1
|
Andjelkovic M, Klaassen K, Skakic A, Marjanovic I, Kravljanac R, Djordjevic M, Vucetic Tadic B, Kecman B, Pavlovic S, Stojiljkovic M. Characterization of 13 Novel Genetic Variants in Genes Associated with Epilepsy: Implications for Targeted Therapeutic Strategies. Mol Diagn Ther 2024; 28:645-663. [PMID: 39003674 PMCID: PMC11349789 DOI: 10.1007/s40291-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Childhood epilepsies are caused by heterogeneous underlying disorders where approximately 40% of the origins of epilepsy can be attributed to genetic factors. The application of next-generation sequencing (NGS) has revolutionized molecular diagnostics and has enabled the identification of disease-causing genes and variants in childhood epilepsies. The objective of this study was to use NGS to identify variants in patients with childhood epilepsy, to expand the variant spectrum and discover potential therapeutic targets. METHODS In our study, 55 children with epilepsy of unknown etiology were analyzed by combining clinical-exome and whole-exome sequencing. Novel variants were characterized using various in silico algorithms for pathogenicity and structure prediction. RESULTS The molecular genetic cause of epilepsy was identified in 28 patients and the overall diagnostic success rate was 50.9%. We identified variants in 22 different genes associated with epilepsy that correlate well with the described phenotype. SCN1A gene variants were found in five unrelated patients, while ALDH7A1 and KCNQ2 gene variants were found twice. In the other 19 genes, variants were found only in a single patient. This includes genes such as ASH1L, CSNK2B, RHOBTB2, and SLC13A5, which have only recently been associated with epilepsy. Almost half of diagnosed patients (46.4%) carried novel variants. Interestingly, we identified variants in ALDH7A1, KCNQ2, PNPO, SCN1A, and SCN2A resulting in gene-directed therapy decisions for 11 children from our study, including four children who all carried novel SCN1A genetic variants. CONCLUSIONS Described novel variants will contribute to a better understanding of the European genetic landscape, while insights into the genotype-phenotype correlation will contribute to a better understanding of childhood epilepsies worldwide. Given the expansion of molecular-based approaches, each newly identified genetic variant could become a potential therapeutic target.
Collapse
Affiliation(s)
- Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Anita Skakic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Ruzica Kravljanac
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Djordjevic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Vucetic Tadic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozica Kecman
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| |
Collapse
|
2
|
Moreland RT, Zhang S, Barreira SN, Ryan JF, Baxevanis AD. An AI-generated proteome-scale dataset of predicted protein structures for the ctenophore Mnemiopsis leidyi. Proteomics 2024; 24:e2300397. [PMID: 38329168 PMCID: PMC11296891 DOI: 10.1002/pmic.202300397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
This Dataset Brief describes the computational prediction of protein structures for the ctenophore Mnemiopsis leidyi. Here, we report the proteome-scale generation of 15,333 protein structure predictions using AlphaFold, as well as an updated implementation of publicly available search, manipulation, and visualization tools for these protein structure predictions through the Mnemiopsis Genome Project Portal (https://research.nhgri.nih.gov/mnemiopsis). The utility of these predictions is demonstrated by highlighting comparisons to experimentally determined structures for the light-sensitive protein mnemiopsin 1 and the ionotropic glutamate receptor (iGluR). The application of these novel protein structure prediction methods will serve to further position non-bilaterian species such as Mnemiopsis as powerful model systems for the study of early animal evolution and human health.
Collapse
Affiliation(s)
- R. Travis Moreland
- Center for Genomics and Data Science Research, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Suiyuan Zhang
- Center for Genomics and Data Science Research, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Sofia N. Barreira
- Center for Genomics and Data Science Research, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Joseph F. Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, U.S.A
| | - Andreas D. Baxevanis
- Center for Genomics and Data Science Research, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
3
|
Candelas Serra M, Kuchtiak V, Kubik-Zahorodna A, Kysilov B, Fili K, Hrcka Krausova B, Abramova V, Dobrovolski M, Harant K, Bozikova P, Cerny J, Prochazka J, Kasparek P, Sedlacek R, Balik A, Smejkalova T, Vyklicky L. Characterization of Mice Carrying a Neurodevelopmental Disease-Associated GluN2B(L825V) Variant. J Neurosci 2024; 44:e2291232024. [PMID: 38926089 PMCID: PMC11293445 DOI: 10.1523/jneurosci.2291-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
N-Methyl-d-aspartate receptors (NMDARs), encoded by GRIN genes, are ionotropic glutamate receptors playing a critical role in synaptic transmission, plasticity, and synapse development. Genome sequence analyses have identified variants in GRIN genes in patients with neurodevelopmental disorders, but the underlying disease mechanisms are not well understood. Here, we have created and evaluated a transgenic mouse line carrying a missense variant Grin2bL825V , corresponding to a de novo GRIN2B variant encoding GluN2B(L825V) found in a patient with intellectual disability (ID) and autism spectrum disorder (ASD). We used HEK293T cells expressing recombinant receptors and primary hippocampal neurons prepared from heterozygous Grin2bL825V/+ (L825V/+) and wild-type (WT) Grin2b+/+ (+/+) male and female mice to assess the functional impact of the variant. Whole-cell NMDAR currents were reduced in neurons from L825V/+ compared with +/+ mice. The peak amplitude of NMDAR-mediated evoked excitatory postsynaptic currents (NMDAR-eEPSCs) was unchanged, but NMDAR-eEPSCs in L825V/+ neurons had faster deactivation compared with +/+ neurons and were less sensitive to a GluN2B-selective antagonist ifenprodil. Together, these results suggest a decreased functional contribution of GluN2B subunits to synaptic NMDAR currents in hippocampal neurons from L825V/+ mice. The analysis of the GluN2B(L825V) subunit surface expression and synaptic localization revealed no differences compared with WT GluN2B. Behavioral testing of mice of both sexes demonstrated hypoactivity, anxiety, and impaired sensorimotor gating in the L825V/+ strain, particularly affecting males, as well as cognitive symptoms. The heterozygous L825V/+ mouse offers a clinically relevant model of GRIN2B-related ID/ASD, and our results suggest synaptic-level functional changes that may contribute to neurodevelopmental pathology.
Collapse
Affiliation(s)
- Miriam Candelas Serra
- Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Viktor Kuchtiak
- Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Faculty of Science, Charles University, Prague 12800, Czech Republic
| | - Agnieszka Kubik-Zahorodna
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec 25050, Czech Republic
| | - Bohdan Kysilov
- Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Klevinda Fili
- Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Third Faculty of Medicine, Charles University, Prague 10000, Czech Republic
| | | | - Vera Abramova
- Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Third Faculty of Medicine, Charles University, Prague 10000, Czech Republic
| | - Mark Dobrovolski
- Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Third Faculty of Medicine, Charles University, Prague 10000, Czech Republic
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, Biocev, Vestec 25050, Czech Republic
| | - Paulina Bozikova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25050, Czech Republic
| | - Jiri Cerny
- Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec 25050, Czech Republic
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec 25050, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec 25050, Czech Republic
| | - Ales Balik
- Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Tereza Smejkalova
- Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| |
Collapse
|
4
|
Korinek M, Candelas Serra M, Abdel Rahman F, Dobrovolski M, Kuchtiak V, Abramova V, Fili K, Tomovic E, Hrcka Krausova B, Krusek J, Cerny J, Vyklicky L, Balik A, Smejkalova T. Disease-Associated Variants in GRIN1, GRIN2A and GRIN2B genes: Insights into NMDA Receptor Structure, Function, and Pathophysiology. Physiol Res 2024; 73:S413-S434. [PMID: 38836461 PMCID: PMC11412357 DOI: 10.33549/physiolres.935346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptors critical for synaptic transmission and plasticity, and for the development of neural circuits. Rare or de-novo variants in GRIN genes encoding NMDAR subunits have been associated with neurodevelopmental disorders characterized by intellectual disability, developmental delay, autism, schizophrenia, or epilepsy. In recent years, some disease-associated variants in GRIN genes have been characterized using recombinant receptors expressed in non-neuronal cells, and a few variants have also been studied in neuronal preparations or animal models. Here we review the current literature on the functional evaluation of human disease-associated variants in GRIN1, GRIN2A and GRIN2B genes at all levels of analysis. Focusing on the impact of different patient variants at the level of receptor function, we discuss effects on receptor agonist and co-agonist affinity, channel open probability, and receptor cell surface expression. We consider how such receptor-level functional information may be used to classify variants as gain-of-function or loss-of-function, and discuss the limitations of this classification at the synaptic, cellular, or system level. Together this work by many laboratories worldwide yields valuable insights into NMDAR structure and function, and represents significant progress in the effort to understand and treat GRIN disorders. Keywords: NMDA receptor , GRIN genes, Genetic variants, Electrophysiology, Synapse, Animal models.
Collapse
Affiliation(s)
- M Korinek
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jiang L, Liu N, Zhao F, Huang B, Kang D, Zhan P, Liu X. Discovery of GluN2A subtype-selective N-methyl-d-aspartate (NMDA) receptor ligands. Acta Pharm Sin B 2024; 14:1987-2005. [PMID: 38799621 PMCID: PMC11119548 DOI: 10.1016/j.apsb.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
The N-methyl-d-aspartate (NMDA) receptors, which belong to the ionotropic Glutamate receptors, constitute a family of ligand-gated ion channels. Within the various subtypes of NMDA receptors, the GluN1/2A subtype plays a significant role in central nervous system (CNS) disorders. The present article aims to provide a comprehensive review of ligands targeting GluN2A-containing NMDA receptors, encompassing negative allosteric modulators (NAMs), positive allosteric modulators (PAMs) and competitive antagonists. Moreover, the ligands' structure-activity relationships (SARs) and the binding models of representative ligands are also discussed, providing valuable insights for the clinical rational design of effective drugs targeting CNS diseases.
Collapse
Affiliation(s)
| | | | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Xia Y, Ding L, Zhang C, Xu Q, Shi M, Gao T, Zhou FQ, Deng DYB. Inflammatory Factor IL1α Induces Aberrant Astrocyte Proliferation in Spinal Cord Injury Through the Grin2c/Ca 2+/CaMK2b Pathway. Neurosci Bull 2024; 40:421-438. [PMID: 37864744 PMCID: PMC11003951 DOI: 10.1007/s12264-023-01128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/11/2023] [Indexed: 10/23/2023] Open
Abstract
Spinal cord injury (SCI) is one of the most devastating traumas, and the aberrant proliferation of astrocytes usually causes neurological deficits. However, the mechanism underlying astrocyte over-proliferation after SCI is unclear. Grin2c (glutamate ionotropic receptor type 2c) plays an essential role in cell proliferation. Our bioinformatic analysis indicated that Grin2c and Ca2+ transport functions were inhibited in astrocytes after SCI. Suppression of Grin2c stimulated astrocyte proliferation by inhibiting the Ca2+/calmodulin-dependent protein kinase 2b (CaMK2b) pathway in vitro. By screening different inflammatory factors, interleukin 1α (IL1α) was further found to inhibit Grin2c/Ca2+/CaMK2b and enhance astrocyte proliferation in an oxidative damage model. Blockade of IL1α using neutralizing antibody resulted in increased Grin2c expression and the inhibition of astrocyte proliferation post-SCI. Overall, this study suggests that IL1α promotes astrocyte proliferation by suppressing the Grin2c/Ca2+/CaMK2b pathway after SCI, revealing a novel pathological mechanism of astrocyte proliferation, and may provide potential targets for SCI repair.
Collapse
Affiliation(s)
- Yu Xia
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lu Ding
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changlin Zhang
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qi Xu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ming Shi
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tianshun Gao
- Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Feng-Quan Zhou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - David Y B Deng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Orthopaedic and Neurological Repair Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Gao X, Fu J, Yu D, Lu F, Liu S. Integrated network pharmacology and phosphoproteomic analyses of Baichanting in Parkinson's disease model mice. Heliyon 2024; 10:e26916. [PMID: 38509878 PMCID: PMC10951462 DOI: 10.1016/j.heliyon.2024.e26916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The incidence rate of Parkinson's disease (PD) is increasing yearly. Neuronal apoptosis caused by abnormal protein phosphorylation is closely related to the pathogenesis of Parkinson's disease. At present, few PD-specific apoptosis pathways have been revealed. To investigate the effect of Baichanting (BCT) on apoptosis from the perspective of protein phosphorylation, α-syn transgenic mice were selected to observe the behavioral changes of the mice, and the apoptosis of substantia nigra cells were detected by the HE method and TUNEL method. Network pharmacology combined with phosphorylation proteomics was used to find relevant targets for BCT treatment of PD and was further verified by PRM and western blotting. BCT improved the morphology of neurons in the substantia nigra and reduced neuronal apoptosis. The main enriched pathways in the network pharmacology results were apoptosis, the p53 signaling pathway and autophagy. Western blot results showed that BCT significantly regulated the protein expression levels of BAX, Caspase-3, LC3B, P53 and mTOR and upregulated autophagy to alleviate apoptosis. Using phosphorylated proteomics and PRM validation, we found that Pak5, Grin2b, Scn1a, BcaN, L1cam and Braf are closely correlated with the targets of the web-based pharmacological screen and may be involved in p53/mTOR-mediated autophagy and apoptosis pathways. BCT can inhibit the activation of the p53/mTOR signaling pathway, thereby enhancing the autophagy function of cells, and reducing the apoptosis of neurons which is the main mechanism of its neuroprotective effect.
Collapse
Affiliation(s)
- Xin Gao
- Heilongjiang University of Chinese Medicine, College of Pharmacy, Harbin, 150040, China
| | - Jiaqi Fu
- Heilongjiang University of Chinese Medicine, College of Pharmacy, Harbin, 150040, China
| | - DongHua Yu
- Heilongjiang University of Chinese Medicine, Research Institute of Chinese Medicine, Harbin, 150040, China
| | - Fang Lu
- Heilongjiang University of Chinese Medicine, Research Institute of Chinese Medicine, Harbin, 150040, China
| | - Shumin Liu
- Heilongjiang University of Chinese Medicine, Research Institute of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
8
|
Kysilov B, Kuchtiak V, Hrcka Krausova B, Balik A, Korinek M, Fili K, Dobrovolski M, Abramova V, Chodounska H, Kudova E, Bozikova P, Cerny J, Smejkalova T, Vyklicky L. Disease-associated nonsense and frame-shift variants resulting in the truncation of the GluN2A or GluN2B C-terminal domain decrease NMDAR surface expression and reduce potentiating effects of neurosteroids. Cell Mol Life Sci 2024; 81:36. [PMID: 38214768 PMCID: PMC10786987 DOI: 10.1007/s00018-023-05062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening. We also show that naturally occurring and synthetic steroids pregnenolone sulfate and epipregnanolone butanoic acid, respectively, enhance NMDAR function in a way that is dependent on the length of the truncated CTD and, further, is steroid-specific, GluN2A/B subunit-specific, and GluN1 splice variant-specific. Adding to the previously described effects of disease-associated NMDAR variants on the receptor biogenesis and function, our results improve the understanding of the molecular consequences of NMDAR CTD truncations and provide an opportunity for the development of new therapeutic neurosteroid-based ligands.
Collapse
Affiliation(s)
- Bohdan Kysilov
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
- Stony Brook University, Stony Brook, 100 Nicolls Road, NY, 11794, USA
| | - Viktor Kuchtiak
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
- Faculty of Science, Charles University, Albertov 2038, 12800, Prague 2, Czech Republic
| | - Barbora Hrcka Krausova
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
| | - Ales Balik
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
| | - Miloslav Korinek
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
| | - Klevinda Fili
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, 10000, Prague 10, Czech Republic
| | - Mark Dobrovolski
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, 10000, Prague 10, Czech Republic
| | - Vera Abramova
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, 10000, Prague 10, Czech Republic
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 16610, Prague 6, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 16610, Prague 6, Czech Republic
| | - Paulina Bozikova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
| | - Jiri Cerny
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
| | - Tereza Smejkalova
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic.
| | - Ladislav Vyklicky
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic.
| |
Collapse
|
9
|
Zoodsma JD, Gomes CI, Sirotkin HI, Wollmuth LP. Behavioral Assays Dissecting NMDA Receptor Function in Zebrafish. Methods Mol Biol 2024; 2799:243-255. [PMID: 38727911 DOI: 10.1007/978-1-0716-3830-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Zebrafish are a powerful system to study brain development and to dissect the activity of complex circuits. One advantage is that they display complex behaviors, including prey capture, learning, responses to photic and acoustic stimuli, and social interaction (Dreosti et al., Front Neural Circuits 9:39, 2015; Bruckner et al., PLoS Biol 20:e3001838, 2022; Zoodsma et al., Mol Autism 13:38, 2022) that can be probed to assess brain function. Many of these behaviors are easily assayed at early larval stages, offering a noninvasive and high-throughput readout of nervous system function. Additionally, larval zebrafish readily uptake small molecules dissolved in water making them ideal for behavioral-based drug screens. Together, larval zebrafish and their behavioral repertoire offer a means to rapidly dissect brain circuitry and can serve as a template for high-throughput small molecule screens.NMDA receptor subunits are highly conserved in zebrafish compared to mammals (Zoodsma et al., Mol Autism 13:38, 2022; Cox et al., Dev Dyn 234:756-766, 2005; Zoodsma et al., J Neurosci 40:3631-3645, 2020). High amino acid and domain structure homology between humans and zebrafish underlie conserved functional similarities. Here we describe a set of behavioral assays that are useful to study the NMDA receptor activity in brain function.
Collapse
Affiliation(s)
- Josiah D Zoodsma
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Carly I Gomes
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
- Department of Pediatrics, Stony Brook University, Stony Brook, NY, USA
| | - Howard I Sirotkin
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA.
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
10
|
Weaver MG, Popescu GK. Estimating the Ca 2+ Permeability of NMDA Receptors with Whole-Cell Patch-Clamp Electrophysiology. Methods Mol Biol 2024; 2799:177-200. [PMID: 38727908 DOI: 10.1007/978-1-0716-3830-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In the mammalian central nervous system (CNS), fast excitatory transmission relies primarily on the ionic fluxes generated by ionotropic glutamate receptors (iGluRs). Among iGluRs, NMDA receptors (NMDARs) are unique in their ability to pass large, Ca2+-rich currents. Importantly, their high Ca2+ permeability is essential for normal CNS function and is under physiological control. For this reason, the accurate measurement of NMDA receptor Ca2+ permeability represents a valuable experimental step in evaluating the mechanism by which these receptors contribute to a variety of physiological and pathological conditions. In this chapter, we provide a theoretical and practical overview of the common methods used to estimate the Ca2+ permeability of ion channels as they apply to NMDA receptors. Specifically, we describe the principles and methodology used to calculate relative permeability (PCa/PNa) and fractional permeability (Pf), along with the relationship between these two metrics. With increasing knowledge about the structural dynamics of ion channels and of the ongoing environmental fluctuations in which channels operate in vivo, the ability to quantify the Ca2+ entering cells through specific ion channels remains a tool essential to delineating the molecular mechanisms that support health and cause disease.
Collapse
Affiliation(s)
- Mae G Weaver
- Department of Biochemistry, Graduate Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.
| | - Gabriela K Popescu
- Department of Biochemistry, Graduate Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.
| |
Collapse
|
11
|
Sprengel R, Eltokhi A, Single FN. Generation of Rare Human NMDA Receptor Variants in Mice. Methods Mol Biol 2024; 2799:79-105. [PMID: 38727904 DOI: 10.1007/978-1-0716-3830-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The analysis of rare NMDAR gene variants in mice, coupled with a fundamental understanding of NMDAR function, plays a crucial role in achieving therapeutic success when addressing NMDAR dysfunctions in human patients. For the generation of such NMDAR mouse models, a basic knowledge of receptor structure, along with skills in database sequence analysis, cloning in E. coli, genetic manipulation of embryonic stem (ES) cells, and ultimately the genetic modification of mouse embryos, is essential. Primarily, this chapter will focus on the design and synthesis of NMDAR gene-targeting vectors that can be used successfully for the genetic manipulation of mice. We will outline the core principles of the design and synthesis of a gene targeting vector that facilitates the introduction of single-point mutations in NMDAR-encoding genes in mice. The transformation of ES cells, selection of positive ES cell colonies, manipulation of mouse embryos, and genotyping strategies will be described briefly.
Collapse
Affiliation(s)
- Rolf Sprengel
- Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - Ahmed Eltokhi
- Department of Biomedical Sciences, School of Medicine, Mercer University, Columbus, GA, USA
| | - Frank N Single
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
12
|
Ragnarsson L, Zhang Z, Das SS, Tran P, Andersson Å, des Portes V, Desmettre Altuzarra C, Remerand G, Labalme A, Chatron N, Sanlaville D, Lesca G, Anggono V, Vetter I, Keramidas A. GRIN1 variants associated with neurodevelopmental disorders reveal channel gating pathomechanisms. Epilepsia 2023; 64:3377-3388. [PMID: 37734923 PMCID: PMC10952597 DOI: 10.1111/epi.17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE N-methyl-d-aspartate (NMDA) receptors are expressed at synaptic sites, where they mediate fast excitatory neurotransmission. NMDA receptors are critical to brain development and cognitive function. Natural variants to the GRIN1 gene, which encodes the obligatory GluN1 subunit of the NMDA receptor, are associated with severe neurological disorders that include epilepsy, intellectual disability, and developmental delay. Here, we investigated the pathogenicity of three missense variants to the GRIN1 gene, p. Ile148Val (GluN1-3b[I481V]), p.Ala666Ser (GluN1-3b[A666S]), and p.Tyr668His (GluN1-3b[Y668H]). METHODS Wild-type and variant-containing NMDA receptors were expressed in HEK293 cells and primary hippocampal neurons. Patch-clamp electrophysiology and pharmacology were used to profile the functional properties of the receptors. Receptor surface expression was evaluated using fluorescently tagged receptors and microscopy. RESULTS Our data demonstrate that the GluN1(I481V) variant is inhibited by the open pore blockers ketamine and memantine with reduce potency but otherwise has little effect on receptor function. By contrast, the other two variants exhibit gain-of-function molecular phenotypes. Glycine sensitivity was enhanced in receptors containing the GluN1(A666S) variant and the potency of pore block by memantine and ketamine was reduced, whereas that for MK-801 was increased. The most pronounced functional deficits, however, were found in receptors containing the GluN1(Y668H) variant. GluN1(Y668H)/2A receptors showed impaired surface expression, were more sensitive to glycine and glutamate by an order of magnitude, and exhibited impaired block by extracellular magnesium ions, memantine, ketamine, and MK-801. These variant receptors were also activated by either glutamate or glycine alone. Single-receptor recordings revealed that this receptor variant opened to several conductance levels and activated more frequently than wild-type GluN1/2A receptors. SIGNIFICANCE Our study reveals a critical functional locus of the receptor (GluN1[Y668]) that couples receptor gating to ion channel conductance, which when mutated may be associated with neurological disorder.
Collapse
Affiliation(s)
- Lotten Ragnarsson
- Institute for Molecular BioscienceUniversity of QueenslandSt. LuciaQueenslandAustralia
| | - Zihan Zhang
- Institute for Molecular BioscienceUniversity of QueenslandSt. LuciaQueenslandAustralia
| | - Sooraj S. Das
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Poanna Tran
- Institute for Molecular BioscienceUniversity of QueenslandSt. LuciaQueenslandAustralia
| | - Åsa Andersson
- Institute for Molecular BioscienceUniversity of QueenslandSt. LuciaQueenslandAustralia
| | | | | | - Ganaelle Remerand
- Department of Neonatology, Estaing HospitalCentre Hospitalier Universitaire (CHU)Clermont‐FerrandFrance
| | - Audrey Labalme
- Service de Génétique, Hospices Civils de LyonGroupement Hospitalier EstBronFrance
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de LyonGroupement Hospitalier EstBronFrance
| | - Damien Sanlaville
- Service de Génétique, Hospices Civils de LyonGroupement Hospitalier EstBronFrance
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de LyonGroupement Hospitalier EstBronFrance
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Irina Vetter
- Institute for Molecular BioscienceUniversity of QueenslandSt. LuciaQueenslandAustralia
| | - Angelo Keramidas
- Institute for Molecular BioscienceUniversity of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
13
|
Mony L, Paoletti P. Mechanisms of NMDA receptor regulation. Curr Opin Neurobiol 2023; 83:102815. [PMID: 37988826 DOI: 10.1016/j.conb.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels widely expressed in the central nervous system that play key role in brain development and plasticity. On the downside, NMDAR dysfunction, be it hyperactivity or hypofunction, is harmful to neuronal function and has emerged as a common theme in various neuropsychiatric disorders including autism spectrum disorders, epilepsy, intellectual disability, and schizophrenia. Not surprisingly, NMDAR signaling is under a complex set of regulatory mechanisms that maintain NMDAR-mediated transmission in check. These include an unusual large number of endogenous agents that directly bind NMDARs and tune their activity in a subunit-dependent manner. Here, we review current knowledge on the regulation of NMDAR signaling. We focus on the regulation of the receptor by its microenvironment as well as by external (i.e. pharmacological) factors and their underlying molecular and cellular mechanisms. Recent developments showing how NMDAR dysregulation participate to disease mechanisms are also highlighted.
Collapse
Affiliation(s)
- Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
14
|
Moody G, Musco A, Bennett J, Wollmuth LP. An integrated approach to evaluate the functional effects of disease-associated NMDA receptor variants. Neuropharmacology 2023; 240:109703. [PMID: 37689262 DOI: 10.1016/j.neuropharm.2023.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
The NMDA receptor (NMDAR) is a ubiquitously expressed glutamate-gated ion channel that plays key roles in brain development and function. Not surprisingly, a variety of disease-associated variants have been identified in genes encoding NMDAR subunits. A critical first step to assess whether these variants contribute to their associated disorder is to characterize their effect on receptor function. However, the complexity of NMDAR function makes this challenging, with many variants typically altering multiple functional properties. At synapses, NMDARs encode pre- and postsynaptic activity to carry a charge transfer that alters membrane excitability and a Ca2+ influx that has both short- and long-term signaling actions. Here, we characterized epilepsy-associated variants in GluN1 and GluN2A subunits with various phenotypic severity in HEK293 cells. To capture the complexity of NMDAR gating, we applied 10 glutamate pulses at 10 Hz to derive a charge integral. This assay is advantageous since it incorporates multiple gating parameters - activation, deactivation, and desensitization - into a single value. We then integrated this gating parameter with Mg2+ block and Ca2+ influx using fractional Ca2+ currents to generate indices of charge transfer and Ca2+ transfer over wide voltage ranges. This approach yields consolidated parameters that can be used as a reference to normalize channel block and allosteric modulation to better define potential patient treatment. This is especially true for variants in the transmembrane domain that affect not only receptor gating but also often Mg2+ block and Ca2+ permeation.
Collapse
Affiliation(s)
- Gabrielle Moody
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794-5230, United States
| | - Angela Musco
- Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5230, United States
| | - Joseph Bennett
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, United States
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, United States; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5230, United States; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, United States.
| |
Collapse
|
15
|
Camp CR, Vlachos A, Klöckner C, Krey I, Banke TG, Shariatzadeh N, Ruggiero SM, Galer P, Park KL, Caccavano A, Kimmel S, Yuan X, Yuan H, Helbig I, Benke TA, Lemke JR, Pelkey KA, McBain CJ, Traynelis SF. Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons. Commun Biol 2023; 6:952. [PMID: 37723282 PMCID: PMC10507040 DOI: 10.1038/s42003-023-05298-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a+/- and Grin2a-/- mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a+/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a+/- mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a-/- mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients.
Collapse
Affiliation(s)
- Chad R Camp
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna Vlachos
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Tue G Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nima Shariatzadeh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sarah M Ruggiero
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Peter Galer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Kristen L Park
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Adam Caccavano
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Kimmel
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tim A Benke
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
16
|
Li J, Zhou Y, Su T, Xu S. Perampanel therapy for intractable GRIN2D-related developmental and epileptic encephalopathy: A case report and literature review. Brain Dev 2023; 45:237-243. [PMID: 36567197 DOI: 10.1016/j.braindev.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND N-methyl-d-aspartate receptors (NMDARs) are ligand-gated ion channels that mediate excitatory synaptic transmission and brain development in the central nervous system. Mutations in GRIN2D encoding the NMDAR subunit GluN2D are associated with a wide spectrum of neurodevelopmental disorders. METHODS We report a novel de novo GRIN2D variant (NM_000836.2: c.2024C > T, p.Ala675Val) in an infant with severe developmental and epileptic encephalopathy. Clinical characteristics and treatment outcomes of patients with GRIN2D-related developmental and epileptic encephalopathy were summarized by reviewing the literature. RESULTS In silico analysis suggested this p.Ala675Val variant residing in the highly conserved M3 helix of GluN2D would interfere with channel gating. Therapeutic options including multiple anticonvulsants, oral corticosteroid therapy, and ketogenic diet failed to achieve seizure control. Eventually, adjunctive therapy with perampanel led to marked electroclinical improvement. CONCLUSIONS Perampanel can be beneficial adjuvant therapy for patients with GRIN2D-related intractable epilepsy. Mechanistic understanding and case-per-se analysis are required to enable more individualized treatment for the patients.
Collapse
Affiliation(s)
- Jiaqing Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanqing Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Xie L, McDaniel MJ, Perszyk RE, Kim S, Cappuccio G, Shapiro KA, Muñoz-Cabello B, Sanchez-Lara PA, Grand K, Zhang J, Nocilla KA, Sheikh R, Armengol L, Romano R, Pierson TM, Yuan H, Myers SJ, Traynelis SF. Functional effects of disease-associated variants reveal that the S1-M1 linker of the NMDA receptor critically controls channel opening. Cell Mol Life Sci 2023; 80:110. [PMID: 37000222 PMCID: PMC10641759 DOI: 10.1007/s00018-023-04705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 04/01/2023]
Abstract
The short pre-M1 helix within the S1-M1 linker (also referred to as the pre-M1 linker) between the agonist-binding domain (ABD, S1) and the M1 transmembrane helix of the NMDA receptor (NMDAR) is devoid of missense variants within the healthy population but is a locus for de novo pathogenic variants associated with neurological disorders. Several de novo variants within this helix have been identified in patients presenting early in life with intellectual disability, developmental delay, and/or epilepsy. In this study, we evaluated functional properties for twenty variants within the pre-M1 linker in GRIN1, GRIN2A, and GRIN2B genes, including six novel missense variants. The effects of pre-M1 variants on agonist potency, sensitivity to endogenous allosteric modulators, response time course, channel open probability, and surface expression were assessed. Our data indicated that virtually all of the variants evaluated altered channel function, and multiple variants had profound functional consequences, which may contribute to the neurological conditions in the patients harboring the variants in this region. These data strongly suggest that the residues within the pre-M1 helix play a key role in channel gating and are highly intolerant to genetic variation.
Collapse
Affiliation(s)
- Lingling Xie
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Miranda J McDaniel
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gerarda Cappuccio
- Section of Pediatrics, Department of Translational Medicine, Federico II University, Via Pansini 5, 80131, Naples, Italy
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Kevin A Shapiro
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA
| | | | - Pedro A Sanchez-Lara
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Katheryn Grand
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Kelsey A Nocilla
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Rehan Sheikh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Lluis Armengol
- Quantitative Genomic Medicine Laboratories, SL (qGenomics), Barcelona, Spain
| | - Roberta Romano
- Section of Pediatrics, Department of Translational Medicine, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | - Tyler Mark Pierson
- Division of Pediatric Neurology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, USA
- Center for the Undiagnosed Patient, Cedars-Sinai Medical Center, Los Angeles, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Neurodegenerative Disease Center, Atlanta, GA, 30322, USA.
| |
Collapse
|
18
|
Zhang D, Lape R, Shaikh SA, Kohegyi BK, Watson JF, Cais O, Nakagawa T, Greger IH. Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics. Nat Commun 2023; 14:1659. [PMID: 36966141 PMCID: PMC10039940 DOI: 10.1038/s41467-023-37259-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/09/2023] [Indexed: 03/27/2023] Open
Abstract
AMPA glutamate receptors (AMPARs) mediate excitatory neurotransmission throughout the brain. Their signalling is uniquely diversified by brain region-specific auxiliary subunits, providing an opportunity for the development of selective therapeutics. AMPARs associated with TARP γ8 are enriched in the hippocampus, and are targets of emerging anti-epileptic drugs. To understand their therapeutic activity, we determined cryo-EM structures of the GluA1/2-γ8 receptor associated with three potent, chemically diverse ligands. We find that despite sharing a lipid-exposed and water-accessible binding pocket, drug action is differentially affected by binding-site mutants. Together with patch-clamp recordings and MD simulations we also demonstrate that ligand-triggered reorganisation of the AMPAR-TARP interface contributes to modulation. Unexpectedly, one ligand (JNJ-61432059) acts bifunctionally, negatively affecting GluA1 but exerting positive modulatory action on GluA2-containing AMPARs, in a TARP stoichiometry-dependent manner. These results further illuminate the action of TARPs, demonstrate the sensitive balance between positive and negative modulatory action, and provide a mechanistic platform for development of both positive and negative selective AMPAR modulators.
Collapse
Affiliation(s)
- Danyang Zhang
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Remigijus Lape
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Saher A Shaikh
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Bianka K Kohegyi
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jake F Watson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- IST Austria, Klosterneuburg, Austria
| | - Ondrej Cais
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, USA
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
19
|
Amin JB, He M, Prasad R, Leng X, Zhou HX, Wollmuth LP. Two gates mediate NMDA receptor activity and are under subunit-specific regulation. Nat Commun 2023; 14:1623. [PMID: 36959168 PMCID: PMC10036335 DOI: 10.1038/s41467-023-37260-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
Kinetics of NMDA receptor (NMDAR) ion channel opening and closing contribute to their unique role in synaptic signaling. Agonist binding generates free energy to open a canonical gate at the M3 helix bundle crossing. Single channel activity is characterized by clusters, or periods of rapid opening and closing, that are separated by long silent periods. A conserved glycine in the outer most transmembrane helices, the M4 helices, regulates NMDAR function. Here we find that the GluN1 glycine mainly regulates single channel events within a cluster, whereas the GluN2 glycine mainly regulates entry and exit from clusters. Molecular dynamics simulations suggest that, whereas the GluN2 M4 (along with GluN2 pre-M1) regulates the gate at the M3 helix bundle crossing, the GluN1 glycine regulates a 'gate' at the M2 loop. Subsequent functional experiments support this interpretation. Thus, the distinct kinetics of NMDARs are mediated by two gates that are under subunit-specific regulation.
Collapse
Affiliation(s)
- Johansen B Amin
- Graduate Program in Cellular and Molecular Pharmacology, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Miaomiao He
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Xiaoling Leng
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Lonnie P Wollmuth
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| |
Collapse
|
20
|
Javitt DC. Cognitive Impairment Associated with Schizophrenia: From Pathophysiology to Treatment. Annu Rev Pharmacol Toxicol 2023; 63:119-141. [PMID: 36151052 DOI: 10.1146/annurev-pharmtox-051921-093250] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cognitive impairment is a core feature of schizophrenia and a major contributor to poor functional outcomes. Methods for assessment of cognitive dysfunction in schizophrenia are now well established. In addition, there has been increasing appreciation in recent years of the additional role of social cognitive impairment in driving functional outcomes and of the contributions of sensory-level dysfunction to higher-order impairments. At the neurochemical level, acute administration of N-methyl-d-aspartate receptor (NMDAR) antagonists reproduces the pattern of neurocognitive dysfunction associated with schizophrenia, encouraging the development of treatments targeted at both NMDAR and its interactome. At the local-circuit level, an auditory neurophysiological measure, mismatch negativity, has emerged both as a veridical index of NMDAR dysfunction and excitatory/inhibitory imbalance in schizophrenia and as a critical biomarker for early-stage translational drug development. Although no compounds have yet been approved for treatment of cognitive impairment associated with schizophrenia, several candidates are showing promise in early-phase testing.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; .,Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| |
Collapse
|
21
|
Sabo SL, Lahr JM, Offer M, Weekes ALA, Sceniak MP. GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms. Front Synaptic Neurosci 2023; 14:1090865. [PMID: 36704660 PMCID: PMC9873235 DOI: 10.3389/fnsyn.2022.1090865] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The GRIN2B-related neurodevelopmental disorder is a rare disease caused by mutations in the GRIN2B gene, which encodes the GluN2B subunit of NMDA receptors. Most individuals with GRIN2B-related neurodevelopmental disorder present with intellectual disability and developmental delay. Motor impairments, autism spectrum disorder, and epilepsy are also common. A large number of pathogenic de novo mutations have been identified in GRIN2B. However, it is not yet known how these variants lead to the clinical symptoms of the disease. Recent research has begun to address this issue. Here, we describe key experimental approaches that have been used to better understand the pathophysiology of this disease. We discuss the impact of several distinct pathogenic GRIN2B variants on NMDA receptor properties. We then critically review pivotal studies examining the synaptic and neurodevelopmental phenotypes observed when disease-associated GluN2B variants are expressed in neurons. These data provide compelling evidence that various GluN2B mutants interfere with neuronal differentiation, dendrite morphogenesis, synaptogenesis, and synaptic plasticity. Finally, we identify important open questions and considerations for future studies aimed at understanding this complex disease. Together, the existing data provide insight into the pathophysiological mechanisms that underlie GRIN2B-related neurodevelopmental disorder and emphasize the importance of comparing the effects of individual, disease-associated variants. Understanding the molecular, cellular and circuit phenotypes produced by a wide range of GRIN2B variants should lead to the identification of core neurodevelopmental phenotypes that characterize the disease and lead to its symptoms. This information could help guide the development and application of effective therapeutic strategies for treating individuals with GRIN2B-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shasta L. Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,*Correspondence: Shasta L. Sabo
| | - Jessica M. Lahr
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Madelyn Offer
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Anika LA Weekes
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michael P. Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
22
|
Ehtesham N, Mosallaei M, Beheshtian M, Khoshbakht S, Fadaee M, Vazehan R, Faraji Zonooz M, Karimzadeh P, Kahrizi K, Najmabadi H. Characterizing Genotypes and Phenotypes Associated with Dysfunction of Channel-Encoding Genes in a Cohort of Patients with Intellectual Disability. ARCHIVES OF IRANIAN MEDICINE 2022; 25:788-797. [PMID: 37543906 PMCID: PMC10685845 DOI: 10.34172/aim.2022.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/20/2021] [Indexed: 08/08/2023]
Abstract
BACKGROUND Ion channel dysfunction in the brain can lead to impairment of neuronal membranes and generate several neurological diseases, especially neurodevelopmental disorders. METHODS In this study, we set out to delineate the genotype and phenotype spectrums of 14 Iranian patients from 7 families with intellectual disability (ID) and/or developmental delay (DD) in whom genetic mutations were identified by next-generation sequencing (NGS) in 7 channel-encoding genes: KCNJ10, KCNQ3, KCNK6, CACNA1C, CACNA1G, SCN8A, and GRIN2B. Moreover, the data of 340 previously fully reported ID and/or DD cases with a mutation in any of these seven genes were combined with our patients to clarify the genotype and phenotype spectrum in this group. RESULTS In total, the most common phenotypes in 354 cases with ID/DD in whom mutation in any of these 7 channel-encoding genes was identified were as follows: ID (77.4%), seizure (69.8%), DD (59.8%), behavioral abnormality (29.9%), hypotonia (21.7%), speech disorder (21.5%), gait disturbance (20.9%), and ataxia (20.3%). Electroencephalography abnormality (33.9%) was the major brain imaging abnormality. CONCLUSION The results of this study broaden the molecular spectrum of channel pathogenic variants associated with different clinical presentations in individuals with ID and/or DD.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Meysam Mosallaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahrouz Khoshbakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahsa Fadaee
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Parvaneh Karimzadeh
- Department of Pediatric Neurology, School of Medicine, Pediatric Neurology Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
23
|
Benske TM, Mu TW, Wang YJ. Protein quality control of N-methyl-D-aspartate receptors. Front Cell Neurosci 2022; 16:907560. [PMID: 35936491 PMCID: PMC9352929 DOI: 10.3389/fncel.2022.907560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated cation channels that mediate excitatory neurotransmission and are critical for synaptic development and plasticity in the mammalian central nervous system (CNS). Functional NMDARs typically form via the heterotetrameric assembly of GluN1 and GluN2 subunits. Variants within GRIN genes are implicated in various neurodevelopmental and neuropsychiatric disorders. Due to the significance of NMDAR subunit composition for regional and developmental signaling at synapses, properly folded receptors must reach the plasma membrane for their function. This review focuses on the protein quality control of NMDARs. Specifically, we review the quality control mechanisms that ensure receptors are correctly folded and assembled within the endoplasmic reticulum (ER) and trafficked to the plasma membrane. Further, we discuss disease-associated variants that have shown disrupted NMDAR surface expression and function. Finally, we discuss potential targeted pharmacological and therapeutic approaches to ameliorate disease phenotypes by enhancing the expression and surface trafficking of subunits harboring disease-associated variants, thereby increasing their incorporation into functional receptors.
Collapse
Affiliation(s)
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
24
|
Neurodevelopmental Disorders Associated with PSD-95 and Its Interaction Partners. Int J Mol Sci 2022; 23:ijms23084390. [PMID: 35457207 PMCID: PMC9025546 DOI: 10.3390/ijms23084390] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/17/2023] Open
Abstract
The postsynaptic density (PSD) is a massive protein complex, critical for synaptic strength and plasticity in excitatory neurons. Here, the scaffolding protein PSD-95 plays a crucial role as it organizes key PSD components essential for synaptic signaling, development, and survival. Recently, variants in DLG4 encoding PSD-95 were found to cause a neurodevelopmental disorder with a variety of clinical features including intellectual disability, developmental delay, and epilepsy. Genetic variants in several of the interaction partners of PSD-95 are associated with similar phenotypes, suggesting that deficient PSD-95 may affect the interaction partners, explaining the overlapping symptoms. Here, we review the transmembrane interaction partners of PSD-95 and their association with neurodevelopmental disorders. We assess how the structural changes induced by DLG4 missense variants may disrupt or alter such protein-protein interactions, and we argue that the pathological effect of DLG4 variants is, at least partly, exerted indirectly through interaction partners of PSD-95. This review presents a direction for functional studies to elucidate the pathogenic mechanism of deficient PSD-95, providing clues for therapeutic strategies.
Collapse
|
25
|
Kysilov B, Hrcka Krausova B, Vyklicky V, Smejkalova T, Korinek M, Horak M, Chodounska H, Kudova E, Cerny J, Vyklicky L. Pregnane-based steroids are novel positive NMDA receptor modulators that may compensate for the effect of loss-of-function disease-associated GRIN mutations. Br J Pharmacol 2022; 179:3970-3990. [PMID: 35318645 DOI: 10.1111/bph.15841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic plasticity, and mutations in human genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. Compounds with a positive allosteric effect are thought to compensate for reduced receptor function. EXPERIMENTAL APPROACH We have used whole-cell patch-clamp electrophysiology on recombinant rat NMDARs and human variants found in individuals with neuropsychiatric disorders, in combination with in silico modelling, to explore the site of action of novel epipregnanolone-based NMDAR modulators. KEY RESULTS Analysis of the action of 4-(20-oxo-5β-pregnan-3β-yl) butanoic acid (EPA-But) at the NMDAR indicates that the effect of this steroid with a "bent" structure is different from that of cholesterol and oxysterols and shares a disuse-dependent mechanism of NMDAR potentiation with the "planar" steroid 20-oxo-pregn-5-en-3β-yl sulfate (PE-S). The potentiating effects of EPA-But and PE-S are additive. Alanine scan mutagenesis identified residues that reduce the potentiating effect of EPA-But. No correlation was found between the effects of EPA-But and PE-S at mutated receptors that were less sensitive to either steroid. The relative degree of potentiation induced by the two steroids also differed in human NMDARs carrying rare variants of hGluN1 or hGluN2B subunits found in individuals with neuropsychiatric disorders, including intellectual disability, epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION AND IMPLICATIONS Our results show novel sites of action for pregnanolones at the NMDAR and provide an opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with glutamatergic system hypofunction.
Collapse
Affiliation(s)
- Bohdan Kysilov
- Institute of Physiology CAS, Prague 4, Czech Republic.,Third Faculty of Medicine, Charles University in Prague, Prague 10, Czech Republic
| | | | | | | | | | - Martin Horak
- Institute of Physiology CAS, Prague 4, Czech Republic
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry CAS, Prague 6, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry CAS, Prague 6, Czech Republic
| | - Jiri Cerny
- Institute of Physiology CAS, Prague 4, Czech Republic
| | | |
Collapse
|
26
|
Herguedas B, Kohegyi BK, Dohrke JN, Watson JF, Zhang D, Ho H, Shaikh SA, Lape R, Krieger JM, Greger IH. Mechanisms underlying TARP modulation of the GluA1/2-γ8 AMPA receptor. Nat Commun 2022; 13:734. [PMID: 35136046 PMCID: PMC8826358 DOI: 10.1038/s41467-022-28404-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate rapid signal transmission at excitatory synapses in the brain. Glutamate binding to the receptor’s ligand-binding domains (LBDs) leads to ion channel activation and desensitization. Gating kinetics shape synaptic transmission and are strongly modulated by transmembrane AMPAR regulatory proteins (TARPs) through currently incompletely resolved mechanisms. Here, electron cryo-microscopy structures of the GluA1/2 TARP-γ8 complex, in both open and desensitized states (at 3.5 Å), reveal state-selective engagement of the LBDs by the large TARP-γ8 loop (‘β1’), elucidating how this TARP stabilizes specific gating states. We further show how TARPs alter channel rectification, by interacting with the pore helix of the selectivity filter. Lastly, we reveal that the Q/R-editing site couples the channel constriction at the filter entrance to the gate, and forms the major cation binding site in the conduction path. Our results provide a mechanistic framework of how TARPs modulate AMPAR gating and conductance. AMPA glutamate receptors, mediate the majority of excitatory signaling in the brain. Here the authors show how the auxiliary subunit TARP-γ8 shapes gating kinetics, ion conductance and rectification properties of the heteromeric GluA1/2 AMPA receptor.
Collapse
Affiliation(s)
- Beatriz Herguedas
- Neurobiology Division MRC Laboratory of Molecular Biology, Cambridge, UK.,Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Bianka K Kohegyi
- Neurobiology Division MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jan-Niklas Dohrke
- Neurobiology Division MRC Laboratory of Molecular Biology, Cambridge, UK.,Universitätsmedizin Göttingen, Georg-August-Universität, 37075, Göttingen, Germany
| | - Jake F Watson
- Neurobiology Division MRC Laboratory of Molecular Biology, Cambridge, UK.,Institute of Science and Technology (IST) Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Danyang Zhang
- Neurobiology Division MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Hinze Ho
- Neurobiology Division MRC Laboratory of Molecular Biology, Cambridge, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Cambridge, UK
| | - Saher A Shaikh
- Neurobiology Division MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Remigijus Lape
- Neurobiology Division MRC Laboratory of Molecular Biology, Cambridge, UK
| | - James M Krieger
- Neurobiology Division MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ingo H Greger
- Neurobiology Division MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
27
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 284] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
28
|
Wollmuth LP, Chan K, Groc L. The diverse and complex modes of action of anti-NMDA receptor autoantibodies. Neuropharmacology 2021; 194:108624. [PMID: 34081993 PMCID: PMC8693782 DOI: 10.1016/j.neuropharm.2021.108624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/21/2022]
Abstract
NMDA receptors are ligand-gated ion channels that are found throughout the brain and are required for both brain development and many higher order functions. A variety of human patients with diverse clinical phenotypes have been identified that carry autoantibodies directed against NMDA receptor subunits. Here we focus on two general classes of autoantibodies, anti-GluN1 antibodies associated with anti-NMDA receptor encephalitis and anti-GluN2 antibodies associated with systemic lupus erythematosus (SLE). These two general classes of anti-NMDA receptor autoantibodies display a wide range of pathophysiological mechanisms from altering synaptic composition to gating of NMDARs. While we have made progress in understanding how these autoantibodies work at the molecular and cellular level, many unanswered questions remain including their long-term actions on brain function, the significance of clonal variations, and their effects on different NMDA receptor-expressing cell types in local circuits. This information will be needed to define fully the transition from anti-NMDA receptor autoantibodies to a clinical phenotype.
Collapse
Affiliation(s)
- Lonnie P Wollmuth
- Department of Neurobiology & Behavior, USA; Department of Biochemistry & Cell Biology, USA; Center for Nervous System Disorders. Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| | - Kelvin Chan
- Graduate Program in Neuroscience, USA; Medical Scientist Training Program (MSTP), USA; Department of Neurobiology & Behavior, USA
| | - Laurent Groc
- Univ. de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France; CNRS, IINS UMR, 5297, Bordeaux, France
| |
Collapse
|
29
|
Tian M, Stroebel D, Piot L, David M, Ye S, Paoletti P. GluN2A and GluN2B NMDA receptors use distinct allosteric routes. Nat Commun 2021; 12:4709. [PMID: 34354080 PMCID: PMC8342458 DOI: 10.1038/s41467-021-25058-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Allostery represents a fundamental mechanism of biological regulation that involves long-range communication between distant protein sites. It also provides a powerful framework for novel therapeutics. NMDA receptors (NMDARs), glutamate-gated ionotropic receptors that play central roles in synapse maturation and plasticity, are prototypical allosteric machines harboring large extracellular N-terminal domains (NTDs) that provide allosteric control of key receptor properties with impact on cognition and behavior. It is commonly thought that GluN2A and GluN2B receptors, the two predominant NMDAR subtypes in the adult brain, share similar allosteric transitions. Here, combining functional and structural interrogation, we reveal that GluN2A and GluN2B receptors utilize different long-distance allosteric mechanisms involving distinct subunit-subunit interfaces and molecular rearrangements. NMDARs have thus evolved multiple levels of subunit-specific allosteric control over their transmembrane ion channel pore. Our results uncover an unsuspected diversity in NMDAR molecular mechanisms with important implications for receptor physiology and precision drug development. NMDA receptors are glutamate-gated ion channels essential for synapse maturation and plasticity. Here the authors show that GluN2A and GluN2B NMDA receptors — the two principal subtypes NMDARs in the adult CNS — operate through distinct long range allosteric mechanisms.
Collapse
Affiliation(s)
- Meilin Tian
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laura Piot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Mélissa David
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Shixin Ye
- Unité INSERM U1195, Hôpital de Bicêtre, Université Paris-Saclay, Paris, Le Kremlin-Bicêtre, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France.
| |
Collapse
|
30
|
Perszyk RE, Kristensen AS, Lyuboslavsky P, Traynelis SF. Three-dimensional missense tolerance ratio analysis. Genome Res 2021; 31:1447-1461. [PMID: 34301626 PMCID: PMC8327912 DOI: 10.1101/gr.275528.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
A wealth of genetic information is available describing single-nucleotide variants in the human population that appear to be well-tolerated and in and of themselves do not confer disease. These variant data sets contain signatures about the protein structure-function relationships and provide an unbiased view of various protein functions in the context of human health. This information can be used to determine regional intolerance to variation, defined as the missense tolerance ratio (MTR), which is an indicator of stretches of the polypeptide chain that can tolerate changes without compromising protein function in a manner that impacts human health. This approach circumvents the lack of comprehensive data by averaging the data from adjacent residues on the polypeptide chain. We reasoned that many motifs in proteins consist of nonadjacent residues, but together function as a unit. We therefore developed an approach to analyze nearest neighbors in three-dimensional space as determined by crystallography rather than on the polypeptide chain. We used members of the GRIN gene family that encode subunits of NMDA-type ionotropic glutamate receptors (iGluRs) to exemplify the differences between these methods. Our method, 3DMTR, provides new information about regions of intolerance within iGluRs, allows consideration of protein-protein interfaces in multimeric proteins, and moves this important research tool from one-dimensional analysis to a structurally relevant tool. We validate the improved 3DMTR score by showing that it more accurately classifies the functional consequences of a set of newly measured and published point mutations of Grin family genes than existing methods.
Collapse
Affiliation(s)
- Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Anders S Kristensen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Polina Lyuboslavsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
31
|
Neff R, Kambara K, Bertrand D. Ligand gated receptor interactions: A key to the power of neuronal networks. Biochem Pharmacol 2021; 190:114653. [PMID: 34129858 DOI: 10.1016/j.bcp.2021.114653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The discovery of the chemical synapse was a seminal finding in Neurobiology but the large body of microscopic interactions involved in synaptic transmission could hardly have been foreseen at the time of these first discoveries. Characterization of the molecular players at work at synapses and the increased granularity at which we can now analyze electrical and chemical signal processing that occur in even the simplest neuronal system are shining a new light on receptor interactions. The aim of this review is to discuss the complexity of some representative interactions between excitatory and inhibitory ligand-gated ion channels and/or G protein coupled receptors, as well as other key machinery that can impact neurotransmission and to explain how such mechanisms can be an important determinant of nervous system function.
Collapse
Affiliation(s)
- R Neff
- Janssen R&D, LLC, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - K Kambara
- HiQScreen Sàrl, 6 rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - D Bertrand
- HiQScreen Sàrl, 6 rte de Compois, 1222 Vésenaz, Geneva, Switzerland.
| |
Collapse
|
32
|
McDaniel MJ, Ogden KK, Kell SA, Burger PB, Liotta DC, Traynelis SF. NMDA receptor channel gating control by the pre-M1 helix. J Gen Physiol 2021; 152:151592. [PMID: 32221541 PMCID: PMC7141592 DOI: 10.1085/jgp.201912362] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/09/2019] [Accepted: 02/14/2020] [Indexed: 01/10/2023] Open
Abstract
The NMDA receptor (NMDAR) is an ionotropic glutamate receptor formed from the tetrameric assembly of GluN1 and GluN2 subunits. Within the flexible linker between the agonist binding domain (ABD) and the M1 helix of the pore-forming transmembrane helical bundle lies a two-turn, extracellular pre-M1 helix positioned parallel to the plasma membrane and in van der Waals contact with the M3 helix thought to constitute the channel gate. The pre-M1 helix is tethered to the bilobed ABD, where agonist-induced conformational changes initiate activation. Additionally, it is a locus for de novo mutations associated with neurological disorders, is near other disease-associated de novo sites within the transmembrane domain, and is a structural determinant of subunit-selective modulators. To investigate the role of the pre-M1 helix in channel gating, we performed scanning mutagenesis across the GluN2A pre-M1 helix and recorded whole-cell macroscopic and single channel currents from HEK293 cell-attached patches. We identified two residues at which mutations perturb channel open probability, the mean open time, and the glutamate deactivation time course. We identified a subunit-specific network of aromatic amino acids located in and around the GluN2A pre-M1 helix to be important for gating. Based on these results, we are able to hypothesize about the role of the pre-M1 helix in other NMDAR subunits based on sequence and structure homology. Our results emphasize the role of the pre-M1 helix in channel gating, implicate the surrounding amino acid environment in this mechanism, and suggest unique subunit-specific contributions of pre-M1 helices to GluN1 and GluN2 gating.
Collapse
Affiliation(s)
- Miranda J McDaniel
- Department of Pharmacology, Rollins Research Center, Emory University, Atlanta, GA
| | - Kevin K Ogden
- Department of Pharmacology, Rollins Research Center, Emory University, Atlanta, GA
| | - Steven A Kell
- Department of Pharmacology, Rollins Research Center, Emory University, Atlanta, GA.,Department of Chemistry, Emory University, Atlanta, GA
| | | | | | - Stephen F Traynelis
- Department of Pharmacology, Rollins Research Center, Emory University, Atlanta, GA
| |
Collapse
|
33
|
Stroebel D, Mony L, Paoletti P. Glycine agonism in ionotropic glutamate receptors. Neuropharmacology 2021; 193:108631. [PMID: 34058193 DOI: 10.1016/j.neuropharm.2021.108631] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the majority of excitatory neurotransmission in the vertebrate CNS. Classified as AMPA, kainate, delta and NMDA receptors, iGluRs are central drivers of synaptic plasticity widely considered as a major cellular substrate of learning and memory. Surprisingly however, five out of the eighteen vertebrate iGluR subunits do not bind glutamate but glycine, a neurotransmitter known to mediate inhibitory neurotransmission through its action on pentameric glycine receptors (GlyRs). This is the case of GluN1, GluN3A, GluN3B, GluD1 and GluD2 subunits, all also binding the D amino acid d-serine endogenously present in many brain regions. Glycine and d-serine action and affinities broadly differ between glycinergic iGluR subtypes. On 'conventional' GluN1/GluN2 NMDA receptors, glycine (or d-serine) acts in concert with glutamate as a mandatory co-agonist to set the level of receptor activity. It also regulates the receptor's trafficking and expression independently of glutamate. On 'unconventional' GluN1/GluN3 NMDARs, glycine acts as the sole agonist directly triggering opening of excitatory glycinergic channels recently shown to be physiologically relevant. On GluD receptors, d-serine on its own mediates non-ionotropic signaling involved in excitatory and inhibitory synaptogenesis, further reinforcing the concept of glutamate-insensitive iGluRs. Here we present an overview of our current knowledge on glycine and d-serine agonism in iGluRs emphasizing aspects related to molecular mechanisms, cellular function and pharmacological profile. The growing appreciation of the critical influence of glycine and d-serine on iGluR biology reshapes our understanding of iGluR signaling diversity and complexity, with important implications in neuropharmacology.
Collapse
Affiliation(s)
- David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| | - Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| |
Collapse
|
34
|
Bowie D. Neurotransmitter-gated ion channels, still front and centre stage. J Physiol 2021; 599:389-395. [PMID: 33448020 DOI: 10.1113/jp280800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, H3G 1Y6, Canada
| |
Collapse
|
35
|
Amin JB, Gochman A, He M, Certain N, Wollmuth LP. NMDA Receptors Require Multiple Pre-opening Gating Steps for Efficient Synaptic Activity. Neuron 2020; 109:488-501.e4. [PMID: 33264592 DOI: 10.1016/j.neuron.2020.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate fast excitatory synaptic transmission in the nervous system. Applying glutamate to outside-out patches containing a single NMDAR, we find that agonist-bound receptors transition to the open state via two conformations, an "unconstrained pre-active" state that contributes to fast synaptic events and a "constrained pre-active" state that does not. To define how glutamate drives these conformations, we decoupled the ligand-binding domains from specific transmembrane segments for GluN1 and GluN2A. Displacements of the pore-forming M3 segments define the energy of fast opening. However, to enter the unconstrained conformation and contribute to fast signaling, the GluN2 pre-M1 helix must be displaced before the M3 segments move. This pre-M1 displacement is facilitated by the flexibility of the S2-M4 of GluN1 and GluN2A. Thus, outer structures-pre-M1 and S2-M4-work in concert to remove constraints and prime the channel for rapid opening, facilitating fast synaptic transmission.
Collapse
Affiliation(s)
- Johansen B Amin
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794-5230, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Aaron Gochman
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Miaomiao He
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Noele Certain
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794-5230, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| |
Collapse
|
36
|
Stroebel D, Paoletti P. Architecture and function of NMDA receptors: an evolutionary perspective. J Physiol 2020; 599:2615-2638. [PMID: 32786006 DOI: 10.1113/jp279028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are a major class of ligand-gated ion channels that are widespread in the living kingdom. Their critical role in excitatory neurotransmission and brain function of arthropods and vertebrates has made them a compelling subject of interest for neurophysiologists and pharmacologists. This is particularly true for NMDA receptor (NMDARs), a subclass of iGluRs that act as central drivers of synaptic plasticity in the CNS. How and when the unique properties of NMDARs arose during evolution, and how they relate to the evolution of the nervous system, remain open questions. Recent years have witnessed a boom in both genomic and structural data, such that it is now possible to analyse the evolution of iGluR genes on an unprecedented scale and within a solid molecular framework. In this review, combining insights from phylogeny, atomic structure and physiological and mechanistic data, we discuss how evolution of NMDAR motifs and sequences shaped their architecture and functionalities. We trace differences and commonalities between NMDARs and other iGluRs, emphasizing a few distinctive properties of the former regarding ligand binding and gating, permeation, allosteric modulation and intracellular signalling. Finally, we speculate on how specific molecular properties of iGuRs arose to supply new functions to the evolving structure of the nervous system, from early metazoan to present mammals.
Collapse
Affiliation(s)
- David Stroebel
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Pierre Paoletti
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| |
Collapse
|
37
|
Perszyk RE, Myers SJ, Yuan H, Gibb AJ, Furukawa H, Sobolevsky AI, Traynelis SF. Hodgkin-Huxley-Katz Prize Lecture: Genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. J Physiol 2020; 598:3071-3083. [PMID: 32468591 DOI: 10.1113/jp278086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Glutamate receptors are essential ligand-gated ion channels in the central nervous system that mediate excitatory synaptic transmission in response to the release of glutamate from presynaptic terminals. The structural and biophysical basis underlying the function of these receptors has been studied for decades by a wide range of approaches. However recent structural, pharmacological and genetic studies have provided new insight into the regions of this protein that are critical determinants of receptor function. Lack of variation in specific areas of the protein amino acid sequences in the human population has defined three regions in each receptor subunit that are under selective pressure, which has focused research efforts and driven new hypotheses. In addition, these three closely positioned elements reside near a cavity that is shown by multiple studies to be a likely site of action for allosteric modulators, one of which is currently in use as an FDA-approved anticonvulsant. These structural elements are capable of controlling gating of the pore, and appear to permit some modulators bound within the cavity to also alter permeation properties. This creates a new precedent whereby features of the channel pore can be modulated by exogenous drugs that bind outside the pore. The convergence of structural, genetic, biophysical and pharmacological approaches is a powerful means to gain insight into the complex biological processes defined by neurotransmitter receptor function.
Collapse
Affiliation(s)
- Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Hiro Furukawa
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|