1
|
Lu L, Shi Y, Wei B, Li W, Yu X, Zhao Y, Yu D, Sun M. YTHDF3 modulates the Cbln1 level by recruiting BTG2 and is implicated in the impaired cognition of prenatal hypoxia offspring. iScience 2024; 27:108703. [PMID: 38205248 PMCID: PMC10776956 DOI: 10.1016/j.isci.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The "Fetal Origins of Adult Disease (FOAD)" hypothesis holds that adverse factors during pregnancy can increase the risk of chronic diseases in offspring. Here, we investigated the effects of prenatal hypoxia (PH) on brain structure and function in adult offspring and explored the role of the N6-methyladenosine (m6A) pathway. The results suggest that abnormal cognition in PH offspring may be related to the dysregulation of the m6A pathway, specifically increased levels of YTHDF3 in the hippocampus. YTHDF3 interacts with BTG2 and is involved in the decay of Cbln1 mRNA, leading to the down-regulation of Cbln1 expression. Deficiency of Cbln1 may contribute to abnormal synaptic function, which in turn causes cognitive impairment in PH offspring. This study provides a scientific clues for understanding the mechanisms of impaired cognition in PH offspring and provides a theoretical basis for the treatment of cognitive impairment in offspring exposed to PH.
Collapse
Affiliation(s)
- Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Weisheng Li
- Department of Gynaecology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic, Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Perinatal iron deficiency causes sex-dependent alterations in renal retinoic acid signaling and nephrogenesis. J Nutr Biochem 2023; 112:109227. [PMID: 36435294 DOI: 10.1016/j.jnutbio.2022.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 09/19/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Long-term alterations in kidney structure and function have been observed in offspring exposed to perinatal stressors such as iron deficiency (ID), albeit the mechanisms underlying these changes remain unclear. Here, we assessed how perinatal ID alters renal vitamin A metabolism, an important contributor to nephrogenesis, in the developing kidney. Pregnant Sprague Dawley rats were fed either an iron-restricted or -replete diet throughout gestation, and offspring were studied on postnatal day (PD)1 and 28. Maternal iron restriction results in reduced renal retinoid concentrations in male and female offspring on PD1 (P=.005). Nephron endowment was reduced by 21% in male perinatal ID offspring (P<.001), whereas it was unaffected in perinatal ID females. Perinatal ID resulted in sex-dependent changes in kidney retinoid synthesis and metabolism, whereby male offspring exhibited increased expression of Raldh2 and Rar/Rxr isoforms, while females exhibited unchanged or decreased expression (all interaction P<.05). Male perinatal ID offspring exhibit sex-specific enhancements of retinoic acid pathway signaling components on PD1, including Gdnf (P<.01) and Ctnnb1 (P<.01), albeit robust upregulation of RA transcriptional target Stra6 was observed in both sexes (P=.006). On PD28, perinatal ID resulted in elevated renal retinoid concentrations (P=.02) coinciding with enhanced expression of Raldh2 (P=.04), but not any Rar isoform or Rxr. Further, perinatal ID resulted in robust upregulation of Gdnf, Ret, Ctnnb1, associated with further increases in both Cxcr4 and Stra6 (all P<.01) at PD28. Together, these data suggest perinatal ID results in sustained sex-dependent perturbations in vitamin A metabolism, which likely underlie sex-specific reductions in nephron endowment.
Collapse
|
3
|
Lipinski RJ, Krauss RS. Gene-environment interactions in birth defect etiology: Challenges and opportunities. Curr Top Dev Biol 2023; 152:1-30. [PMID: 36707208 PMCID: PMC9942595 DOI: 10.1016/bs.ctdb.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Birth defects are relatively common congenital outcomes that significantly impact affected individuals, their families, and communities. Effective development and deployment of prevention and therapeutic strategies for these conditions requires sufficient understanding of etiology, including underlying genetic and environmental causes. Tremendous progress has been made in defining the genetic basis of familial and syndromic forms of birth defects. However, the majority of birth defect cases are considered nonsyndromic and thought to result from multifactorial gene-environment interactions. While substantial advances have been made in elucidating the genetic landscape of these etiologically complex conditions, significant biological and technical constraints have stymied progress toward a refined knowledge of environmental risk factors. Defining specific gene-environment interactions in birth defect etiology is even more challenging. However, progress has been made, including demonstration of critical proofs of concept and development of new conceptual and technical approaches for resolving complex gene-environment interactions. In this review, we discuss current views of multifactorial birth defect etiology, comparing them with other diseases that also involve gene-environment interactions, including primary immunodeficiency and cancer. We describe how various model systems have illuminated mechanisms of multifactorial etiology and these models' individual strengths and weaknesses. Finally, suggestions for areas of future emphasis are proposed.
Collapse
Affiliation(s)
- Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States,Corresponding authors: ;
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Corresponding authors: ;
| |
Collapse
|
4
|
Tagawa M, Terasaki M, Mii A, Toda E, Kajimoto Y, Kunugi S, Terasaki Y, Shimizu A. The reduced number of nephrons with shortening renal tubules in mouse postnatal adverse environment. Pediatr Res 2022:10.1038/s41390-022-02332-0. [PMID: 36302857 DOI: 10.1038/s41390-022-02332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 08/10/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The intrauterine adverse environment during nephrogenesis reduces the nephron number, probably associates with impaired ureteric bud (UB) branching. METHODS The kidneys in C57/BL6 mice were irradiated with a single dose of 10 gray (10 Gy) as adverse environment on postnatal day 3 (irradiated PND3 kidneys) after UB branching ceased. The renal functions and pathological findings of irradiated PND3 kidneys were compared with those of non-irradiated control and 10 Gy irradiation on PND14 (irradiated PND14 kidney) from 1 to 18 months. RESULTS The number and density of glomeruli in irradiated PND3 kidneys were reduced by 1 month with renal dysfunction at 6 months. The morphologically incomplete glomeruli with insufficient capillaries were involuted by 1 month in the superficial cortex. Reduced tubular numbers and developmental disability with shortening renal tubules occurred in irradiated PND3 kidneys with impaired urine concentration at 6 months. Hypertrophy of glomeruli developed, and occasional sclerotic glomeruli appeared in the juxtamedullary cortex with hypertension and albuminuria at 12 to 18 months. CONCLUSIONS The reduced number of nephrons with shortening renal tubules occurred with impaired renal functions in a postnatal adverse environment after cessation of UB branching, and glomerular hypertrophy with occasional glomerulosclerosis developed accompanied with hypertension and albuminuria in the adulthood. IMPACT The reduced number of nephrons with shortening renal tubules occurred with impaired renal functions in a postnatal adverse environment after cessation of ureteric bud branching. The reduced number of glomeruli were associated with not only the impaired formation of glomeruli but also involution of morphologically small incomplete glomeruli after an adverse environment. The insufficiently developed nephrons were characterized by the shortening renal tubules with impaired urine concentration. In addition, glomerular hypertrophy and occasional glomerulosclerosis developed with hypertension and albuminuria in adulthood. The present study can help to understand the risk of alternations of premature nephrons in preterm neonates.
Collapse
Affiliation(s)
- Masako Tagawa
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Akiko Mii
- Department of Nephrology, Nippon Medical School, Tokyo, Japan
| | - Etsuko Toda
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yusuke Kajimoto
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.,Division of Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
5
|
Rudloff S, Bileck A, Janker L, Wanner N, Liaukouskaya N, Lundby C, Huber TB, Gerner C, Huynh-Do U. Dichotomous responses to chronic fetal hypoxia lead to a predetermined aging phenotype. Mol Cell Proteomics 2021; 21:100190. [PMID: 34958949 PMCID: PMC8808178 DOI: 10.1016/j.mcpro.2021.100190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
Hypoxia-induced intrauterine growth restriction increases the risk for cardiovascular, renal and other chronic diseases in adults, representing thus a major public health problem. Still, not much is known about the fetal mechanisms that predispose these individuals to disease. Using a previously validated mouse model of fetal hypoxia and bottom-up proteomics we characterize the response of the fetal kidney to chronic hypoxic stress. Fetal kidneys exhibit a dichotomous response to chronic hypoxia, comprising on the one hand cellular adaptations that promote survival (glycolysis, autophagy, and reduced DNA and protein synthesis), but on the other processes that induce a senescence-like phenotype (infiltration of inflammatory cells, DNA damage, and reduced proliferation). Importantly, chronic hypoxia also reduces the expression of the anti-aging proteins klotho and Sirt6, a mechanism that is evolutionary conserved between mice and humans. Taken together, we uncover that predetermined aging during fetal development is a key event in chronic hypoxia, establishing a solid foundation for Barker's hypothesis of fetal programming of adult diseases. This phenotype is associated with a characteristic biomarker profile in tissue and serum samples, exploitable for detecting and targeting accelerated aging in chronic hypoxic human diseases.
Collapse
Affiliation(s)
- Stefan Rudloff
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, A-1090 Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, A-1090 Vienna, Austria
| | - Nicola Wanner
- University Medical Center Hamburg-Eppendorf, III. Medizinische Klinik und Poliklinik, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Nastassia Liaukouskaya
- University Medical Center Hamburg-Eppendorf, III. Medizinische Klinik und Poliklinik, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Carsten Lundby
- Centre for Physical Activity Research (CFAS), Rigshospitalet Section 7641, Ole Maaloesvej 24, DK-2100 Copenhagen, Denmark; Faculty of Social and Health Sciences, Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, NO-2624 Lillehammer, Norway
| | - Tobias B Huber
- University Medical Center Hamburg-Eppendorf, III. Medizinische Klinik und Poliklinik, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, A-1090 Vienna, Austria.
| | - Uyen Huynh-Do
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland.
| |
Collapse
|
6
|
Kalisch-Smith JI, Ved N, Szumska D, Munro J, Troup M, Harris SE, Rodriguez-Caro H, Jacquemot A, Miller JJ, Stuart EM, Wolna M, Hardman E, Prin F, Lana-Elola E, Aoidi R, Fisher EMC, Tybulewicz VLJ, Mohun TJ, Lakhal-Littleton S, De Val S, Giannoulatou E, Sparrow DB. Maternal iron deficiency perturbs embryonic cardiovascular development in mice. Nat Commun 2021; 12:3447. [PMID: 34103494 PMCID: PMC8187484 DOI: 10.1038/s41467-021-23660-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Dorota Szumska
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jacob Munro
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
| | - Shelley E Harris
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Helena Rodriguez-Caro
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Aimée Jacquemot
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ealing Hospital, London, UK
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleanor M Stuart
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Magda Wolna
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Emily Hardman
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabrice Prin
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Eva Lana-Elola
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | | | - Victor L J Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
- Imperial College London, London, UK
| | - Timothy J Mohun
- Heart Development Laboratory, The Francis Crick Institute, London, UK
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research Limited, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Saavedra LPJ, Prates KV, Gonçalves GD, Piovan S, Matafome P, Mathias PCDF. COVID-19 During Development: A Matter of Concern. Front Cell Dev Biol 2021; 9:659032. [PMID: 33898461 PMCID: PMC8058409 DOI: 10.3389/fcell.2021.659032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
A new infectious disease, COVID-19, has spread around the world. The most common symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are cough and fever, but severe cases can develop acute respiratory distress syndrome. The main receptor for SARS-CoV-2 in human tissue is angiotensin-converting enzyme 2, and the lungs, heart, and kidneys are the most affected organs. Besides the inflammatory process and tissue damage, the presence of a cytokine "storm" has been related to a higher mortality rate. Other infectious viral diseases, such as Zika, chikungunya, and influenza, were associated with complications in pregnant women, such as growth restriction, malformation, preterm birth, low birth weight, miscarriage, and death, although they can also cause developmental disorders in infants and adolescents. Evidence points out that stressors during pregnancy and infancy may lead to the development of obesity, diabetes, and cardiovascular disease. Therefore, we hypothesize that COVID-19 infection during the critical phases of development can program the individual to chronic diseases in adulthood. It is important that COVID-19 patients receive proper monitoring as a way to avoid expensive costs to public health in the future.
Collapse
Affiliation(s)
- Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Kelly Valério Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Gessica Dutra Gonçalves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Silvano Piovan
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Paulo Matafome
- Institute of Physiology and Institute of Clinical and Biomedical Research, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Coimbra Health School, ESTeSC, Instituto Politécnico de Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| |
Collapse
|
8
|
Rudloff S, Janot M, Rodriguez S, Dessalle K, Jahnen-Dechent W, Huynh-Do U. Fetuin-A is a HIF target that safeguards tissue integrity during hypoxic stress. Nat Commun 2021; 12:549. [PMID: 33483479 PMCID: PMC7822914 DOI: 10.1038/s41467-020-20832-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is associated with reduced kidney size at birth, accelerated renal function decline, and increased risk for chronic kidney and cardiovascular diseases in adults. Precise mechanisms underlying fetal programming of adult diseases remain largely elusive and warrant extensive investigation. Setting up a mouse model of hypoxia-induced IUGR, fetal adaptations at mRNA, protein and cellular levels, and their long-term functional consequences are characterized, using the kidney as a readout. Here, we identify fetuin-A as an evolutionary conserved HIF target gene, and further investigate its role using fetuin-A KO animals and an adult model of ischemia-reperfusion injury. Beyond its role as systemic calcification inhibitor, fetuin-A emerges as a multifaceted protective factor that locally counteracts calcification, modulates macrophage polarization, and attenuates inflammation and fibrosis, thus preserving kidney function. Our study paves the way to therapeutic approaches mitigating mineral stress-induced inflammation and damage, principally applicable to all soft tissues.
Collapse
Affiliation(s)
- Stefan Rudloff
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Mathilde Janot
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Stephane Rodriguez
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Onco-haematology, Geneva Medical University, Geneva, Switzerland
| | - Kevin Dessalle
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Medical Faculty, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland.
| |
Collapse
|
9
|
Walton S, Mirabito Colafella KM, Ansari A, Chai S, Denton K. Insulin-regulated aminopeptidase deficiency impairs cardiovascular adaptations and placental development during pregnancy. Clin Sci (Lond) 2020; 134:3213-3228. [PMID: 33252660 PMCID: PMC7733041 DOI: 10.1042/cs20201233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Insulin-regulated aminopeptidase (IRAP), an enzyme that cleaves vasoactive peptides including oxytocin and vasopressin, is suggested to play a role in pregnancy and the onset of preeclampsia. Our aim was to examine the contribution of IRAP to arterial pressure regulation and placental development during pregnancy in mice. Mean arterial pressure and heart rate were measured via radiotelemetry in 12-week-old female wild-type and IRAP knockout mice. Females were time-mated with males of the same genotype. Placentae were collected at embryonic day 18.5 for histological analysis. Basal heart rate was ∼40 bpm lower in IRAP knockout females compared with wild-type females. The increase in heart rate across gestation was greater in IRAP knockout females than wild-type females. Neither basal nor gestational mean arterial pressure was different between wildtype and IRAP knockout females. Urine output and water intake of IRAP knockout mice were ∼45% less than wild-type mice at late gestation. IRAP deficiency had no effect on fetal weight. Morphological assessment of placentae revealed that IRAP deficiency was associated with reduced labyrinth surface area and accumulation of glycogen in the junctional zone. Our data demonstrate that IRAP deficiency alters maternal fluid handling and impairs placental labyrinth expansion at late gestation, indicating that IRAP contributes to the normal adaptions to pregnancy.
Collapse
Affiliation(s)
- Sarah L. Walton
- Department of Physiology, Monash University, Melbourne, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Katrina M. Mirabito Colafella
- Department of Physiology, Monash University, Melbourne, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Aneesa Ansari
- Department of Physiology, Monash University, Melbourne, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Siew Yeen Chai
- Department of Physiology, Monash University, Melbourne, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Kate M. Denton
- Department of Physiology, Monash University, Melbourne, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Urine glucose concentration: A useful parameter as a surrogate for glycaemia on the first day of life in canine neonates. Res Vet Sci 2020; 133:59-62. [PMID: 32937287 DOI: 10.1016/j.rvsc.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Hypoglycaemia is a well-known risk factor in neonatal puppies and kittens; glycaemia control is crucial during the first days of life. Kidneys immaturity provokes the presence of physiological glycosuria during the first 2-3 weeks of life in small animals. OBJECTIVES The aim of this study was to evaluate the potential of glycosuria as a predictor of glycaemia in neonatal puppies during the first two weeks of life. METHODS Prospective study. Thirty-three client-owned healthy neonatal puppies admitted to the Veterinary Teaching Hospital, Autonomous University of Barcelona, were included in the study and divided into four different groups according to the day of sampling (1, 4, 7, and 11 days post-delivery). Glucose levels in blood and urine samples were evaluated and compared between groups. Correlation between glucose levels in blood and urine was also determined. RESULTS Hypoglycaemia was diagnosed in 17.14% of the puppies and only on day 1 after delivery. A positive and significant correlation between blood and urine glucose concentration on day 1 after delivery was observed. No significant correlation between blood and urine glucose was observed on days 4, 7 and 11 after delivery. CONCLUSIONS Urine concentration of glucose is a useful parameter to establish glycaemic status on the first day of life in canine puppies.
Collapse
|
11
|
Hemker SL, Cerqueira DM, Bodnar AJ, Cargill KR, Clugston A, Anslow MJ, Sims-Lucas S, Kostka D, Ho J. Deletion of hypoxia-responsive microRNA-210 results in a sex-specific decrease in nephron number. FASEB J 2020; 34:5782-5799. [PMID: 32141129 DOI: 10.1096/fj.201902767r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
Abstract
Low nephron number results in an increased risk of developing hypertension and chronic kidney disease. Intrauterine growth restriction is associated with a nephron deficit in humans, and is commonly caused by placental insufficiency, which results in fetal hypoxia. The underlying mechanisms by which hypoxia impacts kidney development are poorly understood. microRNA-210 is the most consistently induced microRNA in hypoxia and is known to promote cell survival in a hypoxic environment. In this study, the role of microRNA-210 in kidney development was evaluated using a global microRNA-210 knockout mouse. A male-specific 35% nephron deficit in microRNA-210 knockout mice was observed. Wnt/β-catenin signaling, a pathway crucial for nephron differentiation, was misregulated in male kidneys with increased expression of the canonical Wnt target lymphoid enhancer binding factor 1. This coincided with increased expression of caspase-8-associated protein 2, a known microRNA-210 target and apoptosis signal transducer. Together, these data are consistent with a sex-specific requirement for microRNA-210 in kidney development.
Collapse
Affiliation(s)
- Shelby L Hemker
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Débora M Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew J Bodnar
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kasey R Cargill
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew Clugston
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melissa J Anslow
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Sunder Sims-Lucas
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dennis Kostka
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Cargill KR, Chiba T, Murali A, Mukherjee E, Crinzi E, Sims-Lucas S. Prenatal hypoxia increases susceptibility to kidney injury. PLoS One 2020; 15:e0229618. [PMID: 32084244 PMCID: PMC7034911 DOI: 10.1371/journal.pone.0229618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Prenatal hypoxia is a gestational stressor that can result in developmental abnormalities or physiological reprogramming, and often decreases cellular capacity against secondary stress. When a developing fetus is exposed to hypoxia, blood flow is preferentially redirected to vital organs including the brain and heart over other organs including the kidney. Hypoxia-induced injury can lead to structural malformations in the kidney; however, even in the absence of structural lesions, hypoxia can physiologically reprogram the kidney leading to decreased function or increased susceptibility to injury. Our investigation in mice reveals that while prenatal hypoxia does not affect normal development of the kidneys, it primes the kidneys to have an increased susceptibility to kidney injury later in life. We found that our model does not develop structural abnormalities when prenatally exposed to modest 12% O2 as evident by normal histological characterization and gene expression analysis. Further, adult renal structure and function is comparable to mice exposed to ambient oxygen throughout nephrogenesis. However, after induction of kidney injury with a nephrotoxin (cisplatin), the offspring of mice housed in hypoxia exhibit significantly reduced renal function and proximal tubule damage following injury. We conclude that exposure to prenatal hypoxia in utero physiologically reprograms the kidneys leading to increased susceptibility to injury later in life.
Collapse
Affiliation(s)
- Kasey R. Cargill
- Department of Pediatrics, Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Takuto Chiba
- Department of Pediatrics, Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anjana Murali
- Department of Pediatrics, Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elina Mukherjee
- Department of Pediatrics, Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth Crinzi
- Department of Pediatrics, Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sunder Sims-Lucas
- Department of Pediatrics, Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Gonçalves GD, Walton SL, Gazzard SE, van der Wolde J, Mathias PCF, Moritz KM, Cullen-McEwen LA, Bertram JF. Maternal hypoxia developmentally programs low podocyte endowment in male, but not female offspring. Anat Rec (Hoboken) 2020; 303:2668-2678. [PMID: 31984678 DOI: 10.1002/ar.24369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 11/07/2022]
Abstract
Fetal hypoxia is a common complication of pregnancy. We have previously reported that maternal hypoxia in late gestation in mice gives rise to male offspring with reduced nephron number, while females have normal nephron number. Male offspring later develop proteinuria and renal pathology, including glomerular pathology, whereas female offspring are unaffected. Given the central role of podocyte depletion in glomerular and renal pathology, we examined whether maternal hypoxia resulted in low podocyte endowment in offspring. Pregnant CD1 mice were allocated at embryonic day 14.5 to normoxic (21% oxygen) or hypoxic (12% oxygen) conditions. At postnatal day 21, kidneys from mice were immersion fixed, and one mid-hilar slice per kidney was immunostained with antibodies directed against p57 and synaptopodin for podocyte identification. Slices were cleared and imaged with a multiphoton microscope for podometric analysis. Male hypoxic offspring had significantly lower birth weight, nephron number, and podocyte endowment than normoxic male offspring (podocyte number; normoxic 62.86 ± 2.26 podocytes per glomerulus, hypoxic 53.38 ± 2.25; p < .01, mean ± SEM). In contrast, hypoxic female offspring had low birth weight but their nephron and podocyte endowment was the same as normoxic female offspring (podocyte number; normoxic 62.38 ± 1.86 podocytes per glomerulus, hypoxic 61.81 ± 1.80; p = .88). To the best of our knowledge, this is the first report of developmentally programmed low podocyte endowment. Given the well-known association between podocyte depletion in adulthood and glomerular pathology, we postulate that podocyte endowment may place offspring at risk of renal disease in adulthood, and explain the greater vulnerability of male offspring.
Collapse
Affiliation(s)
- Gessica D Gonçalves
- Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Biological Science Program, Department of Biotechnology, Genetics and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - Sarah L Walton
- School of Biomedical Sciences and Child Health Research Centre, The University of Queensland, Brisbane, Australia.,Cardiovascular Disease Program, and Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Sarah E Gazzard
- Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - James van der Wolde
- Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Paulo C F Mathias
- Biological Science Program, Department of Biotechnology, Genetics and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - Karen M Moritz
- School of Biomedical Sciences and Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Luise A Cullen-McEwen
- Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - John F Bertram
- Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Bennet L, Ikeda T, Llanos AJ, Nijhuis J, Gunn AJ. Challenges and controversies in perinatal physiology. J Physiol 2019; 596:5485-5489. [PMID: 30499159 DOI: 10.1113/jp276299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- L Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - T Ikeda
- Department of Obstetrics and Gynaecology, Mie University, Mie Prefecture, Japan
| | - A J Llanos
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - J Nijhuis
- Department of Obstetrics and Gynaecology, Maastricht University, Maastricht, The Netherlands
| | - A J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Li J, Guandalini M, Mcinnes H, Kandasamy Y, Trnka P, Moritz K. The impact of prematurity on postnatal growth of different renal compartments. Nephrology (Carlton) 2019; 25:116-124. [DOI: 10.1111/nep.13623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Joan Li
- Faculty of MedicineUniversity of Queensland Brisbane Queensland Australia
| | - Michael Guandalini
- Medical Imaging and Nuclear MedicineQueensland Children's Hospital Brisbane Queensland Australia
| | - Helena Mcinnes
- Department of NeonatologyTownsville Hospital University of Newcastle Douglas Queensland Australia
| | - Yogavijayan Kandasamy
- Department of NeonatologyTownsville Hospital University of Newcastle Douglas Queensland Australia
| | - Peter Trnka
- Department of Nephrology, Queensland Children's Hospital, Brisbane and School of MedicineUniversity of Queensland Brisbane Queensland Australia
| | - Karen Moritz
- Centre for Children's Health Research, and School of Biomedical ScienceUniversity of Queensland Brisbane Queensland Australia
| |
Collapse
|
16
|
Chu A, Casero D, Thamotharan S, Wadehra M, Cosi A, Devaskar SU. The Placental Transcriptome in Late Gestational Hypoxia Resulting in Murine Intrauterine Growth Restriction Parallels Increased Risk of Adult Cardiometabolic Disease. Sci Rep 2019; 9:1243. [PMID: 30718791 PMCID: PMC6361888 DOI: 10.1038/s41598-018-37627-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Intrauterine growth restriction (IUGR) enhances risk for adult onset cardiovascular disease (CVD). The mechanisms underlying IUGR are poorly understood, though inadequate blood flow and oxygen/nutrient provision are considered common endpoints. Based on evidence in humans linking IUGR to adult CVD, we hypothesized that in murine pregnancy, maternal late gestational hypoxia (LG-H) exposure resulting in IUGR would result in (1) placental transcriptome changes linked to risk for later CVD, and 2) adult phenotypes of CVD in the IUGR offspring. After subjecting pregnant mice to hypoxia (10.5% oxygen) from gestational day (GD) 14.5 to 18.5, we undertook RNA sequencing from GD19 placentas. Functional analysis suggested multiple changes in structural and functional genes important for placental health and function, with maximal dysregulation involving vascular and nutrient transport pathways. Concordantly, a ~10% decrease in birthweights and ~30% decrease in litter size was observed, supportive of placental insufficiency. We also found that the LG-H IUGR offspring exhibit increased risk for CVD at 4 months of age, manifesting as hypertension, increased abdominal fat, elevated leptin and total cholesterol concentrations. In summary, this animal model of IUGR links the placental transcriptional response to the stressor of gestational hypoxia to increased risk of developing cardiometabolic disease.
Collapse
Affiliation(s)
- Alison Chu
- David Geffen School of Medicine at UCLA, Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, 10833 Le Conte Avenue, MDCC B2-375, Los Angeles, CA, 90095, USA.
| | - David Casero
- David Geffen School of Medicine at UCLA, Department of Pathology and Laboratory Medicine, 3000 Terasaki Life Sciences Building, 610 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| | - Shanthie Thamotharan
- David Geffen School of Medicine at UCLA, Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, 10833 Le Conte Avenue, MDCC B2-375, Los Angeles, CA, 90095, USA
| | - Madhuri Wadehra
- David Geffen School of Medicine at UCLA, Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA
| | - Amy Cosi
- David Geffen School of Medicine at UCLA, Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, 10833 Le Conte Avenue, MDCC B2-375, Los Angeles, CA, 90095, USA
| | - Sherin U Devaskar
- David Geffen School of Medicine at UCLA, Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, 10833 Le Conte Avenue, MDCC B2-375, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Woodman AG, Bourque SL. Developmental programming of renal function: nephron endowment and beyond. J Physiol 2018; 596:5495-5496. [PMID: 29770967 DOI: 10.1113/jp276318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Andrew G Woodman
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Stephane L Bourque
- Department of Pharmacology, University of Alberta, Edmonton, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada
| |
Collapse
|