1
|
Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y. Chained occurrences of early afterdepolarizations may create a directional triggered activity to initiate reentrant ventricular tachyarrhythmias. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 261:108587. [PMID: 39837062 DOI: 10.1016/j.cmpb.2025.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND AND OBJECTIVE It has been believed that polymorphic ventricular tachycardia (VT) such as torsades de pointes (TdP) seen in patients with long QT syndromes is triggered by creating early afterdepolarization (EAD)-mediated triggered activity (TA). Although the mechanisms creating the TA have been studied intensively, characteristics of the arrhythmogenic (torsadogenic) substrates that link EAD developments to TA formation are still not well understood. METHODS Computer simulations of excitation propagation in a homogenous two-dimensional ventricular tissue with an anisotropic conduction property were performed to characterize torsadogenic substrates that potentially form TA. We examined how the configuration of islands (clusters) of myocytes with synchronously chained occurrence of EADs within the tissue, each EAD cluster size and stimulation from different directions impact the TA creation. RESULTS The presence of EAD clusters within the tissue created local regions of cardiomyocytes maintained at a depolarized membrane potential above 0 mV due to the chained occurrence of EADs. When the local area contained a concave surface border, the TA was created depending on its curvature. We found that the distance of EAD clusters was a critical factor for the development of EAD-mediated TA and polymorphic VT in long QT syndromes, that there existed a region of the distance favorable for the development of TA and VT, and that the TA was always created along the myocardial fiber orientation regardless of stimulating directions. CONCLUSION The chained occurrences of EADs may create a directional TA. Our findings provide deeper understandings of the cardiac arrhythmogenic substrates for preventing and treating arrhythmias.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| | - Takao Shimamoto
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuma Aoji
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| |
Collapse
|
2
|
Stein J, Greene D, Fenton F, Shiferaw Y. Mechanism of Arrhythmogenesis Driven by Early After Depolarizations in Cardiac Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623585. [PMID: 39605738 PMCID: PMC11601420 DOI: 10.1101/2024.11.14.623585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Early-after depolarizations (EADs) are changes in the action potential plateau that can lead to cardiac arrhythmia. At the cellular level, these oscillations are irregular and change from beat to beat due to the sensitivity of voltage repolarization to subcellular stochastic processes. However, the behavior of EADs in tissue, where cells are strongly coupled by gap junctions, is less understood. In this study, we develop a computational model of EADs caused by a reduction in the rate of calcium-induced inactivation of the L-type calcium channel. We find that, as inactivation decreases EADs occur with durations varying randomly from beat to beat. In cardiac tissue, however, gap junction coupling between cells dampens these fluctuations, and it is unclear what dictates the formation of EADs. In this study we show that EADs in cardiac tissue can be modeled by the deterministic limit of a stochastic single-cell model. Analysis of this deterministic model reveals that EADs emerge in tissue after an abrupt transition to alternans, where large populations of cells suddenly synchronize, causing EADs on every other beat. We analyze this transition and show that it is due to a discontinuous bifurcation that leads to a large change in the action potential duration in response to very small changes in pacing rate. We further demonstrate that this transition is highly arrhythmogenic, as the sudden onset of EADs in cardiac tissue promotes conduction block and reentry. Our results highlight the importance of EAD alternans in arrhythmogenesis and suggests that ectopic beats are not required.
Collapse
Affiliation(s)
- Jack Stein
- Department of Physics and Astronomy, California State University, Northridge
| | - D'Artagnan Greene
- Department of Physics and Astronomy, California State University, Northridge
| | - Flavio Fenton
- Department of Physics, Georgia Institute of Technology
| | - Yohannes Shiferaw
- Department of Physics and Astronomy, California State University, Northridge
| |
Collapse
|
3
|
Takasugi N, Endo S, Takasugi M, Tochibora R, Yoshida A, Watanabe T, Kawaguchi T, Yamada Y, Kanamori H, Ushikoshi H, Okura H. Roles of Atrial Arrhythmias in Triggering Torsade de Pointes in Patients With Acquired Long QT Syndrome. Circ Arrhythm Electrophysiol 2024; 17:e012675. [PMID: 39234741 DOI: 10.1161/circep.123.012675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Little is known about the role of atrial arrhythmias (AAs) in triggering Torsade de Pointes (TdP) in patients with long QT syndrome (LQTS). The aim of this study was to examine the contribution of AAs to the development of TdP in acquired LQTS patients. METHODS The initiation patterns of 81 episodes of TdP obtained from 34 consecutive acute acquired LQTS patients (14 men, median age, 69 years; median QTc, 645.5 ms) with documented TdP were analyzed. The initiation mode of TdP was divided into 3 categories: (1) preceding short-long sequence (SLS); (2) sudden R-on-T phenomenon without preceding SLS; and (3) increased atrial rate. The patients were divided into 2 groups based on the presence or absence of AAs-induced TdP; AAs-induced (n=18) and non-AAs-induced (n=16) groups. The association of clinical/ECG characteristics and TdP frequency after initiating conventional therapy with AAs-induced TdP was evaluated. The groups were compared using the Mann-Whitney U test or Fisher exact test. RESULTS AAs-induced group comprised 52.9% (18/34) of the patients studied. TdP was preceded by AAs-initiated SLSs in 41.2% (14/34) of the patients and was directly induced by R-on-T AAs (AAs coincidentally encountered a vulnerable repolarizing region during the T wave) in 23.5% (8/34). AAs triggered 48 (59.3%) of the 81 TdP episodes. AAs initiated SLSs in 67.8% (40/59) of the SLS-induced TdP episodes. R-on-T AAs accounted for 23.5% (19/81) of the TdP episodes. AAs-induced group experienced TdP after initiating therapy more frequently than non-AAs-induced group (2.5 versus 1 event, P=0.008). AAs-induced group exhibited macroscopic T-wave alternans more frequently than non-AAs-induced group (6 versus 0 event, P=0.02). CONCLUSIONS AAs play a key role in triggering TdP in more than half of patients with acute acquired LQTS and can increase TdP frequency after initiating therapy. Thus, AAs are not benign but rather can be life-threatening in patients with acute acquired LQTS.
Collapse
Affiliation(s)
- Nobuhiro Takasugi
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Susumu Endo
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | | | - Ryota Tochibora
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Akihiro Yoshida
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Takatomo Watanabe
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Tomonori Kawaguchi
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Yoshihisa Yamada
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Hiromitsu Kanamori
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Hiroaki Ushikoshi
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Hiroyuki Okura
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| |
Collapse
|
4
|
Lu D, Fan X. Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia. J Nanobiotechnology 2024; 22:523. [PMID: 39215361 PMCID: PMC11363662 DOI: 10.1186/s12951-024-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.
Collapse
Affiliation(s)
- Dingkun Lu
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Zhao Y, Chakraborty P, Tomassetti J, Subha T, Massé S, Thavendiranathan P, Billia F, Lai PFH, Abdel-Qadir H, Nanthakumar K. Arrhythmogenic Ventricular Remodeling by Next-Generation Bruton's Tyrosine Kinase Inhibitor Acalabrutinib. Int J Mol Sci 2024; 25:6207. [PMID: 38892396 PMCID: PMC11173147 DOI: 10.3390/ijms25116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiac arrhythmias remain a significant concern with Ibrutinib (IBR), a first-generation Bruton's tyrosine kinase inhibitor (BTKi). Acalabrutinib (ABR), a next-generation BTKi, is associated with reduced atrial arrhythmia events. However, the role of ABR in ventricular arrhythmia (VA) has not been adequately evaluated. Our study aimed to investigate VA vulnerability and ventricular electrophysiology following chronic ABR therapy in male Sprague-Dawley rats utilizing epicardial optical mapping for ventricular voltage and Ca2+ dynamics and VA induction by electrical stimulation in ex-vivo perfused hearts. Ventricular tissues were snap-frozen for protein analysis for sarcoplasmic Ca2+ and metabolic regulatory proteins. The results show that both ABR and IBR treatments increased VA vulnerability, with ABR showing higher VA regularity index (RI). IBR, but not ABR, is associated with the abbreviation of action potential duration (APD) and APD alternans. Both IBR and ABR increased diastolic Ca2+ leak and Ca2+ alternans, reduced conduction velocity (CV), and increased CV dispersion. Decreased SERCA2a expression and AMPK phosphorylation were observed with both treatments. Our results suggest that ABR treatment also increases the risk of VA by inducing proarrhythmic changes in Ca2+ signaling and membrane electrophysiology, as seen with IBR. However, the different impacts of these two BTKi on ventricular electrophysiology may contribute to differences in VA vulnerability and distinct VA characteristics.
Collapse
Affiliation(s)
- Yanan Zhao
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Praloy Chakraborty
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Julianna Tomassetti
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Tasnia Subha
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Stéphane Massé
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Paaladinesh Thavendiranathan
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Patrick F. H. Lai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Husam Abdel-Qadir
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
- Women’s College Hospital, Toronto, ON M5S 1B2, Canada
| | - Kumaraswamy Nanthakumar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| |
Collapse
|
6
|
Dajani AHJ, Liu MB, Olaopa MA, Cao L, Valenzuela-Ripoll C, Davis TJ, Poston MD, Smith EH, Contreras J, Pennino M, Waldmann CM, Hoover DB, Lee JT, Jay PY, Javaheri A, Slavik R, Qu Z, Ajijola OA. Heterogeneous cardiac sympathetic innervation gradients promote arrhythmogenesis in murine dilated cardiomyopathy. JCI Insight 2023; 8:e157956. [PMID: 37815863 PMCID: PMC10721311 DOI: 10.1172/jci.insight.157956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Ventricular arrhythmias (VAs) in heart failure are enhanced by sympathoexcitation. However, radiotracer studies of catecholamine uptake in failing human hearts demonstrate a proclivity for VAs in patients with reduced cardiac sympathetic innervation. We hypothesized that this counterintuitive finding is explained by heterogeneous loss of sympathetic nerves in the failing heart. In a murine model of dilated cardiomyopathy (DCM), delayed PET imaging of sympathetic nerve density using the catecholamine analog [11C]meta-Hydroxyephedrine demonstrated global hypoinnervation in ventricular myocardium. Although reduced, sympathetic innervation in 2 distinct DCM models invariably exhibited transmural (epicardial to endocardial) gradients, with the endocardium being devoid of sympathetic nerve fibers versus controls. Further, the severity of transmural innervation gradients was correlated with VAs. Transmural innervation gradients were also identified in human left ventricular free wall samples from DCM versus controls. We investigated mechanisms underlying this relationship by in silico studies in 1D, 2D, and 3D models of failing and normal human hearts, finding that arrhythmogenesis increased as heterogeneity in sympathetic innervation worsened. Specifically, both DCM-induced myocyte electrical remodeling and spatially inhomogeneous innervation gradients synergistically worsened arrhythmogenesis. Thus, heterogeneous innervation gradients in DCM promoted arrhythmogenesis. Restoration of homogeneous sympathetic innervation in the failing heart may reduce VAs.
Collapse
Affiliation(s)
- Al-Hassan J. Dajani
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Michael B. Liu
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Michael A. Olaopa
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Lucian Cao
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Timothy J. Davis
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Megan D. Poston
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Elizabeth H. Smith
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jaime Contreras
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Marissa Pennino
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Christopher M. Waldmann
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Donald B. Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jason T. Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Ali Javaheri
- Washington University School of Medicine, St. Louis, Missouri, USA
- John J. Cochran Veterans Hospital, St. Louis, Missouri, USA
| | - Roger Slavik
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Zhilin Qu
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
7
|
Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y. Theoretical prediction of early afterdepolarization-evoked triggered activity formation initiating ventricular reentrant arrhythmias. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107722. [PMID: 37515880 DOI: 10.1016/j.cmpb.2023.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Excessive prolongation of QT interval on ECGs in patients with congenital/acquired long QT syndrome and heart failure is a sign suggesting the development of early afterdepolarization (EAD), an abnormal repolarization in the action potential of ventricular cardiomyocytes. The development of EAD has been believed to be a trigger for fatal tachyarrhythmia, which can be a risk for sudden cardiac death. The role of EAD in triggering ventricular tachycardia (VT) remains unclear. The aim of this study was to elucidate the mechanism of EAD-induced triggered activity formation that leads to the VT such as Torsades de Pointes. METHODS We investigated the relationship between EAD and tachyarrhythmia initiation by constructing homogeneous myocardial sheet models consisting of the mid-myocardial cell version of a human ventricular myocyte model and performing simulations of excitation propagation. RESULTS A solitary island-like (clustering) occurrence of EADs in the homogeneous myocardial sheet could induce a focal excitation wave. However, reentrant excitation, an entity of tachyarrhythmia, was not able to be triggered regardless of the EAD cluster size when the focal excitation wave formed a repolarization potential difference boundary consisting of only a convex surface. The discontinuous distribution of multiple EAD clusters in the ventricular tissue formed a specific repolarization heterogeneity due to the repolarization potential difference, the shape of which depended on EAD cluster size and placed intervals. We found that the triggered activity was formed in such a manner that the repolarization potential difference boundary included a concave surface. CONCLUSIONS The formation of triggered activity that led to tachyarrhythmia required not only the occurrence of EAD onset-mediated focal excitation wave but also a repolarization heterogeneity-based specific repolarization potential difference boundary shape formed within the tissue.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| | - Takao Shimamoto
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuma Aoji
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| |
Collapse
|
8
|
Strahan J, Finkel J, Dinner AR, Weare J. Predicting rare events using neural networks and short-trajectory data. JOURNAL OF COMPUTATIONAL PHYSICS 2023; 488:112152. [PMID: 37332834 PMCID: PMC10270692 DOI: 10.1016/j.jcp.2023.112152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Estimating the likelihood, timing, and nature of events is a major goal of modeling stochastic dynamical systems. When the event is rare in comparison with the timescales of simulation and/or measurement needed to resolve the elemental dynamics, accurate prediction from direct observations becomes challenging. In such cases a more effective approach is to cast statistics of interest as solutions to Feynman-Kac equations (partial differential equations). Here, we develop an approach to solve Feynman-Kac equations by training neural networks on short-trajectory data. Our approach is based on a Markov approximation but otherwise avoids assumptions about the underlying model and dynamics. This makes it applicable to treating complex computational models and observational data. We illustrate the advantages of our method using a low-dimensional model that facilitates visualization, and this analysis motivates an adaptive sampling strategy that allows on-the-fly identification of and addition of data to regions important for predicting the statistics of interest. Finally, we demonstrate that we can compute accurate statistics for a 75-dimensional model of sudden stratospheric warming. This system provides a stringent test bed for our method.
Collapse
Affiliation(s)
- John Strahan
- Department of Chemistry and James Franck Institute, the University of Chicago, Chicago, IL 60637
| | - Justin Finkel
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Aaron R. Dinner
- Department of Chemistry and James Franck Institute, the University of Chicago, Chicago, IL 60637
- Committee on Computational and Applied Mathematics, the University of Chicago, Chicago, IL 60637
| | - Jonathan Weare
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
| |
Collapse
|
9
|
Baggett BC, Murphy KR, Sengun E, Mi E, Cao Y, Turan NN, Lu Y, Schofield L, Kim TY, Kabakov AY, Bronk P, Qu Z, Camelliti P, Dubielecka P, Terentyev D, del Monte F, Choi BR, Sedivy J, Koren G. Myofibroblast senescence promotes arrhythmogenic remodeling in the aged infarcted rabbit heart. eLife 2023; 12:e84088. [PMID: 37204302 PMCID: PMC10259375 DOI: 10.7554/elife.84088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
Progressive tissue remodeling after myocardial infarction (MI) promotes cardiac arrhythmias. This process is well studied in young animals, but little is known about pro-arrhythmic changes in aged animals. Senescent cells accumulate with age and accelerate age-associated diseases. Senescent cells interfere with cardiac function and outcome post-MI with age, but studies have not been performed in larger animals, and the mechanisms are unknown. Specifically, age-associated changes in timecourse of senescence and related changes in inflammation and fibrosis are not well understood. Additionally, the cellular and systemic role of senescence and its inflammatory milieu in influencing arrhythmogenesis with age is not clear, particularly in large animal models with cardiac electrophysiology more similar to humans than previously studied animal models. Here, we investigated the role of senescence in regulating inflammation, fibrosis, and arrhythmogenesis in young and aged infarcted rabbits. Aged rabbits exhibited increased peri-procedural mortality and arrhythmogenic electrophysiological remodeling at the infarct border zone (IBZ) compared to young rabbits. Studies of the aged infarct zone revealed persistent myofibroblast senescence and increased inflammatory signaling over a 12-week timecourse. Senescent IBZ myofibroblasts in aged rabbits appear to be coupled to myocytes, and our computational modeling showed that senescent myofibroblast-cardiomyocyte coupling prolongs action potential duration (APD) and facilitates conduction block permissive of arrhythmias. Aged infarcted human ventricles show levels of senescence consistent with aged rabbits, and senescent myofibroblasts also couple to IBZ myocytes. Our findings suggest that therapeutic interventions targeting senescent cells may mitigate arrhythmias post-MI with age.
Collapse
Affiliation(s)
- Brett C Baggett
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Kevin R Murphy
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Elif Sengun
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
- Department of Pharmacology, Institute of Graduate Studies in Health Sciences, Istanbul UniversityIstanbulTurkey
| | - Eric Mi
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Yueming Cao
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Nilufer N Turan
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Yichun Lu
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Lorraine Schofield
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Tae Yun Kim
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Anatoli Y Kabakov
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Peter Bronk
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Zhilin Qu
- School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of SurreyGuildfordUnited Kingdom
| | - Patrycja Dubielecka
- Brown UniversityProvidenceUnited States
- Department of Hematology, Rhode Island HospitalProvidenceUnited States
| | - Dmitry Terentyev
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | | | - Bum-Rak Choi
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | | | - Gideon Koren
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
10
|
Alexander C, Bishop MJ, Gilchrist RJ, Burton FL, Smith GL, Myles RC. Initiation of ventricular arrhythmia in the acquired long QT syndrome. Cardiovasc Res 2023; 119:465-476. [PMID: 35727943 PMCID: PMC10064840 DOI: 10.1093/cvr/cvac103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022] Open
Abstract
AIMS Long QT syndrome (LQTS) carries a risk of life-threatening polymorphic ventricular tachycardia (Torsades de Pointes, TdP) and is a major cause of premature sudden cardiac death. TdP is induced by R-on-T premature ventricular complexes (PVCs), thought to be generated by cellular early-afterdepolarisations (EADs). However, EADs in tissue require cellular synchronisation, and their role in TdP induction remains unclear. We aimed to determine the mechanism of TdP induction in rabbit hearts with acquired LQTS (aLQTS). METHODS AND RESULTS Optical mapping of action potentials (APs) and intracellular Ca2+ was performed in Langendorff-perfused rabbit hearts (n = 17). TdP induced by R-on-T PVCs was observed during aLQTS (50% K+/Mg++ & E4031) conditions in all hearts (P < 0.0001 vs. control). Islands of AP prolongation bounded by steep voltage gradients (VGs) were consistently observed before arrhythmia and peak VGs were more closely related to the PVC upstroke than EADs, both temporally (7 ± 5 ms vs. 44 ± 27 ms, P < 0.0001) and spatially (1.0 ± 0.7 vs. 3.6 ± 0.9 mm, P < 0.0001). PVCs were initiated at estimated voltages of ∼ -40 mV and had upstroke dF/dtmax and Vm-Ca2+ dynamics compatible with ICaL activation. Computational simulations demonstrated that PVCs could arise directly from VGs, through electrotonic triggering of ICaL. In experiments and the model, sub-maximal L-type Ca2+ channel (LTCC) block (200 nM nifedipine and 90% gCaL, respectively) abolished both PVCs and TdP in the continued presence of aLQTS. CONCLUSION These data demonstrate that ICaL activation at sites displaying steep VGs generates the PVCs which induce TdP, providing a mechanism and rationale for LTCC blockers as a novel therapeutic approach in LQTS.
Collapse
Affiliation(s)
- Cherry Alexander
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Rebecca J Gilchrist
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
11
|
Lin J, Qu Z, Huang X. Bifurcations to transient and oscillatory excitations in inhomogeneous excitable media: Insights into arrhythmogenesis in long QT syndrome. Phys Rev E 2023; 107:034402. [PMID: 37073009 PMCID: PMC10583175 DOI: 10.1103/physreve.107.034402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/21/2023] [Indexed: 04/20/2023]
Abstract
Ventricular arrhythmias are the leading cause of sudden cardiac death. Understanding the mechanisms of arrhythmia initiation is important for developing effective therapeutics for prevention. Arrhythmias can be induced via premature external stimuli or occur spontaneously via dynamical instabilities. Computer simulations have shown that a large repolarization gradient due to regional prolongation of the action potential duration can result in instabilities leading to premature excitations and arrhythmias, but the bifurcation remains to be elucidated. In this study we carry out numerical simulations and linear stability analyses using a one-dimensional heterogeneous cable consisting of the FitzHugh-Nagumo model. We show that a Hopf bifurcation leads to local oscillations, which, once their amplitudes are large enough, lead to spontaneous propagating excitations. Depending on the degree of heterogeneities, these excitations can range from one to many and to be sustained oscillations, manifesting as premature ventricular contractions (PVCs) and sustained arrhythmias. The dynamics depends on the repolarization gradient and the length of the cable. Complex dynamics is also induced by the repolarization gradient. The mechanistic insights from the simple model may help in the understanding of the genesis of PVCs and arrhythmias in long QT syndrome.
Collapse
Affiliation(s)
- Jianying Lin
- Department of physics, South China University of Technology, Guangzhou 510641, China
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Xiaodong Huang
- Department of physics, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
12
|
You T, Xie Y, Luo C, Zhang K, Zhang H. Mechanistic insights into spontaneous transition from cellular alternans to ventricular fibrillation. Physiol Rep 2023; 11:e15619. [PMID: 36863774 PMCID: PMC9981424 DOI: 10.14814/phy2.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 03/04/2023] Open
Abstract
T-wave alternans (TWA) has been used for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death (SCD) in multiple clinical settings; however, possible mechanism(s) underlying the spontaneous transition from cellular alternans reflected by TWA to arrhythmias in impaired repolarization remains unclear. The healthy guinea pig ventricular myocytes under E-4031 blocking IKr (0.1 μM, N = 12; 0.3 μM, N = 10; 1 μM, N = 10) were evaluated using whole-cell patch-clamp. The electrophysiological properties of isolated perfused guinea pig hearts under E-4031 (0.1 μM, N = 5; 0.3 μM, N = 5; 1 μM, N = 5) were evaluated using dual- optical mapping. The amplitude/threshold/restitution curves of action potential duration (APD) alternans and potential mechanism(s) underlying the spontaneous transition of cellular alternans to ventricular fibrillation (VF) were examined. There were longer APD80 and increased amplitude and threshold of APD alternans in E-4031 group compared with baseline group, which was reflected by more pronounced arrhythmogenesis at the tissue level, and were associated with steep restitution curves of the APD and the conduction velocity (CV). Conduction of AP alternans augmented tissue's functional spatiotemporal heterogeneity of regional AP/Ca alternans, as well as the AP/Ca dispersion, leading to localized uni-directional conduction block that spontaneous facilitated the formation of reentrant excitation waves without the need for additional premature stimulus. Our results provide a possible mechanism for the spontaneous transition from cardiac electrical alternans in cellular action potentials and intercellular conduction without the involvement of premature excitations, and explain the increased susceptibility to ventricular arrhythmias in impaired repolarization. In this study, we implemented voltage-clamp and dual-optical mapping approaches to investigate the underlying mechanism(s) for the arrhythmogenesis of cardiac alternans in the guinea pig heart at cellular and tissue levels. Our results demonstrated a spontaneous development of reentry from cellular alternans, arising from a combined actions of restitution properties of action potential duration, conduction velocity of excitation wave and interplay between alternants of action potential and the intracellular Ca handling. We believe this study provides new insights into underlying the mechanism, by which cellular cardiac alternans spontaneously evolves into cardiac arrhythmias.
Collapse
Affiliation(s)
- Tingting You
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
- Department of NeurosurgeryXinqiao Hospital, Army Medical UniversityChongqingChina
| | - Yulong Xie
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
| | - Cunjin Luo
- School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK
| | - Kevin Zhang
- School of MedicineImperial College of LondonLondonUK
| | - Henggui Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
- Department of Physics and AstronomyUniversity of ManchesterManchesterUK
| |
Collapse
|
13
|
Abstract
Cardiac alternans arises from dynamical instabilities in the electrical and calcium cycling systems of the heart, and often precedes ventricular arrhythmias and sudden cardiac death. In this review, we integrate clinical observations with theory and experiment to paint a holistic portrait of cardiac alternans: the underlying mechanisms, arrhythmic manifestations and electrocardiographic signatures. We first summarize the cellular and tissue mechanisms of alternans that have been demonstrated both theoretically and experimentally, including 3 voltage-driven and 2 calcium-driven alternans mechanisms. Based on experimental and simulation results, we describe their relevance to mechanisms of arrhythmogenesis under different disease conditions, and their link to electrocardiographic characteristics of alternans observed in patients. Our major conclusion is that alternans is not only a predictor, but also a causal mechanism of potentially lethal ventricular and atrial arrhythmias across the full spectrum of arrhythmia mechanisms that culminate in functional reentry, although less important for anatomic reentry and focal arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - James N. Weiss
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
14
|
Qi D, Li W, Quan XQ, Gao Y, Wang J, Guo L, Zhao W, Liu T, Gao C, Yan GX. Alternating Early Afterdepolarizations Underlying Bradycardia-Dependent Macroscopic T Wave and Discordant Mechanical Alternans. Circ Arrhythm Electrophysiol 2023; 16:e011453. [PMID: 36595630 DOI: 10.1161/circep.122.011453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Macroscopic T wave alternans (macro-TWA) often heralds the onset of Torsades de Pointes in patients with QT prolongation. However, the mechanisms underlying macro-TWA remain unclear. We examined the cellular and ionic basis for macro-TWA in rabbits with left ventricular hypertrophy (LVH). METHODS The renovascular hypertension model was used to induce LVH in rabbits. Action potentials were simultaneously recorded from epicardium and endocardium together with a transmural ECG and isometric contractility in arterially perfused left ventricular wedges. Late sodium current (INa-L) was recorded in single-isolated left ventricular myocytes with the whole cell patch-clamp technique. RESULTS Macro-TWA and accompanied mechanical alternans occurred spontaneously in 8 of 33 LVH rabbits (P<0.05, versus 0/15 in controls) and were induced by an INa-L enhancer ATX-II at 1 to 3 nM in additional 7. Macro-TWA and mechanical alternans occurred discordantly, that is, that longer QT interval and larger T wave were associated with weaker isometric contvractility. Alternating early afterdepolarizations in the endocardium caused macro-TWA in 12 of 15 LVH rabbits and, therefore, early afterdepolarization-dependent R-from-T extrasystoles and Torsades de Pointes always originated from the beats with longer QT and larger T wave during macro-TWA. INa-L density was significantly larger in LVH myocytes than that of control myocytes. Macro-TWA, mechanical alternans, R-from-T extrasystoles, and Torsades de Pointes were all abolished by INa-L blocker ranolazine or mexiletine. CONCLUSIONS LVH enhances INa-L density and promotes alternating early afterdepolarizations in the left ventricular endocardium that manifest as macro-TWA with discordant mechanical alternans. INa-L blockade abolishes macro-TWA, mechanical alternans, early afterdepolarization-dependent R-from-T extrasystoles, and Torsades de Pointes.
Collapse
Affiliation(s)
- Datun Qi
- Zhengzhou University People's Hospital and Central China Fuwai Hospital, Zhengzhou, China (D.Q., C.G., G.-X.Y.).,Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.)
| | - Wei Li
- Department of Cardiology, Xinhua Hospital, Shanghai, China (W.L.)
| | - Xiao-Qing Quan
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.)
| | - Yuan Gao
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.).,Henan University of Traditional Chinese Medicine, Zhengzhou, China (Y.G.)
| | - Jianyong Wang
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.).,TEDA International Cardiovascular Hospital, Tianjin, China (J.W.)
| | | | - Wenping Zhao
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.).,Affiliated Hospital of Hebei University, Baoding, China (W.Z.)
| | - Tong Liu
- Department of Cardiology, Second Hospital of Tianjin Medical University, China (T.L.)
| | - Chuanyu Gao
- Zhengzhou University People's Hospital and Central China Fuwai Hospital, Zhengzhou, China (D.Q., C.G., G.-X.Y.)
| | - Gan-Xin Yan
- Zhengzhou University People's Hospital and Central China Fuwai Hospital, Zhengzhou, China (D.Q., C.G., G.-X.Y.).,Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.).,Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (G.-X.Y.)
| |
Collapse
|
15
|
Yuan M, Lian H, Li P. Spatiotemporal patterns of early afterdepolarizations underlying abnormal T-wave morphologies in a tissue model of the Purkinje-ventricular system. PLoS One 2023; 18:e0280267. [PMID: 36622850 PMCID: PMC9829164 DOI: 10.1371/journal.pone.0280267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Sudden cardiac death (SCD) is a leading cause of death worldwide, and the majority of SCDs are caused by acute ventricular arrhythmias (VAs). Early afterdepolarizations (EADs) are an important trigger of VA under pathological conditions, e.g., inherited or acquired long QT syndrome (LQTS). However, it remains unclear how EAD events at the cellular level are spatially organized at the tissue level to induce and maintain ventricular arrhythmias and whether the spatial-temporal patterns of EADs at the tissue level are associated with abnormal T-wave morphologies that are often observed in LQTS, such as broad-based, notched or bifid; late appearance; and pointed T-waves. Here, a tissue model of the Purkinje-ventricular system (PVS) was developed to quantitatively investigate the complex spatial-temporal dynamics of EADs during T-wave abnormalities. We found that (1) while major inhibition of ICaL can substantially reduce the excitability of the PVS leading to conduction failures, moderate ICaL inhibition can promote occurrences of AP alternans at short cycle lengths (CLs), and EAD events preferentially occur with a major reduction of IKr (>50%) at long CLs; (2) with a minor reduction of ICaL, spatially synchronized steady-state EAD events with inverted and biphasic T-waves can be "weakened" into beat-to-beat concurrences of spatially synchronized EADs and T-wave alternans, and as pacing CLs increase, beat-to-beat concurrences of localized EADs with late-appearing and pointed T-wave morphologies can be observed; (3) under certain conditions, localized EAD events in the midmyocardium may trigger slow uni-directional electric propagation with inverted (antegrade) or upright (retrograde) broad-based T-waves; (4) spatially discordant EADs were typically characterized by desynchronized spontaneous onsets of EAD events between two groups of PVS tissues with biphasic T-wave morphologies, and they can evolve into spatially discordant oscillating EAD patterns with sustained or self-terminated alternating EAD and electrocardiogram (ECG) patterns. Our results provide new insights into the spatiotemporal aspects of the onset and development of EADs and suggest possible mechanistic links between the complex spatial dynamics of EADs and T-wave morphologies.
Collapse
Affiliation(s)
- Mengya Yuan
- Henan Engineering Research Center of Health Big Data and Intelligent Computing, School of Public Health, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Heqiang Lian
- Henan Engineering Research Center of Health Big Data and Intelligent Computing, School of Public Health, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Pan Li
- Henan Engineering Research Center of Health Big Data and Intelligent Computing, School of Public Health, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
16
|
Kanaporis G, Blatter LA. Activation of small conductance Ca 2+ -activated K + channels suppresses Ca 2+ transient and action potential alternans in ventricular myocytes. J Physiol 2023; 601:51-67. [PMID: 36426548 PMCID: PMC9878619 DOI: 10.1113/jp283870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and Ca2+ transient (CaT) amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+ -activated K+ (SK) channels in ventricles are poorly understood. We tested the hypothesis that in single rabbit ventricular myocytes pharmacological modulation of SK channels plays a causative role for the development of pacing-induced CaT and AP duration (APD) alternans. SK channel blockers (apamin, UCL1684) had only a minor effect on AP repolarization. However, SK channel activation by NS309 resulted in significant APD shortening, demonstrating that functional SK channels are well expressed in ventricular myocytes. The effects of NS309 were prevented or reversed by apamin and UCL1684, indicating that NS309 acted on SK channels. SK channel activation abolished or reduced the degree of pacing-induced CaT and APD alternans. Inhibition of KV 7.1 (with HMR1556) and KV 11.1 (with E4031) channels was used to mimic conditions of long QT syndromes type-1 and type-2, respectively. Both HMR1556 and E4031 enhanced CaT alternans that was prevented by SK channel activation. In AP voltage-clamped cells the SK channel activator had no effect on CaT alternans, confirming that suppression of CaT alternans was caused by APD shortening. APD shortening contributed to protection from alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest that SK activation could be a potential intervention to avert development of alternans with important ramifications for arrhythmia prevention and therapy for patients with long QT syndrome. KEY POINTS: At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and intracellular Ca2+ release amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+ -activated K+ (SK) channels in ventricles are poorly understood. We investigated whether pharmacological modulation of SK channels affects the development of cardiac alternans in normal ventricular cells and in cells with drug-induced long QT syndrome (LQTS). While SK channel blockers have only a minor effect on AP morphology, their activation leads to AP shortening and abolishes or reduces the degree of pacing-induced Ca2+ and AP alternans. AP shortening contributed to protection against alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest SK activation as a potential intervention to avert the development of alternans with important ramifications for arrhythmia prevention for patients with LQTS.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| | - Lothar A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
17
|
Qu Z, Liu MB, Olcese R, Karagueuzian H, Garfinkel A, Chen PS, Weiss JN. R-on-T and the initiation of reentry revisited: Integrating old and new concepts. Heart Rhythm 2022; 19:1369-1383. [PMID: 35364332 PMCID: PMC11334931 DOI: 10.1016/j.hrthm.2022.03.1224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Initiation of reentry requires 2 factors: (1) a triggering event, most commonly focal excitations such as premature ventricular complexes (PVCs); and (2) a vulnerable substrate with regional dispersion of refractoriness and/or excitability, such as occurs during the T wave of the electrocardiogram when some areas of the ventricle have repolarized and recovered excitability but others have not. When the R wave of a PVC coincides in time with the T wave of the previous beat, this timing can lead to unidirectional block and initiation of reentry, known as the R-on-T phenomenon. Classically, the PVC triggering reentry has been viewed as arising focally from 1 region and propagating into another region whose recovery is delayed, resulting in unidirectional conduction block and reentry initiation. However, more recent evidence indicates that PVCs also can arise from the T wave itself. In the latter case, the PVC initiating reentry is not a separate event from the T wave but rather is causally generated from the repolarization gradient that manifests as the T wave. We call the former an "R-to-T" mechanism and the latter an "R-from-T" mechanism, which are initiation mechanisms distinct from each other. Both are important components of the R-on-T phenomenon and need to be taken into account when designing antiarrhythmic strategies. Strategies targeting suppression of triggers alone or vulnerable substrate alone may be appropriate in some instances but not in others. Preventing R-from-T arrhythmias requires suppressing the underlying dynamic tissue instabilities responsible for producing both triggers and substrate vulnerability simultaneously. The same principles are likely to apply to supraventricular arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.
| | - Michael B Liu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Hrayr Karagueuzian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Alan Garfinkel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Integrative Biology and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - James N Weiss
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
18
|
Huang C, Song Z, Qu Z. Synchronization of spatially discordant voltage and calcium alternans in cardiac tissue. Phys Rev E 2022; 106:024406. [PMID: 36109882 PMCID: PMC11316446 DOI: 10.1103/physreve.106.024406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/18/2022] [Indexed: 06/01/2023]
Abstract
The heart is an excitable medium which is excited by membrane potential depolarization and propagation. Membrane potential depolarization brings in calcium (Ca) through the Ca channels to trigger intracellular Ca release for contraction of the heart. Ca also affects voltage via Ca-dependent ionic currents, and thus, voltage and Ca are bidirectionally coupled. It has been shown that the voltage subsystem or the Ca subsystem can generate its own dynamical instabilities which are affected by their bidirectional couplings, leading to complex dynamics of action potential and Ca cycling. Moreover, the dynamics become spatiotemporal in tissue in which cells are diffusively coupled through voltage. A widely investigated spatiotemporal dynamics is spatially discordant alternans (SDA) in which action potential duration (APD) or Ca amplitude exhibits temporally period-2 and spatially out-of-phase patterns, i.e., APD-SDA and Ca-SDA patterns, respectively. However, the mechanisms of formation, stability, and synchronization of APD-SDA and Ca-SDA patterns remain incompletely understood. In this paper, we use cardiac tissue models described by an amplitude equation, coupled iterated maps, and reaction-diffusion equations with detailed physiology (the ionic model) to perform analytical and computational investigations. We show that, when the Ca subsystem is stable, the Ca-SDA pattern always follows the APD-SDA pattern, and thus, they are always synchronized. When the Ca subsystem is unstable, synchronization of APD-SDA and Ca-SDA patterns depends on the stabilities of both subsystems, their coupling strengths, and the spatial scales of the initial Ca-SDA patterns. Spontaneous (initial condition-independent) synchronization is promoted by enhancing APD instability and reducing Ca instability as well as stronger Ca-to-APD and APD-to-Ca coupling, a pattern formation caused by dynamical instabilities. When Ca is more unstable and APD is less unstable or APD-to-Ca coupling is weak, synchronization of APD-SDA and Ca-SDA patterns is promoted by larger initially synchronized Ca-SDA clusters, i.e., initial condition-dependent synchronization. The synchronized APD-SDA and Ca-SDA patterns can be locked in-phase, antiphase, or quasiperiodic depending on the coupling relationship between APD and Ca. These theoretical and simulation results provide mechanistic insights into the APD-SDA and Ca-SDA dynamics observed in experimental studies.
Collapse
Affiliation(s)
- Chunli Huang
- School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510420, China
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhen Song
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
19
|
Geng Z, Jin L, Huang Y, Wu X. Rate dependence of early afterdepolarizations in the His-Purkinje system: A simulation study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106665. [PMID: 35172249 DOI: 10.1016/j.cmpb.2022.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Early afterdepolarizations (EADs) are associated with a variety of arrhythmias and have the property of rate dependence. EADs can occur in Purkinje cells while the effect of rate dependence of EADs in the His-Purkinje system has not been fully investigated. In order to reveal the rate dependence of EADs in the His-Purkinje system and its effect on ventricular electrical activities, the simulation research was carried out in this manuscript. METHODS This manuscript first studied the relationship between the occurrence of EADs and stimulation cycle length on the DiFranNoble cell model. Then, the relationship between the rate dependence of EADs and the conduction block of the His-Purkinje system at slow heart rates was studied on the rabbit whole ventricular model including the His-Purkinje system, and its mechanism was analyzed from multiple angles. RESULTS ① The rate dependence of EADs is related to the inconsistency of EADs occurrence in the His-Purkinje system. When the stimulation cycle length is long or short enough, EADs either occur or not occur stably in the His-Purkinje system, while in a certain stimulation cycle length window, the chaotic state of EADs will be observed. ② The key subcellular factors x-gate is an important mechanism involved to the rate dependence of EADs in the His-Purkinje system. ③ The discrete distribution of x-gate values and the "source-sink" mechanism lead to the inconsistency of EADs in the His-Purkinje system. The prolonged action potential duration caused by EADs can lead to conduction block at slow heart rates. CONCLUSION The rate dependence of EADs in Purkinje system can lead to disordered ventricular electrical activity.
Collapse
Affiliation(s)
- Zihui Geng
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Lian Jin
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yanqi Huang
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Xiaomei Wu
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, Shanghai Engineering Research Center of Assistive Devices, Yiwu Research Institute of Fudan University, 322000, Chengbei Road, Yiwu City, 322000 Zhejiang, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
20
|
Pillai A, Koneru JN, Ellenbogen KA, Padala SK. Autonomic Modulation for Treatment of Repolarization Alternans and Refractory Ventricular Electrical Storm. JACC Case Rep 2021; 3:1438-1443. [PMID: 34557688 PMCID: PMC8446025 DOI: 10.1016/j.jaccas.2021.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Macroscopic T-wave alternans (TWA) is a rare finding on surface electrocardiogram and has been associated with an increased risk of impending sudden cardiac death. We highlight a case of macroscopic TWA in a patient with markedly prolonged QTc interval preceding ventricular electrical storm, which was refractory to medical management. Autonomic modulation of the stellate ganglion resulted in improvement in both TWA and QTc interval. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Ajay Pillai
- Address for correspondence: Dr Ajay Pillai, Division of Cardiac Electrophysiology, Virginia Commonwealth University, Gateway Building, 3rd Floor, 3-216, 1200 East Marshall Street, Richmond, Virginia 23298, USA. @AjayPMD
| | | | | | | |
Collapse
|
21
|
Zhang Z, Qu Z. Life and death saddles in the heart. Phys Rev E 2021; 103:062406. [PMID: 34271754 PMCID: PMC10066710 DOI: 10.1103/physreve.103.062406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Saddle points are responsible for threshold phenomena of many biological systems. In the heart, saddle points determine the normal excitability and conduction, but are also responsible for certain abnormal action potential behaviors associated with lethal arrhythmias. We investigate the dynamical mechanisms for the genesis of lethal extra heartbeats in heterogeneous cardiac tissue under two diseased conditions. For both conditions, the lethal events occur when the system is close to the saddle point, implying the pivotal role of the saddle point in cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA.,Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
22
|
You T, Luo C, Zhang K, Zhang H. Electrophysiological Mechanisms Underlying T-Wave Alternans and Their Role in Arrhythmogenesis. Front Physiol 2021; 12:614946. [PMID: 33746768 PMCID: PMC7969788 DOI: 10.3389/fphys.2021.614946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
T-wave alternans (TWA) reflects every-other-beat alterations in the morphology of the electrocardiogram ST segment or T wave in the setting of a constant heart rate, hence, in the absence of heart rate variability. It is believed to be associated with the dispersion of repolarization and has been used as a non-invasive marker for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death as numerous studies have shown. This review aims to provide up-to-date review on both experimental and simulation studies in elucidating possible mechanisms underlying the genesis of TWA at the cellular level, as well as the genesis of spatially concordant/discordant alternans at the tissue level, and their transition to cardiac arrhythmia. Recent progress and future perspectives in antiarrhythmic therapies associated with TWA are also discussed.
Collapse
Affiliation(s)
- Tingting You
- Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cunjin Luo
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Kevin Zhang
- School of Medicine, Imperial College of London, London, United Kingdom
| | - Henggui Zhang
- Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Zhang Z, Liu MB, Huang X, Song Z, Qu Z. Mechanisms of Premature Ventricular Complexes Caused by QT Prolongation. Biophys J 2020; 120:352-369. [PMID: 33333033 DOI: 10.1016/j.bpj.2020.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022] Open
Abstract
QT prolongation, due to lengthening of the action potential duration in the ventricles, is a major risk factor of lethal ventricular arrhythmias. A widely known consequence of QT prolongation is the genesis of early afterdepolarizations (EADs), which are associated with arrhythmias through the generation of premature ventricular complexes (PVCs). However, the vast majority of the EADs observed experimentally in isolated ventricular myocytes are phase-2 EADs, and whether phase-2 EADs are mechanistically linked to PVCs in cardiac tissue remains an unanswered question. In this study, we investigate the genesis of PVCs using computer simulations with eight different ventricular action potential models of various species. Based on our results, we classify PVCs as arising from two distinct mechanisms: repolarization gradient (RG)-induced PVCs and phase-2 EAD-induced PVCs. The RG-induced PVCs are promoted by increasing RG and L-type calcium current and are insensitive to gap junction coupling. EADs are not required for this PVC mechanism. In a paced beat, a single or multiple PVCs can occur depending on the properties of the RG. In contrast, phase-2 EAD-induced PVCs occur only when the RG is small and are suppressed by increasing RG and more sensitive to gap junction coupling. Unlike with RG-induced PVCs, in each paced beat, only a single EAD-induced PVC can occur no matter how many EADs in an action potential. In the wide parameter ranges we explore, RG-induced PVCs can be observed in all models, but the EAD-induced PVCs can only be observed in five of the eight models. The links between these two distinct PVC mechanisms and arrhythmogenesis in animal experiments and clinical settings are discussed.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Michael B Liu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou, China
| | - Zhen Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
24
|
Huang C, Song Z, Di Z, Qu Z. Stability of spatially discordant repolarization alternans in cardiac tissue. CHAOS (WOODBURY, N.Y.) 2020; 30:123141. [PMID: 33380024 PMCID: PMC7928074 DOI: 10.1063/5.0029209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/18/2020] [Indexed: 06/02/2023]
Abstract
Cardiac alternans, a period-2 behavior of excitation and contraction of the heart, is a precursor of ventricular arrhythmias and sudden cardiac death. One form of alternans is repolarization or action potential duration alternans. In cardiac tissue, repolarization alternans can be spatially in-phase, called spatially concordant alternans, or spatially out-of-phase, called spatially discordant alternans (SDA). In SDA, the border between two out-of-phase regions is called a node in a one-dimensional cable or a nodal line in a two-dimensional tissue. In this study, we investigate the stability and dynamics of the nodes and nodal lines of repolarization alternans driven by voltage instabilities. We use amplitude equation and coupled map lattice models to derive theoretical results, which are compared with simulation results from the ionic model. Both conduction velocity restitution induced SDA and non-conduction velocity restitution induced SDA are investigated. We show that the stability and dynamics of the SDA nodes or nodal lines are determined by the balance of the tensions generated by conduction velocity restitution, convection due to action potential propagation, curvature of the nodal lines, and repolarization and coupling heterogeneities. Our study provides mechanistic insights into the different SDA behaviors observed in experiments.
Collapse
Affiliation(s)
| | - Zhen Song
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zengru Di
- Department of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zhilin Qu
- Author to whom correspondence should be addressed:
| |
Collapse
|
25
|
Baczkó I, Hornyik T, Brunner M, Koren G, Odening KE. Transgenic Rabbit Models in Proarrhythmia Research. Front Pharmacol 2020; 11:853. [PMID: 32581808 PMCID: PMC7291951 DOI: 10.3389/fphar.2020.00853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-induced proarrhythmia constitutes a potentially lethal side effect of various drugs. Most often, this proarrhythmia is mechanistically linked to the drug's potential to interact with repolarizing cardiac ion channels causing a prolongation of the QT interval in the ECG. Despite sophisticated screening approaches during drug development, reliable prediction of proarrhythmia remains very challenging. Although drug-induced long-QT-related proarrhythmia is often favored by conditions or diseases that impair the individual's repolarization reserve, most cellular, tissue, and whole animal model systems used for drug safety screening are based on normal, healthy models. In recent years, several transgenic rabbit models for different types of long QT syndromes (LQTS) with differences in the extent of impairment in repolarization reserve have been generated. These might be useful for screening/prediction of a drug's potential for long-QT-related proarrhythmia, particularly as different repolarizing cardiac ion channels are impaired in the different models. In this review, we summarize the electrophysiological characteristics of the available transgenic LQTS rabbit models, and the pharmacological proof-of-principle studies that have been performed with these models—highlighting the advantages and disadvantages of LQTS models for proarrhythmia research. In the end, we give an outlook on potential future directions and novel models.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Shah D, Prajapati C, Penttinen K, Cherian RM, Koivumäki JT, Alexanova A, Hyttinen J, Aalto-Setälä K. hiPSC-Derived Cardiomyocyte Model of LQT2 Syndrome Derived from Asymptomatic and Symptomatic Mutation Carriers Reproduces Clinical Differences in Aggregates but Not in Single Cells. Cells 2020; 9:cells9051153. [PMID: 32392813 PMCID: PMC7290503 DOI: 10.3390/cells9051153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the HERG gene encoding the potassium ion channel HERG, represent one of the most frequent causes of long QT syndrome type-2 (LQT2). The same genetic mutation frequently presents different clinical phenotypes in the family. Our study aimed to model LQT2 and study functional differences between the mutation carriers of variable clinical phenotypes. We derived human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) from asymptomatic and symptomatic HERG mutation carriers from the same family. When comparing asymptomatic and symptomatic single LQT2 hiPSC-CMs, results from allelic imbalance, potassium current density, and arrhythmicity on adrenaline exposure were similar, but a difference in Ca2+ transients was observed. The major differences were, however, observed at aggregate level with increased susceptibility to arrhythmias on exposure to adrenaline or potassium channel blockers on CM aggregates derived from the symptomatic individual. The effect of this mutation was modeled in-silico which indicated the reactivation of an inward calcium current as one of the main causes of arrhythmia. Our in-vitro hiPSC-CM model recapitulated major phenotype characteristics observed in LQT2 mutation carriers and strong phenotype differences between LQT2 asymptomatic vs. symptomatic were revealed at CM-aggregate level.
Collapse
Affiliation(s)
- Disheet Shah
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
- Correspondence:
| | - Chandra Prajapati
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Kirsi Penttinen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Reeja Maria Cherian
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Jussi T. Koivumäki
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Anna Alexanova
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
- Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
27
|
Chu Z, Yang D, Huang X. Conditions for the genesis of early afterdepolarization in a model of a ventricular myocyte. CHAOS (WOODBURY, N.Y.) 2020; 30:043105. [PMID: 32357650 DOI: 10.1063/1.5133086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Early afterdepolarization (EAD) is a major arrhythmogenic factor in the long QT syndrome (LQTS), whose conditions for genesis have puzzled people for several decades. Here, we employ the phase I Luo-Rudy ventricular myocyte model to investigate EAD using methods from nonlinear dynamics and provide valuable insights into EAD genesis from a physical perspective. Two major results are obtained: (i) Sufficient parametric conditions for EAD are analytically determined and then used to analyze in detail the effects of the physiological parameters. (ii) The normal form of the Hopf bifurcation that leads to EAD is derived and then used to determine whether the Hopf bifurcation is subcritical or supercritical for EAD genesis and the corresponding amplitude and period of the EAD oscillation. Our work here paves the way for further studies of more complicated multi-scale dynamics of EAD and may lead to effective treatments for LQTS arrhythmias.
Collapse
Affiliation(s)
- Zhikun Chu
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Dongping Yang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
28
|
Huang C, Song Z, Landaw J, Qu Z. Spatially Discordant Repolarization Alternans in the Absence of Conduction Velocity Restitution. Biophys J 2020; 118:2574-2587. [PMID: 32101718 DOI: 10.1016/j.bpj.2020.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023] Open
Abstract
Spatially discordant alternans (SDA) of action potential duration (APD) has been widely observed in cardiac tissue and is linked to cardiac arrhythmogenesis. Theoretical studies have shown that conduction velocity restitution (CVR) is required for the formation of SDA. However, this theory is not completely supported by experiments, indicating that other mechanisms may exist. In this study, we carried out computer simulations using mathematical models of action potentials to investigate the mechanisms of SDA in cardiac tissue. We show that when CVR is present and engaged, such as fast pacing from one side of the tissue, the spatial pattern of APD in the tissue undergoes either spatially concordant alternans or SDA, independent of initial conditions or tissue heterogeneities. When CVR is not engaged, such as simultaneous pacing of the whole tissue or under normal/slow heart rates, the spatial pattern of APD in the tissue can have multiple solutions, including spatially concordant alternans and different SDA patterns, depending on heterogeneous initial conditions or pre-existing repolarization heterogeneities. In homogeneous tissue, curved nodal lines are not stable, which either evolve into straight lines or disappear. However, in heterogeneous itssue, curved nodal lines can be stable, depending on their initial locations and shapes relative to the structure of the heterogeneity. Therefore, CVR-induced SDA and non-CVR-induced SDA exhibit different dynamical properties, which may be responsible for the different SDA properties observed in experimental studies and arrhythmogenesis in different clinical settings.
Collapse
Affiliation(s)
- Chunli Huang
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Systems Science, Beijing Normal University, Beijing, China
| | - Zhen Song
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Julian Landaw
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
29
|
Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, Wakili R, Massberg S, Wolf E, Kääb S. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 2020; 16:457-475. [PMID: 30894679 DOI: 10.1038/s41569-019-0179-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrhythmias are common and contribute substantially to cardiovascular morbidity and mortality. The underlying pathophysiology of arrhythmias is complex and remains incompletely understood, which explains why mostly only symptomatic therapy is available. The evaluation of the complex interplay between various cell types in the heart, including cardiomyocytes from the conduction system and the working myocardium, fibroblasts and cardiac immune cells, remains a major challenge in arrhythmia research because it can be investigated only in vivo. Various animal species have been used, and several disease models have been developed to study arrhythmias. Although every species is useful and might be ideal to study a specific hypothesis, we suggest a practical trio of animal models for future use: mice for genetic investigations, mechanistic evaluations or early studies to identify potential drug targets; rabbits for studies on ion channel function, repolarization or re-entrant arrhythmias; and pigs for preclinical translational studies to validate previous findings. In this Review, we provide a comprehensive overview of different models and currently used species for arrhythmia research, discuss their advantages and disadvantages and provide guidance for researchers who are considering performing in vivo studies.
Collapse
Affiliation(s)
- Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| | - Christina Bleyer
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Simone Renner
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Reza Wakili
- Universitätsklinikum Essen, Westdeutsches Herz- und Gefäßzentrum Essen, Essen, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Eckhard Wolf
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
30
|
Kurata Y, Tsumoto K, Hayashi K, Hisatome I, Kuda Y, Tanida M. Multiple Dynamical Mechanisms of Phase-2 Early Afterdepolarizations in a Human Ventricular Myocyte Model: Involvement of Spontaneous SR Ca 2+ Release. Front Physiol 2020; 10:1545. [PMID: 31998140 PMCID: PMC6965073 DOI: 10.3389/fphys.2019.01545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Early afterdepolarization (EAD) is known to cause lethal ventricular arrhythmias in long QT syndrome (LQTS). In this study, dynamical mechanisms of EAD formation in human ventricular myocytes (HVMs) were investigated using the mathematical model developed by ten Tusscher and Panfilov (Am J Physiol Heart Circ Physiol 291, 2006). We explored how the rapid (IKr) and slow (IKs) components of delayed-rectifier K+ channel currents, L-type Ca2+ channel current (ICa L), Na+/Ca2+ exchanger current (INCX), and intracellular Ca2+ handling via the sarcoplasmic reticulum (SR) contribute to initiation, termination and modulation of phase-2 EADs during pacing in relation to bifurcation phenomena in non-paced model cells. Parameter-dependent dynamical behaviors of the non-paced model cell were determined by calculating stabilities of equilibrium points (EPs) and limit cycles, and bifurcation points to construct bifurcation diagrams. Action potentials (APs) and EADs during pacing were reproduced by numerical simulations for constructing phase diagrams of the paced model cell dynamics. Results are summarized as follows: (1) A modified version of the ten Tusscher-Panfilov model with accelerated ICaL inactivation could reproduce bradycardia-related EADs in LQTS type 2 and β-adrenergic stimulation-induced EADs in LQTS type 1. (2) Two types of EADs with different initiation mechanisms, ICaL reactivation-dependent and spontaneous SR Ca2+ release-mediated EADs, were detected. (3) Termination of EADs (AP repolarization) during pacing depended on the slow activation of IKs. (4) Spontaneous SR Ca2+ releases occurred at higher Ca2+ uptake rates, attributable to the instability of steady-state intracellular Ca2+ concentrations. Dynamical mechanisms of EAD formation and termination in the paced model cell are closely related to stability changes (bifurcations) in dynamical behaviors of the non-paced model cell, but they are model-dependent. Nevertheless, the modified ten Tusscher-Panfilov model would be useful for systematically investigating possible dynamical mechanisms of EAD-related arrhythmias in LQTS.
Collapse
Affiliation(s)
- Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular and Internal Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
31
|
Liu MB, Vandersickel N, Panfilov AV, Qu Z. R-From-T as a Common Mechanism of Arrhythmia Initiation in Long QT Syndromes. Circ Arrhythm Electrophysiol 2019; 12:e007571. [PMID: 31838916 PMCID: PMC6924944 DOI: 10.1161/circep.119.007571] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long QT syndromes (LQTS) arise from many genetic and nongenetic causes with certain characteristic ECG features preceding polymorphic ventricular tachyarrhythmias (PVTs). However, how the many molecular causes result in these characteristic ECG patterns and how these patterns are mechanistically linked to the spontaneous initiation of PVT remain poorly understood. METHODS Anatomic human ventricle and simplified tissue models were used to investigate the mechanisms of spontaneous initiation of PVT in LQTS. RESULTS Spontaneous initiation of PVT was elicited by gradually ramping up ICa,L to simulate the initial phase of a sympathetic surge or by changing the heart rate, reproducing the different genotype-dependent clinical ECG features. In LQTS type 2 (LQT2) and LQTS type 3 (LQT3), T-wave alternans was observed followed by premature ventricular complexes (PVCs). Compensatory pauses occurred resulting in short-long-short sequences. As ICa,L increased further, PVT episodes occurred, always preceded by a short-long-short sequence. However, in LQTS type 1 (LQT1), once a PVC occurred, it always immediately led to an episode of PVT. Arrhythmias in LQT2 and LQT3 were bradycardia dependent, whereas those in LQT1 were not. In all 3 genotypes, PVCs always originated spontaneously from the steep repolarization gradient region and manifested on ECG as R-on-T. We call this mechanism R-from-T, to distinguish it from the classic explanation of R-on-T arrhythmogenesis in which an exogenous PVC coincidentally encounters a repolarizing region. In R-from-T, the PVC and the T wave are causally related, where steep repolarization gradients combined with enhanced ICa,L lead to PVCs emerging from the T wave. Since enhanced ICa,L was required for R-from-T to occur, suppressing window ICa,L effectively prevented arrhythmias in all 3 genotypes. CONCLUSIONS Despite the complex molecular causes, these results suggest that R-from-T is likely a common mechanism for PVT initiation in LQTS. Targeting ICa,L properties, such as suppressing window ICa,L or preventing excessive ICa,L increase, could be an effective unified therapy for arrhythmia prevention in LQTS.
Collapse
Affiliation(s)
- Michael B. Liu
- Department of Medicine (M.B.L., Z.Q.), University of California, Los Angeles
| | - Nele Vandersickel
- Department of Physics and Astronomy, Ghent University, Belgium (N.V., A.V.P.)
| | - Alexander V. Panfilov
- Department of Physics and Astronomy, Ghent University, Belgium (N.V., A.V.P.)
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia (A.V.P.)
| | - Zhilin Qu
- Department of Medicine (M.B.L., Z.Q.), University of California, Los Angeles
- Department of Biomathematics (Z.Q.), University of California, Los Angeles
| |
Collapse
|
32
|
Kulkarni K, Merchant FM, Kassab MB, Sana F, Moazzami K, Sayadi O, Singh JP, Heist EK, Armoundas AA. Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention. J Am Heart Assoc 2019; 8:e013750. [PMID: 31617437 PMCID: PMC6898836 DOI: 10.1161/jaha.119.013750] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | | | - Mohamad B. Kassab
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Furrukh Sana
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Kasra Moazzami
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Omid Sayadi
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Jagmeet P. Singh
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - E. Kevin Heist
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - Antonis A. Armoundas
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA
| |
Collapse
|
33
|
Kim TY, Jeng P, Hwang J, Pfeiffer Z, Patel D, Cooper LL, Kossidas K, Centracchio J, Peng X, Koren G, Qu Z, Choi BR. Short-Long Heart Rate Variation Increases Dispersion of Action Potential Duration in Long QT Type 2 Transgenic Rabbit Model. Sci Rep 2019; 9:14849. [PMID: 31619700 PMCID: PMC6795902 DOI: 10.1038/s41598-019-51230-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023] Open
Abstract
The initiation of polymorphic ventricular tachycardia in long QT syndrome type 2 (LQT2) has been associated with a characteristic ECG pattern of short-long RR intervals. We hypothesize that this characteristic pattern increases APD dispersion in LQT2, thereby promoting arrhythmia. We investigated APD dispersion and its dependence on two previous cycle lengths (CLs) in transgenic rabbit models of LQT2, LQT1, and their littermate controls (LMC) using random stimulation protocols. The results show that the short-long RR pattern was associated with a larger APD dispersion in LQT2 but not in LQT1 rabbits. The multivariate analyses of APD as a function of two previous CLs (APDn = C + α1CLn−1 + α2CLn−2) showed that α1 (APD restitution slope) is largest and heterogeneous in LQT2 but uniform in LQT1, enhancing APD dispersion under long CLn−1 in LQT2. The α2 (short-term memory) was negative in LQT2 while positive in LQT1, and the spatial pattern of α1 was inversely correlated to α2 in LQT2, which explains why a short-long combination causes a larger APD dispersion in LQT2 but not in LQT1 rabbits. In conclusion, short-long RR pattern increased APD dispersion only in LQT2 rabbits through heterogeneous APD restitution and the short-term memory, underscoring the genotype-specific triggering of arrhythmias in LQT syndrome.
Collapse
Affiliation(s)
- Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Paul Jeng
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - JungMin Hwang
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Zachary Pfeiffer
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Divyang Patel
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Leroy L Cooper
- Biology Department, Vassar College, Poughkeepsie, NY, USA
| | - Konstantinos Kossidas
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jason Centracchio
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Xuwen Peng
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
34
|
Huang X, Song Z, Qu Z. Determinants of early afterdepolarization properties in ventricular myocyte models. PLoS Comput Biol 2018; 14:e1006382. [PMID: 30475801 PMCID: PMC6283611 DOI: 10.1371/journal.pcbi.1006382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/06/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Early afterdepolarizations (EADs) are spontaneous depolarizations during the repolarization phase of an action potential in cardiac myocytes. It is widely known that EADs are promoted by increasing inward currents and/or decreasing outward currents, a condition called reduced repolarization reserve. Recent studies based on bifurcation theories show that EADs are caused by a dual Hopf-homoclinic bifurcation, bringing in further mechanistic insights into the genesis and dynamics of EADs. In this study, we investigated the EAD properties, such as the EAD amplitude, the inter-EAD interval, and the latency of the first EAD, and their major determinants. We first made predictions based on the bifurcation theory and then validated them in physiologically more detailed action potential models. These properties were investigated by varying one parameter at a time or using parameter sets randomly drawn from assigned intervals. The theoretical and simulation results were compared with experimental data from the literature. Our major findings are that the EAD amplitude and takeoff potential exhibit a negative linear correlation; the inter-EAD interval is insensitive to the maximum ionic current conductance but mainly determined by the kinetics of ICa,L and the dual Hopf-homoclinic bifurcation; and both inter-EAD interval and latency vary largely from model to model. Most of the model results generally agree with experimental observations in isolated ventricular myocytes. However, a major discrepancy between modeling results and experimental observations is that the inter-EAD intervals observed in experiments are mainly between 200 and 500 ms, irrespective of species, while those of the mathematical models exhibit a much wider range with some models exhibiting inter-EAD intervals less than 100 ms. Our simulations show that the cause of this discrepancy is likely due to the difference in ICa,L recovery properties in different mathematical models, which needs to be addressed in future action potential model development. Early afterdepolarizations (EADs) are abnormal depolarizations during the plateau phase of action potential in cardiac myocytes, arising from a dual Hopf-homoclinic bifurcation. The same bifurcations are also responsible for certain types of bursting behaviors in other cell types, such as beta cells and neuronal cells. EADs are known to play important role in the genesis of lethal arrhythmias and have been widely studied in both experiments and computer models. However, a detailed comparison between the properties of EADs observed in experiments and those from mathematical models have not been carried out. In this study, we performed theoretical analyses and computer simulations of different ventricular action potential models as well as different species to investigate the properties of EADs and compared these properties to those observed in experiments. While the EAD properties in the action potential models capture many of the EAD properties seen in experiments, the inter-EAD intervals in the computer models differ a lot from model to model, and some of them show very large discrepancy with those observed in experiments. This discrepancy needs to be addressed in future cardiac action potential model development.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou, China
| | - Zhen Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wang W, Zhang S, Ni H, Garratt CJ, Boyett MR, Hancox JC, Zhang H. Mechanistic insight into spontaneous transition from cellular alternans to arrhythmia-A simulation study. PLoS Comput Biol 2018; 14:e1006594. [PMID: 30500818 PMCID: PMC6291170 DOI: 10.1371/journal.pcbi.1006594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/12/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023] Open
Abstract
Cardiac electrical alternans (CEA), manifested as T-wave alternans in ECG, is a clinical biomarker for predicting cardiac arrhythmias and sudden death. However, the mechanism underlying the spontaneous transition from CEA to arrhythmias remains incompletely elucidated. In this study, multiscale rabbit ventricular models were used to study the transition and a potential role of INa in perpetuating such a transition. It was shown CEA evolved into either concordant or discordant action potential (AP) conduction alternans in a homogeneous one-dimensional tissue model, depending on tissue AP duration and conduction velocity (CV) restitution properties. Discordant alternans was able to cause conduction failure in the model, which was promoted by impaired sodium channel with either a reduced or increased channel current. In a two-dimensional homogeneous tissue model, a combined effect of rate- and curvature-dependent CV broke-up alternating wavefronts at localised points, facilitating a spontaneous transition from CEA to re-entry. Tissue inhomogeneity or anisotropy further promoted break-up of re-entry, leading to multiple wavelets. Similar observations have also been seen in human atrial cellular and tissue models. In conclusion, our results identify a mechanism by which CEA spontaneously evolves into re-entry without a requirement for premature ventricular complexes or pre-existing tissue heterogeneities, and demonstrated the important pro-arrhythmic role of impaired sodium channel activity. These findings are model-independent and have potential human relevance.
Collapse
Affiliation(s)
- Wei Wang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Shanzhuo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haibo Ni
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Clifford J. Garratt
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Mark R. Boyett
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
36
|
Jones DC, Gong JQX, Sobie EA. A privileged role for neuronal Na + channels in regulating ventricular [Ca 2+] and arrhythmias. J Gen Physiol 2018; 150:901-905. [PMID: 29899058 PMCID: PMC6028496 DOI: 10.1085/jgp.201812120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jones et al. provide commentary on the intricate crosstalk between ion transporters that goes awry in long QT arrhythmia.
Collapse
Affiliation(s)
- DeAnalisa C Jones
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jingqi Q X Gong
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric A Sobie
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|