1
|
Cho SKS, Darby JRT, Saini BS, Holman SL, Lock MC, Perumal SR, Williams GK, Macgowan CK, Seed M, Morrison JL. Late-gestation maternal undernutrition induces circulatory redistribution while preserving uteroplacental function independent of fetal glycaemic state. J Physiol 2024; 602:7065-7083. [PMID: 39549304 DOI: 10.1113/jp287171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024] Open
Abstract
Programming effects of maternal undernutrition on fetal metabolic and cardiovascular systems are well elucidated, yet a detailed characterization of maternal haemodynamics is not available. This study used comprehensive cardiovascular magnetic resonance (CMR) imaging to quantify maternal haemodynamics after 29 days (111-140 days) of late-gestation undernutrition (LGUN) in pregnant sheep. Control ewes received 100% of metabolizable energy requirements (MERs, n = 15), whereas LGUN ewes were globally nutrient restricted to 50% MER (n = 18), with a subset of fetuses undergoing continuous glucose infusion (LGUN + G, n = 6/18). Ewes underwent CMR (138-140 days' gestation), and placental tissue was collected the next day. Ewes in both LGUN groups had reduced body weight and mean blood glucose concentration across gestation. Ventricular dimensions were lower in both LGUN groups. Uterine artery blood flow (QUtA) was elevated in the LGUN group compared with controls, whereas peripheral blood flow was reduced and further diminished in LGUN + G. Maternal weight change correlated with all haemodynamic parameters across all groups. Uteroplacental oxygen and glucose delivery were increased in LGUN compared to control ewes, whereas uteroplacental oxygen consumption was preserved. LGUN did not impact placental or fetal weight, and markers of brain-sparing physiology were absent. Placental expression of insulin-like growth factors (IGF-1 and IGF-2) and their receptors, glucose, fatty acid (FA) or amino acid transporters and markers of angiogenesis was not impacted. FA transporter expression was positively correlated with QUtA, and FA binding protein correlated negatively with maternal weight change. Maternal cardiovascular adaptations in response to LGUN manifest as preservation of placental growth and function, thereby preserving fetal growth. KEY POINTS: Maternal undernutrition during pregnancy alters fetal metabolic and cardiovascular physiology, but little is known about alterations in maternal haemodynamics. Late-gestation undernutrition (LGUN) and LGUN + G redirected maternal blood flow from the periphery to the uteroplacental unit, concomitantly increasing the delivery of glucose and oxygen to the uteroplacental unit. Substrate transporter expression and uteroplacental oxygen consumption were preserved in LGUN and LGUN + G, suggesting prioritization of the placenta. This study is the first to report detailed maternal haemodynamics in the setting of maternal undernutrition, where placental growth and function were maintained, ultimately preserving fetal oxygen metabolism and growth.
Collapse
Affiliation(s)
- Steven K S Cho
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sunthara Rajan Perumal
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, South Australia, Australia
| | - Georgia K Williams
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Janna L Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Dimasi CG, Darby JRT, Cho SKS, Saini BS, Holman SL, Meakin AS, Wiese MD, Macgowan CK, Seed M, Morrison JL. Reduced in utero substrate supply decreases mitochondrial abundance and alters the expression of metabolic signalling molecules in the fetal sheep heart. J Physiol 2024; 602:5901-5922. [PMID: 37996982 DOI: 10.1113/jp285572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Babies born with fetal growth restriction (FGR) are at higher risk of developing cardiometabolic diseases across the life course. The reduction in substrate supply to the developing fetus that causes FGR not only alters cardiac growth and structure but may have deleterious effects on metabolism and function. Using a sheep model of placental restriction to induce FGR, we investigated key cardiac metabolic and functional markers that may be altered in FGR. We also employed phase-contrast magnetic resonance imaging MRI to assess left ventricular cardiac output (LVCO) as a measure of cardiac function. We hypothesized that signalling molecules involved in cardiac fatty acid utilisation and contractility would be impaired by FGR and that this would have a negative impact on LVCO in the late gestation fetus. Key glucose (GLUT4 protein) and fatty acid (FATP, CD36 gene expression) substrate transporters were significantly reduced in the hearts of FGR fetuses. We also found reduced mitochondrial numbers as well as abundance of electron transport chain complexes (complexes II and IV). These data suggest that FGR diminishes metabolic and mitochondrial capacity in the fetal heart; however, alterations were not correlated with fetal LVCO. Overall, these data show that FGR alters fetal cardiac metabolism in late gestation. If sustained ex utero, this altered metabolic profile may contribute to poor cardiac outcomes in FGR-born individuals after birth. KEY POINTS: Around the time of birth, substrate utilisation in the fetal heart switches from carbohydrates to fatty acids. However, the effect of fetal growth restriction (FGR) on this switch, and thus the ability of the fetal heart to effectively metabolise fatty acids, is not fully understood. Using a sheep model of early onset FGR, we observed significant downregulation in mRNA expression of fatty acid receptors CD36 and FABP in the fetal heart. FGR fetuses also had significantly lower cardiac mitochondrial abundance than controls. There was a reduction in abundance of complexes II and IV within the electron transport chain of the FGR fetal heart, suggesting altered ATP production. This indicates reduced fatty acid metabolism and mitochondrial function in the heart of the FGR fetus, which may have detrimental long-term implications and contribute to increased risk of cardiovascular disease later in life.
Collapse
Affiliation(s)
- Catherine G Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Steven K S Cho
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Brahmdeep S Saini
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Michael D Wiese
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Dimasi CG, Darby JR, Holman SL, Quinn M, Meakin AS, Seed M, Wiese MD, Morrison JL. Cardiac growth patterns and metabolism before and after birth in swine: Role of miR in proliferation, hypertrophy and metabolism. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100084. [DOI: 10.1016/j.jmccpl.2024.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Bertossa MR, Darby JR, Holman SL, Meakin AS, Li C, Huber HF, Wiese MD, Nathanielsz PW, Morrison JL. Maternal high fat-high energy diet alters metabolic factors in the non-human primate fetal heart. J Physiol 2024; 602:4251-4269. [PMID: 39087821 PMCID: PMC11366491 DOI: 10.1113/jp286861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
The consumption of high fat-high energy diets (HF-HEDs) continues to rise worldwide and parallels the rise in maternal obesity (MO) that predisposes offspring to cardiometabolic disorders. Although the underlying mechanisms are unclear, thyroid hormones (TH) modulate cardiac maturation in utero. Therefore, we aimed to determine the impact of a high fat-high energy diet (HF-HED) on the hormonal, metabolic and contractility profile of the non-human primate (NHP) fetal heart. At ∼9 months preconception, female baboons (Papio hamadryas) were randomly assigned to either a control diet or HF-HED. At 165 days gestational age (term = 184 days), fetuses were delivered by Caesarean section under anaesthesia, humanely killed, and left ventricular cardiac tissue (Control (n = 6 female, 6 male); HF-HED (n = 6 F, 6 M)) was collected. Maternal HF-HED decreased the concentration of active cardiac TH (i.e. triiodothyronine (T3)), and type 1 iodothyronine deiodinase (DIO1) mRNA expression. Maternal HF-HED decreased the abundance of cardiac markers of insulin-mediated glucose uptake phosphorylated insulin receptor substrate 1 (Ser789) and glucose transporter 4, and increased protein abundance of key oxidative phosphorylation complexes (I, III, IV) and mitochondrial abundance in both sexes. Maternal HF-HED alters cardiac TH status, which may induce early signs of cardiac insulin resistance. This may increase the risk of cardiometabolic disorders in later life in offspring born to these pregnancies. KEY POINTS: Babies born to mothers who consume a high fat-high energy diet (HF-HED) prior to and during pregnancy are predisposed to an increased risk of cardiometabolic disorders across the life course. Maternal HF-HED prior to and during pregnancy decreased thyroid hormone triiodothyronine (T3) concentrations and type 1 iodothyronine deiodinase DIO1 mRNA expression in the non-human primate fetal heart. Maternal HF-HED decreased markers of insulin-dependent glucose uptake, phosphorylated insulin receptor substrate 1 and glucose transporter 4 in the fetal heart. Maternal HF-HED increased mitochondrial abundance and mitochondrial OXPHOS complex I, III and IV in the fetal heart. Fetuses from HF-HED pregnancies are predisposed to cardiometabolic disorders that may be mediated by changes in T3, placing them on a poor lifetime cardiovascular health trajectory.
Collapse
Affiliation(s)
- Melanie R. Bertossa
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Jack R.T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | | | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| |
Collapse
|
5
|
Darby JRT, Flouri D, Cho SKS, Williams GK, Holman SL, Meakin AS, Wiese MD, David AL, Macgowan CK, Seed M, Melbourne A, Morrison JL. Maternal tadalafil treatment does not increase uterine artery blood flow or oxygen delivery in the pregnant ewe. Exp Physiol 2024; 109:980-991. [PMID: 38606906 PMCID: PMC11140180 DOI: 10.1113/ep091593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Increasing placental perfusion (PP) could improve outcomes of growth-restricted fetuses. One way of increasing PP may be by using phosphodiesterase (PDE)-5 inhibitors, which induce vasodilatation of vascular beds. We used a combination of clinically relevant magnetic resonance imaging (MRI) techniques to characterize the impact that tadalafil infusion has on maternal, placental and fetal circulations. At 116-117 days' gestational age (dGA; term, 150 days), pregnant ewes (n = 6) underwent fetal catheterization surgery. At 120-123 dGA ewes were anaesthetized and MRI scans were performed during three acquisition windows: a basal state and then ∼15-75 min (TAD 1) and ∼75-135 min (TAD 2) post maternal administration (24 mg; intravenous bolus) of tadalafil. Phase contrast MRI and T2 oximetry were used to measure blood flow and oxygen delivery. Placental diffusion and PP were assessed using the Diffusion-Relaxation Combined Imaging for Detailed Placental Evaluation-'DECIDE' technique. Uterine artery (UtA) blood flow when normalized to maternal left ventricular cardiac output (LVCO) was reduced in both TAD periods. DECIDE imaging found no impact of tadalafil on placental diffusivity or fetoplacental blood volume fraction. Maternal-placental blood volume fraction was increased in the TAD 2 period. FetalD O 2 ${D_{{{\mathrm{O}}_2}}}$ andV ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ were not affected by maternal tadalafil administration. Maternal tadalafil administration did not increase UtA blood flow and thus may not be an effective vasodilator at the level of the UtAs. The increased maternal-placental blood volume fraction may indicate local vasodilatation of the maternal intervillous space, which may have compensated for the reduced proportion of UtAD O 2 ${D_{{{\mathrm{O}}_2}}}$ .
Collapse
Affiliation(s)
- Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Dimitra Flouri
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Steven K. S. Cho
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Univeristy of Toronto and The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Georgia K. Williams
- Preclinical, Imaging & Research LaboratoriesSouth Australian Health & Medical Research InstituteAdelaideAustralia
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anna L. David
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonUK
- National Institute for Health and Care Research (NIHR)University College London, Hospitals Biomedical Research CentreLondonUK
| | | | - Mike Seed
- Univeristy of Toronto and The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Univeristy of Toronto and The Hospital for Sick ChildrenTorontoOntarioCanada
| |
Collapse
|
6
|
Ren Z, Luo S, Cui J, Tang Y, Huang H, Ding G. Research Progress of Maternal Metabolism on Cardiac Development and Function in Offspring. Nutrients 2023; 15:3388. [PMID: 37571325 PMCID: PMC10420869 DOI: 10.3390/nu15153388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The developmental origin of health and disease (DOHaD) hypothesis refers to the adverse effects of suboptimal developmental environments during embryonic and early fetal stages on the long-term health of offspring. Intrauterine metabolic perturbations can profoundly impact organogenesis in offspring, particularly affecting cardiac development and giving rise to potential structural and functional abnormalities. In this discussion, we contemplate the existing understanding regarding the impact of maternal metabolic disorders, such as obesity, diabetes, or undernutrition, on the developmental and functional aspects of the offspring's heart. This influence has the potential to contribute to the susceptibility of offspring to cardiovascular health issues. Alteration in the nutritional milieu can influence mitochondrial function in the developing hearts of offspring, while also serving as signaling molecules that directly modulate gene expression. Moreover, metabolic disorders can exert influence on cardiac development-related genes epigenetically through DNA methylation, levels of histone modifications, microRNA expression, and other factors. However, the comprehensive understanding of the mechanistic underpinnings of these phenomena remains incomplete. Further investigations in this domain hold profound clinical significance, as they can contribute to the enhancement of public health and the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Zhuoran Ren
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Sisi Luo
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- Shanghai First Maternity and Infant Hospital, Shanghai 200126, China
| | - Jiajun Cui
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Yunhui Tang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Guolian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Darby JR, Zhang S, Holman SL, Muhlhausler BS, McMillen IC, Morrison JL. Cardiac growth and metabolism of the fetal sheep are not vulnerable to a 10 day increase in fetal glucose and insulin concentrations during late gestation. Heliyon 2023; 9:e18292. [PMID: 37519661 PMCID: PMC10372399 DOI: 10.1016/j.heliyon.2023.e18292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Aims To evaluate the effects of fetal glucose infusion in late gestation on the mRNA expression and protein abundance of molecules involved in the regulation of cardiac growth and metabolism. Main methods Either saline or glucose was infused into fetal sheep from 130 to 140 days (d) gestation (term, 150 d). At 140 d gestation, left ventricle tissue samples were collected. Quantitative real-time RT-PCR and Western blot were used to determine the mRNA expression and protein abundance of key signalling molecules within the left ventricle of the fetal heart. Key findings Although intra-fetal glucose infusion increased fetal plasma glucose and insulin concentrations, there was no change in the expression of molecules within the signalling pathways that regulate proliferation, hypertrophy, apoptosis or fibrosis in the fetal heart. Cardiac Solute carrier family 2 member 1 (SLC2A1) mRNA expression was decreased by glucose infusion. Glucose infusion increased cardiac mRNA expression of both Peroxisome proliferator activated receptor alpha (PPARA) and peroxisome proliferator activated receptor gamma (PPARG). However, there was no change in the mRNA expression of PPAR cofactors or molecules with PPAR response elements. Furthermore, glucose infusion did not impact the protein abundance of the 5 oxidative phosphorylation complexes of the electron transport chain. Significance Despite a 10-day doubling of fetal plasma glucose and insulin concentrations, the present study suggests that within the fetal left ventricle, the mRNA and protein expression of the signalling molecules involved in cardiac growth, development and metabolism are relatively unaffected.
Collapse
Affiliation(s)
| | | | | | | | | | - Janna L. Morrison
- Corresponding author. Australian Research Council Future Fellow, Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia,
| |
Collapse
|
8
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
9
|
Chen H, Zhang L, Yue F, Cui C, Li Y, Zhang Q, Liang L, Meng L, Zhang C. Effects of assisted reproductive technology on gene expression in heart and spleen tissues of adult offspring mouse. Front Endocrinol (Lausanne) 2023; 14:1035161. [PMID: 37065763 PMCID: PMC10098333 DOI: 10.3389/fendo.2023.1035161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
OBJECTIVES Assisted reproductive technology (ART) is an important part of reproductive medicine, whose possible effects on offspring's health have drawn widespread attention in recent years. However, relevant studies are limited to postnatal short-term follow-up and lack of diverse sample sources analysis other than blood. METHODS In this study, a mouse model was used to explore the effects of ART on fetal development and gene expression in the organs of offspring in the adulthood using next-generation sequencing. The sequencing results were then analyzed. RESULTS The results showed that it caused abnormal expression in 1060 genes and 179 genes in the heart and spleen, respectively. Differentially expressed genes (DEGs) in the heart are mainly enriched in RNA synthesis and processing, and the cardiovascular system development also shows enrichment. STRING analysis identified Ccl2, Ptgs2, Rock1, Mapk14, Agt, and Wnt5a as the core interacting factors. DEGs in the spleen are significantly enriched in anti-infection and immune responses, which include the core factors Fos, Jun and Il1r2. Further exploration revealed the abnormal expression of 42 and 5 epigenetic modifiers in the heart and spleen, respectively. The expression of the imprinted genes Dhcr7, Igf2, Mest and Smoc1 decreased in the hearts of ART offspring, and the DNA methylation levels of Igf2- and Mest-imprinting control regions (ICRs) increased abnormally. CONCLUSION In the mouse model, ART can interfere with the gene expression pattern in the heart and spleen of the adult offspring and that these changes are related to the aberrant expression of epigenetic regulators.
Collapse
Affiliation(s)
- Huanhuan Chen
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Lei Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Feng Yue
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Chenchen Cui
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Yan Li
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Qingwen Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Linlin Liang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Li Meng
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
- *Correspondence: Li Meng, ; Cuilian Zhang,
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
- *Correspondence: Li Meng, ; Cuilian Zhang,
| |
Collapse
|
10
|
Zhu Y, Chen L, Song B, Cui Z, Chen G, Yu Z, Song B. Insulin-like Growth Factor-2 (IGF-2) in Fibrosis. Biomolecules 2022; 12:1557. [PMID: 36358907 PMCID: PMC9687531 DOI: 10.3390/biom12111557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
The insulin family consists of insulin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 2 (IGF-2), their receptors (IR, IGF-1R and IGF-2R), and their binding proteins. All three ligands are involved in cell proliferation, apoptosis, protein synthesis and metabolism due to their homologous sequences and structural similarities. Insulin-like growth factor 2, a member of the insulin family, plays an important role in embryonic development, metabolic disorders, and tumorigenesis by combining with three receptors with different degrees of affinity. The main pathological feature of various fibrotic diseases is the excessive deposition of extracellular matrix (ECM) after tissue and organ damage, which eventually results in organic dysfunction because scar formation replaces tissue parenchyma. As a mitogenic factor, IGF-2 is overexpressed in many fibrotic diseases. It can promote the proliferation of fibroblasts significantly, as well as the production of ECM in a time- and dose-dependent manner. This review aims to describe the expression changes and fibrosis-promoting effects of IGF-2 in the skin, oral cavity, heart, lung, liver, and kidney fibrotic tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
11
|
Steenhorst JJ, Hirsch A, Verzijl A, Wielopolski P, de Wijs‐Meijler D, Duncker DJ, Reiss IKM, Merkus D. Exercise and hypoxia unmask pulmonary vascular disease and right ventricular dysfunction in a 10- to 12-week-old swine model of neonatal oxidative injury. J Physiol 2022; 600:3931-3950. [PMID: 35862359 PMCID: PMC9542957 DOI: 10.1113/jp282906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Prematurely born young adults who experienced neonatal oxidative injury (NOI) of the lungs have increased incidence of cardiovascular disease. Here, we investigated the long-term effects of NOI on cardiopulmonary function in piglets at the age of 10-12 weeks. To induce NOI, term-born piglets (1.81 ± 0.06 kg) were exposed to hypoxia (10-12%F iO 2 ${F}_{{\rm{iO}}_{\rm{2}}}$ ), within 2 days after birth, and maintained for 4 weeks or until symptoms of heart failure developed (range 16-28 days), while SHAM piglets were normoxia raised. Following recovery (>5 weeks), NOI piglets were surgically instrumented to measure haemodynamics during hypoxic challenge testing (HCT) and exercise with modulation of the nitric-oxide system. During exercise, NOI piglets showed a normal increase in cardiac index, but an exaggerated increase in pulmonary artery pressure and a blunted increase in left atrial pressure - suggesting left atrial under-filling - consistent with an elevated pulmonary vascular resistance (PVR), which correlated with the duration of hypoxia exposure. Moreover, hypoxia duration correlated inversely with stroke volume (SV) during exercise. Nitric oxide synthase inhibition and HCT resulted in an exaggerated increase in PVR, while the PVR reduction by phosphodiesterase-5 inhibition was enhanced in NOI compared to SHAM piglets. Finally, within the NOI piglet group, prolonged duration of hypoxia was associated with a better maintenance of SV during HCT, likely due to the increase in RV mass. In conclusion, duration of neonatal hypoxia appears an important determinant of alterations in cardiopulmonary function that persist further into life. These changes encompass both pulmonary vascular and cardiac responses to hypoxia and exercise. KEY POINTS: Children who suffered from neonatal oxidative injury, such as very preterm born infants, have increased risk of cardiopulmonary disease later in life. Risk stratification requires knowledge of the mechanistic underpinning and the time course of progression into cardiopulmonary disease. Exercise and hypoxic challenge testing showed that 10- to 12-week-old swine that previously experienced neonatal oxidative injury had increased pulmonary vascular resistance and nitric oxide dependency. Duration of neonatal oxidative injury was a determinant of structural and functional cardiopulmonary remodelling later in life. Remodelling of the right ventricle, as a result of prolonged neonatal oxidative injury, resulted in worse performance during exercise, but enabled better performance during the hypoxic challenge test. Increased nitric oxide dependency together with age- or comorbidity-related endothelial dysfunction may contribute to predisposition to pulmonary hypertension later in life.
Collapse
Affiliation(s)
- Jarno J. Steenhorst
- Division of Experimental CardiologyDepartment of CardiologyErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
- Department of Radiology and Nuclear MedicineErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Alexander Hirsch
- Division of Experimental CardiologyDepartment of CardiologyErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
- Department of Radiology and Nuclear MedicineErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Annemarie Verzijl
- Division of Experimental CardiologyDepartment of CardiologyErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Piotr Wielopolski
- Department of Radiology and Nuclear MedicineErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Daphne de Wijs‐Meijler
- Division of Experimental CardiologyDepartment of CardiologyErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Dirk J. Duncker
- Division of Experimental CardiologyDepartment of CardiologyErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Irwin K. M. Reiss
- Division of NeonatologyDepartment of PediatricsErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Daphne Merkus
- Division of Experimental CardiologyDepartment of CardiologyErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
- Institute for Surgical ResearchWalter Brendel Center of Experimental Medicine (WBex)University Clinic MunichLMU MunichMunichGermany
- German Center for Cardiovascular ResearchPartner Site MunichMunich Heart AllianceMunichGermany
| |
Collapse
|
12
|
Elevated Vascular Sympathetic Neurotransmission and Remodelling Is a Common Feature in a Rat Model of Foetal Programming of Hypertension and SHR. Biomedicines 2022; 10:biomedicines10081902. [PMID: 36009448 PMCID: PMC9405620 DOI: 10.3390/biomedicines10081902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hypertension is of unknown aetiology, with sympathetic nervous system hyperactivation being one of the possible contributors. Hypertension may have a developmental origin, owing to the exposure to adverse factors during the intrauterine period. Our hypothesis is that sympathetic hyperinnervation may be implicated in hypertension of developmental origins, being this is a common feature with essential hypertension. Two-animal models were used: spontaneously hypertensive rats (SHR-model of essential hypertension) and offspring from dams exposed to undernutrition (MUN-model of developmental hypertension), with their respective controls. In adult males, we assessed systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), sympathetic nerve function (3H-tritium release), sympathetic innervation (immunohistochemistry) and vascular remodelling (histology). MUN showed higher SBP/DBP, but not HR, while SHR exhibited higher SBP/DBP/HR. Regarding the mesenteric arteries, MUN and SHR showed reduced lumen, increased media and adventitial thickness and increased wall/lumen and connective tissue compared to respective controls. Regarding sympathetic nerve activation, MUN and SHR showed higher tritium release compared to controls. Total tritium tissue/tyrosine hydroxylase detection was higher in SHR and MUN adventitia arteries compared to respective controls. In conclusion, sympathetic hyperinnervation may be one of the contributors to vascular remodelling and hypertension in rats exposed to undernutrition during intrauterine life, which is a common feature with spontaneous hypertension.
Collapse
|
13
|
Meakin AS, Darby JR, Holman SL, Wiese MD, Morrison JL. Maternal-placental-fetal drug metabolism is altered by late gestation undernutrition in the pregnant ewe. Life Sci 2022; 298:120521. [DOI: 10.1016/j.lfs.2022.120521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
14
|
Intrauterine inflammation exacerbates maladaptive remodeling of the immature myocardium after preterm birth in lambs. Pediatr Res 2022; 92:1555-1565. [PMID: 35277596 PMCID: PMC9771797 DOI: 10.1038/s41390-022-01955-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Antenatal conditions that are linked with preterm birth, such as intrauterine inflammation, can influence fetal cardiac development thereby rendering the heart more vulnerable to the effects of prematurity. We aimed to investigate the effect of intrauterine inflammation, consequent to lipopolysaccharide exposure, on postnatal cardiac growth and maturation in preterm lambs. METHODS Preterm lambs (~129 days gestational age) exposed antenatally to lipopolysaccharide or saline were managed according to contemporary neonatal care and studied at postnatal day 7. Age-matched fetal controls were studied at ~136 days gestational age. Cardiac tissue was sampled for molecular analyses and assessment of cardiac structure and cardiomyocyte maturation. RESULTS Lambs delivered preterm showed distinct ventricular differences in cardiomyocyte growth and maturation trajectories as well as remodeling of the left ventricular myocardium compared to fetal controls. Antenatal exposure to lipopolysaccharide resulted in further collagen deposition in the left ventricle and a greater presence of immune cells in the preterm heart. CONCLUSIONS Adverse impacts of preterm birth on cardiac structure and cardiomyocyte growth kinetics within the first week of postnatal life are exacerbated by intrauterine inflammation. The maladaptive remodeling of the cardiac structure and perturbed cardiomyocyte growth likely contribute to the increased vulnerability to cardiac dysfunction following preterm birth. IMPACT Preterm birth induces maladaptive cardiac remodeling and adversely impacts cardiomyocyte growth kinetics within the first week of life in sheep. These effects of prematurity on the heart are exacerbated when preterm birth is preceded by exposure to intrauterine inflammation, a common antecedent of preterm birth. Inflammatory injury to the fetal heart coupled with preterm birth consequently alters neonatal cardiac growth and maturation and thus, may potentially influence long-term cardiac function and health.
Collapse
|
15
|
Dimasi CG, Lazniewska J, Plush SE, Saini BS, Holman SL, Cho SKS, Wiese MD, Sorvina A, Macgowan CK, Seed M, Brooks DA, Morrison JL, Darby JRT. Redox ratio in the left ventricle of the growth restricted fetus is positively correlated with cardiac output. JOURNAL OF BIOPHOTONICS 2021; 14:e202100157. [PMID: 34499415 DOI: 10.1002/jbio.202100157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Intrauterine growth restriction (IUGR) is a result of limited substrate supply to the developing fetus in utero, and can be caused by either placental, genetic or environmental factors. Babies born IUGR can have poor long-term health outcomes, including being at higher risk of developing cardiovascular disease. Limited substrate supply in the IUGR fetus not only changes the structure of the heart but may also affect metabolism and function of the developing heart. We have utilised two imaging modalities, two-photon microscopy and phase-contrast MRI (PC-MRI), to assess alterations in cardiac metabolism and function using a sheep model of IUGR. Two-photon imaging revealed that the left ventricle of IUGR fetuses (at 140-141 d GA) had a reduced optical redox ratio, suggesting a reliance on glycolysis for ATP production. Concurrently, the use of PC-MRI to measure foetal left ventricular cardiac output (LVCO) revealed a positive correlation between LVCO and redox ratio in IUGR, but not control fetuses. These data suggest that altered heart metabolism in IUGR fetuses is indicative of reduced cardiac output, which may contribute to poor cardiac outcomes in adulthood.
Collapse
Affiliation(s)
- Catherine G Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Joanna Lazniewska
- Mechanisms in Cell Biology and Disease Research Group, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Sally E Plush
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Steven K S Cho
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Wiese
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mike Seed
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Ren J, Darby JRT, Lock MC, Holman SL, Saini BS, Bradshaw EL, Orgeig S, Perumal SR, Wiese MD, Macgowan CK, Seed M, Morrison JL. Impact of maternal late gestation undernutrition on surfactant maturation, pulmonary blood flow and oxygen delivery measured by magnetic resonance imaging in the sheep fetus. J Physiol 2021; 599:4705-4724. [PMID: 34487347 DOI: 10.1113/jp281292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022] Open
Abstract
Restriction of fetal substrate supply has an adverse effect on surfactant maturation in the lung and thus affects the transition from in utero placental oxygenation to pulmonary ventilation ex utero. The effects on surfactant maturation are mediated by alteration in mechanisms regulating surfactant protein and phospholipid synthesis. This study aimed to determine the effects of late gestation maternal undernutrition (LGUN) and LGUN plus fetal glucose infusion (LGUN+G) compared to Control on surfactant maturation and lung development, and the relationship with pulmonary blood flow and oxygen delivery ( D O 2 ) measured by magnetic resonance imaging (MRI) with molecules that regulate lung development. LGUN from 115 to 140 days' gestation significantly decreased fetal body weight, which was normalized by glucose infusion. LGUN and LGUN+G resulted in decreased fetal plasma glucose concentration, with no change in fetal arterial P O 2 compared to control. There was no effect of LGUN and LGUN+G on the mRNA expression of surfactant proteins (SFTP) and genes regulating surfactant maturation in the fetal lung. However, blood flow in the main pulmonary artery was significantly increased in LGUN, despite no change in blood flow in the left or right pulmonary artery and D O 2 to the fetal lung. There was a negative relationship between left pulmonary artery flow and D O 2 to the left lung with SFTP-B and GLUT1 mRNA expression, while their relationship with VEGFR2 was positive. These results suggest that increased pulmonary blood flow measured by MRI may have an adverse effect on surfactant maturation during fetal lung development. KEY POINTS: Maternal undernutrition during gestation alters fetal lung development by impacting surfactant maturation. However, the direction of change remains controversial. We examined the effects of maternal late gestation maternal undernutrition (LGUN) on maternal and fetal outcomes, signalling pathways involved in fetal lung development, pulmonary haemodynamics and oxygen delivery in sheep using a combination of molecular and magnetic resonance imaging (MRI) techniques. LGUN decreased fetal plasma glucose concentration without affecting arterial P O 2 . Surfactant maturation was not affected; however, main pulmonary artery blood flow was significantly increased in the LGUN fetuses. This is the first study to explore the relationship between in utero MRI measures of pulmonary haemodynamics and lung development. Across all treatment groups, left pulmonary artery blood flow and oxygen delivery were negatively correlated with surfactant protein B mRNA and protein expression in late gestation.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandra Orgeig
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sunthara R Perumal
- Preclinical Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Michael D Wiese
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Mike Seed
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Placental insufficiency induces a sexually dimorphic response in the expression of cardiac growth and metabolic signalling molecules upon exposure to a postnatal western diet in guinea pigs. J Dev Orig Health Dis 2021; 13:345-357. [PMID: 34308829 DOI: 10.1017/s204017442100043x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There is a strong relationship between low birth weight (LBW) and an increased risk of developing cardiovascular disease (CVD). In postnatal life, LBW offspring are becoming more commonly exposed to the additional independent CVD risk factors, such as an obesogenic diet. However, how an already detrimentally programmed LBW myocardium responds to a secondary insult, such as an obesogenic diet (western diet; WD), during postnatal life is ill defined. Herein, we aimed to determine in a pre-clinical guinea pig model of CVD, both the independent and interactive effects of LBW and a postnatal WD on the molecular pathways that regulate cardiac growth and metabolism. Uterine artery ablation was used to induce placental insufficiency (PI) in pregnant guinea pigs to generate LBW offspring. Normal birth weight (NBW) and LBW offspring were weaned onto either a Control diet or WD. At ˜145 days after birth (young adulthood), male and female offspring were humanely killed, the heart weighed and left ventricle tissue collected. The mRNA expression of signalling molecules involved in a pathological hypertrophic and fibrotic response was increased in the myocardium of LBW male, but not female offspring, fed a WD as was the mRNA expression of transcription factors involved in fatty acid oxidation. The mRNA expression of glucose transporters was downregulated by LBW and WD in male, but not female hearts. This study has highlighted a sexually dimorphic cardiac pathological hypertrophic and fibrotic response to the secondary insult of postnatal WD consumption in LBW offspring.
Collapse
|
18
|
Paget TL, Parkinson-Lawrence EJ, Trim PJ, Autilio C, Panchal MH, Koster G, Echaide M, Snel MF, Postle AD, Morrison JL, Pérez-Gil J, Orgeig S. Increased Alveolar Heparan Sulphate and Reduced Pulmonary Surfactant Amount and Function in the Mucopolysaccharidosis IIIA Mouse. Cells 2021; 10:849. [PMID: 33918094 PMCID: PMC8070179 DOI: 10.3390/cells10040849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disease with significant neurological and skeletal pathologies. Respiratory dysfunction is a secondary pathology contributing to mortality in MPS IIIA patients. Pulmonary surfactant is crucial to optimal lung function and has not been investigated in MPS IIIA. We measured heparan sulphate (HS), lipids and surfactant proteins (SP) in pulmonary tissue and bronchoalveolar lavage fluid (BALF), and surfactant activity in healthy and diseased mice (20 weeks of age). Heparan sulphate, ganglioside GM3 and bis(monoacylglycero)phosphate (BMP) were increased in MPS IIIA lung tissue. There was an increase in HS and a decrease in BMP and cholesteryl esters (CE) in MPS IIIA BALF. Phospholipid composition remained unchanged, but BALF total phospholipids were reduced (49.70%) in MPS IIIA. There was a reduction in SP-A, -C and -D mRNA, SP-D protein in tissue and SP-A, -C and -D protein in BALF of MPS IIIA mice. Captive bubble surfactometry showed an increase in minimum and maximum surface tension and percent surface area compression, as well as a higher compressibility and hysteresis in MPS IIIA surfactant upon dynamic cycling. Collectively these biochemical and biophysical changes in alveolar surfactant are likely to be detrimental to lung function in MPS IIIA.
Collapse
Affiliation(s)
- Tamara L. Paget
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| | - Emma J. Parkinson-Lawrence
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| | - Paul J. Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (P.J.T.); (M.F.S.)
| | - Chiara Autilio
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Madhuriben H. Panchal
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Grielof Koster
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Mercedes Echaide
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Marten F. Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (P.J.T.); (M.F.S.)
| | - Anthony D. Postle
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Janna L. Morrison
- Early Origins Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Jésus Pérez-Gil
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Sandra Orgeig
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| |
Collapse
|
19
|
Clarke GD, Li J, Kuo AH, Moody AJ, Nathanielsz PW. Cardiac magnetic resonance imaging: insights into developmental programming and its consequences for aging. J Dev Orig Health Dis 2021; 12:203-219. [PMID: 33349289 PMCID: PMC7987688 DOI: 10.1017/s2040174420001233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVD) are important consequences of adverse perinatal conditions such as fetal hypoxia and maternal malnutrition. Cardiac magnetic resonance imaging (CMR) can produce a wealth of physiological information related to the development of the heart. This review outlines the current state of CMR technologies and describes the physiological biomarkers that can be measured. These phenotypes include impaired ventricular and atrial function, maladaptive ventricular remodeling, and the proliferation of myocardial steatosis and fibrosis. The discussion outlines the applications of CMR to understanding the developmental pathways leading to impaired cardiac function. The use of CMR, both in animal models of developmental programming and in human studies, is described. Specific examples are given in a baboon model of intrauterine growth restriction (IUGR). CMR offers great potential as a tool for understanding the sequence of dysfunctional adaptations of developmental origin that can affect the human cardiovascular system.
Collapse
Affiliation(s)
- G D Clarke
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Li
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A H Kuo
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - A J Moody
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
20
|
Lazniewska J, Darby JRT, Holman SL, Sorvina A, Plush SE, Massi M, Brooks DA, Morrison JL. In utero substrate restriction by placental insufficiency or maternal undernutrition decreases optical redox ratio in foetal perirenal fat. JOURNAL OF BIOPHOTONICS 2021; 14:e202000322. [PMID: 33389813 DOI: 10.1002/jbio.202000322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Intrauterine growth restriction (IUGR) can result from reduced delivery of substrates, including oxygen and glucose, during pregnancy and may be caused by either placental insufficiency or maternal undernutrition. As a consequence of IUGR, there is altered programming of adipose tissue and this can be associated with metabolic diseases later in life. We have utilised two sheep models of IUGR, placental restriction and late gestation undernutrition, to determine the metabolic effects of growth restriction on foetal perirenal adipose tissue (PAT). Two-photon microscopy was employed to obtain an optical redox ratio, which gives an indication of cell metabolism. PAT of IUGR foetuses exhibited higher metabolic activity, altered lipid droplet morphology, upregulation of cytochrome c oxidase subunit genes and decreased expression of genes involved in growth and differentiation. Our results indicate that there are adaptations in PAT of IUGR foetuses that might be protective and ensure survival in response to an IUGR insult.
Collapse
Affiliation(s)
- Joanna Lazniewska
- Mechanisms in Cell Biology and Disease Research Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sally E Plush
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Massimiliano Massi
- Department of Chemistry, Curtin University, Perth, Western Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Darby JRT, Varcoe TJ, Holman SL, McMillen IC, Morrison JL. The reliance on α-adrenergic receptor stimuli for blood pressure regulation in the chronically hypoxaemic fetus is not dependent on post-ganglionic activation. J Physiol 2020; 599:1307-1318. [PMID: 33347615 DOI: 10.1113/jp280693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Chronic hypoxaemia is associated with intrauterine growth restriction (IUGR) and a predisposition to the development of hypertension in adult life. IUGR fetuses exhibit a greater reliance on α-adrenergic activation for blood pressure regulation. The fetal blood pressure response to post-ganglionic blockade is not different between control and IUGR fetuses. The decrease in mean arterial pressure is greater in the IUGR sheep fetus after α-adrenergic receptor blockade at the level of the vasculature and this is inversely related to fetal P O 2 . The increased reliance that the IUGR fetus has on α-adrenergic activation for maintenance of mean arterial pressure is not a result of increased post-ganglionic sympathetic activation. ABSTRACT Intrauterine growth restriction (IUGR) is associated with an increased risk of cardiovascular disease in adult life. Placental restriction (PR) in sheep results in chronic hypoxaemia and early onset IUGR with increased circulating plasma noradrenaline concentrations. These IUGR fetuses exhibit a greater decrease in mean arterial pressure (MAP) during α-adrenergic blockade. We aimed to determine the role of post-ganglionic sympathetic activation with respect to regulating MAP in IUGR fetal sheep. PR was induced by carunclectomy surgery prior to conception. Fetal vascular catheterization was performed at 110-126 days gestational age (GA) (term, 150 days) in nine control and seven PR-IUGR fetuses. The fetal blood pressure response to both a post-ganglionic and an α-adrenergic receptor blocker was assessed at 116-120 days GA and/or 129-131 days GA. The effect of both post ganglionic and α-adrenergic blockade on fetal blood pressure was then compared between control and IUGR fetuses at both GAs. There was no difference in the effect of post-ganglionic blockade on MAP in control and IUGR fetal sheep at either 116-120 days GA or 129-131 days GA. α-adrenergic receptor blockade decreased MAP to the same extent in both control and IUGR fetuses at 116-120 days GA. At 129-131 days GA, the drop in MAP in response to α-adrenergic receptor blockade was greater in IUGR fetuses than controls. There was a significant inverse relationship between the drop in MAP in response to α-adrenergic receptor blockade at both GAs with fetal P O 2 . Thus, the increased dependence on α-adrenergic activation for blood pressure regulation in the chronically hypoxaemic IUGR fetus is not a result of increased post-ganglionic sympathetic activation.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Tamara J Varcoe
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
22
|
Postnatal Growth Restriction in Mice Alters Cardiac Protein Composition and Leads to Functional Impairment in Adulthood. Int J Mol Sci 2020; 21:ijms21249459. [PMID: 33322681 PMCID: PMC7763900 DOI: 10.3390/ijms21249459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Postnatal growth restriction (PGR) increases the risk for cardiovascular disease (CVD) in adulthood, yet there is minimal mechanistic rationale for the observed pathology. The purpose of this study was to identify proteomic differences in hearts of growth-restricted and unrestricted mice, and propose mechanisms related to impairment in adulthood. Friend leukemia virus B (FVB) mouse dams were fed a control (CON: 20% protein), or low-protein (LP: 8% protein) isocaloric diet 2 weeks before mating. LP dams produce 20% less milk, inducing growth restriction. At birth (postnatal; PN1), pups born to dams fed the CON diet were switched to LP dams (PGR group) or a different CON dam. At PN21, a sub-cohort of CON (n = 3 males; n = 3 females) and PGR (n = 3 males; n = 3 females) were euthanized and their proteome analyzed by two-dimensional differential in-gel electrophoresis (2D DIGE) and mass spectroscopy. Western blotting and silver nitrate staining confirmed 2D DIGE results. Littermates (CON: n = 4 males and n = 4 females; PGR: n = 4 males and n = 4 females) were weaned to the CON diet. At PN77, echocardiography measured cardiac function. At PN80, hearts were removed for western blotting to determine if differences persisted into adulthood. 2D DIGE and western blot confirmation indicated PGR had reductions in p57kip2, Titin (Ttn), and Collagen (Col). At PN77, PGR had impaired cardiac function as measured by echocardiography. At PN80, western blots of p57kip2 showed protein abundance recovered from PN21. PN80 silver staining of large molecular weight proteins (Ttn and Col) was reduced in PGR. PGR reduces cell cycle activity at PN21, which is recovered in adulthood. However, collagen fiber networks are altered into adulthood.
Collapse
|
23
|
Mohammadkhani R, Khaledi N, Rajabi H, Salehi I, Komaki A. Influence of the maternal high-intensity-interval-training on the cardiac Sirt6 and lipid profile of the adult male offspring in rats. PLoS One 2020; 15:e0237148. [PMID: 32745152 PMCID: PMC7398538 DOI: 10.1371/journal.pone.0237148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
The susceptibility to cardiovascular disease in offspring could be reduced prior to birth through maternal intervention, before and during pregnancy. We evaluated whether the initiation periods of maternal exercise in preconception and pregnancy periods induce beneficial effects in the adult male offspring. Thirty-two female rats were divided into control and exercise groups. The exercise groups involve exercise before pregnancy or the preconception periods, exercise during pregnancy, and exercise before and during pregnancy. The mothers in the exercise groups were run on the treadmill in different periods. Then the birth weight and weekly weight gain of male offspring were measured, and the blood and left ventricle tissue of samples were collected for analysis of the Sirtuin 6 (Sirt6) and insulin growth factor-2 (IGF-2) gene expression, serum levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol (Cho), and triglycerides (TG). There was no significant difference in the birth weight of offspring groups (P = 0.246) while maternal HIIT only during pregnancy leads to reduce weekly weight gain of offspring. Our data showed that Sirt6 and IGF-2 gene expression was increased (P = 0.017) and decreased (P = 0.047) by maternal exercise prior to and during pregnancy, respectively. Also, the serum level of LDL (p = 0.002) and Cho (P = 0.007) were significantly decreased and maternal exercise leads to improves the running speed of the adult male offspring (p = 0.0176). This study suggests that maternal HIIT prior to and during pregnancy have positive intergenerational consequence in the health and physical readiness of offspring.
Collapse
Affiliation(s)
- Reihaneh Mohammadkhani
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Neda Khaledi
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Darby JRT, Saini BS, Soo JY, Lock MC, Holman SL, Bradshaw EL, McInnes SJP, Voelcker NH, Macgowan CK, Seed M, Wiese MD, Morrison JL. Subcutaneous maternal resveratrol treatment increases uterine artery blood flow in the pregnant ewe and increases fetal but not cardiac growth. J Physiol 2019; 597:5063-5077. [PMID: 31483497 DOI: 10.1113/jp278110] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Substrate restriction during critical developmental windows of gestation programmes offspring for a predisposition towards cardiovascular disease in adult life. This study aimed to determine the effect of maternal resveratrol (RSV) treatment in an animal model in which chronic fetal catheterisation is possible and the timing of organ maturation reflects that of the human. Maternal RSV treatment increased uterine artery blood flow, fetal oxygenation and fetal weight. RSV was not detectable in the fetal circulation, indicating that it may not cross the sheep placenta. This study highlights RSV as a possible intervention to restore fetal substrate supply in pregnancies affected by placental insufficiency. ABSTRACT Suboptimal in utero environments with reduced substrate supply during critical developmental windows of gestation predispose offspring to non-communicable diseases such as cardiovascular disease (CVD). Improving fetal substrate supply in these pregnancies may ameliorate the predisposition these offspring have toward adult-onset CVD. This study aimed to determine the effect of maternal resveratrol (RSV) supplementation on uterine artery blood flow and the direct effects of RSV on the fetal heart in a chronically catheterised sheep model of human pregnancy. Maternal RSV treatment significantly increased uterine artery blood flow as measured by phase contrast magnetic resonance imaging, mean gestational fetal P a O 2 and S a O 2 as well as fetal weight. RSV was not detectable in the fetal circulation, and mRNA and protein expression of the histone/protein deacetylase SIRT1 did not differ between treatment groups. No effect of maternal RSV supplementation on AKT/mTOR or CAMKII signalling in the fetal left ventricle was observed. Maternal RSV supplementation is capable of increasing fetal oxygenation and growth in an animal model in which cardiac development parallels that of the human.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Brahmdeep S Saini
- Univeristy of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Steven J P McInnes
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia.,School of Engineering, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, Australia, 5095
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia.,Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | | | - Mike Seed
- Univeristy of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Wiese
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| |
Collapse
|
25
|
Varcoe TJ, Darby JRT, Gatford KL, Holman SL, Cheung P, Berry MJ, Wiese MD, Morrison JL. Considerations in selecting postoperative analgesia for pregnant sheep following fetal instrumentation surgery. Anim Front 2019; 9:60-67. [PMID: 32002263 PMCID: PMC6952008 DOI: 10.1093/af/vfz019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Tamara J Varcoe
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Pearl Cheung
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health and Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Michael D Wiese
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
26
|
Tappia PS, Ramjiawan B. Developmental origins of myocardial abnormalities in postnatal life 1. Can J Physiol Pharmacol 2018; 97:457-462. [PMID: 30398906 DOI: 10.1139/cjpp-2018-0446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Poor quality and quantity maternal nutrition during pregnancy exerts permanent and damaging effects on the heart of the developing fetus. The developmental origin of adult heart disease is considered an important and critical factor in the pathogenesis of myocardial abnormalities in later life. Low birth mass, a marker of intrauterine stress, has been linked to a predisposition to heart disease. In this article, our work on the impact of exposure to a low-protein diet, in utero, on the developing heart and its long-term consequences are discussed. Other studies providing some supportive evidence are also described. It is proposed that normal fetal nutrition, growth, and development through efficient maternal nutrition (as well as other predisposing factors) before and during pregnancy may serve as a strategy for the primary prevention of heart disease.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Asper Clinical Research Institute & Office of Clinical Research, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada.,Asper Clinical Research Institute & Office of Clinical Research, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Bram Ramjiawan
- Asper Clinical Research Institute & Office of Clinical Research, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada.,Asper Clinical Research Institute & Office of Clinical Research, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
27
|
Darby JRT, Morrison JL. And the beat goes on. J Physiol 2018; 596:5073-5074. [PMID: 30238993 DOI: 10.1113/jp277026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/16/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| |
Collapse
|
28
|
Li X, Yan Q, Tang S, Tan Z, Fitzsimmons CJ, Yi K. Effects of maternal feed intake restriction during pregnancy on the expression of growth regulation, imprinting and epigenetic transcription-related genes in foetal goats. Anim Reprod Sci 2018; 198:90-98. [PMID: 30213570 DOI: 10.1016/j.anireprosci.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
Maternal nutrition during gestation is a leading factor of modifying the foetal epigenome and phenotype for mammals. Imprinting genes have important roles in regulating foetal growth, programming and development. There, however, are limited data available on the effects of feed intake restriction on the expression of imprinting genes in pregnant goats. The present study, therefore, was conducted to assess the effects of maternal feed intake restriction on the relative abundance of mRNA for growth imprinting, DNA methyltransferase (DNMT) and epigenetic transcription-related genes in the liver and heart of foetal goats during gestation. A total of 24 Liuyang black goats (2.0±0.3 yr) with similar body weight (BW, 31.22±8.09 kg) and parity (2) were allocated equally to either a control group (CG) or a restriction group (RG) during both early (from 26 to 65 days) and late (from 96 to 135 days) gestation. All goats were fed a mixed diet and had free access to fresh water. The feed of the RG was 40% less than that of the CG. The early and late gestation goats were weighed, bled and slaughtered on days 65 and 135 of gestation, respectively. In early gestation, the foetal weight, body length, the weight of foetal heart and liver were greater (P < 0.05) in the RG. The CpG methylation of genomic DNA in the foetal heart was less (P = 0.0001) in the RG. The relative abundance of mRNA of methyl-CpG-binding domain protein 2 (MBD2) and methyl-CpG-binding domain protein 3 (MBD3) genes in the foetal liver were greater (P < 0.05) in the RG. During the late gestation, the foetal weight, heart weight and liver weight were less (P < 0.05) in the RG. The relative abundance of mRNA for the MBD2 gene (P = 0.043) in the foetal heart, and the ten-eleven translocation protein 1 (TET1) gene (P < 0.05) in both the foetal heart and liver were greater in the RG. These results indicate feed intake restriction during gestation influenced foetal development and regulated the relative abundance of mRNA for epigenetic transcription-related genes.
Collapse
Affiliation(s)
- Xiaopeng Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, PR China.
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan 410128, PR China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan 410128, PR China
| | - Carolyn Jean Fitzsimmons
- Livestock Genetecs, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kangle Yi
- Prataculture & Herbivore Laboratory, Hunan Institute of Animal and Veterinary Science, 8 Changlang Road, Changsha, Hunan 410131, PR China.
| |
Collapse
|
29
|
Clarke GD, Nathanielsz PW. 'Stiffening the sinews of the heart'. J Physiol 2018; 596:2279-2280. [PMID: 29676799 PMCID: PMC6002227 DOI: 10.1113/jp276234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Geoffrey D. Clarke
- Department of Radiology and Research Imaging InstituteThe University of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Peter W. Nathanielsz
- Department of Animal ScienceCollege of Agriculture and Natural ResourcesLaramieWYUSA
| |
Collapse
|