMPs and other proteinaceous material to be removed by endocytosis and proteostasis processes of different cell types, as endothelial cells, tissue resident monocytes-macrophages and peripheral immune cells. An excess of OS and protein damage in critical illness can overwhelm such cellular processes ultimately interfering with systemic proteostasis, and consequently with innate immunity and cell death pathways of the tissues thus sustaining organ dysfunction mechanisms. Extracorporeal therapies based on biocompatible/bioactive membranes and new adsorption techniques may hold some potential in reducing the impact of OS on the defective proteostasis of patients with critical illness. These can help neutralizing reactive and toxic species, also removing solutes in a wide spectrum of molecular weights thus improving proteostasis and its immunometabolic corelates. Pharmacological therapy is also moving steps forward which could help to enhance the efficacy of extracorporeal treatments. This narrative review article explores the aspects behind the origin and pathogenic role of OS in intensive care and critically ill patients, with a focus on protein damage as a cause of impaired systemic proteostasis and immune dysfunction in critical illness.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Ronco
- Department of Medicine, International Renal Research Institute of Vicenza, University of Padova, San Bortolo Hospital Vicenza, Vicenza, Italy
| |
Collapse
|
7
|
Chen SC, Fu QW, Zhang QX, Yeung WF. Getting to Know the Effect Theory of Traditional Pediatric Tuina in the View of Modern Medicine in Three Minor Perspectives. Med Acupunct 2024; 36:173-177. [PMID: 39309623 PMCID: PMC11411279 DOI: 10.1089/acu.2023.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Pediatric tuina is a traditional Chinese medicine (TCM) modality that is well-accepted and applied in China currently. As a traditional medicine, it is based on TCM theories and clinical experience. In the TCM area, the "self-healing" system of the human body includes two aspects: self-regulation and adaptation, through which pediatric tuina could rectify dysfunctional states and guide the transition back to homeostasis. Pediatric tuina manipulations sufficiently, specifically, and accurately simulate certain sensory receptors in the skin, which in turn activates the internal self-healing function of the human body. We summarized the main opinions on pediatric tuina mechanism in ancient literature into three minor perspectives and demonstrated them by combining them with modern medical knowledge. First, children at a young age are more responsive to stimulations on the skin surface; second, the sensory receptors and pediatric tuina acupoints on the skin surface have a similar distribution pattern; third, the specific manipulations of pediatric tuina provide multiple stimuli that are detected by a variety of surface sensory receptors for information collection. Each point could be tested via clinical trials with appropriate-designed comparisons.
Collapse
Affiliation(s)
- Shu-Cheng Chen
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qin-Wei Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Xiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Reproductive &Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Family Planning Research Institute, World Health Organization Collaborating Centre (WHOCC), Chengdu, China
| | - Wing-Fai Yeung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
8
|
Iacono A, Oremus M, Maxwell CJ, Tyas SL. Functional social isolation mediates the association between depression and executive function in older women: findings from the Canadian Longitudinal Study on Aging Comprehensive cohort. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:661-681. [PMID: 37350151 DOI: 10.1080/13825585.2023.2226855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Depression and social isolation increase risk for executive function declines and are among the top five modifiable risk factors for dementia. However, the interrelationships between depression, social isolation and executive function are not well established. Further evidence is needed to inform strategies to promote executive function and independence in older age. We examined whether social isolation mediated the association between depression and executive function in community-dwelling middle-aged and older adults and whether this association was modified by age and sex. Adults aged 45 to 85 years from the Canadian Longitudinal Study on Aging (CLSA) Comprehensive cohort were followed over three years (complete case analysis, n = 14,133). Baseline depressive symptoms, a history of clinical depression, and functional social isolation (perceived lack of social support) were self-reported. Executive function at follow-up was a composite measure of five cognitive tests. Conditional process analysis assessed the mediating effects of functional social isolation across age group and sex, adjusted for sociodemographic and health covariates. Functional social isolation significantly mediated the association of depressive symptoms (proportion mediated [PM] = 8.0%) or clinical depression (PM = 17.5%) with executive function only among women aged 75+ years. Functional social isolation explains a proportion of the total effect of depressive symptoms or clinical depression on executive function in women aged 75 and older. Although reverse causation cannot be ruled out, our findings suggest that interventions that reduce functional social isolation or depression in older women may promote executive function.
Collapse
Affiliation(s)
- Anita Iacono
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark Oremus
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Colleen J Maxwell
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Suzanne L Tyas
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Lind DJ, Naidoo KC, Tomalin LE, Rohwer JM, Veal EA, Pillay CS. Quantifying redox transcription factor dynamics as a tool to investigate redox signalling. Free Radic Biol Med 2024; 218:16-25. [PMID: 38574974 DOI: 10.1016/j.freeradbiomed.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
A critical feature of the cellular antioxidant response is the induction of gene expression by redox-sensitive transcription factors. In many cells, activating these transcription factors is a dynamic process involving multiple redox steps, but it is unclear how these dynamics should be measured. Here, we show how the dynamic profile of the Schizosaccharomyces pombe Pap1 transcription factor is quantifiable by three parameters: signal amplitude, signal time and signal duration. In response to increasing hydrogen peroxide concentrations, the Pap1 amplitude decreased while the signal time and duration showed saturable increases. In co-response plots, these parameters showed a complex, non-linear relationship to the mRNA levels of four Pap1-regulated genes. We also demonstrate that hydrogen peroxide and tert-butyl hydroperoxide trigger quantifiably distinct Pap1 activation profiles and transcriptional responses. Based on these findings, we propose that different oxidants and oxidant concentrations modulate the Pap1 dynamic profile, leading to specific transcriptional responses. We further show how the effect of combination and pre-exposure stresses on Pap1 activation dynamics can be quantified using this approach. This method is therefore a valuable addition to the redox signalling toolbox that may illuminate the role of dynamics in determining appropriate responses to oxidative stress.
Collapse
Affiliation(s)
- Diane J Lind
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Kelisa C Naidoo
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Lewis E Tomalin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Johann M Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elizabeth A Veal
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ché S Pillay
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa.
| |
Collapse
|
10
|
Yoo J, Hur J, Yoo J, Jurivich D, Lee KJ. A novel approach to quantifying individual's biological aging using Korea's national health screening program toward precision public health. GeroScience 2024; 46:3387-3403. [PMID: 38302843 PMCID: PMC11009216 DOI: 10.1007/s11357-024-01079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Accurate prediction of biological age can inform public health measures to extend healthy lifespans and reduce chronic conditions. Multiple theoretical models and methods have been developed; however, their applicability and accuracy are still not extensive. Here, we report Differential Aging and Health Index (DAnHI), a novel measure of age deviation, developed using physical and serum biomarkers from four million individuals in Korea's National Health Screening Program. Participants were grouped into aging statuses (< 26 vs. ≥ 26, < 27 vs. ≥ 27, …, < 75 vs. ≥ 75 years) as response variables in a binary logistic regression model with thirteen biomarkers as independent variables. DAnHI for each individual was calculated as the weighted mean of their relative probabilities of being classified into each older age status, based on model ages ranging from 26 to 75. DAnHI in our large study population showed a steady increase with the increase in age and was positively associated with death after adjusting for chronological age. However, the effect size of DAnHI on the risk of death varied according to the age group and sex. The hazard ratio was highest in the 50-59-year age group and then decreased as the individuals aged. This study demonstrates that routine health check-up biomarkers can be integrated into a quantitative measure for predicting aging-related health status and death via appropriate statistical models and methodology. Our DAnHI-based results suggest that the same level of aging-related health status does not indicate the same degree of risk for death.
Collapse
Affiliation(s)
- Jinho Yoo
- YooJin BioSoft, 24, Jeongbalsan-Ro Ilsandong-Gu, Goyang-Si Gyeonggi-Do, 10402, Korea
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Jintae Yoo
- YooJin BioSoft, 24, Jeongbalsan-Ro Ilsandong-Gu, Goyang-Si Gyeonggi-Do, 10402, Korea
| | - Donald Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Kyung Ju Lee
- Department of Women's Rehabilitation, National Rehabilitation Center, 58, Samgaksan-Ro, Gangbuk-Gu, Seoul, 01022, Korea.
- Institute for Occupational & Environmental Health, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
11
|
Sun T, Ji C, Li F, Wu H. Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9314-9327. [PMID: 38709515 DOI: 10.1021/acs.est.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| |
Collapse
|
12
|
Zakharenko LP, Bobrovskikh MA, Gruntenko NE, Petrovskii DV, Verevkin EG, Putilov AA. Two Old Wild-Type Strains of Drosophila melanogaster Can Serve as an Animal Model of Faster and Slower Aging Processes. INSECTS 2024; 15:329. [PMID: 38786885 PMCID: PMC11122303 DOI: 10.3390/insects15050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Drosophila melanogaster provides a powerful platform to study the physiology and genetics of aging, i.e., the mechanisms underpinnings healthy aging, age-associated disorders, and acceleration of the aging process under adverse environmental conditions. Here, we tested the responses of daily rhythms to age-accelerated factors in two wild-type laboratory-adapted strains, Canton-S and Harwich. METHODS On the example of the 24 h patterns of locomotor activity and sleep, we documented the responses of these two strains to such factors as aging, high temperature, carbohydrate diet, and diet with different doses of caffeine-benzoate sodium. RESULTS The strains demonstrated differential responses to these factors. Moreover, compared to Canton-S, Harwich showed a reduced locomotor activity, larger amount of sleep, faster rate of development, smaller body weight, lower concentrations of main sugars, lower fecundity, and shorter lifespan. CONCLUSIONS It might be recommended to use at least two strains, one with a relatively fast and another with a relatively slow aging process, for the experimental elaboration of relationships between genes, environment, behavior, physiology, and health.
Collapse
Affiliation(s)
| | | | | | | | | | - Arcady A. Putilov
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630090, Russia; (L.P.Z.); (M.A.B.); (N.E.G.); (D.V.P.); (E.G.V.)
| |
Collapse
|
13
|
Shen Y, Li L, Du P, Xing X, Gu Z, Yu Z, Tao Y, Jiang H. Appropriate Drought Training Induces Optimal Drought Tolerance by Inducing Stepwise H 2O 2 Homeostasis in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:1202. [PMID: 38732418 PMCID: PMC11085929 DOI: 10.3390/plants13091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Soybean is considered one of the most drought-sensitive crops, and ROS homeostasis can regulate drought tolerance in these plants. Understanding the mechanism of H2O2 homeostasis and its regulatory effect on drought stress is important for improving drought tolerance in soybean. We used different concentrations of polyethylene glycol (PEG) solutions to simulate the progression from weak drought stress (0.2%, 0.5%, and 1% PEG) to strong drought stress (5% PEG). We investigated the responses of the soybean plant phenotype, ROS level, injury severity, antioxidant system, etc., to different weak drought stresses and subsequent strong drought stresses. The results show that drought-treated plants accumulated H2O2 for signaling and exhibited drought tolerance under the following stronger drought stress, among which the 0.5% PEG treatment had the greatest effect. Under the optimal treatment, there was qualitatively describable H2O2 homeostasis, characterized by a consistent increasing amplitude in H2O2 content compared with CK. The H2O2 signal formed under the optimum treatment induced the capacity of the antioxidant system to remove excess H2O2 to form a primary H2O2 homeostasis. The primary H2O2 homeostasis further induced senior H2O2 homeostasis under the following strong drought and maximized the improvement of drought tolerance. These findings might suggest that gradual drought training could result in stepwise H2O2 homeostasis to continuously improve drought tolerance.
Collapse
Affiliation(s)
- Yuqian Shen
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Lei Li
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Peng Du
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Xinghua Xing
- Xuzhou Institute of Agricultural Sciences of Xu-Huai Region of Jiangsu, Xuzhou 221131, China
| | - Zhiwei Gu
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Zhiming Yu
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Yujia Tao
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Haidong Jiang
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| |
Collapse
|
14
|
Vergani-Junior CA, Moro RDP, Pinto S, De-Souza EA, Camara H, Braga DL, Tonon-da-Silva G, Knittel TL, Ruiz GP, Ludwig RG, Massirer KB, Mair WB, Mori MA. An Intricate Network Involving the Argonaute ALG-1 Modulates Organismal Resistance to Oxidative Stress. Nat Commun 2024; 15:3070. [PMID: 38594249 PMCID: PMC11003958 DOI: 10.1038/s41467-024-47306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms' ability to withstand oxidative stress.
Collapse
Affiliation(s)
- Carlos A Vergani-Junior
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Raíssa De P Moro
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Silas Pinto
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Evandro A De-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Henrique Camara
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Section on Integrative Physiology & Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Deisi L Braga
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Guilherme Tonon-da-Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Thiago L Knittel
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Gabriel P Ruiz
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Katlin B Massirer
- Center for Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Center of Medicinal Chemistry (CQMED), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
15
|
Draelos ZD, Grimes PE, Watchmaker J, Nelson DB. A Multi-center Trial Evaluating a Serum Comprised of Plant-based Adaptogens Targeting Skin Quality. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:15-19. [PMID: 38444422 PMCID: PMC10911267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Objective The ability of the skin to maintain homeostasis declines with age. Adaptogens support the capacity of the skin to respond to stress. We sought to evaluate the efficacy of a novel serum comprised of plant-based adaptogens for improving photoaged skin following twice-daily application. Methods A multi-center, 12-week trial was conducted in participants aged 45 to 65 years, Fitzpatrick Skin Type (FST) I to VI, with mild-to-severe photoaging based on a 10-point grading scale (3 [Minimum] to 7 [Maximum]). Visible improvements were assessed in erythema, pore size, skin dullness, skin texture, and uneven pigmentation utilizing a six-point grading scale (0=None to 5=Severe). Global skin quality was measured utilizing our Global Skin Quality Index (GSQI). Sebum measurements were obtained in a subset of participants. Patient satisfaction and tolerability were recorded throughout the study. Results Fifty-three participants were enrolled and completed the study. Mean age was 56 years and 66 percent were White, 17 percent were Black, 8 percent were Hispanic, 6 percent were Asian/Pacific Islander, and 81 percent had moderate photodamage. At Week 12, significant mean percent improvements from baseline were demonstrated in erythema (50%), dullness (44%), texture (52%), pore size (23%), and uneven pigmentation (21%; all p<.0001). Significant GSQI improvements from baseline were observed at Week 12 (39%; p<0.0001). Significant mean reductions from baseline in skin surface sebum were demonstrated at Week 12 (-38%; p<0.0001). All adverse events (AEs) were mild and transient. Conclusion A novel serum comprised of plant-based adaptogens, demonstrated improvements from baseline in the appearance of erythema, dullness, texture, pore size, uneven pigmentation, and global skin quality over 12 weeks. Participants reported high levels of satisfaction, with mild, transient AEs reported.
Collapse
Affiliation(s)
- Zoe Diana Draelos
- Dr. Draelos is with Dermatology Consulting Services PLLC in High Point, North Carolina
| | - Pearl E. Grimes
- Dr. Grimes is with The Grimes Center of Medical and Aesthetic Dermatology and the Vitiligo and Pigmentation Institute of Southern California in Los Angeles, California
| | | | - Diane B. Nelson
- Ms. Nelson is with Skinbetter Science, a Dermatological Beauty brand of L'Oréal USA, Inc., in Phoenix, Arizona
| |
Collapse
|
16
|
Draelos ZD, Grimes PE, Watchmaker J, Nelson DB. Gene Expression Analysis of a Topical Serum Comprised of Plant-based Adaptogens Developed to Support Homeostasis and Skin Quality. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:43-46. [PMID: 38444426 PMCID: PMC10911264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Objective A topical serum comprised of plant-based adaptogens was purposefully developed to support the ability of the skin to adapt and achieve balance. The study described herein evaluated changes in the expression of target genes related to skin homeostasis following topical exposure. Methods Utilizing an in vitro epidermal skin model, quantitative polymerase chain reaction (qPCR) analysis of gene expression was conducted following 48-hour exposure to 15μL of the study product (MYS serum) to the surface of each tissue (N=4). Biomarkers that play a key role in skin homeostasis were analyzed: Aryl hydrocarbon receptor (AhR), chloride channel accessory 2 (CLCA2), metallothionein 1A (MT1A), 1F (MT1F), and 1G (MT1G), and thioredoxin reductase 1 (TXNRD1). Statistically significant changes were calculated using unpaired t-test analysis (p<0.05) versus control (saline). A linear Fold Change (FC) value >2 was considered statistically significant. Results An 85 percent (FC=1.85) increase in expression of AhR vs. control occurred following exposure to MYS serum indicating enhanced support of cellular and epidermal homeostasis, and the skin barrier's response to stress. Statistically significant increases in expression occurred with TXNRD1 (293%; FC=3.93), MT1A (307%; FC=4.07), MT1F (529%; FC=6.29), and MT1G (163%; FC=12.63) vs. control, indicating support of skin's adaptive response to stress and immune homeostasis. Significantly decreased levels of CLCA2 were demonstrated (69%; FC=-3.24) indicating inhibition of oxidative stress-induced senescence. Conclusion Utilizing an in vitro epidermal skin model, a serum comprised of plant-based adaptogens demonstrated changes in the expression of target genes that play important roles in skin's ability to respond to stress and achieve homeostasis.
Collapse
Affiliation(s)
- Zoe Diana Draelos
- Dr. Draelos is with Dermatology Consulting Services PLLC in High Point, North Carolina
| | - Pearl E. Grimes
- Dr Grimes is with The Grimes Center of Medical and Aesthetic Dermatology and the Vitiligo and Pigmentation Institute of Southern California in Los Angeles, California
| | | | - Diane B. Nelson
- Ms. Nelson is with Skinbetter Science, a Dermatological Beauty brand of L'Oréal USA, Inc. in Phoenix, Arizona
| |
Collapse
|
17
|
Monteiro dos Santos D, Libonati R, Garcia BN, Geirinhas JL, Salvi BB, Lima e Silva E, Rodrigues JA, Peres LF, Russo A, Gracie R, Gurgel H, Trigo RM. Twenty-first-century demographic and social inequalities of heat-related deaths in Brazilian urban areas. PLoS One 2024; 19:e0295766. [PMID: 38265975 PMCID: PMC10807764 DOI: 10.1371/journal.pone.0295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Population exposure to heat waves (HWs) is increasing worldwide due to climate change, significantly affecting society, including public health. Despite its significant vulnerabilities and limited adaptation resources to rising temperatures, South America, particularly Brazil, lacks research on the health impacts of temperature extremes, especially on the role played by socioeconomic factors in the risk of heat-related illness. Here, we present a comprehensive analysis of the effects of HWs on mortality rates in the 14 most populous urban areas, comprising approximately 35% of the country's population. Excess mortality during HWs was estimated through the observed-to-expected ratio (O/E) for total deaths during the events identified. Moreover, the interplay of intersectionality and vulnerability to heat considering demographics and socioeconomic heterogeneities, using gender, age, race, and educational level as proxies, as well as the leading causes of heat-related excess death, were assessed. A significant increase in the frequency was observed from the 1970s (0-3 HWs year-1) to the 2010s (3-11 HWs year-1), with higher tendencies in the northern, northeastern, and central-western regions. Over the 2000-2018 period, 48,075 (40,448-55,279) excessive deaths were attributed to the growing number of HWs (>20 times the number of landslides-related deaths for the same period). Nevertheless, our event-based surveillance analysis did not detect the HW-mortality nexus, reinforcing that extreme heat events are a neglected disaster in Brazil. Among the leading causes of death, diseases of the circulatory and respiratory systems and neoplasms were the most frequent. Critical regional differences were observed, which can be linked to the sharp North-South inequalities in terms of socioeconomic and health indicators, such as life expectancy. Higher heat-related excess mortality was observed for low-educational level people, blacks and browns, older adults, and females. Such findings highlight that the strengthening of primary health care combined with reducing socioeconomic, racial, and gender inequalities represents a crucial step to reducing heat-related deaths.
Collapse
Affiliation(s)
| | - Renata Libonati
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Beatriz N. Garcia
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João L. Geirinhas
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
| | - Barbara Bresani Salvi
- Escola Nacional de Saúde Pública Sergio Arouca - ENSP/ Fiocruz - Programa de Pós Graduação em Saúde Pública e Meio Ambiente
| | - Eliane Lima e Silva
- Departamento de Geografia, Universidade de Brasilia, Distrito Federal, Brazil
- LMI Sentinela, International Joint Laboratory “Sentinela” (Fiocruz, UnB, IRD), Distrito Federal, Brazil
| | - Julia A. Rodrigues
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo F. Peres
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Russo
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
| | - Renata Gracie
- Instituto de Comunicação e Informação Científica e Tecnológica em Saúde - ICICT/Fiocruz Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helen Gurgel
- Departamento de Geografia, Universidade de Brasilia, Distrito Federal, Brazil
- LMI Sentinela, International Joint Laboratory “Sentinela” (Fiocruz, UnB, IRD), Distrito Federal, Brazil
| | - Ricardo M. Trigo
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
| |
Collapse
|
18
|
Ceolin G, Moreira JD, Quialheiro A, Silva AAM, d’Orsi E, Rieger DK, Brietzke E. Vitamin D serum concentration is prospectively associated with depressive symptoms in the EpiFloripa Aging Cohort Study: a structural equation modeling approach. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2024; 46:e20233153. [PMID: 38251718 PMCID: PMC11474441 DOI: 10.47626/1516-4446-2023-3153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVE To evaluate the direct, indirect, and total prospective effects of serum concentrations of 25-hydroxycholecalciferol (25[OH]D) on depressive symptoms in older adults. METHODS Data from the second (2013-2015) and third (2017-2019) waves of the EpiFloripa Aging Cohort Study (= 60 years) were analyzed. Depressive symptoms were assessed with the 15-item Geriatric Depression Scale. 25(OH)D levels were measured using the microparticle chemiluminescence method. A directed acyclic graph was constructed to identify the minimum set of adjustments. Structural equation modeling analysis was used to determine the effects of 25(OH)D on depressive symptoms. RESULTS Data from 574 older adults (63.1% female) were analyzed. In the follow-up (n=390), 16.2% of them presented severe depressive symptoms (= 6 points). Structural equation modeling analysis revealed that 25(OH)D had a small direct negative effect (ß = -0.11, p < 0.05) and an overall negative effect (ß = -0.13; p < 0.05) on depressive symptoms in wave 3 (increased 25[OH]D led to decreased depressive symptoms). No direct or indirect effect on depressive symptoms was found in wave 2. CONCLUSION Our findings indicate a prospective association between 25(OH)D and depressive symptoms, suggesting a long-term effect in older adults from southern Brazil.
Collapse
Affiliation(s)
- Gilciane Ceolin
- Programa de Pós-Graduação em Nutrição, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Grupo de Pesquisa em Neurociência Nutricional Translacional, UFSC, Florianópolis, SC, Brazil
| | - Júlia Dubois Moreira
- Grupo de Pesquisa em Neurociência Nutricional Translacional, UFSC, Florianópolis, SC, Brazil
- Departamento de Nutrição, UFSC, Florianópolis, SC, Brazil
| | - Anna Quialheiro
- Life and Health Sciences Research Institute, Medical School, University of Minho, Braga, Portugal
| | - Antônio Augusto Moura Silva
- Programa de Pós-Graduação em Saúde Coletiva, Departamento de Saúde Pública, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Eleonora d’Orsi
- Departamento de Saúde Pública, UFSC, Florianópolis, SC, Brazil
| | - Débora Kurrle Rieger
- Grupo de Pesquisa em Neurociência Nutricional Translacional, UFSC, Florianópolis, SC, Brazil
- Departamento de Nutrição, UFSC, Florianópolis, SC, Brazil
| | - Elisa Brietzke
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Psychiatry, Queen’s University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
19
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
20
|
Jovičić SM. Enzyme ChE, cholinergic therapy and molecular docking: Significant considerations and future perspectives. Int J Immunopathol Pharmacol 2024; 38:3946320241289013. [PMID: 39367568 PMCID: PMC11526157 DOI: 10.1177/03946320241289013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
Enzyme Che plays an essential role in cholinergic and non-cholinergic functions. It is present in the fertilized/unfertilized eggs and sperm of different species. Inclusion criteria for data collection from electronic databases NCBI and Google Scholar are enzyme AChE/BChE, cholinergic therapy, genomic organization and gene transcription, enzyme structure, biogenesis, transport, processing and localization, molecular signaling and biological function, polymorphism and influencing factors. Enzyme Che acts as a signaling receptor during hematopoiesis, protein adhesion, amyloid fiber formation, neurite outgrowth, bone development, and maturation, explaining the activity out of synaptic neurotransmission. Polymorphism in the Che genes correlates to various diseases and diverse drug responses. In particular, change accompanies cancer, neurodegenerative, and cardiovascular disease. Literature knowledge indicates the importance of Che inhibitors that influence biochemical and molecular pathways in disease treatment, genomic organization, gene transcription, structure, biogenesis, transport, processing, and localization of Che enzyme. Enzyme Che polymorphism changes indicate the possibility of efficient and new inhibitor drug target mechanisms in diverse research areas.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Ceolin G, Antunes LDC, Moretti M, Rieger DK, Moreira JD. Vitamin D and depression in older adults: lessons learned from observational and clinical studies. Nutr Res Rev 2023; 36:259-280. [PMID: 35022097 DOI: 10.1017/s0954422422000026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Depression is a mental disorder triggered by the interaction of social, psychological and biological factors that have an important impact on an individual's life. Despite being a well-studied disease with several established forms of treatment, its prevalence is increasing, especially among older adults. New forms of treatment and prevention are encouraged, and some researchers have been discussing the effects of vitamin D (VitD) on depression; however, the exact mechanism by which VitD exerts its effects is not yet conclusive. In this study, we aimed to discuss the possible mechanisms underlying the association between VitD and depression in older adults. Therefore, we conducted a systematic search of databases for indexed articles published until 30 April 2021. The primary focus was on both observational studies documenting the association between VitD and depression/depressive symptoms, and clinical trials documenting the effects of VitD supplementation on depression/depressive symptoms, especially in older adults. Based on pre-clinical, clinical and observational studies, it is suggested that the maintenance of adequate VitD concentrations is an important issue, especially in older adults, which are a risk population for both VitD deficiency and depression. Nevertheless, it is necessary to carry out more studies using longitudinal approaches in low- and middle-income countries to develop a strong source of evidence to formulate guidelines and interventions.
Collapse
Affiliation(s)
- Gilciane Ceolin
- Postgraduate Program in Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luciana da Conceição Antunes
- Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Morgana Moretti
- Postgraduate Program in Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Débora Kurrle Rieger
- Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Júlia Dubois Moreira
- Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
22
|
Chevalier RL. Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations. Am J Physiol Renal Physiol 2023; 325:F595-F617. [PMID: 37675460 DOI: 10.1152/ajprenal.00134.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Despite significant advances in renal physiology, the global prevalence of chronic kidney disease (CKD) continues to increase. The emergence of multicellular organisms gave rise to increasing complexity of life resulting in trade-offs reflecting ancestral adaptations to changing environments. Three evolutionary traits shape CKD over the lifespan: 1) variation in nephron number at birth, 2) progressive nephron loss with aging, and 3) adaptive kidney growth in response to decreased nephron number. Although providing plasticity in adaptation to changing environments, the cell cycle must function within constraints dictated by available energy. Prioritized allocation of energy available through the placenta can restrict fetal nephrogenesis, a risk factor for CKD. Moreover, nephron loss with aging is a consequence of cell senescence, a pathway accelerated by adaptive nephron hypertrophy that maintains metabolic homeostasis at the expense of increased vulnerability to stressors. Driven by reproductive fitness, natural selection operates in early life but diminishes thereafter, leading to an exponential increase in CKD with aging, a product of antagonistic pleiotropy. A deeper understanding of the evolutionary constraints on the cell cycle may lead to manipulation of the balance between progenitor cell renewal and differentiation, regulation of cell senescence, and modulation of the balance between cell proliferation and hypertrophy. Application of an evolutionary perspective may enhance understanding of adaptation and maladaptation by nephrons in the progression of CKD, leading to new therapeutic advances.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
23
|
Ye Z, Pfrender ME, Lynch M. Evolutionary Genomics of Sister Species Differing in Effective Population Sizes and Recombination Rates. Genome Biol Evol 2023; 15:evad202. [PMID: 37946625 PMCID: PMC10664402 DOI: 10.1093/gbe/evad202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Studies of closely related species with known ecological differences provide exceptional opportunities for understanding the genetic mechanisms of evolution. In this study, we compared population-genomics data between Daphnia pulex and Daphnia pulicaria, two reproductively compatible sister species experiencing ecological speciation, the first largely confined to intermittent ponds and the second to permanent lakes in the same geographic region. Daphnia pulicaria has lower genome-wide nucleotide diversity, a smaller effective population size, a higher incidence of private alleles, and a substantially more linkage disequilibrium than D. pulex. Positively selected genes in D. pulicaria are enriched in potentially aging-related categories such as cellular homeostasis, which may explain the extended life span in D. pulicaria. We also found that opsin-related genes, which may mediate photoperiodic responses, are under different selection pressures in these two species. Genes involved in mitochondrial functions, ribosomes, and responses to environmental stimuli are found to be under positive selection in both species. Additionally, we found that the two species have similar average evolutionary rates at the DNA-sequence level, although approximately 160 genes have significantly different rates in the two lineages. Our results provide insights into the physiological traits that differ within this regionally sympatric sister-species pair that occupies unique microhabitats.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
24
|
Alnassar N, Hillman C, Fontana BD, Robson SC, Norton WHJ, Parker MO. angptl4 gene expression as a marker of adaptive homeostatic response to social isolation across the lifespan in zebrafish. Neurobiol Aging 2023; 131:209-221. [PMID: 37690345 DOI: 10.1016/j.neurobiolaging.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Social isolation has detrimental health effects, but the underlying mechanisms are unclear. Here, we investigated the impact of 2 weeks of isolation on behavior and gene expression in the central nervous system at different life stages of zebrafish. Results showed that socially deprived young adult zebrafish experienced increased anxiety, accompanied by changes in gene expression. Most gene expression patterns returned to normal within 24 hours of reintroduction to a social environment, except angptl4, which was upregulated after reintroduction, suggesting an adaptive mechanism. Similarly, aging zebrafish displayed heightened anxiety and increased central nervous system expression of angptl4 during isolation, but effects were reversed upon reintroduction to a social group. The findings imply that angptl4 plays a homeostatic role in response to social isolation, which varies across the lifespan. The study emphasizes the importance of social interactions for psychological well-being and highlights the negative consequences of isolation, especially in older individuals. Further research may unravel how social isolation affects angptl4 expression and its developmental and aging effects.
Collapse
Affiliation(s)
- Nancy Alnassar
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guilford, UK
| | | | - Samuel C Robson
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK; School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guilford, UK.
| |
Collapse
|
25
|
Homolak J. Gastrointestinal redox homeostasis in ageing. Biogerontology 2023; 24:741-752. [PMID: 37436501 DOI: 10.1007/s10522-023-10049-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
The gastrointestinal (GI) barrier acts as the primary interface between humans and the external environment. It constantly faces the risk of inflammation and oxidative stress due to exposure to foreign substances and microorganisms. Thus, maintaining the structural and functional integrity of the GI barrier is crucial for overall well-being, as it helps prevent systemic inflammation and oxidative stress, which are major contributors to age-related diseases. A healthy gut relies on maintaining gut redox homeostasis, which involves several essential elements. Firstly, it requires establishing a baseline electrophilic tone and an electrophilic mucosal gradient. Secondly, the electrophilic system needs to have sufficient capacity to generate reactive oxygen species, enabling effective elimination of invading microorganisms and rapid restoration of the barrier integrity following breaches. These elements depend on physiological redox signaling mediated by electrophilic pathways such as NOX2 and the H2O2 pathway. Additionally, the nucleophilic arm of redox homeostasis should exhibit sufficient reactivity to restore the redox balance after an electrophilic surge. Factors contributing to the nucleophilic arm include the availability of reductive substrates and redox signaling mediated by the cytoprotective Keap1-Nrf2 pathway. Future research should focus on identifying preventive and therapeutic strategies that enhance the strength and responsiveness of GI redox homeostasis. These strategies aim to reduce the vulnerability of the gut to harmful stimuli and address the decline in reactivity often observed during the aging process. By strengthening GI redox homeostasis, we can potentially mitigate the risks associated with age-related gut dyshomeostasis and optimize overall health and longevity.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
26
|
Diaz-Torres S, Ogonowski N, García-Marín LM, Bonham LW, Duran-Aniotz C, Yokoyama JS, Rentería ME. Genetic overlap between cortical brain morphometry and frontotemporal dementia risk. Cereb Cortex 2023; 33:7428-7435. [PMID: 36813468 PMCID: PMC10267623 DOI: 10.1093/cercor/bhad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Frontotemporal dementia (FTD) has a complex genetic etiology, where the precise mechanisms underlying the selective vulnerability of brain regions remain unknown. We leveraged summary-based data from genome-wide association studies (GWAS) and performed LD score regression to estimate pairwise genetic correlations between FTD risk and cortical brain imaging. Then, we isolated specific genomic loci with a shared etiology between FTD and brain structure. We also performed functional annotation, summary-data-based Mendelian randomization for eQTL using human peripheral blood and brain tissue data, and evaluated the gene expression in mice targeted brain regions to better understand the dynamics of the FTD candidate genes. Pairwise genetic correlation estimates between FTD and brain morphology measures were high but not statistically significant. We identified 5 brain regions with a strong genetic correlation (rg > 0.45) with FTD risk. Functional annotation identified 8 protein-coding genes. Building upon these findings, we show in a mouse model of FTD that cortical N-ethylmaleimide sensitive factor (NSF) expression decreases with age. Our results highlight the molecular and genetic overlap between brain morphology and higher risk for FTD, specifically for the right inferior parietal surface area and right medial orbitofrontal cortical thickness. In addition, our findings implicate NSF gene expression in the etiology of FTD.
Collapse
Affiliation(s)
- Santiago Diaz-Torres
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Natalia Ogonowski
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Centro de Neurociencias Cognitivas (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Luis M García-Marín
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Luke W Bonham
- Memory and Aging Center, University of California, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- School of Psychology, Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez, Santiago, Chile
| | - Jennifer S Yokoyama
- Memory and Aging Center, University of California, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
- Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco, CA, United States
| | - Miguel E Rentería
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Kaszubowska L, Foerster J, Kaczor JJ, Karnia MJ, Kmieć Z. Anti-Inflammatory Klotho Protein Serum Concentration Correlates with Interferon Gamma Expression Related to the Cellular Activity of Both NKT-like and T Cells in the Process of Human Aging. Int J Mol Sci 2023; 24:ijms24098393. [PMID: 37176100 PMCID: PMC10179552 DOI: 10.3390/ijms24098393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Klotho is a beta-glucuronidase that reveals both anti-inflammatory and anti-oxidative properties that have been associated with mechanisms of aging. The study aimed to analyze the relationships between the serum concentration of soluble α-Klotho and cellular activity of two populations of lymphocytes; T and NKT-like cells corresponding to the level of cytokine secretion; i.e., IFN-γ, TNF-α, and IL-6. The studied population comprised three age groups: young individuals ('young'), seniors aged under 85 ('old'), and seniors aged over 85 ('oldest'). Both NKT-like and T cells were either non-cultured or cultured for 48 h and stimulated appropriately with IL-2, LPS or PMA with ionomycin to compare with unstimulated control cells. In all studied age groups non-cultured or cultured NKT-like cells revealed higher expressions of TNF-α, IL-6, and IFN-γ than T cells. α-Klotho concentration in serum decreased significantly in the process of aging. Intriguingly, only IFN-γ expression revealed a positive correlation with α-Klotho protein serum concentration in both non-cultured and cultured T and NKT-like cells. Since IFN-γ is engaged in the maintenance of immune homeostasis, the observed relationships may indicate the involvement of α-Klotho and cellular IFN-γ expression in the network of adaptive mechanisms developed during the process of human aging.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdańsk, J. Bażyńskiego 8 Street, 80-308 Gdańsk, Poland
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, University of Gdańsk, J. Bażyńskiego 8 Street, 80-308 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
28
|
Antsiferova AA, Kopaeva MY, Kochkin VN, Reshetnikov AA, Kashkarov PK. Neurotoxicity of Silver Nanoparticles and Non-Linear Development of Adaptive Homeostasis with Age. MICROMACHINES 2023; 14:mi14050984. [PMID: 37241608 DOI: 10.3390/mi14050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
For the first time in the world, the behavioral functions of laboratory mammals exposed to silver nanoparticles were studied with regard to age. Silver nanoparticles coated with polyvinylpyrrolidone with a size of 8.7 nm were used in the present research as a potential xenobiotic. Elder mice adapted to the xenobiotic better than the younger animals. Younger animals demonstrated more drastic anxiety than the elder ones. A hormetic effect of the xenobiotic in elder animals was observed. Thus, it is concluded that adaptive homeostasis non-linearly changes with age increase. Presumably, it may improve during the prime of life and start to decline just after a certain stage. This work demonstrates that age growth is not directly conjugated with the organism fading and pathology development. Oppositely, vitality and resistance to xenobiotics may even improve with age at least until the prime of life.
Collapse
Affiliation(s)
- Anna A Antsiferova
- National Research Center "Kurchatov Institute", Akademika Kurchatova sq., 123182 Moscow, Russia
- Moscow Institute of Physics and Technologies, Institutskii Lane, Moscow Region, 141700 Dolgoprudny, Russia
| | - Marina Yu Kopaeva
- National Research Center "Kurchatov Institute", Akademika Kurchatova sq., 123182 Moscow, Russia
| | - Vyacheslav N Kochkin
- National Research Center "Kurchatov Institute", Akademika Kurchatova sq., 123182 Moscow, Russia
| | - Alexander A Reshetnikov
- National Research Center "Kurchatov Institute", Akademika Kurchatova sq., 123182 Moscow, Russia
| | - Pavel K Kashkarov
- National Research Center "Kurchatov Institute", Akademika Kurchatova sq., 123182 Moscow, Russia
- Moscow Institute of Physics and Technologies, Institutskii Lane, Moscow Region, 141700 Dolgoprudny, Russia
- Department of Physics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, 119991 Moscow, Russia
| |
Collapse
|
29
|
Olsen A, Harpaz Z, Ren C, Shneyderman A, Veviorskiy A, Dralkina M, Konnov S, Shcheglova O, Pun FW, Leung GHD, Leung HW, Ozerov IV, Aliper A, Korzinkin M, Zhavoronkov A. Identification of dual-purpose therapeutic targets implicated in aging and glioblastoma multiforme using PandaOmics - an AI-enabled biological target discovery platform. Aging (Albany NY) 2023; 15:2863-2876. [PMID: 37100462 DOI: 10.18632/aging.204678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023]
Abstract
Glioblastoma Multiforme (GBM) is the most aggressive and most common primary malignant brain tumor. The age of GBM patients is considered as one of the disease's negative prognostic factors and the mean age of diagnosis is 62 years. A promising approach to preventing both GBM and aging is to identify new potential therapeutic targets that are associated with both conditions as concurrent drivers. In this work, we present a multi-angled approach of identifying targets, which takes into account not only the disease-related genes but also the ones important in aging. For this purpose, we developed three strategies of target identification using the results of correlation analysis augmented with survival data, differences in expression levels and previously published information of aging-related genes. Several studies have recently validated the robustness and applicability of AI-driven computational methods for target identification in both cancer and aging-related diseases. Therefore, we leveraged the AI predictive power of the PandaOmics TargetID engine in order to rank the resulting target hypotheses and prioritize the most promising therapeutic gene targets. We propose cyclic nucleotide gated channel subunit alpha 3 (CNGA3), glutamate dehydrogenase 1 (GLUD1) and sirtuin 1 (SIRT1) as potential novel dual-purpose therapeutic targets to treat aging and GBM.
Collapse
Affiliation(s)
- Andrea Olsen
- The Youth Longevity Association, Sevenoaks, NA, United Kingdom
| | - Zachary Harpaz
- The Youth Longevity Association, Sevenoaks, NA, United Kingdom
- Pine Crest School Science Research Department, Fort Lauderdale, Florida 33334, USA
| | - Christopher Ren
- Shanghai High School International Division, Shanghai 200231, China
| | - Anastasia Shneyderman
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alexander Veviorskiy
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Maria Dralkina
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Simon Konnov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Olga Shcheglova
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Hoi Wing Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ivan V Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alex Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Mikhail Korzinkin
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| |
Collapse
|
30
|
Benjamin DI, Brett JO, Both P, Benjamin JS, Ishak HL, Kang J, Kim S, Chung M, Arjona M, Nutter CW, Tan JH, Krishnan AK, Dulay H, Louie SM, de Morree A, Nomura DK, Rando TA. Multiomics reveals glutathione metabolism as a driver of bimodality during stem cell aging. Cell Metab 2023; 35:472-486.e6. [PMID: 36854304 PMCID: PMC10015599 DOI: 10.1016/j.cmet.2023.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/14/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
With age, skeletal muscle stem cells (MuSCs) activate out of quiescence more slowly and with increased death, leading to defective muscle repair. To explore the molecular underpinnings of these defects, we combined multiomics, single-cell measurements, and functional testing of MuSCs from young and old mice. The multiomics approach allowed us to assess which changes are causal, which are compensatory, and which are simply correlative. We identified glutathione (GSH) metabolism as perturbed in old MuSCs, with both causal and compensatory components. Contrary to young MuSCs, old MuSCs exhibit a population dichotomy composed of GSHhigh cells (comparable with young MuSCs) and GSHlow cells with impaired functionality. Mechanistically, we show that antagonism between NRF2 and NF-κB maintains this bimodality. Experimental manipulation of GSH levels altered the functional dichotomy of aged MuSCs. These findings identify a novel mechanism of stem cell aging and highlight glutathione metabolism as an accessible target for reversing MuSC aging.
Collapse
Affiliation(s)
- Daniel I Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter Both
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel S Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather L Ishak
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jengmin Kang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingyu Chung
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Marina Arjona
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher W Nutter
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jenna H Tan
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Ananya K Krishnan
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Hunter Dulay
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharon M Louie
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Antoine de Morree
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Neurology Service, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
31
|
Chen SC, Cheng HL, Wang DD, Wang S, Yin YH, Suen LKP, Yeung WF. Experience of parents in delivering pediatric tuina to children with symptoms of attention deficit hyperactivity disorder during the COVID-19 pandemic: qualitative findings from focus group interviews. BMC Complement Med Ther 2023; 23:53. [PMID: 36804041 PMCID: PMC9938352 DOI: 10.1186/s12906-023-03891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Evidence suggests that pediatric tuina, a modality of traditional Chinese medicine (TCM), might have beneficial effects on the symptoms of attention deficit hyperactivity disorder (ADHD), such as overall improvements in concentration, flexibility, mood, sleep quality, and social functioning. This study was conducted to understand the facilitators and barriers in the delivery of pediatric tuina by parents to children with ADHD symptoms. METHODS This is a focus group interview embedded in a pilot randomized controlled trial on parent-administered pediatric tuina for ADHD in preschool children. Purposive sampling was employed to invite 15 parents who attended our pediatric tuina training program to participate voluntarily in three focus group interviews. The interviews were audio-recorded and transcribed verbatim. The data were analyzed through template analysis. RESULTS Two themes were identified: (1) facilitators of intervention implementation and (2) barriers to intervention implementation. The theme of the facilitators of intervention implementation included the subthemes of (a) perceived benefits to children and parents, (b) acceptability to children and parents, (c) professional support, and (d) parental expectations of the long-term effects of the intervention. The theme of barriers to intervention implementation included the subthemes of (a) limited benefits for children's inattention symptoms, (b) manipulation management difficulties, and (c) limitations of TCM pattern identification. CONCLUSION Perceived beneficial effects on the children's sleep quality and appetite and parent-child relationships, as well as timely and professional support, mainly facilitated the implementation of parent-administered pediatric tuina. Slow improvements in the children's inattention symptoms and the possible inaccuracies of online diagnosis were the dominant barriers of the intervention. Parents have high expectations for the provision of long-term professional support during their practice of pediatric tuina. The intervention presented here can be feasibly used by parents.
Collapse
Affiliation(s)
- Shu-Cheng Chen
- grid.16890.360000 0004 1764 6123School of Nursing, the Hong Kong Polytechnic University, HKSAR, China
| | - Hui-Lin Cheng
- grid.16890.360000 0004 1764 6123School of Nursing, the Hong Kong Polytechnic University, HKSAR, China
| | - Dong-Dong Wang
- Yantai Aviation Medical Room, Shandong Airlines, Yantai, China
| | - Shanshan Wang
- grid.16890.360000 0004 1764 6123School of Nursing, the Hong Kong Polytechnic University, HKSAR, China
| | - Yue-Heng Yin
- grid.16890.360000 0004 1764 6123School of Nursing, the Hong Kong Polytechnic University, HKSAR, China
| | - Lorna Kwai-Ping Suen
- grid.462932.80000 0004 1776 2650School of Nursing, Tung Wah College, HKSAR, China
| | - Wing-Fai Yeung
- School of Nursing, the Hong Kong Polytechnic University, HKSAR, China.
| |
Collapse
|
32
|
Wei Y, Jia S, Ding Y, Xia S, Giunta S. Balanced basal-levels of ROS (redox-biology), and very-low-levels of pro-inflammatory cytokines (cold-inflammaging), as signaling molecules can prevent or slow-down overt-inflammaging, and the aging-associated decline of adaptive-homeostasis. Exp Gerontol 2023; 172:112067. [PMID: 36535453 DOI: 10.1016/j.exger.2022.112067] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Both reactive oxygen species (ROS) from redox-biology and pro-inflammatory cytokines from innate immunity/and other sources, in addition to their role in redox-biology, and in defense and repair, have long been regarded as potentially harmful factors associated with oxidative stress and inflammatory states. However, their important physiological functions as signaling molecules have been demonstrated to be of importance, also in Geroscience, particularly when ROS are at balanced basal levels (redox-biology) and pro-inflammatory cytokines are at very low levels (cold-inflammaging). Under these conditions, both of these components (alone or in combination) may act as signaling/response molecules involved in regulating/maintaining or restoring adaptive homeostasis during aging, particularly in the early phases of even very-mild non-damaging internal or external environmental stimuli that could nevertheless elicit low-grade warnings-signals for homeostatic stability. If signals potentially perturbing homeostasis persist, the levels of ROS and pro-inflammatory mediators increase resulting in a switch from adaptive to maladaptive responses which may lead to oxidative stress and overt-inflammaging (or even to an overt inflammatory state), thus paving the way to the risks of aging-related diseases (ARDs). Conversely, upon adaptive-responses, low-levels of ROS and very-low-levels of pro-inflammatory-cytokines, alone or in combination, can result in an amplified capacity to prevent or slow-down overt-inflammaging (2-fold to 4-fold increase of pro-inflammatory cytokines) thus maintaining or restoring homeostasis. Therefore, these signaling molecules may also have the sequential incremental potential to prevent or slow the subsequent decline of adaptive homeostasis that will occur later in the lifespan. These scenarios may lead us to conceive of, and conceptualize, both these molecules and their basal-low levels, as well as their dynamics and the time-course of responses, as 'potential important pillars of adaptive-homeostasis in aging' since the earliest phases of the occurrence of any even very- mild environmental potential imbalance.
Collapse
Affiliation(s)
- Yaqin Wei
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China.
| | - Shuang Jia
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| | - Yuanyuan Ding
- Shanghai Medical Information Center, Shanghai Health Development Research Center, Shanghai, China.
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China.
| | - Sergio Giunta
- Casa di Cura Prof. Nobili-GHC Garofalo Health Care, Bologna, Italy.
| |
Collapse
|
33
|
Robison R, (Focht) Garand KL, Affoo R, Yeh CK, Chin N, McArthur C, Pulia M, Rogus-Pulia N. New horizons in understanding oral health and swallowing function within the context of frailty. Age Ageing 2023; 52:afac276. [PMID: 36735843 PMCID: PMC9897303 DOI: 10.1093/ageing/afac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
Frailty is a complex and multidimensional condition wherein declines in physiologic reserve and function place individuals in a state of heightened vulnerability and decreased resiliency. There has been growing interest in both research and clinical settings to understand how to best define, assess and characterise frailty in older adults. To this end, various models and clinical assessment tools have been used to define and measure frailty. While differences exist among these models and tools, a common unifying theme is a focus on physical function and activity. Notably absent across many available conceptual models and clinical tools are items directly related to oral and swallowing function. This is an important oversight as widespread changes to both oral and swallowing function are evident in older adults. Indeed, emerging evidence suggests many of the functional domains affected in frail older adults, such as nutrition and sarcopenia, have cyclical relationships with impairments in oral (oral hypofunction) and swallowing function (dysphagia) as well. The increasing appreciation for the interrelationships among oral hypofunction, dysphagia and frailty provides an opportunity for refinement of frailty assessment and characterisation in older adults to incorporate metrics specific to oral and swallowing function.
Collapse
Affiliation(s)
- Raele Robison
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Kendrea L (Focht) Garand
- Department of Speech Pathology and Audiology, University of South Alabama, Mobile, AL 36688, USA
| | - Rebecca Affoo
- School of Communication Sciences and Disorders, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Chih-Ko Yeh
- Geriatric Research, Education and Clinical Center (GRECC), South Texas Veterans Health Care System (STVHCS), San Antonio, TX 78229, USA
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio (UTHSA), San Antonio, TX 78229, USA
| | - Nathaniel Chin
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Caitlin McArthur
- School of Physiotherapy, Faculty Health, Dalhousie University, Halifax, NS
| | - Michael Pulia
- Department of Emergency Medicine, University of Wisconsin-Madison, Madison, WI 53703, USA
| | - Nicole Rogus-Pulia
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53726, USA
- Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
34
|
Wolff CA, Gutierrez-Monreal MA, Meng L, Zhang X, Douma LG, Costello HM, Douglas CM, Ebrahimi E, Pham A, Oliveira AC, Fu C, Nguyen A, Alava BR, Hesketh SJ, Morris AR, Endale MM, Crislip GR, Cheng KY, Schroder EA, Delisle BP, Bryant AJ, Gumz ML, Huo Z, Liu AC, Esser KA. Defining the age-dependent and tissue-specific circadian transcriptome in male mice. Cell Rep 2023; 42:111982. [PMID: 36640301 PMCID: PMC9929559 DOI: 10.1016/j.celrep.2022.111982] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/01/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular circadian clocks direct a daily transcriptional program that supports homeostasis and resilience. Emerging evidence has demonstrated age-associated changes in circadian functions. To define age-dependent changes at the systems level, we profile the circadian transcriptome in the hypothalamus, lung, heart, kidney, skeletal muscle, and adrenal gland in three age groups. We find age-dependent and tissue-specific clock output changes. Aging reduces the number of rhythmically expressed genes (REGs), indicative of weakened circadian control. REGs are enriched for the hallmarks of aging, adding another dimension to our understanding of aging. Analyzing differential gene expression within a tissue at four different times of day identifies distinct clusters of differentially expressed genes (DEGs). Increased variability of gene expression across the day is a common feature of aged tissues. This analysis extends the landscape for understanding aging and highlights the impact of aging on circadian clock function and temporal changes in gene expression.
Collapse
Affiliation(s)
- Christopher A Wolff
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Miguel A Gutierrez-Monreal
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA; Claude D. Pepper Older Americans Independence Center, University of Florida, Gainesville, FL 32610, USA
| | - Lingsong Meng
- Department of Biostatistics, University of Florida, Gainesville, FL 32610, USA
| | - Xiping Zhang
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lauren G Douma
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Hannah M Costello
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Collin M Douglas
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Elnaz Ebrahimi
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ann Pham
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aline C Oliveira
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chunhua Fu
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Amy Nguyen
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bryan R Alava
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stuart J Hesketh
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Andrew R Morris
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mehari M Endale
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - G Ryan Crislip
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kit-Yan Cheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Elizabeth A Schroder
- Internal Medicine, Pulmonary, University of Kentucky, Lexington, KY 40506, USA; Department of Physiology, University of Kentucky, Lexington, KY 40506, USA
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA
| | - Andrew J Bryant
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Michelle L Gumz
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; Center for Integrative Cardiovascular and Metabolic Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL 32610, USA.
| | - Andrew C Liu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA; Claude D. Pepper Older Americans Independence Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
35
|
Ashton KJ, Kiessling CJ, Thompson JLM, Aziz AY, Thomas WG, Headrick JP, Reichelt ME. Early cardiac aging linked to impaired stress-resistance and transcriptional control of stress response, quality control and mitochondrial pathways. Exp Gerontol 2023; 171:112011. [PMID: 36347360 DOI: 10.1016/j.exger.2022.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Phenotypic and transcriptomic evidence of early cardiac aging, and associated mechanisms, were investigated in young to middle-aged male mice (C57Bl/6; ages 8, 16, 32, 48 wks). Left ventricular gene expression (profiled via Illumina MouseWG-6 BeadChips), contractile and coronary function, and stress-resistance were assessed in Langendorff perfused hearts under normoxic conditions and following ischemic insult (20 min global ischemia-45 min reperfusion; I-R). Baseline or normoxic contractile function was unaltered by age, while cardiac and coronary 'reserves' (during β-adrenoceptor stimulation; 1 μM isoproterenol) declined by 48 wks. Resistance to I-R injury fell from 16 to 32 wks. Age-dependent transcriptional changes In un-stressed hearts were limited to 104 genes (>1.3-fold; 0.05 FDR), supporting: up-regulated innate defenses (glutathione and xenobiotic metabolism, chemotaxis, interleukins) and catecholamine secretion; and down-regulated extracellular matrix (ECM), growth factor and survival (PI3K/Akt) signaling. In stressed (post-ischemic) myocardium, ∼15-times as many genes (1528) were age-dependent, grouped into 6 clusters (>1.3-fold change; 0.05 FDR): most changing from 16 wks (45 % up/44 % down), a further 5 % declining from 32 wks. Major age-dependent Biological Processes in I-R hearts reveal: declining ATP metabolism, oxidative phosphorylation, cardiac contraction and morphogenesis, phospholipid metabolism and calcineurin signaling; increasing proteolysis and negative control of MAPK; and mixed changes in nuclear transport and angiogenic genes. Pathway analysis supports reductions in: autophagy, stress response, ER protein processing, mRNA surveillance and ribosome/translation genes; with later falls in mitochondrial biogenesis, oxidative phosphorylation and proteasome genes in I-R hearts. Summarizing, early cardiac aging is evident from 16 to 32 wks in male mice, characterized by: declining cardiovascular reserve and stress-resistance, transcriptomic evidence of constitutive stress and altered catecholamine and survival/growth signaling in healthy hearts; and declining stress response, quality control, mitochondrial energy metabolism and cardiac modeling processes in stressed hearts. These very early changes, potentially key substrate for advanced aging, may inform approaches to healthy aging and cardioprotection in the adult heart.
Collapse
Affiliation(s)
- Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Can J Kiessling
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Jamie-Lee M Thompson
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Aliah Y Aziz
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - John P Headrick
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
36
|
Chen W, Yin H, Xiao J, Liu W, Qu Q, Gong F, He X. The effect of aging on glucose metabolism improvement after Roux-en-Y gastric bypass in type 2 diabetes rats. Nutr Diabetes 2022; 12:51. [PMID: 36564376 PMCID: PMC9789110 DOI: 10.1038/s41387-022-00229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to investigate the effect of aging on glucose metabolism improvement after Roux-en-Y gastric bypass (RYGB) in rat models with type 2 diabetes mellitus (T2DM). METHODS Twenty aged Goto-Kakizaki rats were randomly assigned into RYGB-A group and sham RYGB (SR-A) group, and 10 adult Goto-Kakizaki rats also accept RYGB procedures (RYGB-Y). Glucose metabolism, resting energy expenditure (REE), glucagon-like peptide-1 (GLP-1) and total bile acid level were measured. RESULTS RYGB could significantly improve glucose metabolism in aged diabetic rats. The fasting blood glucose level in the RYGB-A group decreased from 15.8 ± 1.1 mmol/l before surgery to 12.3 ± 1.5 mmol/l 16 weeks after surgery (P < 0.01), and the AUCOGTT value decreased from 2603.9 ± 155.4 (mmol/l) min to 2299.9 ± 252.8 (mmol/l) min (P = 0.08). The decrease range of fasting blood glucose in the RYGB-A group was less than that in the RYGB-Y group (20.5% ± 6.5% vs. 40.6% ± 10.6%, P < 0.01), so is the decrease range of AUCOGTT value (11.6% ± 14.8% vs. 38.5% ± 8.3%, P < 0.01). Moreover, at the 16th postoperative week, the increase range of REE of the RYGB-A group was lower than that of the RYGB-Y group (15.3% ± 11.1% vs. 29.1% ± 12.1%, P = 0.04). The increased range of bile acid of the RYGB-A group was less than that of the RYGB-Y group (80.2 ± 59.3 % vs.212.3 ± 139.0 %, P < 0.01). The GLP-1 level of the RYGB-A group was less than that of the RYGB-Y group (12.8 ± 3.9 pmol/L vs. 18.7 ± 5.6 pmol/L, P = 0.02). There was no significant difference between the RYGB-A group and the RYGB-Y group in the level of the triiodothyronine level. CONCLUSIONS RYGB could induce a glucose metabolism improvement in aged diabetic rats, and aging might moderate the effect of RYGB.
Collapse
Affiliation(s)
- Weijie Chen
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Haixin Yin
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Jianchun Xiao
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Wei Liu
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Qiang Qu
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Fengying Gong
- grid.413106.10000 0000 9889 6335Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, PR China.
| |
Collapse
|
37
|
Sethi A, Melamud E. Joint inference of physiological network and survival analysis identifies factors associated with aging rate. CELL REPORTS METHODS 2022; 2:100356. [PMID: 36590696 PMCID: PMC9795372 DOI: 10.1016/j.crmeth.2022.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/11/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
We describe methodology for joint reconstruction of physiological-survival networks from observational data capable of identifying key survival-associated variables, inferring a minimal physiological network structure, and bridging this network to the Gompertzian survival layer. Using synthetic network structures, we show that the method is capable of identifying aging variables in cohorts as small as 5,000 participants. Applying the methodology to the observational human cohort, we find that interleukin-6, vascular calcification, and red-blood distribution width are strong predictors of baseline fitness. More important, we find that red blood cell counts, kidney function, and phosphate level are directly linked to the Gompertzian aging rate. Our model therefore enables discovery of processes directly linked to the aging rate of our species. We further show that this epidemiological framework can be applied as a causal inference engine to simulate the effects of interventions on physiology and longevity.
Collapse
Affiliation(s)
- Anurag Sethi
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Eugene Melamud
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| |
Collapse
|
38
|
Beeri MS, Tirosh A, Lin H, Golan S, Boccara E, Sano M, Zhu CW. Stability in BMI over time is associated with a better cognitive trajectory in older adults. Alzheimers Dement 2022; 18:2131-2139. [PMID: 35049119 PMCID: PMC9296696 DOI: 10.1002/alz.12525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Evidence on simultaneous changes in body mass index (BMI) and cognitive decline, which better reflect the natural course of both health phenomena, is limited. METHODS We capitalized on longitudinal data from 15,977 initially non-demented elderly from the Alzheimer's Disease Centers followed for 5 years on average. Changes in BMI were defined as (1) last minus first BMI, (2) mean of all follow-up BMIs minus first BMI, and (3) standard deviation of BMI change from baseline and all follow-up visits (representing variability). RESULTS Participants with significant changes in BMI (increase or decrease of ≥5%), or who had greater variability in BMI, had faster cognitive decline. This pattern was consistent irrespective of normal (BMI < 25; N = 5747), overweight (25 ≤ BMI < 30; N = 6302), or obese (BMI ≥ 30; N = 3928) BMI at baseline. CONCLUSIONS Stability in BMI predicts better cognitive trajectories suggesting clinical value in tracking BMI change, which is simple to measure, and may point to individuals whose cognition is declining.
Collapse
Affiliation(s)
- Michal Schnaider Beeri
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkUSA,The Joseph Sagol Neuroscience CenterSheba Medical CenterRamat GanIsrael
| | - Amir Tirosh
- Division of EndocrinologyDiabetes and MetabolismSheba Medical CenterRamat GanIsrael
| | - Hung‐Mo Lin
- Department of Health Population Sciences and PolicyCenter of BiostatisticsIcahn School of MedicineMount SinaiUSA
| | - Sapir Golan
- The Joseph Sagol Neuroscience CenterSheba Medical CenterRamat GanIsrael
| | - Ethel Boccara
- The Joseph Sagol Neuroscience CenterSheba Medical CenterRamat GanIsrael
| | - Mary Sano
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkUSA,GRECCJames J Peters VA Medical CenterBronxNew YorkUSA
| | - Carolyn W. Zhu
- Brookdale Department of Geriatrics and Palliative MedicineIcahn School of MedicineMount SinaiUSA,GRECCJames J Peters VA Medical CenterBronxNew YorkUSA
| |
Collapse
|
39
|
Zhang Y, Jelleschitz J, Grune T, Chen W, Zhao Y, Jia M, Wang Y, Liu Z, Höhn A. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57:102464. [PMID: 36152485 PMCID: PMC9508608 DOI: 10.1016/j.redox.2022.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022] Open
Abstract
Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Julia Jelleschitz
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
40
|
Conde Maldonado E, Marqués-Jiménez D, Casas-Agustench P, Bach-Faig A. Effect of supplementation with leucine alone, with other nutrients or with physical exercise in older people with sarcopenia: a systematic review. ENDOCRINOL DIAB NUTR 2022; 69:601-613. [PMID: 36396594 DOI: 10.1016/j.endien.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/01/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND Older adults are at a greater risk of developing sarcopenia as a result of reduced mobility, malnutrition, dietary changes and certain diseases. There are no systematic reviews in the literature analysing the effects of supplementation with leucine alone or as part of a supplement, and with or without physical exercise in older people with sarcopenia. We aimed to systematically review the evidence in intervention studies on the effects of supplementation with leucine, either alone, combined with other supplements, or combined with other supplements and physical exercise in older people with sarcopenia. MATERIALS AND METHODS Literature searches related to the topic were conducted in three databases (Pubmed/Medline, Cochrane and SciELO) looking for articles published prior to December 2020. This review includes intervention studies in older adults over 60 years of age with a history of sarcopenia where researchers reported on the effects of leucine supplementation, with or without physical exercise, related to the disease's treatments or outcomes. RESULTS The systematic review identified three intervention studies examining the effect of leucine without physical exercise, one on leucine with physical exercise, seven on leucine paired with another nutrient and without physical exercise, and twelve on leucine paired with another nutrient and physical exercise. The results revealed that leucine supplementation alone and without physical exercise did not improve markers of sarcopenia, whereas interventions pairing leucine with supplements, particularly leucine-enriched protein supplements, are a promising treatment for the improvement of sarcopenic markers, whether with or without physical exercise. CONCLUSIONS Leucine supplementation, specifically paired with protein supplements, both with and without physical exercise, was found to be an effective dietary intervention for the improvement of sarcopenia. Further dietary interventions are necessary to calculate effective dosage quantities for both leucine and nutrient supplementation as an integral part of the treatment.
Collapse
Affiliation(s)
| | - Diego Marqués-Jiménez
- Facultad de Ciencias de la Salud, Universitat Oberta de Catalunya (UOC), Barcelona, Spain; Deportivo Alavés (SAD) (Academia), Vitoria-Gasteiz, Spain
| | - Patricia Casas-Agustench
- Facultad de Ciencias de la Salud, Universitat Oberta de Catalunya (UOC), Barcelona, Spain; School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, UK.
| | - Anna Bach-Faig
- Grupo de Investigación FoodLab (2017SGR 83), Facultad de Ciencias de la Salud, Universitat Oberta de Catalunya, Barcelona, Spain; Vocalía de Alimentación y Nutrición, Colegio Oficial de Farmacéuticos de Barcelona, Barcelona, Spain.
| |
Collapse
|
41
|
Conde Maldonado E, Marqués-Jiménez D, Casas-Agustench P, Bach-Faig A. Efecto de la suplementación con leucina sola, junto con otro nutriente o con ejercicio físico en personas adultas mayores con sarcopenia: una revisión sistemática. ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Bevere M, Di Cola G, Santangelo C, Grazioli E, Marramiero L, Pignatelli P, Bondi D, Mrakic-Sposta S. Redox-based disruption of cellular hormesis and promotion of degenerative pathways: perspectives on ageing processes. J Gerontol A Biol Sci Med Sci 2022; 77:2195-2206. [PMID: 35973816 DOI: 10.1093/gerona/glac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The present work aims to link the redox and cell-centric theories of chronic processes in human biology, focusing on ageing. A synthetic overview of cellular redox pathways will be integrated by the concept of hormesis, which disruption leads to several physiopathological processes. The onset of age-related diseases due to the restriction of homeodynamic capacity will be herein considered in a redox fashion. Up-to-date arguments on hormetic agents, such as geroprotectors, dietary interventions, and physical exercise are refining the presented theoretical framework, integrated by insights from extracellular vesicles, microbiota, pollutants, and timing mechanisms. The broad concepts of exposome encompass the redox-based alteration of cellular hormesis for providing meaningful perspectives on redox biogerontology.
Collapse
Affiliation(s)
- Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Laboratory of Functional Biotechnologies, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulia Di Cola
- Cancer Genetics Unit, European Institute of Oncology (IEO), Milano, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Elisa Grazioli
- Department of Experimental and Clinical Medicine, "Magna Graecia" University, Catanzaro, Italy.,Department of Human, Movement Sciences and Health, University of Rome "Foro Italico", Roma, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Pamela Pignatelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Roma, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology National Research Council (ICF-CNR), Milano, Italy
| |
Collapse
|
43
|
Inokuchi M, Yamaguchi Y, Moorman BP, Seale AP. Age-Dependent Decline in Salinity Tolerance in a Euryhaline Fish. FRONTIERS IN AGING 2022; 2:675395. [PMID: 35822031 PMCID: PMC9261306 DOI: 10.3389/fragi.2021.675395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Euryhaline teleost fish are characterized by their ability to tolerate a wide range of environmental salinities by modifying the function of osmoregulatory cells and tissues. In this study, we experimentally addressed the age-related decline in the sensitivity of osmoregulatory transcripts associated with a transfer from fresh water (FW) to seawater (SW) in the euryhaline teleost, Mozambique tilapia, Oreochromis mossambicus. The survival rates of tilapia transferred from FW to SW were inversely related with age, indicating that older fish require a longer acclimation period during a salinity challenge. The relative expression of Na+/K+/2Cl− cotransporter 1a (nkcc1a), which plays an important role in hyposmoregulation, was significantly upregulated in younger fish after SW transfer, indicating a clear effect of age in the sensitivity of branchial ionocytes. Prolactin (Prl), a hyperosmoregulatory hormone in O. mossambicus, is released in direct response to a fall in extracellular osmolality. Prl cells of 4-month-old tilapia were sensitive to hyposmotic stimuli, while those of >24-month-old fish did not respond. Moreover, the responsiveness of branchial ionocytes to Prl was more robust in younger fish. Taken together, multiple aspects of osmotic homeostasis, from osmoreception to hormonal and environmental control of osmoregulation, declined in older fish. This decline appears to undermine the ability of older fish to survive transfer to hyperosmotic environments.
Collapse
Affiliation(s)
- Mayu Inokuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Benjamin P Moorman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI, United States
| | - Andre P Seale
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI, United States.,Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
44
|
How Aging and Oxidative Stress Influence the Cytopathic and Inflammatory Effects of SARS-CoV-2 Infection: The Role of Cellular Glutathione and Cysteine Metabolism. Antioxidants (Basel) 2022; 11:antiox11071366. [PMID: 35883857 PMCID: PMC9311797 DOI: 10.3390/antiox11071366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 infection can cause a severe respiratory distress syndrome with inflammatory and thrombotic complications, the severity of which increases with patients’ age and presence of comorbidity. The reasons for an age-dependent increase in the risk of severe COVID-19 could be many. These include defects in the homeostatic processes that control the cellular redox and its pivotal role in sustaining the immuno-inflammatory response to the host and the protection against oxidative stress and tissue degeneration. Pathogens may take advantage of such age-dependent abnormalities. Alterations of the thiol redox balance in the lung tissue and lining fluids may influence the risk of infection, and the host capability to respond to pathogens and to avoid severe complications. SARS-CoV-2, likewise other viruses, such as HIV, influenza, and HSV, benefits in its replication cycle of pro-oxidant conditions that the same viral infection seems to induce in the host cell with mechanisms that remain poorly understood. We recently demonstrated that the pro-oxidant effects of SARS-CoV-2 infection are associated with changes in the cellular metabolism and transmembrane fluxes of Cys and GSH. These appear to be the consequence of an increased use of Cys in viral protein synthesis and to ER stress pathway activation that interfere with transcription factors, as Nrf2 and NFkB, important to coordinate the metabolism of GSH with other aspects of the stress response and with the pro-inflammatory effects of this virus in the host cell. This narrative review article describes these cellular and molecular aspects of SARS-CoV-2 infection, and the role that antivirals and cytoprotective agents such as N-acetyl cysteine may have to limit the cytopathic effects of this virus and to recover tissue homeostasis after infection.
Collapse
|
45
|
Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
|
46
|
Crochemore C, Cimmaruta C, Fernández-Molina C, Ricchetti M. Reactive Species in Progeroid Syndromes and Aging-Related Processes. Antioxid Redox Signal 2022; 37:208-228. [PMID: 34428933 DOI: 10.1089/ars.2020.8242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Significance: Reactive species have been classically considered causative of age-related degenerative processes, but the scenario appears considerably more complex and to some extent counterintuitive than originally anticipated. The impact of reactive species in precocious aging syndromes is revealing new clues to understand and perhaps challenge the resulting degenerative processes. Recent Advances: Our understanding of reactive species has considerably evolved, including their hormetic effect (beneficial at a certain level, harmful beyond this level), the occurrence of diverse hormetic peaks in different cell types and organisms, and the extended type of reactive species that are relevant in biological processes. Our understanding of the impact of reactive species has also expanded from the dichotomic damaging/signaling role to modulation of gene expression. Critical Issues: These new concepts are affecting the study of aging and diseases where aging is greatly accelerated. We discuss how notions arising from the study of the underlying mechanisms of a progeroid disease, Cockayne syndrome, represent a paradigm shift that may shed a new light in understanding the role of reactive species in age-related degenerative processes. Future Issues: Future investigations urge to explore established and emerging notions to elucidate the multiple contributions of reactive species in degenerative processes linked to pathophysiological aging and their possible amelioration. Antioxid. Redox Signal. 37, 208-228.
Collapse
Affiliation(s)
- Clément Crochemore
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sup'Biotech, Villejuif, France
| | - Chiara Cimmaruta
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| | - Cristina Fernández-Molina
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sorbonne Universités, UPMC, University of Paris 06, Paris, France
| | - Miria Ricchetti
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
47
|
Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 2022; 23:499-515. [PMID: 35190722 DOI: 10.1038/s41580-022-00456-z] [Citation(s) in RCA: 565] [Impact Index Per Article: 282.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
'Reactive oxygen species' (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.-. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.- and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Vsevolod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Navdeep S Chandel
- Division of Pulmonary & Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Christine Winterbourn
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
48
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|
49
|
Redox Control of Signalling Responses to Contractile Activity and Ageing in Skeletal Muscle. Cells 2022; 11:cells11101698. [PMID: 35626735 PMCID: PMC9139227 DOI: 10.3390/cells11101698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Research over almost 40 years has established that reactive oxygen species are generated at different sites in skeletal muscle and that the generation of these species is increased by various forms of exercise. Initially, this was thought to be potentially deleterious to skeletal muscle and other tissues, but more recent data have identified key roles of these species in muscle adaptations to exercise. The aim of this review is to summarise our current understanding of these redox signalling roles of reactive oxygen species in mediating responses of muscle to contractile activity, with a particular focus on the effects of ageing on these processes. In addition, we provide evidence that disruption of the redox status of muscle mitochondria resulting from age-associated denervation of muscle fibres may be an important factor leading to an attenuation of some muscle responses to contractile activity, and we speculate on potential mechanisms involved.
Collapse
|
50
|
Zhou L, Kong G, Palmisano I, Cencioni MT, Danzi M, De Virgiliis F, Chadwick JS, Crawford G, Yu Z, De Winter F, Lemmon V, Bixby J, Puttagunta R, Verhaagen J, Pospori C, Lo Celso C, Strid J, Botto M, Di Giovanni S. Reversible CD8 T cell-neuron cross-talk causes aging-dependent neuronal regenerative decline. Science 2022; 376:eabd5926. [PMID: 35549409 DOI: 10.1126/science.abd5926] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is associated with increased prevalence of axonal injuries characterized by poor regeneration and disability. However, the underlying mechanisms remain unclear. In our experiments, RNA sequencing of sciatic dorsal root ganglia (DRG) revealed significant aging-dependent enrichment in T cell signaling both before and after sciatic nerve injury (SNI) in mice. Lymphotoxin activated the transcription factor NF-κB, which induced expression of the chemokine CXCL13 by neurons. This in turn recruited CXCR5+CD8+ T cells to injured DRG neurons overexpressing major histocompatibility complex class I. CD8+ T cells repressed the axonal regeneration of DRG neurons via caspase 3 activation. CXCL13 neutralization prevented CXCR5+CD8+ T cell recruitment to the DRG and reversed aging-dependent regenerative decline, thereby promoting neurological recovery after SNI. Thus, axonal regeneration can be facilitated by antagonizing cross-talk between immune cells and neurons.
Collapse
Affiliation(s)
- Luming Zhou
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Guiping Kong
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Ilaria Palmisano
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria Teresa Cencioni
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Matt Danzi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Francesco De Virgiliis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Jessica S Chadwick
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Greg Crawford
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Zicheng Yu
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Fred De Winter
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Vance Lemmon
- Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - John Bixby
- Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Radhika Puttagunta
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Constandina Pospori
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, UK
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Cristina Lo Celso
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, UK
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Marina Botto
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|