1
|
Simpson LL, Stembridge M, Siebenmann C, Moore JP, Lawley JS. Mechanisms underpinning sympathoexcitation in hypoxia. J Physiol 2024; 602:5485-5503. [PMID: 38533641 DOI: 10.1113/jp284579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content (C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Jonathan P Moore
- School of Psychology and Sport Science, Institute of Applied Human Physiology, Bangor University, Bangor, UK
| | - Justin S Lawley
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| |
Collapse
|
2
|
Boyes NG, Klassen SA, Baker SE, Nicholson WT, Joyner MJ, Shoemaker JK, Limberg JK. Interaction of simultaneous hypoxia and baroreflex loading on control of sympathetic action potential subpopulations. J Neurophysiol 2024; 132:1087-1097. [PMID: 39140588 PMCID: PMC11427050 DOI: 10.1152/jn.00277.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Efferent muscle sympathetic nerve activity (MSNA) is under tonic baroreflex control. The arterial baroreflex exerts the strongest influence over medium-sized sympathetic action potential (AP) subpopulations in efferent MSNA recordings. Prior work from multiunit MSNA recordings has shown baroreflex loading selectively abolishes the sympathetic response to hypoxia. The purpose of the study was to examine baroreflex control over different-sized AP clusters and characterize the neural recruitment strategies of sympathetic AP subpopulations with baroreflex and combined baroreflex/chemoreflex (i.e., hypoxia) activation. We loaded the arterial baroreceptors [intravenous phenylephrine (PE)] alone and in combination with systemic hypoxia ([Formula: see text] 80%) in nine healthy young men. We extracted sympathetic APs using the wavelet-based methodology and quantified baroreflex gain for individual AP clusters. AP baroreflex threshold gain was measured as the slope of the linear relationship between AP probability versus diastolic blood pressure for 10 normalized clusters. Baroreflex loading with phenylephrine decreased MSNA and AP firing compared with baseline (all P < 0.05). However, the phenylephrine-mediated decrease in AP firing was lost with concurrent hypoxia (P = 0.384). Compared with baseline, baroreflex loading reduced medium-sized AP cluster baroreflex threshold slope (condition P = 0.005) and discharge probability (condition P < 0.0001); these reductions from baseline were maintained during simultaneous hypoxia (both P < 0.05). Present findings indicate a key modulatory role of the baroreceptors on medium-sized APs in blood pressure regulation that withstands competing signals from peripheral chemoreflex activation.NEW & NOTEWORTHY This study provides a novel understanding on baroreflex control of efferent sympathetic nervous system activity during competing stressors: baroreflex loading and peripheral chemoreflex activation. We show chemoreflex activation buffers baroreflex-mediated reductions in sympathetic nervous system activity. More importantly, baroreflex loading reduced baroreflex threshold gain of sympathetic action potential clusters and this reduction withstood chemoreflex activation. These data suggest the arterial baroreflex holds a primary regulatory role over medium-sized sympathetic neurons despite competing chemoreflex signals.
Collapse
Affiliation(s)
- Natasha G Boyes
- Department of Nutrition & Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Stephen A Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- School of Kinesiology, Brock University, St. Catharines, Ontario,Canada
| | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Wayne T Nicholson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Jacqueline K Limberg
- Department of Nutrition & Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Stewart LC, Wainman L, Ahmadian M, Duffy J, Seethaler R, Mueller PJ, Eves ND, West CR. The left ventricle increases contractility in response to baroreceptor unloading, which is sympathetically mediated in the anesthetized rat. J Appl Physiol (1985) 2024; 137:136-144. [PMID: 38813608 DOI: 10.1152/japplphysiol.00722.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Contemporary discussion of the baroreflex includes the efferent vascular-sympathetic and cardiovagal arms. Since sympathetic postganglionic neurons also innervate the left ventricle (LV), it is often assumed that the LV produces a sympathetically mediated increase in contractility during baroreceptor unloading, but this has not been characterized using a load-independent index of contractility. We aimed to determine 1) whether LV contractility increases in response to baroreceptor unloading and 2) whether such increases are mediated via the sympathetic or parasympathetic arm of the autonomic nervous system. Ten male Wistar rats were anesthetized (urethane) and instrumented with arterial and LV pressure-volume catheters to measure mean arterial pressure (MAP) and load-independent LV contractility [maximal rate of increase in pressure adjusted to end-diastolic volume (PAdP/dtmax)], respectively. Rats were placed in a servo-controlled lower-body negative pressure (LBNP) chamber to reduce MAP by 10% for 60 s to mechanically unload baroreceptors under control conditions. LBNP was repeated in each animal following infusions of cardiac autonomic blockers using esmolol (sympathetic), atropine (parasympathetic), and esmolol + atropine. Under control conditions, PAdP/dtmax increased during baroreceptor unloading (26 ± 6 vs. 31 ± 9 mmHg·s-1·μL-1, P = 0.031). During esmolol, there was no increase in LV contractility during baroreceptor unloading (11 ± 2 vs. 12 ± 2, P = 0.125); however, during atropine, there was an increase in LV contractility during baroreceptor unloading (26 ± 6 vs. 31 ± 9, P = 0.019). During combined esmolol and atropine, there was a small increase in contractility versus control (13 ± 3 vs. 15 ± 4, P = 0.046). Our results demonstrate that, in anesthetized rats, LV contractility increases in response to baroreceptor unloading, which is largely sympathetically mediated.NEW & NOTEWORTHY This study empirically demonstrates a sympathetically mediated increase in LV contractility in response to baroreceptor unloading using a load-independent index of cardiac contractility in the anesthetized rat.
Collapse
Affiliation(s)
- Liam C Stewart
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
- Faculty of Medicine, Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa Wainman
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
- Faculty of Medicine, Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehdi Ahmadian
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
- Faculty of Education, School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Duffy
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
- Faculty of Medicine, Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rudolph Seethaler
- School of Engineering, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Patrick J Mueller
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Neil D Eves
- Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
- Faculty of Health and Social Development, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Christopher R West
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
- Faculty of Medicine, Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Moya EA, Yu JJ, Brown S, Gu W, Lawrence ES, Carlson R, Brandes A, Wegeng W, Amann K, McIntosh SE, Powell FL, Simonson TS. Tibetans exhibit lower hemoglobin concentration and decreased heart response to hypoxia during poikilocapnia at intermediate altitude relative to Han Chinese. Front Physiol 2024; 15:1334874. [PMID: 38784113 PMCID: PMC11112024 DOI: 10.3389/fphys.2024.1334874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Background High-altitude populations exhibit distinct cellular, respiratory, and cardiovascular phenotypes, some of which provide adaptive advantages to hypoxic conditions compared to populations with sea-level ancestry. Studies performed in populations with a history of high-altitude residence, such as Tibetans, support the idea that many of these phenotypes may be shaped by genomic features that have been positively selected for throughout generations. We hypothesize that such traits observed in Tibetans at high altitude also occur in Tibetans living at intermediate altitude, even in the absence of severe sustained hypoxia. Methodology We studied individuals of high-altitude ancestry (Tibetans, n = 17 females; n = 12 males) and sea-level ancestry (Han Chinese, n = 6 females; n = 10 males), both who had been living at ∼1300 m (∼4327 ft) for at least 18 months. We measured hemoglobin concentration ([Hb]), hypoxic ventilatory response (HVR), and hypoxic heart rate response (HHRR) with end-tidal CO2 (PetCO2) held constant (isocapnia) or allowed to decrease with hypoxic hyperventilation (poikilocapnia). We also quantified the contribution of CO2 on ventilation and heart rate by calculating the differences of isocapnic versus poikilocapnic hypoxic conditions (Δ V ˙ I /ΔPetCO2 and ΔHR/ΔPetCO2, respectively). Results Male Tibetans had lower [Hb] compared to Han Chinese males (p < 0.05), consistent with reports for individuals from these populations living at high altitude and sea level. Measurements of ventilation (resting ventilation, HVR, and PetCO2) were similar for both groups. Heart rate responses to hypoxia were similar in both groups during isocapnia; however, HHRR in poikilocapnia was reduced in the Tibetan group (p < 0.03), and the heart rate response to CO2 in hypoxia was lower in Tibetans relative to Han Chinese (p < 0.01). Conclusion These results suggest that Tibetans living at intermediate altitude have blunted cardiac responses in the context of hypoxia. Hence, only some of the phenotypes observed in Tibetans living at high altitude are observed in Tibetans living at intermediate altitude. Whereas blunted cardiac responses to hypoxia is revealed at intermediate altitudes, manifestation of other physiological adaptations to high altitude may require exposure to more severe levels of hypoxia.
Collapse
Affiliation(s)
- E. A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - J. J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - S. Brown
- Department of Anesthesiology, Loyola University Medical Center, Maywood, IL, United States
| | - W. Gu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - E. S. Lawrence
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - R. Carlson
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - A. Brandes
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - W. Wegeng
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - K. Amann
- Department of Emergency Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - S. E. McIntosh
- Department of Emergency Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - F. L. Powell
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - T. S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Young DA, Jones PAT, Matenchuk BA, Sivak A, Davenport MH, Steinback CD. The effect of hyperoxia on muscle sympathetic nerve activity: a systematic review and meta-analysis. Clin Auton Res 2024; 34:233-252. [PMID: 38709357 DOI: 10.1007/s10286-024-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE We conducted a meta-analysis to determine the effect of hyperoxia on muscle sympathetic nerve activity in healthy individuals and those with cardio-metabolic diseases. METHODS A comprehensive search of electronic databases was performed until August 2022. All study designs (except reviews) were included: population (humans; apparently healthy or with at least one chronic disease); exposures (muscle sympathetic nerve activity during hyperoxia or hyperbaria); comparators (hyperoxia or hyperbaria vs. normoxia); and outcomes (muscle sympathetic nerve activity, heart rate, blood pressure, minute ventilation). Forty-nine studies were ultimately included in the meta-analysis. RESULTS In healthy individuals, hyperoxia had no effect on sympathetic burst frequency (mean difference [MD] - 1.07 bursts/min; 95% confidence interval [CI] - 2.17, 0.04bursts/min; P = 0.06), burst incidence (MD 0.27 bursts/100 heartbeats [hb]; 95% CI - 2.10, 2.64 bursts/100 hb; P = 0.82), burst amplitude (P = 0.85), or total activity (P = 0.31). In those with chronic diseases, hyperoxia decreased burst frequency (MD - 5.57 bursts/min; 95% CI - 7.48, - 3.67 bursts/min; P < 0.001) and burst incidence (MD - 4.44 bursts/100 hb; 95% CI - 7.94, - 0.94 bursts/100 hb; P = 0.01), but had no effect on burst amplitude (P = 0.36) or total activity (P = 0.90). Our meta-regression analyses identified an inverse relationship between normoxic burst frequency and change in burst frequency with hyperoxia. In both groups, hyperoxia decreased heart rate but had no effect on any measure of blood pressure. CONCLUSION Hyperoxia does not change sympathetic activity in healthy humans. Conversely, in those with chronic diseases, hyperoxia decreases sympathetic activity. Regardless of disease status, resting sympathetic burst frequency predicts the degree of change in burst frequency, with larger decreases for those with higher resting activity.
Collapse
Affiliation(s)
- Desmond A Young
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Paris A T Jones
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Brittany A Matenchuk
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Allison Sivak
- Geoffrey and Robyn Sperber Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Margie H Davenport
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Anderson GK, Davis KA, Bhuiyan N, Rusy R, Rosenberg AJ, Rickards CA. The effect of oscillatory hemodynamics on the cardiovascular responses to simulated hemorrhage during isocapnia. J Appl Physiol (1985) 2023; 135:1312-1322. [PMID: 37881852 PMCID: PMC10911761 DOI: 10.1152/japplphysiol.00241.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
During cerebral hypoperfusion induced by lower body negative pressure (LBNP), cerebral tissue oxygenation is protected with oscillatory arterial pressure and cerebral blood flow at low frequencies (0.1 Hz and 0.05 Hz), despite no protection of cerebral blood flow or oxygen delivery. However, hypocapnia induced by LBNP contributes to cerebral blood flow reductions, and may mask potential protective effects of hemodynamic oscillations on cerebral blood flow. We hypothesized that under isocapnic conditions, forced oscillations of arterial pressure and blood flow at 0.1 Hz and 0.05 Hz would attenuate reductions in extra- and intracranial blood flow during simulated hemorrhage using LBNP. Eleven human participants underwent three LBNP profiles: a nonoscillatory condition (0 Hz) and two oscillatory conditions (0.1 Hz and 0.05 Hz). End-tidal (et) CO2 and etO2 were clamped at baseline values using dynamic end-tidal forcing. Cerebral tissue oxygenation (ScO2), internal carotid artery (ICA) blood flow, and middle cerebral artery velocity (MCAv) were measured. With clamped etCO2, neither ICA blood flow (ANOVA P = 0.93) nor MCAv (ANOVA P = 0.36) decreased with LBNP, and these responses did not differ between the three profiles (ICA blood flow: 0 Hz: 2.2 ± 5.4%, 0.1 Hz: -0.4 ± 6.6%, 0.05 Hz: 0.2 ± 4.8%; P = 0.56; MCAv: 0 Hz: -2.3 ± 7.8%, 0.1 Hz: -1.3 ± 6.1%, 0.05 Hz: -3.1 ± 5.0%; P = 0.87). Similarly, ScO2 did not decrease with LBNP (ANOVA P = 0.21) nor differ between the three profiles (0 Hz: -2.6 ± 3.3%, 0.1 Hz: -1.6 ± 1.5%, 0.05 Hz: -0.2 ± 2.8%; P = 0.13). Contrary to our hypothesis, cerebral blood flow and tissue oxygenation were protected during LBNP with isocapnia, regardless of whether hemodynamic oscillations were induced.NEW & NOTEWORTHY We examined the role of forcing oscillations in arterial pressure and blood flow at 0.1 Hz and 0.05 Hz on extra- and intracranial blood flow and cerebral tissue oxygenation during simulated hemorrhage (using lower body negative pressure, LBNP) under isocapnic conditions. Contrary to our hypothesis, both cerebral blood flow and cerebral tissue oxygenation were completely protected during simulated hemorrhage with isocapnia, regardless of whether oscillations in arterial pressure and cerebral blood flow were induced. These findings highlight the protective effect of preventing hypocapnia on cerebral blood flow under simulated hemorrhage conditions.
Collapse
Affiliation(s)
- Garen K Anderson
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - K Austin Davis
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nasrul Bhuiyan
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ryan Rusy
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Alexander J Rosenberg
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Physiology Department, Midwestern University, Downers Grove, Illinois, United States
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
7
|
Tymko MM, Young D, Vergel D, Matenchuk BA, Maier LE, Sivak A, Davenport MH, Steinback CD. The effect of hypoxemia on muscle sympathetic nerve activity and cardiovascular function: a systematic review and meta-analysis. Am J Physiol Regul Integr Comp Physiol 2023; 325:R474-R489. [PMID: 37642283 DOI: 10.1152/ajpregu.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
We conducted a systematic review and meta-analysis to determine the effect of acute poikilocapnic, high-altitude, and acute isocapnia hypoxemia on muscle sympathetic nerve activity (MSNA) and cardiovascular function. A comprehensive search across electronic databases was performed until June 2021. All observational designs were included: population (healthy individuals); exposures (MSNA during hypoxemia); comparators (hypoxemia severity and duration); outcomes (MSNA; heart rate, HR; and mean arterial pressure, MAP). Sixty-one studies were included in the meta-analysis. MSNA burst frequency increased by a greater extent during high-altitude hypoxemia [P < 0.001; mean difference (MD), +22.5 bursts/min; confidence interval (CI) = -19.20 to 25.84] compared with acute poikilocapnic hypoxemia (P < 0.001; MD, +5.63 bursts/min; CI = -4.09 to 7.17) and isocapnic hypoxemia (P < 0.001; MD, +4.72 bursts/min; CI = -3.37 to 6.07). MSNA burst amplitude was only elevated during acute isocapnic hypoxemia (P = 0.03; standard MD, +0.46 au; CI = -0.03 to 0.90), and MSNA burst incidence was only elevated during high-altitude hypoxemia [P < 0.001; MD, 33.05 bursts/100 heartbeats; CI = -28.59 to 37.51]. Meta-regression analysis indicated a strong relationship between MSNA burst frequency and hypoxemia severity for acute isocapnic studies (P < 0.001) but not acute poikilocapnia (P = 0.098). HR increased by the same extent across each type of hypoxemia [P < 0.001; MD +13.81 heartbeats/min; 95% CI = 12.59-15.03]. MAP increased during high-altitude hypoxemia (P < 0.001; MD, +5.06 mmHg; CI = 3.14-6.99), and acute isocapnic hypoxemia (P < 0.001; MD, +1.91 mmHg; CI = 0.84-2.97), but not during acute poikilocapnic hypoxemia (P = 0.95). Both hypoxemia type and severity influenced sympathetic nerve and cardiovascular function. These data are important for the better understanding of healthy human adaptation to hypoxemia.
Collapse
Affiliation(s)
- Michael M Tymko
- Integrative Cerebrovascular and Environmental Physiology SB Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Desmond Young
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Vergel
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Brittany A Matenchuk
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sports and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lauren E Maier
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Allison Sivak
- H.T. Coutts Education and Physical Education Library, University of Alberta, Edmonton, Alberta, Canada
| | - Margie H Davenport
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sports and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Simpson LL, Hansen AB, Moralez G, Amin SB, Hofstaetter F, Gasho C, Stembridge M, Dawkins TG, Tymko MM, Ainslie PN, Lawley JS, Hearon CM. Adrenergic control of skeletal muscle blood flow during chronic hypoxia in healthy males. Am J Physiol Regul Integr Comp Physiol 2023; 324:R457-R469. [PMID: 36717165 PMCID: PMC10026988 DOI: 10.1152/ajpregu.00230.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Sympathetic transduction is reduced following chronic high-altitude (HA) exposure; however, vascular α-adrenergic signaling, the primary mechanism mediating sympathetic vasoconstriction at sea level (SL), has not been examined at HA. In nine male lowlanders, we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (ΔFVC) during 1) incremental intra-arterial infusion of phenylephrine to assess α1-adrenergic receptor responsiveness and 2) combined intra-arterial infusion of β-adrenergic and α-adrenergic antagonists propranolol and phentolamine (α-β-blockade) to assess adrenergic vascular restraint at rest and during exercise-induced sympathoexcitation (cycling; 60% peak power). Experiments were performed near SL (344 m) and after 3 wk at HA (4,383 m). HA abolished the vasoconstrictor response to low-dose phenylephrine (ΔFVC: SL: -34 ± 15%, vs. HA; +3 ± 18%; P < 0.0001) and markedly attenuated the response to medium (ΔFVC: SL: -45 ± 18% vs. HA: -28 ± 11%; P = 0.009) and high (ΔFVC: SL: -47 ± 20%, vs. HA: -35 ± 20%; P = 0.041) doses. Blockade of β-adrenergic receptors alone had no effect on resting FVC (P = 0.500) and combined α-β-blockade induced a similar vasodilatory response at SL and HA (P = 0.580). Forearm vasoconstriction during cycling was not different at SL and HA (P = 0.999). Interestingly, cycling-induced forearm vasoconstriction was attenuated by α-β-blockade at SL (ΔFVC: Control: -27 ± 128 vs. α-β-blockade: +19 ± 23%; P = 0.0004), but unaffected at HA (ΔFVC: Control: -20 ± 22 vs. α-β-blockade: -23 ± 11%; P = 0.999). Our results indicate that in healthy males, altitude acclimatization attenuates α1-adrenergic receptor responsiveness; however, resting α-adrenergic restraint remains intact, due to concurrent resting sympathoexcitation. Furthermore, forearm vasoconstrictor responses to cycling are preserved, although the contribution of adrenergic receptors is diminished, indicating a reliance on alternative vasoconstrictor mechanisms.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Alexander B Hansen
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Sachin B Amin
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Florian Hofstaetter
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, United States
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom
| | - Tony G Dawkins
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael M Tymko
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Justin S Lawley
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, United States
| |
Collapse
|
9
|
Ruggiero L, McNeil CJ. UBC-Nepal Expedition: Motor Unit Characteristics in Lowlanders Acclimatized to High Altitude and Sherpa. Med Sci Sports Exerc 2023; 55:430-439. [PMID: 36730980 DOI: 10.1249/mss.0000000000003070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION With acclimatization to high altitude (HA), adaptations occur throughout the nervous system and at the level of the muscle, which may affect motor unit (MU) characteristics. However, despite the importance of MUs as the final common pathway for the control of voluntary movement, little is known about their adaptations with acclimatization. METHODS Ten lowlanders and Sherpa participated in this study 7 to 14 d after arrival at HA (5050 m), with seven lowlanders repeating the experiment at sea level (SL), 6 months after the expedition. The maximal compound muscle action potential (M max ) was recorded from relaxed biceps brachii. During isometric elbow flexions at 10% of maximal torque, a needle electrode recorded the MU discharge rate (MUDR) and MU potential (MUP) characteristics of single biceps brachii MUs. RESULTS Compared with SL, acclimatized lowlanders had ~10% greater MUDR, ~11% longer MUP duration, as well as ~18% lower amplitude and ~6% greater duration of the first phase of the M max (all P < 0.05). No differences were noted between SL and HA for variables related to MUP shape (e.g., jitter, jiggle; P > 0.08). Apart from lower near-fiber MUP area for Sherpa than acclimatized lowlanders ( P < 0.05), no M max or MU data were different between groups ( P > 0.10). CONCLUSIONS Like other components of the body, MUs in lowlanders adapt with acclimatization to HA. The absence of differences between acclimatized lowlanders and Sherpa suggests that evolutionary adaptations to HA are smaller for MUs than components of the cardiovascular or respiratory systems.
Collapse
Affiliation(s)
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, CANADA
| |
Collapse
|
10
|
Bourdillon N, Aebi MR, Kayser B, Bron D, Millet GP. Both Hypoxia and Hypobaria Impair Baroreflex Sensitivity but through Different Mechanisms. Int J Sports Med 2023; 44:177-183. [PMID: 36455595 PMCID: PMC9977572 DOI: 10.1055/a-1960-3407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/04/2022] [Indexed: 12/05/2022]
Abstract
Baroreflex sensitivity (BRS) is a measure of cardiovagal baroreflex and is lower in normobaric and hypobaric hypoxia compared to normobaric normoxia. The aim of this study was to assess the effects of hypobaria on BRS in normoxia and hypoxia. Continuous blood pressure and ventilation were recorded in eighteen seated participants in normobaric normoxia (NNx), hypobaric normoxia (HNx), normobaric hypoxia (NHx) and hypobaric hypoxia (HHx). Barometric pressure was matched between NNx vs. NHx (723±4 mmHg) and HNx vs. HHx (406±4 vs. 403±5 mmHg). Inspired oxygen pressure (PiO2) was matched between NNx vs. HNx (141.2±0.8 vs. 141.5±1.5 mmHg) and NHx vs. HHx (75.7±0.4 vs. 74.3±1.0 mmHg). BRS was assessed using the sequence method. BRS significantly decreased in HNx, NHx and HHx compared to NNx. Heart rate, mean systolic and diastolic blood pressures did not differ between conditions. There was the specific effect of hypobaria on BRS in normoxia (BRS was lower in HNx than in NNx). The hypoxic and hypobaric effects do not add to each other resulting in comparable BRS decreases in HNx, NHx and HHx. BRS decrease under low barometric pressure requires future studies independently controlling O2 and CO2 to identify central and peripheral chemoreceptors' roles.
Collapse
Affiliation(s)
- Nicolas Bourdillon
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | - Mathias Rolland Aebi
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
- Wissenschaft & Technologie, armasuisse, Thun,
Switzerland
| | - Bengt Kayser
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | - Denis Bron
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | | |
Collapse
|
11
|
Vizcardo-Galindo GA, Howe CA, Hoiland RL, Carter HH, Willie CK, Ainslie PN, Tremblay JC. Impact of Oxygen Supplementation on Brachial Artery Hemodynamics and Vascular Function During Ascent to 5,050 m. High Alt Med Biol 2023; 24:27-36. [PMID: 36940101 DOI: 10.1089/ham.2022.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Vizcardo-Galindo, Gustavo A., Connor A. Howe, Ryan L. Hoiland, Howard H. Carter, Christopher K. Willie, Philip N. Ainslie, and Joshua C. Tremblay. Impact of oxygen supplementation on brachial artery hemodynamics and vascular function during ascent to 5,050 m. High Alt Med Biol. 24:27-36, 2023.-High-altitude trekking alters upper limb hemodynamics and reduces brachial artery vascular function in lowlanders. Whether these changes are reversible with the removal of hypoxia is unknown. We investigated the impact of 20 minutes of oxygen supplementation (O2) on brachial artery hemodynamics, reactive hyperemia (RH; microvascular function), and flow-mediated dilation (FMD; endothelial function). Participants (aged 21-42 years) were examined before and with O2 at 3,440 m (n = 7), 4,371 m (n = 7), and 5,050 m (n = 12) using Duplex ultrasound (days 4, 7, and 10 respectively). At 3,440 m, O2 decreased brachial artery diameter (-5% ± 5%; p = 0.04), baseline blood flow (-44% ± 15%; p < 0.001), oxygen delivery (-39 ± 16; p < 0.001), and peak RH (-8% ± 8%; p = 0.02), but not RH normalized for baseline blood flow. Elevated FMD (p = 0.04) with O2 at 3,440 m was attributed to the reduction in baseline diameter. At 5,050 m, a reduction in brachial artery blood flow (-17% ± 22%; p = 0.03), but not oxygen delivery, diameter, RH, or FMD occurred with O2. These findings suggest that during early trekking at high altitude, O2 causes vasoconstriction in the upper limb along the arterial tree (conduit and resistance arteries). With incremental high-altitude exposure, O2 reduces blood flow without compromising oxygen delivery, RH, or FMD, suggesting a differential impact on vascular function modulated by the duration and severity of high-altitude exposure.
Collapse
Affiliation(s)
- Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Connor A Howe
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries, Vancouver, Canada
| | - Howard H Carter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Christopher K Willie
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| |
Collapse
|
12
|
Fisher JP, Roche J, Turner R, Walzl A, Roveri G, Gatterer H, Siebenmann C. Hypobaric hypoxia and cardiac baroreflex sensitivity in young women. Am J Physiol Heart Circ Physiol 2022; 323:H1048-H1054. [PMID: 36240437 PMCID: PMC9678423 DOI: 10.1152/ajpheart.00452.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We sought to determine the effects of prolonged moderate hypobaric hypoxia (HH) on cardiac baroreflex sensitivity (cBRS) in young women and whether these effects are a consequence of the reduced arterial oxygen (O2) tension and/or increased pulmonary ventilation in HH. We hypothesized that HH would reduce cBRS and that this effect would be counteracted by acute restoration of the inspiratory partial pressure of O2 ([Formula: see text]) and/or voluntary attenuation of pulmonary ventilation. Twelve healthy women (24.0 ± 4.2 yr) were studied before (day 0) and twice during a sojourn in a hypobaric chamber (∼8 h, day 1; 4 days, day 4) where barometric pressure corresponded to ∼3,500-m altitude. Minute ventilation (V̇e; pneumotachometer), heart rate (electrocardiogram), and arterial pressure (finger volume clamp method) were recorded. cBRS was calculated using transfer function analysis between systolic pressure and RR interval. Assessments were made during 1) spontaneous breathing and (in HH only), 2) controlled breathing (reducing V̇e by ∼1 to 2 L/min), and 3) breathing a hyperoxic gas mixture that normalized [Formula: see text]. During spontaneous breathing, HH decreased cBRS (12.5 ± 7.1, 8.9 ± 4.4, and 7.4 ± 3.0 ms/mmHg on days 0, 1, and 4, respectively; P = 0.018). The normalization of [Formula: see text] increased cBRS (10.6 ± 3.3 and 10.7 ± 6.1 ms/mmHg on days 1 and 4) in HH compared with values observed during spontaneous breathing (P < 0.001), whereas controlled breathing had no effect on cBRS (P = 0.708). These findings indicate that ongoing arterial chemoreflex activation by the reduced arterial O2 tension, independently of the hypoxic ventilatory response, reduces cBRS in young women exposed to extended HH.NEW & NOTEWORTHY We examined the effects of prolonged hypobaric hypoxia (corresponding to ∼3,500-m altitude) on cardiac baroreflex sensitivity (cBRS) in young women and investigated underlying mechanisms. We found that cBRS was reduced in hypoxia and that this reduction was attenuated by acute restoration of inspiratory oxygen partial pressure but not by volitional restraint of pulmonary ventilation. These findings help to elucidate the role of arterial chemoreflex mechanisms in the control of cBRS during hypobaric hypoxia in young women.
Collapse
Affiliation(s)
- James P. Fisher
- 1Manaaki Manawa–The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Johanna Roche
- 2Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Rachel Turner
- 2Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Anna Walzl
- 3Department of Anaesthesiology, LMU Klinikum, Ludwig-Maximilians-University München, Munich, Germany
| | - Giulia Roveri
- 2Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- 2Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | | |
Collapse
|
13
|
Williams AM, Levine BD, Stembridge M. A change of heart: Mechanisms of cardiac adaptation to acute and chronic hypoxia. J Physiol 2022; 600:4089-4104. [PMID: 35930370 PMCID: PMC9544656 DOI: 10.1113/jp281724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last 100 years, high-altitude researchers have amassed a comprehensive understanding of the global cardiac responses to acute, prolonged and lifelong hypoxia. When lowlanders are exposed to hypoxia, the drop in arterial oxygen content demands an increase in cardiac output, which is facilitated by an elevated heart rate at the same time as ventricular volumes are maintained. As exposure is prolonged, haemoconcentration restores arterial oxygen content, whereas left ventricular filling and stroke volume are lowered as a result of a combination of reduced blood volume and hypoxic pulmonary vasoconstriction. Populations native to high-altitude, such as the Sherpa in Asia, exhibit unique lifelong or generational adaptations to hypoxia. For example, they have smaller left ventricular volumes compared to lowlanders despite having larger total blood volume. More recent investigations have begun to explore the mechanisms underlying such adaptive responses by combining novel imaging techniques with interventions that manipulate cardiac preload, afterload, and/or contractility. This work has revealed the contributions and interactions of (i) plasma volume constriction; (ii) sympathoexcitation; and (iii) hypoxic pulmonary vasoconstriction with respect to altering cardiac loading, or otherwise preserving or enhancing biventricular systolic and diastolic function even amongst high altitude natives with excessive erythrocytosis. Despite these advances, various areas of investigation remain understudied, including potential sex-related differences in response to high altitude. Collectively, the available evidence supports the conclusion that the human heart successfully adapts to hypoxia over the short- and long-term, without signs of myocardial dysfunction in healthy humans, except in very rare cases of maladaptation.
Collapse
Affiliation(s)
- Alexandra M. Williams
- Department of Cellular and Physiological Sciences, Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Benjamin D. Levine
- Institute for Exercise and Environmental MedicineThe University of Texas Southwestern Medical CenterDallasTXUSA
| | - Mike Stembridge
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
| |
Collapse
|
14
|
Moore JP, Simpson LL, Drinkhill MJ. Differential contributions of cardiac, coronary and pulmonary artery vagal mechanoreceptors to reflex control of the circulation. J Physiol 2022; 600:4069-4087. [PMID: 35903901 PMCID: PMC9544715 DOI: 10.1113/jp282305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Distinct populations of stretch-sensitive mechanoreceptors attached to myelinated vagal afferents are found in the heart and adjoining coronary and pulmonary circulations. Receptors at atrio-venous junctions appear to be involved in control of intravascular volume. These atrial receptors influence sympathetic control of the heart and kidney, but contribute little to reflex control of systemic vascular resistance. Baroreceptors at the origins of the coronary circulation elicit reflex vasodilatation, like feedback control from systemic arterial baroreceptors, as well as having characteristics that could contribute to regulation of mean pressure. In contrast, feedback from baroreceptors in the pulmonary artery and bifurcation is excitatory and elicits a pressor response. Elevation of pulmonary arterial pressure resets the vasomotor limb of the systemic arterial baroreflex, which could be relevant for control of sympathetic vasoconstrictor outflow during exercise and other states associated with elevated pulmonary arterial pressure. Ventricular receptors, situated mainly in the inferior posterior wall of the left ventricle, and attached to unmyelinated vagal afferents, are relatively inactive under basal conditions. However, a change to the biochemical environment of cardiac tissue surrounding these receptors elicits a depressor response. Some ventricular receptors respond, modestly, to mechanical distortion. Probably, ventricular receptors contribute little to tonic feedback control; however, reflex bradycardia and hypotension in response to chemical activation may decrease the work of the heart during myocardial ischaemia. Overall, greater awareness of heterogeneous reflex effects originating from cardiac, coronary and pulmonary artery mechanoreceptors is required for a better understanding of integrated neural control of circulatory function and arterial blood pressure.
Collapse
Affiliation(s)
| | - Lydia L. Simpson
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Mark J. Drinkhill
- Leeds Insititute for Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
15
|
Clemson PT, Hoag JB, Cooke WH, Eckberg DL, Stefanovska A. Beyond the Baroreflex: A New Measure of Autonomic Regulation Based on the Time-Frequency Assessment of Variability, Phase Coherence and Couplings. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:891604. [PMID: 36926062 PMCID: PMC10013010 DOI: 10.3389/fnetp.2022.891604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022]
Abstract
For decades the role of autonomic regulation and the baroreflex in the generation of the respiratory sinus arrhythmia (RSA) - modulation of heart rate by the frequency of breathing - has been under dispute. We hypothesized that by using autonomic blockers we can reveal which oscillations and their interactions are suppressed, elucidating their involvement in RSA as well as in cardiovascular regulation more generally. R-R intervals, end tidal CO2, finger arterial pressure, and muscle sympathetic nerve activity (MSNA) were measured simultaneously in 7 subjects during saline, atropine and propranolol infusion. The measurements were repeated during spontaneous and fixed-frequency breathing, and apnea. The power spectra, phase coherence and couplings were calculated to characterise the variability and interactions within the cardiovascular system. Atropine reduced R-R interval variability (p < 0.05) in all three breathing conditions, reduced MSNA power during apnea and removed much of the significant coherence and couplings. Propranolol had smaller effect on the power of oscillations and did not change the number of significant interactions. Most notably, atropine reduced R-R interval power in the 0.145-0.6 Hz interval during apnea, which supports the hypothesis that the RSA is modulated by a mechanism other than the baroreflex. Atropine also reduced or made negative the phase shift between the systolic and diastolic pressure, indicating the cessation of baroreflex-dependent blood pressure variability. This result suggests that coherent respiratory oscillations in the blood pressure can be used for the non-invasive assessment of autonomic regulation.
Collapse
Affiliation(s)
- Philip T. Clemson
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
- Physics Department, Lancaster University, Lancaster, United Kingdom
| | - Jeffrey B. Hoag
- Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - William H. Cooke
- Kinesiology and Integrative Physiology Department, Michigan Technological University, Houghton, MI, United States
| | - Dwain L. Eckberg
- Departments of Medicine and Physiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- Department of Veterans Affairs Medical Center, Richmond, VA, United States
| | | |
Collapse
|
16
|
Hansen AB, Amin SB, Hofstätter F, Mugele H, Simpson LL, Gasho C, Dawkins TG, Tymko MM, Ainslie PN, Villafuerte FC, Hearon CM, Lawley JS, Moralez G. Global Reach 2018: sympathetic neural and hemodynamic responses to submaximal exercise in Andeans with and without chronic mountain sickness. Am J Physiol Heart Circ Physiol 2022; 322:H844-H856. [PMID: 35333117 PMCID: PMC9018046 DOI: 10.1152/ajpheart.00555.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
Andeans with chronic mountain sickness (CMS) and polycythemia have similar maximal oxygen uptakes to healthy Andeans. Therefore, this study aimed to explore potential adaptations in convective oxygen transport, with a specific focus on sympathetically mediated vasoconstriction of nonactive skeletal muscle. In Andeans with (CMS+, n = 7) and without (CMS-, n = 9) CMS, we measured components of convective oxygen delivery, hemodynamic (arterial blood pressure via intra-arterial catheter), and autonomic responses [muscle sympathetic nerve activity (MSNA)] at rest and during steady-state submaximal cycling exercise [30% and 60% peak power output (PPO) for 5 min each]. Cycling caused similar increases in heart rate, cardiac output, and oxygen delivery at both workloads between both Andean groups. However, at 60% PPO, CMS+ had a blunted reduction in Δtotal peripheral resistance (CMS-, -10.7 ± 3.8 vs. CMS+, -4.9 ± 4.1 mmHg·L-1·min-1; P = 0.012; d = 1.5) that coincided with a greater Δforearm vasoconstriction (CMS-, -0.2 ± 0.6 vs. CMS+, 1.5 ± 1.3 mmHg·mL-1·min-1; P = 0.008; d = 1.7) and a rise in Δdiastolic blood pressure (CMS-, 14.2 ± 7.2 vs. CMS+, 21.6 ± 4.2 mmHg; P = 0.023; d = 1.2) compared with CMS-. Interestingly, although MSNA burst frequency did not change at 30% or 60% of PPO in either group, at 60% Δburst incidence was attenuated in CMS+ (P = 0.028; d = 1.4). These findings indicate that in Andeans with polycythemia, light intensity exercise elicited similar cardiovascular and autonomic responses compared with CMS-. Furthermore, convective oxygen delivery is maintained during moderate-intensity exercise despite higher peripheral resistance. In addition, the elevated peripheral resistance during exercise was not mediated by greater sympathetic neural outflow, thus other neural and/or nonneural factors are perhaps involved.NEW & NOTEWORTHY During submaximal exercise, convective oxygen transport is maintained in Andeans suffering from polycythemia. Light intensity exercise elicited similar cardiovascular and autonomic responses compared with healthy Andeans. However, during moderate-intensity exercise, we observed a blunted reduction in total peripheral resistance, which cannot be ascribed to an exaggerated increase in muscle sympathetic nerve activity, indicating possible contributions from other neural and/or nonneural mechanisms.
Collapse
Affiliation(s)
- Alexander B Hansen
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Sachin B Amin
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofstätter
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hendrik Mugele
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Lydia L Simpson
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, Department of Medicine, University of Loma Linda, Loma Linda, California
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Michael M Tymko
- Physical Activity and Diabetes Laboratory, Faculty of Kinesiology and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
| | - Justin S Lawley
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
17
|
White AJ, Boulet LM, Shafer BM, Vermeulen TD, Atwater TL, Stembridge M, Ainslie PN, Wilson RJA, Day TA, Foster GE. The coronary vascular response to the metaboreflex at low-altitude and during acute and prolonged high-altitude in males. J Appl Physiol (1985) 2022; 132:1327-1337. [PMID: 35482323 DOI: 10.1152/japplphysiol.00018.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myocardial oxygen delivery is primarily regulated through changes in vascular tone to match increased metabolic demands. In males, activation of the muscle metaboreflex during acute isocapnic hypoxia results in a paradoxical coronary vasoconstriction. Whether coronary blood velocity is reduced by metaboreflex activation following travel and/or adaptation to high-altitude is unknown. This study determined if the response of the coronary vasculature to muscle metaboreflex activation at low-altitude differs from acute (1/2 days) and prolonged (8/9 days) high-altitude. Healthy males (n=16) were recruited and performed isometric handgrip exercise (30 % max) followed by post-exercise circulatory occlusion (PECO) to isolate the muscle metaboreflex at low-altitude and following acute and prolonged high-altitude (3,800 m). Mean left anterior descending coronary artery blood velocity (LADvmean, transthoracic Doppler echocardiography), heart rate, mean arterial pressure (MAP), ventilation, and respired gases were assessed during baseline and PECO at all time-points. Coronary vascular conductance index (CVCi) was calculated as LADVmean/MAP. The change in LADvmean (acute altitude: -1.7 ± 3.9 cm/s, low-altitude: 2.6 ± 3.4 cm/s, P = 0.01) and CVCi (acute altitude: -0.05 ± 0.04 cm/s/mmHg, low-altitude: -0.01 ± 0.03 cm/s/mmHg, P = 0.005) induced by PECO differed significantly between acute high-altitude and low-altitude. The change in LADVmean and CVCi induced by PECO following prolonged high-altitude was not different from low-altitude. Our results suggest that coronary vasoconstriction with metaboreflex activation in males is greatest following acute ascent to high-altitude and restored to low-altitude levels following 8-9 days of acclimatization.
Collapse
Affiliation(s)
- Austin J White
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Taylor L Atwater
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Glen Edward Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| |
Collapse
|
18
|
Nardone M, Katerberg C, Teixeira AL, Lee JB, Bommarito JC, Millar PJ. Sympathetic transduction of blood pressure during graded lower body negative pressure in young healthy adults. Am J Physiol Regul Integr Comp Physiol 2022; 322:R620-R628. [DOI: 10.1152/ajpregu.00034.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic transduction of blood pressure (BP) is correlated negatively with resting muscle sympathetic nerve activity (MSNA) in cross-sectional data, but the acute effects of increasing MSNA are unclear. Sixteen (4 females) healthy adults (26±3 years) underwent continuous measurement of heart rate, BP, and MSNA at rest and during graded lower body negative pressure (LBNP) at -10, -20, and -30mmHg. Sympathetic transduction of BP was quantified in the time (signal averaging) and frequency (MSNA-BP gain) domains. The proportion of MSNA bursts firing within each tertile of BP were calculated. As expected, LBNP increased MSNA burst frequency (P<0.01) and burst amplitude (P<0.02), though the proportions of MSNA bursts firing across each BP tertile remained stable (all P>0.44). The MSNA-diastolic BP low frequency transfer function gain (P=0.25) was unchanged during LBNP; the spectral coherence was increased (P=0.03). Signal-averaged sympathetic transduction of diastolic BP was unchanged (from 2.1±1.0 at rest to 2.4±1.5, 2.2±1.3, and 2.3±1.4mmHg; P=0.43) during LBNP, but diastolic BP responses following non-burst cardiac cycles progressively decreased (from -0.8±0.4 at rest to -1.0±0.6, -1.2±0.6, and -1.6±0.9mmHg; P<0.01). As a result, the difference between MSNA burst and non-bursts diastolic BP responses was increased (from 2.9±1.4 at rest to 3.4±1.9, 3.4±1.9, and 3.9±2.1mmHg; P<0.01). In conclusion, acute increases in MSNA using LBNP did not alter traditional signal-averaged or frequency-domain measures of sympathetic transduction of BP or the proportion of MSNA bursts firing at different BP levels. The factors that determine changes in the firing of MSNA bursts relative to oscillations in BP require further investigation.
Collapse
Affiliation(s)
- Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Carlin Katerberg
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L. Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jordan B. Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julian C. Bommarito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J. Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Ruggiero L, Harrison SWD, Rice CL, McNeil CJ. Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders. Acta Physiol (Oxf) 2022; 234:e13788. [PMID: 35007386 PMCID: PMC9286620 DOI: 10.1111/apha.13788] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Ascent to high altitude is accompanied by a reduction in partial pressure of inspired oxygen, which leads to interconnected adjustments within the neuromuscular system. This review describes the unique challenge that such an environment poses to neuromuscular fatigability (peripheral, central and supraspinal) for individuals who normally reside near to sea level (SL) (<1000 m; ie, lowlanders) and for native highlanders, who represent the manifestation of high altitude-related heritable adaptations across millennia. Firstly, the effect of acute exposure to high altitude-related hypoxia on neuromuscular fatigability will be examined. Under these conditions, both supraspinal and peripheral fatigability are increased compared with SL. The specific mechanisms contributing to impaired performance are dependent on the exercise paradigm and amount of muscle mass involved. Next, the effect of chronic exposure to high altitude (ie, acclimatization of ~7-28 days) will be considered. With acclimatization, supraspinal fatigability is restored to SL values, regardless of the amount of muscle mass involved, whereas peripheral fatigability remains greater than SL except when exercise involves a small amount of muscle mass (eg, knee extensors). Indeed, when whole-body exercise is involved, peripheral fatigability is not different to acute high-altitude exposure, due to competing positive (haematological and muscle metabolic) and negative (respiratory-mediated) effects of acclimatization on neuromuscular performance. In the final section, we consider evolutionary adaptations of native highlanders (primarily Himalayans of Tibet and Nepal) that may account for their superior performance at altitude and lesser degree of neuromuscular fatigability compared with acclimatized lowlanders, for both single-joint and whole-body exercise.
Collapse
Affiliation(s)
- Luca Ruggiero
- Laboratory of Physiomechanics of LocomotionDepartment of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Scott W. D. Harrison
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
| | - Charles L. Rice
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Chris J. McNeil
- Centre for Heart, Lung & Vascular HealthSchool of Health and Exercise SciencesUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
20
|
Chen R, Ye X, Sun M, Yang J, Zhang J, Gao X, Liu C, Ke J, He C, Yuan F, Lv H, Yang Y, Cheng R, Tan H, Huang L. Blood Pressure Load: An Effective Indicator of Systemic Circulation Status in Individuals With Acute Altitude Sickness. Front Cardiovasc Med 2022; 8:765422. [PMID: 35047574 PMCID: PMC8761955 DOI: 10.3389/fcvm.2021.765422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Acute high altitude (HA) exposure results in blood pressure (BP) variations in most subjects. Previous studies have demonstrated that higher BP is potentially correlated with acute mountain sickness (AMS). The BP load may be of clinical significance regarding systemic circulation status. Objectives: This study aimed to examine HA-induced BP changes in patients with AMS compared to those in healthy subjects. Further, we provided clinical information about the relationship between variations in 24-h ambulatory parameters (BP level, BP variability, and BP load) and AMS. Methods: Sixty-nine subjects were enrolled and all participants ascended Litang (4,100 m above sea level). They were monitored using a 24-h ambulatory blood pressure device and underwent echocardiography within 24 h of altitude exposure. The 2018 Lake Louise questionnaire was used to evaluate AMS. Results: The AMS group comprised more women than men [15 (65.2%) vs. 13 (28.3%), P < 0.001] and fewer smokers [4 (17.4%) vs. 23 (50.0%), P = 0.009]. The AMS group exhibited significant increases in 24-h BP compared to the non-AMS group (24-h SBP variation: 10.52 ± 6.48 vs. 6.03 ± 9.27 mmHg, P = 0.041; 24-h DBP variation: 8.70 ± 4.57 vs. 5.03 ± 4.98 mmHg, P = 0.004). The variation of mean 24-h cBPL (cumulative BP load) (mean 24-h cSBPL: 10.58 ± 10.99 vs. 4.02 ± 10.58, P = 0.016; 24-h mean cDBPL: 6.03 ± 5.87 vs. 2.89 ± 4.99, P = 0.034) was also obviously higher in AMS subjects than in non-AMS subjects after HA exposure. 24-h mean cSBPL variation (OR = 1.07, P = 0.024) and 24-h mean cDBPL variation (OR = 1.14, P = 0.034) were independent risk factors of AMS. Moreover, variation of 24-h mean cSBPL showed a good correlation with AMS score (R = 0.504, P < 0.001). Conclusions: Our study demonstrated that patients with AMS had higher BP and BP load changes after altitude exposure than healthy subjects. Excessive BP load variations were associated with AMS. Thus, BP load could be an effective indicator regarding systemic circulation status of AMS.
Collapse
Affiliation(s)
- Renzheng Chen
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaowei Ye
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbin Ke
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan He
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fangzhengyuan Yuan
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hailin Lv
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanqi Yang
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ran Cheng
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hu Tan
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Lan Huang
| |
Collapse
|
21
|
Wearing OH, Nelson D, Ivy CM, Crossley DA, Scott GR. Adrenergic control of the cardiovascular system in deer mice native to high altitude. Curr Res Physiol 2022; 5:83-92. [PMID: 35169714 PMCID: PMC8829085 DOI: 10.1016/j.crphys.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 01/23/2022] [Indexed: 12/26/2022] Open
Abstract
Studies of animals native to high altitude can provide valuable insight into physiological mechanisms and evolution of performance in challenging environments. We investigated how mechanisms controlling cardiovascular function may have evolved in deer mice (Peromyscus maniculatus) native to high altitude. High-altitude deer mice and low-altitude white-footed mice (P. leucopus) were bred in captivity at sea level, and first-generation lab progeny were raised to adulthood and acclimated to normoxia or hypoxia. We then used pharmacological agents to examine the capacity for adrenergic receptor stimulation to modulate heart rate (fH) and mean arterial pressure (Pmean) in anaesthetized mice, and used cardiac pressure-volume catheters to evaluate the contractility of the left ventricle. We found that highlanders had a consistently greater capacity to increase fH via pharmacological stimulation of β1-adrenergic receptors than lowlanders. Also, whereas hypoxia acclimation reduced the capacity for increasing Pmean in response to α-adrenergic stimulation in lowlanders, highlanders exhibited no plasticity in this capacity. These differences in highlanders may help augment cardiac output during locomotion or cold stress, and may preserve their capacity for α-mediated vasoconstriction to more effectively redistribute blood flow to active tissues. Highlanders did not exhibit any differences in some measures of cardiac contractility (maximum pressure derivative, dP/dtmax, or end-systolic elastance, Ees), but ejection fraction was highest in highlanders after hypoxia acclimation. Overall, our results suggest that evolved changes in sensitivity to adrenergic stimulation of cardiovascular function may help deer mice cope with the cold and hypoxic conditions at high altitude. High-altitude deer mice have evolved increased aerobic capacity in hypoxia. Cardiovascular regulation was examined in normoxia and chronic hypoxia. Highland mice had increased capacity for β1-adrenergic stimulation of heart rate. Hypoxia reduced vascular α-adrenergic sensitivity in lowland but not highland mice. Cardiac ejection fraction was elevated in highland mice in chronic hypoxia.
Collapse
Affiliation(s)
- Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Corresponding author.
| | - Derek Nelson
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Catherine M. Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
22
|
Berthelsen LF, van Diepen S, Steele AR, Vanden Berg ER, Bird J, Thrall S, Skalk A, Byman B, Pentz B, Wilson RJA, Jendzjowsky NG, Day TA, Steinback CD. Duration at high altitude influences the onset of arrhythmogenesis during apnea. Eur J Appl Physiol 2021; 122:475-487. [PMID: 34800158 DOI: 10.1007/s00421-021-04842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Autonomic control of the heart is balanced by sympathetic and parasympathetic inputs. Excitation of both sympathetic and parasympathetic systems occurs concurrently during certain perturbations such as hypoxia, which stimulate carotid chemoreflex to drive ventilation. It is well established that the chemoreflex becomes sensitized throughout hypoxic exposure; however, whether progressive sensitization alters cardiac autonomic activity remains unknown. We sought to determine the duration of hypoxic exposure at high altitude necessary to unmask cardiac arrhythmias during instances of voluntary apnea. METHODS Measurements of steady-state chemoreflex drive (SS-CD), continuous electrocardiogram (ECG) and SpO2 (pulse oximetry) were collected in 22 participants on 1 day at low altitude (1045 m) and over eight consecutive days at high-altitude (3800 m). SS-CD was quantified as ventilation (L/min) over stimulus index (PETCO2/SpO2). RESULTS Bradycardia during apnea was greater at high altitude compared to low altitude for all days (p < 0.001). Cardiac arrhythmias occurred during apnea each day but became most prevalent (> 50%) following Day 5 at high altitude. Changes in saturation during apnea and apnea duration did not affect the magnitude of bradycardia during apnea (ANCOVA; saturation, p = 0.15 and apnea duration, p = 0.988). Interestingly, the magnitude of bradycardia was correlated with the incidence of arrhythmia per day (r = 0.8; p = 0.004). CONCLUSION Our findings suggest that persistent hypoxia gradually increases vagal tone with time, indicated by augmented bradycardia during apnea and progressively increased the incidence of arrhythmia at high altitude.
Collapse
Affiliation(s)
- Lindsey F Berthelsen
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St, Edmonton, AB, T6G 2E1, Canada
| | - Sean van Diepen
- Faculty of Medicine and Dentistry, Department of Critical Care and Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Steele
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St, Edmonton, AB, T6G 2E1, Canada
| | - Emily R Vanden Berg
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St, Edmonton, AB, T6G 2E1, Canada
| | - Jordan Bird
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Scott Thrall
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St, Edmonton, AB, T6G 2E1, Canada.,Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Alexandra Skalk
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Britta Byman
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Brandon Pentz
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Nicholas G Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor, UCLA Medical Center, Torrance, CA, USA
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
23
|
Stembridge M, Hoiland RL, Williams AM, Howe CA, Donnelly J, Dawkins TG, Drane A, Tymko MM, Gasho C, Anholm J, Simpson LL, Moore JP, Bailey DM, MacLeod DB, Ainslie PN. The influence of hemoconcentration on hypoxic pulmonary vasoconstriction in acute, prolonged, and lifelong hypoxemia. Am J Physiol Heart Circ Physiol 2021; 321:H738-H747. [PMID: 34448634 DOI: 10.1152/ajpheart.00357.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemoconcentration can influence hypoxic pulmonary vasoconstriction (HPV) via increased frictional force and vasoactive signaling from erythrocytes, but whether the balance of these mechanism is modified by the duration of hypoxia remains to be determined. We performed three sequential studies: 1) at sea level, in normoxia and isocapnic hypoxia with and without isovolumic hemodilution (n = 10, aged 29 ± 7 yr); 2) at altitude (6 ± 2 days acclimatization at 5,050 m), before and during hypervolumic hemodilution (n = 11, aged 27 ± 5 yr) with room air and additional hypoxia [fraction of inspired oxygen ([Formula: see text])= 0.15]; and 3) at altitude (4,340 m) in Andean high-altitude natives with excessive erythrocytosis (EE; n = 6, aged 39 ± 17 yr), before and during isovolumic hemodilution with room air and hyperoxia (end-tidal Po2 = 100 mmHg). At sea level, hemodilution mildly increased pulmonary artery systolic pressure (PASP; +1.6 ± 1.5 mmHg, P = 0.01) and pulmonary vascular resistance (PVR; +0.7 ± 0.8 wu, P = 0.04). In contrast, after acclimation to 5,050 m, hemodilution did not significantly alter PASP (22.7 ± 5.2 vs. 24.5 ± 5.2 mmHg, P = 0.14) or PVR (2.2 ± 0.9 vs. 2.3 ± 1.2 wu, P = 0.77), although both remained sensitive to additional acute hypoxia. In Andeans with EE at 4,340 m, hemodilution lowered PVR in room air (2.9 ± 0.9 vs. 2.3 ± 0.8 wu, P = 0.03), but PASP remained unchanged (31.3 ± 6.7 vs. 30.9 ± 6.9 mmHg, P = 0.80) due to an increase in cardiac output. Collectively, our series of studies reveal that HPV is modified by the duration of exposure and the prevailing hematocrit level. In application, these findings emphasize the importance of accounting for hematocrit and duration of exposure when interpreting the pulmonary vascular responses to hypoxemia.NEW & NOTEWORTHY Red blood cell concentration influences the pulmonary vasculature via direct frictional force and vasoactive signaling, but whether the magnitude of the response is modified with duration of exposure is not known. By assessing the pulmonary vascular response to hemodilution in acute normobaric and prolonged hypobaric hypoxia in lowlanders and lifelong hypobaric hypoxemia in Andean natives, we demonstrated that a reduction in red cell concentration augments the vasoconstrictive effects of hypoxia in lowlanders. In high-altitude natives, hemodilution lowered pulmonary vascular resistance, but a compensatory increase in cardiac output following hemodilution rendered PASP unchanged.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexandra M Williams
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.,Faculty of Medicine, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Joseph Donnelly
- Department of Anaesthesiology, University of Auckland, Auckland, New Zealand
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Aimee Drane
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.,Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, California
| | - James Anholm
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, California
| | - Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, United Kingdom
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, United Kingdom
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - David B MacLeod
- Human Pharmacology and Physiology Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
24
|
Verratti V, Tonacci A, Bondi D, Chiavaroli A, Ferrante C, Brunetti L, Crisafulli A, Cerretelli P. Ethnic Differences on Cardiac Rhythms and Autonomic Nervous System Responses During a High-Altitude Trek: A Pilot Study Comparing Italian Trekkers to Nepalese Porters. Front Physiol 2021; 12:709451. [PMID: 34497537 PMCID: PMC8419438 DOI: 10.3389/fphys.2021.709451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
Altitude hypoxia exposure results in increased sympathetic activity and heart rate due to several mechanisms. Recent studies have contested the validity of heart rate variability (HRV) analysis on sympathetic activity measurement. But the plethora of HRV metrics may provide meaningful insights, particularly if linked with cardiovascular and autonomic nervous system parameters. However, the population-specific nature of HRV and cardiorespiratory response to altitude hypoxia are still missing. Six Italian trekkers and six Nepalese porters completed 300 km of a Himalayan trek. The ECG analysis was conducted at baseline, and before (bBC) and after (aBC) the high-altitude (HA) circuit. Urine was collected before and after the expedition in Italians, for assessing catecholamines. Heart rate increased with altitude significantly (p < 0.001) in the Italian group; systolic (p = 0.030) and diastolic (p = 0.012) blood pressure, and mean arterial pressure (p = 0.004) increased with altitude. Instead, pulse pressure did not change, although the Nepalese group showed lower baseline values than the Italians. As expected, peripheral oxygen saturation decreased with altitude (p < 0.001), independently of the ethnic groups. Nepalese had a higher respiratory rate (p = 0.007), independent of altitude. The cardiac vagal index increased at altitude, from baseline to bBC (p = 0.008). Higuchi fractal dimension (HFD) showed higher basal values in the Nepalese group (p = 0.041), and a tendency for the highest values at bBC. Regarding the urinary catecholamine response, exposure to HA increased urinary levels, particularly of norepinephrine (p = 0.005, d = 1.623). Our findings suggest a better cardiovascular resilience of the Nepalese group when compared with Italians, which might be due to an intrinsic adaptation to HA, resulting from their job.
Collapse
Affiliation(s)
- Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy, Pisa, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonio Crisafulli
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Paolo Cerretelli
- Institute of Bioimaging and Molecular Physiology, National Research Council of Italy, Segrate, Italy
| |
Collapse
|
25
|
Coombs GB, Akins JD, Patik JC, Vizcardo-Galindo GA, Figueroa-Mujica R, Tymko MM, Stacey BS, Iannetelli A, Bailey DM, Villafuerte FC, Ainslie PN, Brothers RM. Global Reach 2018: Nitric oxide-mediated cutaneous vasodilation is reduced in chronic, but not acute, hypoxia independently of enzymatic superoxide formation. Free Radic Biol Med 2021; 172:451-458. [PMID: 34129928 DOI: 10.1016/j.freeradbiomed.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/23/2021] [Accepted: 06/06/2021] [Indexed: 01/15/2023]
Abstract
We tested the hypotheses that 1) cutaneous microvascular function is impaired by acute normobaric and chronic hypobaric hypoxia and 2) that the superoxide free radical (via NADPH oxidase or xanthine oxidase) contributes to this impairment via nitric oxide (NO) scavenging. Local heating-induced cutaneous hyperemia (39 °C) was measured in the forearm of 11 male lowlanders at sea level (SL) and following 14-18 days at high altitude (HA; 4340 m in Cerro de Pasco, Peru), and compared to 11 highlanders residing permanently at this elevation. Cutaneous vascular conductance (CVC; laser-Doppler flux/mean arterial pressure) was not different during 39 °C [control site: 73 (19) vs. 71 (18)%max; P = 0.68] between normoxia and acute normobaric hypoxia (FIO2 = 0.125; equivalent to HA), respectively. At HA, CVC was reduced during 39 °C in lowlanders compared to SL [control site: 54 (14) vs. 73 (19)%max; P < 0.01] and was lower in Andean highlanders compared to lowlanders at HA [control site: 50 (24) vs. 54 (14)%max; P = 0.02]. The NO contribution to vasodilation during 39 °C (i.e., effect of NO synthase inhibition) was reduced in lowlanders at HA compared to SL [control site: 41 (11) vs 49 (10)%max; P = 0.04] and in Andean highlanders compared to lowlanders at HA [control site: 32 (21) vs. 41 (11)%max; P = 0.01]. Intradermal administration (cutaneous microdialysis) of the superoxide mimetic Tempol, inhibition of xanthine oxidase (via allopurinol), or NADPH oxidase (via apocynin) had no influence on cutaneous endothelium-dependent dilation during any of the conditions (all main effects of drug P > 0.05). These results suggest that time at HA impairs NO-mediated cutaneous vasodilation independent of enzymatic superoxide formation.
Collapse
Affiliation(s)
- Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - John D Akins
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Jordan C Patik
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA; Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Romulo Figueroa-Mujica
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Francisco C Villafuerte
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - R Matthew Brothers
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
26
|
Wang M, Liu M, Huang J, Fan D, Liu S, Yu T, Huang K, Wei X, Lei Q. Long-Term High-Altitude Exposure Does Not Increase the Incidence of Atrial Fibrillation Associated with Organic Heart Diseases. High Alt Med Biol 2021; 22:285-292. [PMID: 34143663 DOI: 10.1089/ham.2020.0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wang, Man, Mengxue Liu, Jia Huang, Dan Fan, Shengzhong Liu, Tao Yu, Keli Huang, Xinchuan Wei, and Qian Lei. Long-term high-altitude exposure does not increase the incidence of atrial fibrillation associated with organic heart diseases. High Alt Med Biol. 00:000-000, 2021.- Background: Atrial fibrillation (AF) is one of the most common arrhythmias and is associated with several complications following cardiac surgery. However, the differences in the incidence of AF associated with organic heart diseases between highland and lowland populations have not been comprehensively studied. Methods: In this retrospective study, a total of 2,316 highland and lowland patients who underwent cardiac surgery between January 2013 and December 2018 in a single center were enrolled. According to the altitude of residence, patients were divided into high-altitude (>1,500 m) and low-altitude (<1,500 m) groups. A propensity score matching analysis was performed to estimate the association of lifetime high-altitude exposure with AF. Results: Among the enrolled patients, 239 (10.9%) were from a high-altitude plateau, while 1,946 (89.1%) were from a low-altitude area. There were statistical differences in age, gender, European System for Cardiac Operative Risk Evaluation, and other factors, between the two groups (p < 0.05). According to the propensity score, 237 patients in the high-altitude group were successfully matched to 237 patients in the low-altitude group without significant difference in baseline data (p > 0.05). Among the matched patients, 125 patients (26.4%) suffered from AF, with 66 (27.8%) in the high-altitude group and 59 (24.9%) in the low-altitude group. The incidence of AF was statistically similar between the two groups and not significantly influenced by long-term high-altitude exposure (odds ratio 1.07; 95% confidence interval 0.71-1.60, p > 0.05). Conclusion: Long-term high-altitude exposure did not significantly increase the occurrence of AF in patients with organic heart diseases. Clinical Trial No. ChiCTR1900028612.
Collapse
Affiliation(s)
- Man Wang
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengxue Liu
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Huang
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Fan
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengzhong Liu
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keli Huang
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinchuan Wei
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Lei
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Post-exercise cardiac autonomic and cardiovascular responses to heart rate-matched and work rate-matched hypoxic exercise. Eur J Appl Physiol 2021; 121:2061-2076. [PMID: 33811558 PMCID: PMC8192382 DOI: 10.1007/s00421-021-04678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/28/2021] [Indexed: 12/30/2022]
Abstract
Purpose This study investigated the effect of performing hypoxic exercise at the same heart rate (HR) or work rate (WR) as normoxic exercise on post-exercise autonomic and cardiovascular responses. Methods Thirteen men performed three interval-type exercise sessions (5 × 5-min; 1-min recovery): normoxic exercise at 80% of the WR at the first ventilatory threshold (N), hypoxic exercise (FiO2 = 14.2%) at the same WR as N (H-WR) and hypoxic exercise at the same HR as N (H-HR). Autonomic and cardiovascular assessments were conducted before and after exercise, both at rest and during active squat–stand manoeuvres (SS). Results Compared to N, H-WR elicited a higher HR response (≈ 83% vs ≈ 75%HRmax, p < 0.001) and H-HR a reduced exercise WR (− 21.1 ± 9.3%, p < 0.001). Cardiac parasympathetic indices were reduced 15 min after exercise and recovered within 60 min in N and H-HR, but not after H-WR (p < 0.05). H-WR altered cardiac baroreflex sensitivity (cBRS) both at rest and during SS (specifically in the control of blood pressure fall during standing phases) in the first 60 min after the exercise bout (p < 0.05). Post-exercise hypotension (PEH) did not occur in H-HR (p > 0.05) but lasted longer in H-WR than in N (p < 0.05). Conclusions Moderate HR-matched hypoxic exercise mimicked post-exercise autonomic responses of normoxic exercise without resulting in significant PEH. This may relate to the reduced WR and the limited associated mechanical/metabolic strain. Conversely, WR-matched hypoxic exercise impacted upon post-exercise autonomic and cardiovascular responses, delaying cardiac autonomic recovery, temporarily decreasing cBRS and evoking prolonged PEH. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04678-5.
Collapse
|
28
|
Simmonds MJ, Sabapathy S, Hero JM. Rate-Pressure Product Responses to Static Contractions Performed at Various Altitudes. High Alt Med Biol 2021; 22:166-173. [PMID: 33470884 DOI: 10.1089/ham.2020.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Simmonds, Michael J., Surendran Sabapathy, and Jean-Marc Hero. Rate-pressure product responses to static contractions performed at various altitudes. High Alt Med Biol. 22: 166-173, 2021. Background: Adventure tourism has led to an unprecedented number of individuals being exposed to altitude, including those with subclinical cardiometabolic disorders. The disproportionate hemodynamic challenge associated with small-muscle static activities is potentially dangerous at altitude as these may compound the risk for cardiac events. We thus examined the cardiovascular response to, and during recovery from, static exercise performed at altitude. Methods: Eighteen individuals completed this study at three altitudes (sea level; ∼1,500 m; ∼3,000 m) in central Nepal. At each altitude, individuals performed two handgrip contractions for 2 minutes at the same intensity (30% maximal voluntary contraction [MVC]), with two distinct recovery periods: during control recovery was completed quietly at rest, while during ischemic challenge recovery was conducted with a cuff occluding the upper limb. Results: Oxygen saturation decreased during ascent to 1,500 m (-2%) and 3,000 m (-8%), compared with sea level. Handgrip MVC was not affected by altitude, although heart rate at rest (∼70 beat/min), during static exercise (range ∼90-95 beat/min), and during recovery in both conditions (each ∼70 beat/min) was significantly increased by ∼15% at 3,000 m, but not 1,500 m. The magnitude of the muscle metaboreflex during recovery from static exercise was unaffected by altitude; however, the rate-pressure product was significantly elevated by ∼10% during and following static exercise at 3,000 m. Conclusions: A significant increase in the rate-pressure product during static exercise was observed at altitude, which persisted during recovery. Individuals at risk for cardiac events should use awareness of static contractions while at altitude, especially considering that stress induced by static exercise is additive to that of dynamic activities such as hiking.
Collapse
Affiliation(s)
- Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Surendran Sabapathy
- School of Allied Health Science, Griffith University, Gold Coast, Queensland, Australia
| | - Jean-Marc Hero
- College of Science & Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
29
|
Simpson LL, Steinback CD, Stembridge M, Moore JP. A sympathetic view of blood pressure control at high altitude: new insights from microneurographic studies. Exp Physiol 2020; 106:377-384. [PMID: 33345334 PMCID: PMC7898382 DOI: 10.1113/ep089194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
NEW FINDINGS What is the topic of the review? Sympathoexcitation and sympathetic control of blood pressure at high altitude. What advances does it highlight? Sustained sympathoexcitation is fundamental to integrative control of blood pressure in humans exposed to chronic hypoxia. The largest gaps in current knowledge are in understanding the complex mechanisms by which central sympathetic outflow is regulated at high altitude. ABSTRACT High altitude (HA) hypoxia is a potent activator of the sympathetic nervous system, eliciting increases in sympathetic vasomotor activity. Microneurographic evidence of HA sympathoexcitation dates back to the late 20th century, yet only recently have the characteristics and underpinning mechanisms been explored in detail. This review summarises recent findings and highlights the importance of HA sympathoexcitation for the regulation of blood pressure in lowlanders and indigenous highlanders. In addition, this review identifies gaps in our knowledge and corresponding avenues for future study.
Collapse
Affiliation(s)
- Lydia L Simpson
- Institute for Sport Science, Division of Physiology, Innsbruck University, Innsbruck, Austria
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| |
Collapse
|
30
|
Berthelsen LF, Fraser GM, Simpson LL, Vanden Berg ER, Busch SA, Steele AR, Meah VL, Lawley JS, Figueroa-Mujíca RJ, Vizcardo-Galindo G, Villafuerte F, Gasho C, Willie CK, Tymko MM, Ainslie PN, Stembridge M, Moore JP, Steinback CD. Highs and lows of sympathetic neurocardiovascular transduction: influence of altitude acclimatization and adaptation. Am J Physiol Heart Circ Physiol 2020; 319:H1240-H1252. [PMID: 32986967 DOI: 10.1152/ajpheart.00364.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-altitude (>2,500 m) exposure results in increased muscle sympathetic nervous activity (MSNA) in acclimatizing lowlanders. However, little is known about how altitude affects MSNA in indigenous high-altitude populations. Additionally, the relationship between MSNA and blood pressure regulation (i.e., neurovascular transduction) at high-altitude is unclear. We sought to determine 1) how high-altitude effects neurocardiovascular transduction and 2) whether differences exist in neurocardiovascular transduction between low- and high-altitude populations. Measurements of MSNA (microneurography), mean arterial blood pressure (MAP; finger photoplethysmography), and heart rate (electrocardiogram) were collected in 1) lowlanders (n = 14) at low (344 m) and high altitude (5,050 m), 2) Sherpa highlanders (n = 8; 5,050 m), and 3) Andean (with and without excessive erythrocytosis) highlanders (n = 15; 4,300 m). Cardiovascular responses to MSNA burst sequences (i.e., singlet, couplet, triplet, and quadruplet) were quantified using custom software (coded in MATLAB, v.2015b). Slopes were generated for each individual based on peak responses and normalized total MSNA. High altitude reduced neurocardiovascular transduction in lowlanders (MAP slope: high altitude, 0.0075 ± 0.0060 vs. low altitude, 0.0134 ± 0.080; P = 0.03). Transduction was elevated in Sherpa (MAP slope, 0.012 ± 0.007) compared with Andeans (0.003 ± 0.002, P = 0.001). MAP transduction was not statistically different between acclimatizing lowlanders and Sherpa (MAP slope, P = 0.08) or Andeans (MAP slope, P = 0.07). When resting MSNA is accounted for (ANCOVA), transduction was inversely related to basal MSNA (bursts/minute) independent of population (RRI, r = 0.578 P < 0.001; MAP, r = -0.627, P < 0.0001). Our results demonstrate that transduction is blunted in individuals with higher basal MSNA, suggesting that blunted neurocardiovascular transduction is a physiological adaptation to elevated MSNA rather than an effect or adaptation specific to chronic hypoxic exposure.NEW & NOTEWORTHY This study has identified that sympathetically mediated blood pressure regulation is reduced following ascent to high-altitude. Additionally, we show that high altitude Andean natives have reduced blood pressure responsiveness to sympathetic nervous activity (SNA) compared with Nepalese Sherpa. However, basal sympathetic activity is inversely related to the magnitude of SNA-mediated fluctuations in blood pressure regardless of population or condition. These data set a foundation to explore more precise mechanisms of blood pressure control under conditions of persistent sympathetic activation and hypoxia.
Collapse
Affiliation(s)
- Lindsey F Berthelsen
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lydia L Simpson
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - Emily R Vanden Berg
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Andrew R Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Romulo J Figueroa-Mujíca
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco Villafuerte
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Chris Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, California
| | - Christopher K Willie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada.,Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff School of Sport and Health, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jonathan P Moore
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| |
Collapse
|
31
|
Tymko MM, Hoiland RL, Vermeulen TD, Howe CA, Tymko C, Stone RM, Steinback CD, Steele AR, Villafuerte F, Vizcardo-Galindo G, Mujica RJF, Ainslie PN. Global REACH 2018: The carotid artery diameter response to the cold pressor test is governed by arterial blood pressure during normoxic but not hypoxic conditions in healthy lowlanders and Andean highlanders. Exp Physiol 2020; 105:1742-1757. [PMID: 32829509 DOI: 10.1113/ep088898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/18/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the impact of oxygen on the circulatory responses to an isocapnic cold pressor test (CPT) in lowlanders and Andean highlanders? What is the main finding and its importance? Overall, the circulatory responses to an isocapnic CPT were largely unaltered with acute normobaric hypoxia and chronic hypobaric hypoxia exposure in lowlanders. However, the relationship between mean arterial pressure and common carotid artery diameter was dampened in hypoxic conditions. Furthermore, there were no differences in the circulatory responses to the CPT between lowlanders and Andean highlanders with lifelong exposure to high altitude. ABSTRACT The impact of oxygen on the circulatory responses to a cold pressor test (CPT) in lowlanders and Andean highlanders remains unknown. Our hypotheses were as follows: (i) in lowlanders, acute normobaric and hypobaric hypoxia would attenuate the common carotid artery (CCA) diameter response to the CPT compared with normobaric normoxia; (ii) Andean highlanders would exhibit a greater CCA diameter response compared with lowlanders; and (iii) a positive relationship between CCA diameter and blood pressure in response to the CPT would be present in both lowlanders and highlanders. Healthy lowlanders (n = 13) and Andean highlanders (n = 8) were recruited and conducted an isocapnic CPT, which consisted of a 3 min foot immersion into water at 0-1°C. Blood pressure (finger photoplethysmography) and CCA diameter and blood flow (Duplex ultrasound) were recorded continuously. The CPT was conducted in lowlanders at sea level in isocapnic normoxic and hypoxic conditions and after 10 days of acclimatization to 4300 m (Cerro de Pasco, Peru) in hypoxic and hyperoxic conditions. Andean highlanders were tested at rest at high altitude. The main findings were as follows: (i) in lowlanders, normobaric but not hypobaric hypoxia elevated CCA reactivity to the CPT; (ii) no differences in response to the CPT were observed between lowlanders and highlanders; and (iii) although hypobaric hypoxaemia reduced the relationship between CCA diameter and blood pressure compared with normobaric normoxia (P = 0.132), hypobaric hyperoxia improved this relationship (P = 0.012), and no relationship was observed in Andean highlanders (P = 0.261). These data demonstrate that the circulatory responses to a CPT were modified by oxygen in lowlanders, but were unaltered with lifelong hypoxic exposure.
Collapse
Affiliation(s)
- Michael M Tymko
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Courtney Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Rachel M Stone
- Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Craig D Steinback
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Steele
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Francisco Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Romulo Joseph Figueroa Mujica
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
32
|
Beltrán AR, Arce-Álvarez A, Ramirez-Campillo R, Vásquez-Muñoz M, von Igel M, Ramírez MA, Del Rio R, Andrade DC. Baroreflex Modulation During Acute High-Altitude Exposure in Rats. Front Physiol 2020; 11:1049. [PMID: 32973562 PMCID: PMC7472463 DOI: 10.3389/fphys.2020.01049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022] Open
Abstract
Baroreflex (BR) control is critically dependent of sympathetic and parasympathetic modulation. It has been documented that during acute hypobaric hypoxia there is a BR control impairment, however, the effect of a natural hypoxic environment on BR function is limited and controversial. Therefore, the aim of this study was to determine the effect of acute High-Altitude exposure on sympathetic/parasympathetic modulation of BR control in normal rats. Male Sprague Dawley rats were randomly allocated into Sea-Level (n = 7) and High-Altitude (n = 5) (3,270 m above sea level) groups. The BR control was studied using phenylephrine (Phe) and sodium nitroprusside (SNP) through sigmoidal analysis. The autonomic control of the heart was estimated using heart rate variability (HRV) analysis in frequency domain. Additionally, to determine the maximum sympathetic and parasympathetic activation of BR, spectral non-stationary method analysis, during Phe (0.05 μg/mL) and SNP administration (0.10 μg/mL) were used. Compared to Sea-Level condition, the High-Altitude group displayed parasympathetic withdrawal (high frequency, 0.6-2.4 Hz) and sympathoexcitation (low frequency, 0.04-0.6 Hz). Regarding to BR modulation, rats showed a significant decrease (p < 0.05) of curvature and parasympathetic bradycardic responses to Phe, without significant differences in sympathetic tachycardic responses to SNP after High-Altitude exposure. In addition, the non-stationary analysis of HRV showed a reduction of parasympathetic activation (Phe) in the High-Altitude group. Our results suggest that acute exposure to High-Altitude produces an autonomic and BR control impairment, characterized by parasympathetic withdrawal after 24 h of high-altitude exposure.
Collapse
Affiliation(s)
- Ana Rosa Beltrán
- Departamento de Educación, Facultad de Educación, Universidad de Antofagasta, Antofagasta, Chile
- Laboratorio de Fisiología Celular, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Alexis Arce-Álvarez
- Escuela de Kinesiología, Facultad de Salud, Universidad Católica Silva Henríquez, Santiago, Chile
| | - Rodrigo Ramirez-Campillo
- Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Manuel Vásquez-Muñoz
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Magdalena von Igel
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Marco A. Ramírez
- Laboratorio de Fisiología Celular, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C. Andrade
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pedagogía en Educación Física, Deportes y Recreación, Universidad Mayor, Santiago, Chile
| |
Collapse
|
33
|
Porzionato A, Emmi A, Stocco E, Barbon S, Boscolo-Berto R, Macchi V, De Caro R. The potential role of the carotid body in COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 319:L620-L626. [PMID: 32755325 PMCID: PMC7516384 DOI: 10.1152/ajplung.00309.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The carotid body (CB) plays a contributory role in the pathogenesis of various respiratory, cardiovascular, renal, and metabolic diseases through reflex changes in ventilation and sympathetic output. On the basis of available data about peripheral arterial chemoreception and severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), a potential involvement in the coronavirus disease 2019 (COVID-19) may be hypothesized through different mechanisms. The CB could be a site of SARS-CoV-2 invasion, due to local expression of its receptor [angiotensin-converting enzyme (ACE) 2] and an alternative route of nervous system invasion, through retrograde transport along the carotid sinus nerve. The CB function could be affected by COVID-19-induced inflammatory/immune reactions and/or ACE1/ACE2 imbalance, both at local or systemic level. Increased peripheral arterial chemosensitivity and reflex sympatho-activation may contribute to the increased morbidity and mortality in COVID-19 patients with respiratory, cardiovascular, renal, or metabolic comorbidities.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Aron Emmi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Rafael Boscolo-Berto
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
34
|
Lichtblau M, Saxer S, Furian M, Mayer L, Bader PR, Scheiwiller PM, Mademilov M, Sheraliev U, Tanner FC, Sooronbaev TM, Bloch KE, Ulrich S. Cardiac function and pulmonary hypertension in Central Asian highlanders at 3250 m. Eur Respir J 2020; 56:13993003.02474-2019. [DOI: 10.1183/13993003.02474-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/17/2020] [Indexed: 01/06/2023]
Abstract
The question addressed by the studyChronic exposure to hypoxia increases pulmonary artery pressure (PAP) in highlanders, but the criteria for diagnosis of high-altitude pulmonary hypertension (HAPH) are debated. We assessed cardiac function and PAP in highlanders at 3250 m and explored HAPH prevalence using different definitions.Patients and methodsCentral Asian highlanders free of overt cardiorespiratory disease, permanently living at 2500–3500 m compared to age-matched lowlanders living <800 m. Participants underwent echocardiography close to their altitude of residence (at 3250 m versus 760 m).Results173 participants (97 highlanders, 76 lowlanders), mean±sd age 49±9 years (49% females) completed the study. Results in lowlanders versus highlanders were systolic PAP (23±5 versus 30±10 mmHg), right ventricular fractional area change (42±6% versus 39±8%), tricuspid annular plane systolic excursion (2.1±0.3 versus 2.0±0.3 cm), right atrial volume index (20±6 versus 23±8 mL·m−2), left ventricular ejection fraction (62±4% versus 57±5%) and stroke volume (64±10 versus 57±11 mL); all between-group comparisons p<0.05. Depending on criteria, HAPH prevalence varied between 6% and 35%.The answer to the questionChronic exposure to hypoxia in highlanders is associated with higher PAP and slight alterations in right and left heart function compared to lowlanders. The prevalence of HAPH in this large highlander cohort varies between 6% according to expert consensus definition of chronic high-altitude disease to 35% according to the most recent definition of pulmonary hypertension proposed for lowlanders.
Collapse
|
35
|
Simpson LL, Meah VL, Steele AR, Gasho C, Howe CA, Dawkins TG, Busch SA, Oliver SJ, Moralez G, Lawley JS, Tymko MM, Vizcardo-Galindo GA, Figueroa-Mujíca RJ, Villafuerte FC, Ainslie PN, Stembridge M, Steinback CD, Moore JP. Global REACH 2018: Andean highlanders, chronic mountain sickness and the integrative regulation of resting blood pressure. Exp Physiol 2020; 106:104-116. [PMID: 32271969 DOI: 10.1113/ep088473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does chronic mountain sickness (CMS) alter sympathetic neural control and arterial baroreflex regulation of blood pressure in Andean (Quechua) highlanders? What is the main finding and its importance? Compared to healthy Andean highlanders, basal sympathetic vasomotor outflow is lower, baroreflex control of muscle sympathetic nerve activity is similar, supine heart rate is lower and cardiovagal baroreflex gain is greater in mild CMS. Taken together, these findings reflect flexibility in integrative regulation of blood pressure that may be important when blood viscosity and blood volume are elevated in CMS. ABSTRACT The high-altitude maladaptation syndrome chronic mountain sickness (CMS) is characterized by excessive erythrocytosis and frequently accompanied by accentuated arterial hypoxaemia. Whether altered autonomic cardiovascular regulation is apparent in CMS is unclear. Therefore, during the 2018 Global REACH expedition to Cerro de Pasco, Peru (4383 m), we assessed integrative control of blood pressure (BP) and determined basal sympathetic vasomotor outflow and arterial baroreflex function in eight Andean natives with CMS ([Hb] 22.6 ± 0.9 g·dL-1 ) and seven healthy highlanders ([Hb] 19.3 ± 0.8 g·dL-1 ). R-R interval (RRI, electrocardiogram), beat-by-beat BP (photoplethysmography) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded at rest and during pharmacologically induced changes in BP (modified Oxford test). Although [Hb] and blood viscosity (7.8 ± 0.7 vs. 6.6 ± 0.7 cP; d = 1.7, P = 0.01) were elevated in CMS compared to healthy highlanders, cardiac output, total peripheral resistance and mean BP were similar between groups. The vascular sympathetic baroreflex MSNA set-point (i.e. MSNA burst incidence) and reflex gain (i.e. responsiveness) were also similar between groups (MSNA set-point, d = 0.75, P = 0.16; gain, d = 0.2, P = 0.69). In contrast, in CMS the cardiovagal baroreflex operated around a longer RRI (960 ± 159 vs. 817 ± 50 ms; d = 1.4, P = 0.04) with a greater reflex gain (17.2 ± 6.8 vs. 8.8 ± 2.6 ms·mmHg-1 ; d = 1.8, P = 0.01) versus healthy highlanders. Basal sympathetic vasomotor activity was also lower compared to healthy highlanders (33 ± 11 vs. 45 ± 13 bursts·min-1 ; d = 1.0, P = 0.08). In conclusion, our findings indicate adaptive differences in basal sympathetic vasomotor activity and heart rate compensate for the haemodynamic consequences of excessive erythrocyte volume and contribute to integrative blood pressure regulation in Andean highlanders with mild CMS.
Collapse
Affiliation(s)
- Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Andrew R Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Gilberto Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | | | - Rómulo J Figueroa-Mujíca
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco C Villafuerte
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Phillip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| |
Collapse
|
36
|
Tymko MM, Hoiland RL, Tremblay JC, Stembridge M, Dawkins TG, Coombs GB, Patrician A, Howe CA, Gibbons TD, Moore JP, Simpson LL, Steinback CD, Meah VL, Stacey BS, Bailey DM, MacLeod DB, Gasho C, Anholm JD, Bain AR, Lawley JS, Villafuerte FC, Vizcardo-Galindo G, Ainslie PN. The 2018 Global Research Expedition on Altitude Related Chronic Health (Global REACH) to Cerro de Pasco, Peru: an Experimental Overview. Exp Physiol 2020; 106:86-103. [PMID: 32237245 DOI: 10.1113/ep088350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Herein, a methodological overview of our research team's (Global REACH) latest high altitude research expedition to Peru is provided. What is the main finding and its importance? The experimental objectives, expedition organization, measurements and key cohort data are discussed. The select data presented in this manuscript demonstrate the haematological differences between lowlanders and Andeans with and without excessive erythrocytosis. The data also demonstrate that exercise capacity was similar between study groups at high altitude. The forthcoming findings from our research expedition will contribute to our understanding of lowlander and indigenous highlander high altitude adaptation. ABSTRACT In 2016, the international research team Global Research Expedition on Altitude Related Chronic Health (Global REACH) was established and executed a high altitude research expedition to Nepal. The team consists of ∼45 students, principal investigators and physicians with the common objective of conducting experiments focused on high altitude adaptation in lowlanders and in highlanders with lifelong exposure to high altitude. In 2018, Global REACH travelled to Peru, where we performed a series of experiments in the Andean highlanders. The experimental objectives, organization and characteristics, and key cohort data from Global REACH's latest research expedition are outlined herein. Fifteen major studies are described that aimed to elucidate the physiological differences in high altitude acclimatization between lowlanders (n = 30) and Andean-born highlanders with (n = 22) and without (n = 45) excessive erythrocytosis. After baseline testing in Kelowna, BC, Canada (344 m), Global REACH travelled to Lima, Peru (∼80 m) and then ascended by automobile to Cerro de Pasco, Peru (∼4300 m), where experiments were conducted over 25 days. The core studies focused on elucidating the mechanism(s) governing cerebral and peripheral vascular function, cardiopulmonary regulation, exercise performance and autonomic control. Despite encountering serious logistical challenges, each of the proposed studies was completed at both sea level and high altitude, amounting to ∼780 study sessions and >3000 h of experimental testing. Participant demographics and data relating to acid-base balance and exercise capacity are presented. The collective findings will contribute to our understanding of how lowlanders and Andean highlanders have adapted under high altitude stress.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, New Zealand
| | - Jonathan P Moore
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Lydia L Simpson
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Craig D Steinback
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Victoria L Meah
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - David B MacLeod
- Human Pharmacology & Physiology Lab, Duke University Medical Center, Durham, NC, USA
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - James D Anholm
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anthony R Bain
- Department of Integrative Physiology, University of Colorado, Boulder, NC, USA.,Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Justin S Lawley
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
37
|
Lancaster G, Debevec T, Millet GP, Poussel M, Willis SJ, Mramor M, Goričar K, Osredkar D, Dolžan V, Stefanovska A. Relationship between cardiorespiratory phase coherence during hypoxia and genetic polymorphism in humans. J Physiol 2020; 598:2001-2019. [PMID: 31957891 PMCID: PMC7317918 DOI: 10.1113/jp278829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS High altitude-induced hypoxia in humans evokes a pattern of breathing known as periodic breathing (PB), in which the regular oscillations corresponding to rhythmic expiration and inspiration are modulated by slow periodic oscillations. The phase coherence between instantaneous heart rate and respiration is shown to increase significantly at the frequency of periodic breathing during acute and sustained normobaric and hypobaric hypoxia. It is also shown that polymorphism in specific genes, NOTCH4 and CAT, is significantly correlated with this coherence, and thus with the incidence of PB. Differences in phase shifts between blood flow signals and respiratory and PB oscillations clearly demonstrate contrasting origins of the mechanisms underlying normal respiration and PB. These novel findings provide a better understanding of both the genetic and the physiological mechanisms responsible for respiratory control during hypoxia at altitude, by linking genetic factors with cardiovascular dynamics, as evaluated by phase coherence. ABSTRACT Periodic breathing (PB) occurs in most humans at high altitudes and is characterised by low-frequency periodic alternation between hyperventilation and apnoea. In hypoxia-induced PB the dynamics and coherence between heart rate and respiration and their relationship to underlying genetic factors is still poorly understood. The aim of this study was to investigate, through novel usage of time-frequency analysis methods, the dynamics of hypoxia-induced PB in healthy individuals genotyped for a selection of antioxidative and neurodevelopmental genes. Breathing, ECG and microvascular blood flow were simultaneously monitored for 30 min in 22 healthy males. The same measurements were repeated under normoxic and hypoxic (normobaric (NH) and hypobaric (HH)) conditions, at real and simulated altitudes of up to 3800 m. Wavelet phase coherence and phase difference around the frequency of breathing (approximately 0.3 Hz) and around the frequency of PB (approximately 0.06 Hz) were evaluated. Subjects were genotyped for common functional polymorphisms in antioxidative and neurodevelopmental genes. During hypoxia, PB resulted in increased cardiorespiratory coherence at the PB frequency. This coherence was significantly higher in subjects with NOTCH4 polymorphism, and significantly lower in those with CAT polymorphism (HH only). Study of the phase shifts clearly indicates that the physiological mechanism of PB is different from that of the normal respiratory cycle. The results illustrate the power of time-evolving oscillatory analysis content in obtaining important insight into high altitude physiology. In particular, it provides further evidence for a genetic predisposition to PB and may partly explain the heterogeneity in the hypoxic response.
Collapse
Affiliation(s)
| | - Tadej Debevec
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
- Department of AutomationBiocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
| | | | - Mathias Poussel
- Department of Pulmonary Function Testing and Exercise PhysiologyCHRU de NancyNancyFrance
| | - Sarah J. Willis
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | - Minca Mramor
- University Children's HospitalUniversity Medical Center LjubljanaLjubljanaSlovenia
| | - Katja Goričar
- Pharmacogenetics LaboratoryInstitute of BiochemistryFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Damjan Osredkar
- University Children's HospitalUniversity Medical Center LjubljanaLjubljanaSlovenia
| | - Vita Dolžan
- Pharmacogenetics LaboratoryInstitute of BiochemistryFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
38
|
Mol A, Maier AB, van Wezel RJA, Meskers CGM. Multimodal Monitoring of Cardiovascular Responses to Postural Changes. Front Physiol 2020; 11:168. [PMID: 32194438 PMCID: PMC7063121 DOI: 10.3389/fphys.2020.00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background In the poorly understood relationship between orthostatic hypotension and falls, next to blood pressure (BP), baroreflex sensitivity (BRS) and cerebral autoregulation (CAR) may be key measures. The posture- and movement dependency of orthostatic hypotension requires continuous and unobtrusive monitoring. This may be possible using simultaneous photoplethysmography (PPG), electrocardiography (ECG), and near-infrared spectroscopy (NIRS) signal recordings, from which pulse wave velocity (PWV; potentially useful for BP estimation), BRS and CAR can be derived. The PPG, NIRS and PWV signal correlation with BP and BRS/CAR reliability and validity need to be addressed. Methods In 34 healthy adults (mean age 25 years, inter quartile range 22–45; 10 female), wrist and finger PPG, ECG, bifrontal NIRS (oxygenated and deoxygenated hemoglobin) and continuous BP were recorded during sit to stand and supine to stand movements. Sixteen participants performed slow and rapid supine to stand movements; eighteen other participants performed a 1-min squat movement. Pulse wave velocity (PWV) was defined as the inverse of the ECG R-peak to PPG pulse delay; PPG, NIRS and PWV signal correlation with BP as their Pearson correlations with mean arterial pressure (MAP) within 30 s after the postural changes; BRS as inter beat interval drop divided by systolic BP (SBP) drop during the postural changes; CAR as oxygenated hemoglobin drop divided by MAP drop. BRS and CAR were separately computed using measured and estimated (linear regression) BP. BRS/CAR reliability was defined by the intra class correlation between repeats of the same postural change; validity as the Pearson correlation between BRS/CAR values based on measured and estimated BP. Results The highest correlation with MAP was found for finger PPG and oxygenated hemoglobin, ranging from 0.75–0.79 (sit to stand), 0.66–0.88 (supine to stand), and 0.82–0.94 (1-min squat). BRS and CAR reliability was highest during the different supine to stand movements, ranging from 0.17 – 0.49 (BRS) and 0.42-0.75 (CAR); validity was highest during rapid supine to stand movements, 0.54 and 0.79 respectively. Conclusion PPG-ECG-NIRS recordings showed high correlation with BP and enabled computation of reliable and valid BRS and CAR estimates, suggesting their potential for continuous unobtrusive monitoring of orthostatic hypotension key measures.
Collapse
Affiliation(s)
- Arjen Mol
- Department of Human Movement Sciences @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Medicine and Aged Care @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Richard J A van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Department of Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Carel G M Meskers
- Department of Human Movement Sciences @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Rehabilitation Medicine, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
39
|
Simpson LL, Meah VL, Steele A, Thapamagar S, Gasho C, Anholm JD, Drane AL, Dawkins TG, Busch SA, Oliver SJ, Lawley JS, Tymko MM, Ainslie PN, Steinback CD, Stembridge M, Moore JP. Evidence for a physiological role of pulmonary arterial baroreceptors in sympathetic neural activation in healthy humans. J Physiol 2020; 598:955-965. [PMID: 31977069 DOI: 10.1113/jp278731] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In an anaesthetised animal model, independent stimulation of baroreceptors in the pulmonary artery elicits reflex sympathoexcitation. In humans, pulmonary arterial pressure is positively related to basal muscle sympathetic nerve activity (MSNA) under conditions where elevated pulmonary pressure is evident (e.g. high altitude); however, a causal link is not established. Using a novel experimental approach, we demonstrate that reducing pulmonary arterial pressure lowers basal MSNA in healthy humans. This response is distinct from the negative feedback reflex mediated by aortic and carotid sinus baroreceptors when systemic arterial pressure is lowered. Afferent input from pulmonary arterial baroreceptors may contribute to sympathetic neural activation in healthy lowland natives exposed to high altitude. ABSTRACT In animal models, distension of baroreceptors located in the pulmonary artery induces a reflex increase in sympathetic outflow; however, this has not been examined in humans. Therefore, we investigated whether reductions in pulmonary arterial pressure influenced sympathetic outflow and baroreflex control of muscle sympathetic nerve activity (MSNA). Healthy lowlanders (n = 13; 5 females) were studied 4-8 days following arrival at high altitude (4383 m; Cerro de Pasco, Peru), a setting that increases both pulmonary arterial pressure and sympathetic outflow. MSNA (microneurography) and blood pressure (BP; photoplethysmography) were measured continuously during ambient air breathing (Amb) and a 6 min inhalation of the vasodilator nitric oxide (iNO; 40 ppm in 21% O2 ), to selectively lower pulmonary arterial pressure. A modified Oxford test was performed under both conditions. Pulmonary artery systolic pressure (PASP) was determined using Doppler echocardiography. iNO reduced PASP (24 ± 3 vs. 32 ± 5 mmHg; P < 0.001) compared to Amb, with a similar reduction in MSNA total activity (1369 ± 576 to 994 ± 474 a.u min-1 ; P = 0.01). iNO also reduced the MSNA operating point (burst incidence; 39 ± 16 to 33 ± 17 bursts·100 Hb-1 ; P = 0.01) and diastolic operating pressure (82 ± 8 to 80 ± 8 mmHg; P < 0.001) compared to Amb, without changing heart rate (P = 0.6) or vascular-sympathetic baroreflex gain (P = 0.85). In conclusion, unloading of pulmonary arterial baroreceptors reduced basal sympathetic outflow to the skeletal muscle vasculature and reset vascular-sympathetic baroreflex control of MSNA downward and leftward in healthy humans at high altitude. These data suggest the existence of a lesser-known reflex input involved in sympathetic activation in humans.
Collapse
Affiliation(s)
- Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, UK
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Andrew Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Suman Thapamagar
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - James D Anholm
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Aimee L Drane
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, UK
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Austria
| | - Michael M Tymko
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Phillip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, UK
| |
Collapse
|
40
|
Testing individual baroreflex responses to hypoxia-induced peripheral chemoreflex stimulation. Clin Auton Res 2020; 30:531-540. [PMID: 31974825 PMCID: PMC7704522 DOI: 10.1007/s10286-019-00660-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022]
Abstract
Introduction Baroreflexes and peripheral chemoreflexes control efferent autonomic activity making these reflexes treatment targets for arterial hypertension. The literature on their interaction is controversial, with suggestions that their individual and collective influence on blood pressure and heart rate regulation is variable. Therefore, we applied a study design that allows the elucidation of individual baroreflex–chemoreflex interactions. Methods We studied nine healthy young men who breathed either normal air (normoxia) or an air–nitrogen–carbon dioxide mixture with decreased oxygen content (hypoxia) for 90 min, with randomization to condition, followed by a 30-min recovery period and then exposure to the other condition for 90 min. Multiple intravenous phenylephrine bolus doses were applied per condition to determine phenylephrine pressor sensitivity as an estimate of baroreflex blood pressure buffering and cardiovagal baroreflex sensitivity (BRS). Results Hypoxia reduced arterial oxygen saturation from 98.1 ± 0.4 to 81.0 ± 0.4% (p < 0.001), raised heart rate from 62.9 ± 2.1 to 76.0 ± 3.6 bpm (p < 0.001), but did not change systolic blood pressure (p = 0.182). Of the nine subjects, six had significantly lower BRS in hypoxia (p < 0.05), two showed a significantly decreased pressor response, and three showed a significantly increased pressor response to phenylephrine in hypoxia, likely through reduced baroreflex buffering (p < 0.05). On average, hypoxia decreased BRS by 6.4 ± 0.9 ms/mmHg (19.9 ± 2.0 vs. 14.12 ± 1.6 ms/mmHg; p < 0.001) but did not change the phenylephrine pressor response (p = 0.878). Conclusion We applied an approach to assess individual baroreflex–chemoreflex interactions in human subjects. A subgroup exhibited significant impairments in baroreflex blood pressure buffering and BRS with peripheral chemoreflex activation. The methodology may have utility in elucidating individual pathophysiology and in targeting treatments modulating baroreflex or chemoreflex function.
Collapse
|
41
|
Busch SA, van Diepen S, Steele AR, Meah VL, Simpson LL, Figueroa-Mujíca RJ, Vizcardo-Galindo G, Villafuerte FC, Tymko MM, Ainslie PN, Moore JP, Stembridge M, Steinback CD. Global REACH: Assessment of Brady-Arrhythmias in Andeans and Lowlanders During Apnea at 4330 m. Front Physiol 2020; 10:1603. [PMID: 32038287 PMCID: PMC6987448 DOI: 10.3389/fphys.2019.01603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Ascent to altitude increases the prevalence of arrhythmogenesis in low-altitude dwelling populations (Lowlanders). High altitude populations (i.e., Nepalese Sherpa) may have arrhythmias resistant adaptations that prevent arrhythmogenesis at altitude, though this has not been documented in other High altitude groups, including those diagnosed with chronic mountain sickness (CMS). We investigated whether healthy (CMS-) and CMS afflicted (CMS +) Andeans exhibit cardiac arrhythmias under acute apneic stress at altitude. Methods and Results: Electrocardiograms (lead II) were collected in CMS- (N = 9), CMS + (N = 8), and Lowlanders (N = 13) following several days at 4330 m (Cerro de Pasco, Peru). ECG rhythm and HR were assessed at both rest and during maximal volitional apnea. Both CMS- and CMS + had similar basal HR (69 ± 8 beats/min vs. 62 ± 11 beats/min), while basal HR was higher in Lowlanders (77 ± 18 beats/min; P < 0.05 versus CMS +). Apnea elicited significant bradycardia (nadir −32 ± 15 beats/min; P < 0.01) and the development of arrhythmias in 8/13 Lowlanders (junctional rhythm, 3° atrio-ventricular block, sinus pause). HR was preserved was prior to volitional breakpoint in both CMS- (nadir −6 ± 1 beat/min) and CMS + (1 ± 12 beats/min), with 2/17 Andeans developing arrhythmias (1 CMS+ and 1 CMS-; both Premature atrial contraction) prior to breakpoint. Conclusion: Andeans showed an absence of arrhythmias and preserved HR response to volitional apnea at altitude, demonstrating that potential cardio-resistant adaptations to arrhythmogenesis exist across permanent HA populations. Acclimatized Lowlanders have further demonstrated an increased prevalence of arrhythmias at altitude.
Collapse
Affiliation(s)
- Stephen A Busch
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Sean van Diepen
- Department of Critical Care and Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Steele
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Victoria L Meah
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Lydia L Simpson
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Rómulo J Figueroa-Mujíca
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jonathan P Moore
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
42
|
Busch SA, Simpson LL, Sobierajski F, Riske L, Ainslie PN, Willie CK, Stembridge M, Moore JP, Steinback CD. Muscle sympathetic reactivity to apneic and exercise stress in high-altitude Sherpa. Am J Physiol Regul Integr Comp Physiol 2020; 318:R493-R502. [PMID: 31913686 DOI: 10.1152/ajpregu.00119.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lowland-dwelling populations exhibit persistent sympathetic hyperactivity at altitude that alters vascular function. High-altitude populations, such as Sherpa, have previously exhibited greater peripheral blood flow in response to acute stress than Lowlanders, which may be explained through lower sympathetic activity. Our purpose was to determine whether Sherpa exhibit lower sympathetic reactivity to stress than Lowlanders. Muscle sympathetic nerve activity (MSNA; microneurography) was measured at rest in Lowlanders (n = 14; age = 27 ± 6 yr) at 344 m and between 1 and 10 days at 5,050 m. Sherpa (age = 32 ± 11 yr) were tested at 5,050 m (n = 8). Neurovascular reactivity (i.e., change in MSNA patterns) was measured during maximal end-expiratory apnea, isometric hand grip (IHG; 30% maximal voluntary contraction for 2-min), and postexercise circulatory occlusion (PECO; 3 min). Burst frequency (bursts/min) and incidence (bursts/100 heartbeats) and total normalized SNA (arbitrary units/min) were analyzed at rest, immediately before apnea breakpoint, and during the last minute of IHG and PECO. Vascular responses to apnea, IHG, and PECO were also measured. MSNA reactivity to apnea was smaller in Sherpa than Lowlanders at 5,050 m, although blood pressure responses were similar between groups. MSNA increases in Lowlanders during apnea at 5,050 m were significantly lower than at 344 m (P < 0.05), indicating that a possible sympathetic ceiling was reached in Lowlanders at 5,050 m. MSNA increased similarly during IHG and PECO in Lowlanders at both 334 m and 5,050 m and in Sherpa at 5,050 m, while vascular changes (mean brachial arterial pressure, contralateral brachial flow and resistance) were similar between groups. Sherpa demonstrate overall lower sympathetic reactivity that may be a result of heightened vascular responsiveness to potential apneic stress at altitude.
Collapse
Affiliation(s)
- Stephen A Busch
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lydia L Simpson
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Frances Sobierajski
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Laurel Riske
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Chris K Willie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff School of Sport and Health, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jonathan P Moore
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Tymko MM, Tremblay JC, Bailey DM, Green DJ, Ainslie PN. The impact of hypoxaemia on vascular function in lowlanders and high altitude indigenous populations. J Physiol 2019; 597:5759-5776. [PMID: 31677355 DOI: 10.1113/jp277191] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
Exposure to hypoxia elicits widespread physiological responses that are critical for successful acclimatization; however, these responses may induce apparent maladaptive consequences. For example, recent studies conducted in both the laboratory and the field (e.g. at high altitude) have demonstrated that endothelial function is reduced in hypoxia. Herein, we review the several proposed mechanism(s) pertaining to the observed reduction in endothelial function in hypoxia including: (i) changes in blood flow patterns (i.e. shear stress), (ii) increased inflammation and production of reactive oxygen species (i.e. oxidative stress), (iii) heightened sympathetic nerve activity, and (iv) increased red blood cell concentration and mass leading to elevated nitric oxide scavenging. Although some of these mechanism(s) have been examined in lowlanders, less in known about endothelial function in indigenous populations that have chronically adapted to environmental hypoxia for millennia (e.g. the Peruvian, Tibetan and Ethiopian highlanders). There is some evidence indicating that healthy Tibetan and Peruvian (i.e. Andean) highlanders have preserved endothelial function at high altitude, but less is known about the Ethiopian highlanders. However, Andean highlanders suffering from chronic mountain sickness, which is characterized by an excessive production of red blood cells, have markedly reduced endothelial function. This review will provide a framework and mechanistic model for vascular endothelial adaptation to hypoxia in lowlanders and highlanders. Elucidating the pathways responsible for vascular adaption/maladaptation to hypoxia has potential clinical implications for disease featuring low oxygen delivery (e.g. heart failure, pulmonary disease). In addition, a greater understanding of vascular function at high altitude will clinically benefit the global estimated 85 million high altitude residents.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Daniel J Green
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
44
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
45
|
Tremblay JC, Coombs GB, Howe CA, Vizcardo-Galindo GA, Figueroa-Mujíca RJ, Bermudez D, Tymko MM, Villafuerte FC, Ainslie PN, Pyke KE. Global Reach 2018: reduced flow-mediated dilation stimulated by sustained increases in shear stress in high-altitude excessive erythrocytosis. Am J Physiol Heart Circ Physiol 2019; 317:H991-H1001. [PMID: 31441692 DOI: 10.1152/ajpheart.00316.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Excessive erythrocytosis [EE; hemoglobin concentration (Hb) ≥ 21 g/dL in adult men] is a maladaptive high-altitude pathology associated with increased cardiovascular risk and reduced reactive hyperemia flow-mediated dilation (FMD); however, whether a similar impairment occurs in response to more commonly encountered sustained increases in shear stress [sustained stimulus (SS)-FMD] over a range of overlapping stimuli is unknown. We characterized SS-FMD in response to handgrip exercise in Andeans with and without EE in Cerro de Pasco, Peru (4,330 m). Andean highlanders with EE (n = 17, Hb = 23.2 ± 1.2 g/dL) and without EE (n = 23, Hb = 18.7 ± 1.9 g/dL) performed 3 min of rhythmic handgrip exercise at 20, 35, and 50% of maximum voluntary contraction (MVC). Duplex ultrasound was used to continuously record blood velocity and diameter in the brachial artery, and blood viscosity was measured to accurately calculate shear stress. Although baseline shear stress did not differ, Andeans with EE had 22% lower shear stress than Andeans without at 50% MVC (P = 0.004). At 35 and 50% MVC, SS-FMD was 2.1 ± 2.0 and 2.8 ± 2.7% in Andeans with EE compared with 4.1 ± 3.4 and 7.5 ± 4.5% in those without (P = 0.048 and P < 0.001). The stimulus-response slope (∆shear stress vs. ∆diameter) was lower in Andeans with EE compared with Andeans without (P = 0.028). This slope was inversely related to Hb in Andeans with EE (r2 = 0.396, P = 0.007). A reduced SS-FMD in response to small muscle mass exercise in Andeans with EE indicates a generalized reduction in endothelial sensitivity to shear stress, which may contribute to increased cardiovascular risk in this population.NEW & NOTEWORTHY High-altitude excessive erythrocytosis (EE; hemoglobin concentration ≥ 21 g/dL) is a maladaptation to chronic hypoxia exposure and is associated with increased cardiovascular risk. We examined flow-mediated dilation (FMD) in response to sustained elevations in shear stress achieved using progressive handgrip exercise [sustained stimulus (SS)-FMD] in Andean highlanders with and without EE at 4,330 m. Andeans with EE demonstrated lower SS-FMD compared with those without. Heightened hemoglobin concentration was related to lower SS-FMD in Andeans with EE.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Gustavo A Vizcardo-Galindo
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rómulo J Figueroa-Mujíca
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
46
|
Teixeira AL. Lifelong high-altitude hypoxia induces arterial baroreflex adaptations: new insights and future directions. J Physiol 2019; 597:3253-3254. [PMID: 31078133 DOI: 10.1113/jp278174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- André L Teixeira
- Neuro V̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|