1
|
Richards AJ, Malekzadeh R, Steele Q, Akbarimoheb A, Andrews NJ. Metabolite mysteries: Decoding age-related muscle fatigue mechanisms at the myofibrillar level. J Physiol 2025. [PMID: 39752216 DOI: 10.1113/jp288185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- Andrew J Richards
- Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Rohin Malekzadeh
- Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Quinn Steele
- Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Azin Akbarimoheb
- Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Nathaniel J Andrews
- Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
2
|
Zero AM, Rice CL, Nogueira L. Competing effects of activation history on force and cytosolic Ca 2+ in intact single mice myofibers. Pflugers Arch 2024:10.1007/s00424-024-03061-5. [PMID: 39738587 DOI: 10.1007/s00424-024-03061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
The purpose was to investigate the changes in cytosolic Ca2+ and force output during post-tetanic potentiation (PTP) during pre-fatigue and during prolonged low-frequency force depression (PLFFD) following fatigue. Intact single myofibers from the flexor digitorum brevis of mice were electrically stimulated to record force (n = 8) and free cytosolic Ca2+ concentration ([Ca2+]c) with FURA-2 (n = 6) at 32 °C. Initially, force and [Ca2+]c were measured during brief (350 ms) trains of stimuli at 30, 50, 70, and 200 Hz at ~ 2 s intervals (Force-frequency protocol, FFP). Then, a conditioning stimulus (CS) of six 120 Hz stimuli, separated by ~ 3 s, was used to induce PTP, immediately followed by an FFP. Myofiber fatigue was produced by 150 Hz trains every 3 s until peak force decayed 70% of the initial. Thirty minutes after the fatigue, the CS was repeated to assess the effect of PTP on force and [Ca2+]c during PLFFD. The CS in unfatigued myofibers induced PTP as the submaximal force was enhanced and accompanied by increased peak [Ca2+]c with no change in myofilament Ca2+ sensitivity. After fatigue, PLFFD was due to lowered peak [Ca2+]c. Inducing PTP during PLFFD enhanced submaximal force primarily through greater peak [Ca2+]c, mitigating the submaximal force deficits. Despite the impaired force during PLFFD, myofibers remained sensitive to PTP, and this mitigated the submaximal force deficits through increased peak [Ca2+]c without a change in myofilament Ca2+ sensitivity. Therefore, force adjustments of intact single myofibers due to activation history are principally accomplished by opposing adjustments in [Ca2+]c.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Leonardo Nogueira
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.
| |
Collapse
|
3
|
Debold EP, Westerblad H. New insights into the cellular and molecular mechanisms of skeletal muscle fatigue: the Marion J. Siegman Award Lectureships. Am J Physiol Cell Physiol 2024; 327:C946-C958. [PMID: 39069825 DOI: 10.1152/ajpcell.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Skeletal muscle fibers need to have mechanisms to decrease energy consumption during intense physical exercise to avoid devastatingly low ATP levels, with the formation of rigor cross bridges and defective ion pumping. These protective mechanisms inevitably lead to declining contractile function in response to intense exercise, characterizing fatigue. Through our work, we have gained insights into cellular and molecular mechanisms underlying the decline in contractile function during acute fatigue. Key mechanistic insights have been gained from studies performed on intact and skinned single muscle fibers and more recently from studies performed and single myosin molecules. Studies on intact single fibers revealed several mechanisms of impaired sarcoplasmic reticulum Ca2+ release and experiments on single myosin molecules provide direct evidence of how putative agents of fatigue impact myosin's ability to generate force and motion. We conclude that changes in metabolites due to an increased dependency on anaerobic metabolism (e.g., accumulation of inorganic phosphate ions and H+) act to directly and indirectly (via decreased Ca2+ activation) inhibit myosin's force and motion-generating capacity. These insights into the acute mechanisms of fatigue may help improve endurance training strategies and reveal potential targets for therapies to attenuate fatigue in chronic diseases.
Collapse
Affiliation(s)
- Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Zero AM, Paris MT, Rice CL. Differential effects of stimulation frequency on isometric and concentric isotonic contractile function in human quadriceps. J Appl Physiol (1985) 2024; 137:111-124. [PMID: 38841755 DOI: 10.1152/japplphysiol.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Electrically evoked contractions are used to assess the relationship between frequency input and contractile output to characterize inherent muscle function, and these have been done mostly with isometric contractions (i.e., no joint rotation). The purpose was to compare the electrically stimulated frequency and contractile function relationship during isometric (i.e., torque) with isotonic (i.e., concentric torque, angular velocity, and mechanical power) contractions. The knee extensors of 16 (5 female) young recreationally active participants were stimulated (∼1-2.5 s) at 14 frequencies from 1 to 100 Hz. This was done during four conditions, which were isometric and isotonic at loads of 0 (unloaded), 7.5%, and 15% isometric maximal voluntary contraction (MVC), and repeated on separate days. Comparisons across contractile parameters were made as a % of 100 Hz. Independent of the load, the mechanical power-frequency relationship was rightward shifted compared with isometric torque-frequency, concentric torque-frequency, and velocity-frequency relationships (all P ≤ 0.04). With increasing load (0%-15% MVC), the isotonic concentric torque-frequency relationship was shifted leftward systematically from 15 to 30 Hz (all P ≤ 0.04). Conversely, the same changes in load caused a rightward shift in the velocity-frequency relationship from 1 to 40 Hz (all P ≤ 0.03). Velocity was leftward shifted of concentric torque in the unloaded isotonic condition from 10 to 25 Hz (all P ≤ 0.03), but concentric torque was leftward shifted of velocity at 15% MVC isotonic condition from 10 to 50 Hz (all P ≤ 0.03). Therefore, isometric torque is not a surrogate to evaluate dynamic contractile function. Interpretations of evoked contractile function differ depending on contraction type, load, and frequency, which should be considered relative to the specific task.NEW & NOTEWORTHY In whole human muscle, we showed that the electrically stimulated power-frequency relationship was rightward shifted of the stimulated isometric torque-frequency relationship independent of isotonic load, indicating that higher stimulation frequencies are needed to achieve tetanus. Therefore, interpretations of evoked contractile function differ depending on contraction type (isometric vs. dynamic), load, and frequency. And thus, isometric measures may not be appropriate as a surrogate assessment when evaluating dynamic isotonic contractile function.
Collapse
Affiliation(s)
- Alexander M Zero
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Michael T Paris
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Faculty of Health, School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada
| | - Charles L Rice
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Shorter E, Engman V, Lanner JT. Cancer-associated muscle weakness - From triggers to molecular mechanisms. Mol Aspects Med 2024; 97:101260. [PMID: 38457901 DOI: 10.1016/j.mam.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Skeletal muscle weakness is a debilitating consequence of many malignancies. Muscle weakness has a negative impact on both patient wellbeing and outcome in a range of cancer types and can be the result of loss of muscle mass (i.e. muscle atrophy, cachexia) and occur independently of muscle atrophy or cachexia. There are multiple cancer specific triggers that can initiate the progression of muscle weakness, including the malignancy itself and the tumour environment, as well as chemotherapy, radiotherapy and malnutrition. This can induce weakness via different routes: 1) impaired intrinsic capacity (i.e., contractile dysfunction and intramuscular impairments in excitation-contraction coupling or crossbridge cycling), 2) neuromuscular disconnection and/or 3) muscle atrophy. The mechanisms that underlie these pathways are a complex interplay of inflammation, autophagy, disrupted protein synthesis/degradation, and mitochondrial dysfunction. The current lack of therapies to treat cancer-associated muscle weakness highlight the critical need for novel interventions (both pharmacological and non-pharmacological) and mechanistic insight. Moreover, most research in the field has placed emphasis on directly improving muscle mass to improve muscle strength. However, accumulating evidence suggests that loss of muscle function precedes atrophy. This review primarily focuses on cancer-associated muscle weakness, independent of cachexia, and provides a solid background on the underlying mechanisms, methodology, current interventions, gaps in knowledge, and limitations of research in the field. Moreover, we have performed a mini-systematic review of recent research into the mechanisms behind muscle weakness in specific cancer types, along with the main pathways implicated.
Collapse
Affiliation(s)
- Emily Shorter
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden
| | - Viktor Engman
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden
| | - Johanna T Lanner
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden.
| |
Collapse
|
6
|
Pignanelli C, Robertson AA, Hirsch SM, Power GA, Burr JF. The addition of blood flow restriction during resistance exercise does not increase prolonged low-frequency force depression. Exp Physiol 2024; 109:738-753. [PMID: 38562023 PMCID: PMC11061635 DOI: 10.1113/ep091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
At a given exercise intensity, blood flow restriction (BFR) reduces the volume of exercise required to impair post-exercise neuromuscular function. Compared to traditional exercise, the time course of recovery is less clear. After strenuous exercise, force output assessed with electrical muscle stimulation is impaired to a greater extent at low versus high stimulation frequencies, a condition known as prolonged low-frequency force depression (PLFFD). It is unclear if BFR increases PLFFD after exercise. This study tested if BFR during exercise increases PLFFD and slows recovery of neuromuscular function compared to regular exercise. Fifteen physically active participants performed six low-load sets of knee-extensions across four conditions: resistance exercise to task failure (RETF), resistance exercise to task failure with BFR applied continuously (BFRCONT) or intermittently (BFRINT), and resistance exercise matched to the lowest exercise volume condition (REVM). Maximal voluntary contraction (MVC) force output, voluntary activation and a force-frequency (1-100 Hz) curve were measured before and 0, 1, 2, 3, 4 and 24 h after exercise. Exercise to task failure caused similar reductions at 0 h for voluntary activation (RETF = 81.0 ± 14.2%, BFRINT = 80.9 ± 12.4% and BFRCONT = 78.6 ± 10.7%) and MVC force output (RETF = 482 ± 168 N, BFRINT = 432 ± 174 N, and BFRCONT = 443 ± 196 N), which recovered to baseline values between 4 and 24 h. PLFFD occurred only after RETF at 1 h supported by a higher frequency to evoke 50% of the force production at 100 Hz (1 h: 17.5 ± 4.4 vs. baseline: 15 ± 4.1 Hz, P = 0.0023), BFRINT (15.5 ± 4.0 Hz; P = 0.03), and REVM (14.9 ± 3.1 Hz; P = 0.002), with a trend versus BFRCONT (15.7 ± 3.5 Hz; P = 0.063). These findings indicate that, in physically active individuals, using BFR during exercise does not impair the recovery of neuromuscular function by 24 h post-exercise.
Collapse
Affiliation(s)
- Christopher Pignanelli
- Department of Human Health & Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Alexa A. Robertson
- Department of Human Health & Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Steven M. Hirsch
- Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Geoffrey A. Power
- Department of Human Health & Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Jamie F. Burr
- Department of Human Health & Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
7
|
Mau T, Lui LY, Distefano G, Kramer PA, Ramos SV, Toledo FGS, Santanasto AJ, Shankland EG, Marcinek DJ, Jurczak MJ, Sipula I, Bello FM, Duchowny KA, Molina AJA, Sparks LM, Goodpaster BH, Hepple RT, Kritchevsky SB, Newman AB, Cawthon PM, Cummings SR, Coen PM. Mitochondrial Energetics in Skeletal Muscle Are Associated With Leg Power and Cardiorespiratory Fitness in the Study of Muscle, Mobility and Aging. J Gerontol A Biol Sci Med Sci 2023; 78:1367-1375. [PMID: 36462195 PMCID: PMC10395564 DOI: 10.1093/gerona/glac238] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Mitochondrial energetics are an important property of aging muscle, as generation of energy is pivotal to the execution of muscle contraction. However, its association with functional outcomes, including leg power and cardiorespiratory fitness, is largely understudied. METHODS In the Study of Muscle, Mobility, and Aging, we collected vastus lateralis biopsies from older adults (n = 879, 70-94 years, 59.2% women). Maximal State 3 respiration (Max OXPHOS) was assessed in permeabilized fiber bundles by high-resolution respirometry. Capacity for maximal adenosine triphosphate production (ATPmax) was measured in vivo by 31P magnetic resonance spectroscopy. Leg extension power was measured with a Keiser press system, and VO2 peak was determined using a standardized cardiopulmonary exercise test. Gender-stratified multivariate linear regression models were adjusted for age, race, technician/site, adiposity, and physical activity with beta coefficients expressed per 1-SD increment in the independent variable. RESULTS Max OXPHOS was associated with leg power for both women (β = 0.12 Watts/kg, p < .001) and men (β = 0.11 Watts/kg, p < .050). ATPmax was associated with leg power for men (β = 0.09 Watts/kg, p < .05) but was not significant for women (β = 0.03 Watts/kg, p = .11). Max OXPHOS and ATPmax were associated with VO2 peak in women and men (Max OXPHOS, β women = 1.03 mL/kg/min, β men = 1.32 mL/kg/min; ATPmax β women = 0.87 mL/kg/min, β men = 1.50 mL/kg/min; all p < .001). CONCLUSIONS Higher muscle mitochondrial energetics measures were associated with both better cardiorespiratory fitness and greater leg power in older adults. Muscle mitochondrial energetics explained a greater degree of variance in VO2 peak compared to leg power.
Collapse
Affiliation(s)
- Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Li-Yung Lui
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | | | - Philip A Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sofhia V Ramos
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Frederico G S Toledo
- Department of Medicine-Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adam J Santanasto
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eric G Shankland
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Michael J Jurczak
- Department of Medicine-Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ian Sipula
- Department of Medicine-Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Fiona M Bello
- Department of Medicine-Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kate A Duchowny
- Social Environment and Health, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony J A Molina
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Medicine-Division of Geriatrics, Gerontology, and Palliative Care, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Lauren M Sparks
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Bret H Goodpaster
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peggy M Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Paul M Coen
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| |
Collapse
|
8
|
Watanabe D, Wada M. Glutathione depression alters cellular mechanisms of skeletal muscle fatigue in early stage of recovery and prolongs force depression in late stage of recovery. Am J Physiol Regul Integr Comp Physiol 2023; 325:R120-R132. [PMID: 37212553 DOI: 10.1152/ajpregu.00097.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The effects of reduced glutathione (GSH) on skeletal muscle fatigue were investigated. GSH was depressed by buthionine sulfoximine (BSO) (100 mg/kg body wt/day) treatment for 5 days, which decreased GSH content to ∼10%. Male Wistar rats were assigned to the control (N = 18) and BSO groups (N = 17). Twelve hours after BSO treatment, the plantar flexor muscles were subjected to fatiguing stimulation (FS). Eight control and seven BSO rats were rested for 0.5 h (early stage of recovery), and the remaining were rested for 6 h (late stage of recovery). Forces were measured before FS and after rest, and physiological functions were estimated using mechanically skinned fibers. The force at 40 Hz decreased to a similar extent in both groups in the early stage of recovery and was restored in the control but not in the BSO group in the late stage of recovery. In the early stage of recovery, sarcoplasmic reticulum (SR) Ca2+ release was decreased in the control greater than in the BSO group, whereas myofibrillar Ca2+ sensitivity was increased in the control but not in the BSO group. In the late stage of recovery, SR Ca2+ release decreased and SR Ca2+ leakage increased in the BSO group but not in the control group. These results indicate that GSH depression alters the cellular mechanism of muscle fatigue in the early stage and delays force recovery in the late stage of recovery, due at least in part, to the prolonged Ca2+ leakage from the SR.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Sport and Exercise Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Leijding C, Viken I, Bruton JD, Andersson DC, Cheng AJ, Westerblad H. Increased tetanic calcium in early fatigue of mammalian muscle fibers is accompanied by accelerated force development despite a decreased force. FASEB J 2023; 37:e22978. [PMID: 37191967 DOI: 10.1096/fj.202300401r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
During the initial phase of fatigue induced by repeated contractions in fast-twitch muscle fibers, tetanic force decreases despite increasing tetanic free cytosolic [Ca2+ ] ([Ca2+ ]cyt ). Here, we hypothesized that the increase in tetanic [Ca2+ ]cyt nevertheless has positive effects on force in early fatigue. Experiments on enzymatically isolated mouse flexor digitorum brevis (FDB) fibers showed that an increase in tetanic [Ca2+ ]cyt during ten 350 ms contractions required trains of electrical pulses to be elicited at short intervals (≤2 s) and at high frequencies (≥70 Hz). Mechanically dissected mouse FDB fibers showed greater decrease in tetanic force when the stimulation frequency during contractions was gradually reduced to prevent the increase in tetanic [Ca2+ ]cyt . Novel analyses of data from previous studies revealed an increased rate of force development in the tenth fatiguing contraction in mouse FDB fibers, as well as in rat FDB and human intercostal fibers. Mouse FDB fibers deficient in creatine kinase showed no increase in tetanic [Ca2+ ]cyt and slowed force development in the tenth contraction; after injection of creatine kinase to enable phosphocreatine breakdown, these fibers showed an increase in tetanic [Ca2+ ]cyt and accelerated force development. Mouse FDB fibers exposed to ten short contractions (43 ms) produced at short intervals (142 ms) showed increased tetanic [Ca2+ ]cyt accompanied by a marked (~16%) increase in the developed force. In conclusion, the increase in tetanic [Ca2+ ]cyt in early fatigue is accompanied by accelerated force development, which under some circumstances can counteract the decline in physical performance caused by the concomitant decrease in maximum force.
Collapse
Affiliation(s)
- Cecilia Leijding
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ida Viken
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Heart, Vascular and Neurology Theme, Cardiology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Dalton BE, Mazara N, Debenham MIB, Zwambag DP, Noonan AM, Weersink E, Brown SHM, Power GA. The relationship between single muscle fibre and voluntary rate of force development in young and old males. Eur J Appl Physiol 2023; 123:821-832. [PMID: 36484861 DOI: 10.1007/s00421-022-05111-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE It is suggested that the early phase (< 50 ms) of force development during a muscle contraction is associated with intrinsic contractile properties, while the late phase (> 50 ms) is associated with maximal force. There are no direct investigations of single muscle fibre rate of force development (RFD) as related to joint-level RFD METHODS: Sixteen healthy, young (n = 8; 26.4 ± 1.5 yrs) and old (n = 8; 70.1 ± 2.8 yrs) males performed maximal voluntary isometric contractions (MVC) and electrically evoked twitches of the knee extensors to assess RFD. Then, percutaneous muscle biopsies were taken from the vastus lateralis and chemically permeabilized, to assess single fibre function. RESULTS At the joint level, older males were ~ 30% weaker and had ~ 43% and ~ 40% lower voluntary RFD values at 0-100 and 0-200 ms, respectively, than the younger ones (p ≤ 0.05). MVC torque was related to every voluntary RFD epoch in the young (p ≤ 0.001), but only the 0-200 ms epoch in the old (p ≤ 0.005). Twitch RFD was ~ 32% lower in the old compared to young (p < 0.05). There was a strong positive relationship between twitch RFD and voluntary RFD during the earliest time epochs in the young (≤ 100 ms; p ≤ 0.01). While single fibre RFD was unrelated to joint-level RFD in the young, older adults trended (p = 0.052-0.055) towards significant relationships between joint-level RTD and Type I single fibre RFD at the 0-30 ms (r2 = 0.48) and 0-50 ms (r2 = 0.49) time epochs. CONCLUSION Electrically evoked twitches are good predictors of early voluntary RFD in young, but not older adults. Only the older adults showed a potential relationship between single fibre (Type I) and joint-level rate of force development.
Collapse
Affiliation(s)
- Benjamin E Dalton
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Nicole Mazara
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
- Faculty of Education, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Mathew I B Debenham
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Derek P Zwambag
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Alex M Noonan
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Erin Weersink
- Sports Medicine Clinic, Health and Performance Centre, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Stephen H M Brown
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Geoffrey A Power
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada.
| |
Collapse
|
11
|
Mayfield DL, Cronin NJ, Lichtwark GA. Understanding altered contractile properties in advanced age: insights from a systematic muscle modelling approach. Biomech Model Mechanobiol 2023; 22:309-337. [PMID: 36335506 PMCID: PMC9958200 DOI: 10.1007/s10237-022-01651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggesting a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered contractile properties of aged muscle.
Collapse
Affiliation(s)
- Dean L Mayfield
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, USA.
| | - Neil J Cronin
- Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, UK
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Jereb B, Strojnik V. Effect of Six-Week Speed Endurance Training on Peripheral Fatigue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10841. [PMID: 36078556 PMCID: PMC9518326 DOI: 10.3390/ijerph191710841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
(1) Speed endurance training (inducing a high blood lactate concentration) delays excitation-contraction coupling impairment, thus providing more space for high-frequency fatigue to occur in the early stage of maximal concentric actions. This study aimed to test the hypothesis that the maintenance type of speed endurance training may shift peripheral fatigue from low-frequency to high-frequency fatigue after the 15 s long Wingate test. (2) Six students of physical education performed the corresponding training for six weeks. Before and after this period, they were tested for low- and high-frequency fatigue after the 15 s long Wingate test; additionally, their blood lactate concentrations, maximal cycling power, work, fatigue index, and muscle twitch responses were also tested. (3) The training increased the maximal cycling power and work (p < 0.001 and p < 0.01, respectively) with minor changes in the mean fatigue index and blood lactate concentration (both p > 0.05). Low-frequency dominant fatigue before the training showed a trend toward high-frequency dominant fatigue after the training (p > 0.05). (4) The results showed that the 15 s Wingate test failed to induce significant high-frequency fatigue. Even though it displayed a substantial fatigue index, the changes in favor of high-frequency fatigue were too small to be relevant.
Collapse
|
13
|
Kanzaki K, Watanabe D, Shi J, Wada M. Mechanisms of eccentric contraction-induced muscle damage and nutritional supplementations for mitigating it. J Muscle Res Cell Motil 2022; 43:147-156. [PMID: 35854160 DOI: 10.1007/s10974-022-09625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Eccentric contraction (ECC) often results in large and long-lasting force deficits accompanied by muscle soreness, primarily due to muscle damage. In this sense, exercises that involve ECC are less desirable. Paradoxically, exercise training that includes a substantial eccentric phase leads to a more powerful activation of the genes responsible for skeletal muscle remodeling (e.g., hypertrophy) than other types of training that emphasize a concentric or isometric phase. Therefore, effective strategies that lessen ECC-induced muscle damage will be of interest and importance to many individuals. The purpose of this brief review is to highlight the published literature on the effects of ECC and/or nutritional supplementations on proteins, lipids, metabolic and ionic changes, and enzyme activities in skeletal muscles subjected to an acute bout of ECC. First, we discuss the potential mechanisms by which ECC causes muscle damage. Previous findings implicate a Ca2+ overload-oxidative modification pathway as one possible mechanism contributing to muscle damage. Thereafter, the efficacy of two nutritional supplementations, i.e., L-arginine and antioxidant, is discussed because L-arginine and antioxidant would be expected to ameliorate the adverse effects of Ca2+ overload and oxidative modification, respectively. Of these, L-arginine ingestion before ECC seems likely to be the effective strategy for mitigating ECC-related proteolysis. More studies are needed to establish the effectiveness of antioxidant ingestion. The application of effective strategies against muscle damage may contribute to improvements in health and fitness, muscle function, and sports performance.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-7-1 Kagamiyama, 739-8521, Higasihiroshima-shi, Hiroshima, Japan
| | - Jiayu Shi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-7-1 Kagamiyama, 739-8521, Higasihiroshima-shi, Hiroshima, Japan.
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
14
|
Zero AM, Paris MT, Rice CL. Frequency dependent coexistence of muscle fatigue and potentiation assessed by concentric isotonic contractions in human plantar flexors. J Appl Physiol (1985) 2022; 133:490-505. [PMID: 35796610 DOI: 10.1152/japplphysiol.00214.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose was to investigate whether post-activation potentiation (PAP) mitigates power (i.e., torque x angular velocity) loss during dynamic fatiguing contractions and subsequent recovery by enhancing either muscle torque or angular velocity in human plantar flexors. In 12 participants, electrically stimulated (1, 10 and 50 Hz) dynamic contractions were done during a voluntary isotonic fatiguing protocol (20 and 50% voluntary decreases) until a 75% loss in voluntary peak power, and throughout 30 minutes of recovery. At the initial portion of fatigue (20% decrease), power responses of evoked low frequencies (1 and 10 Hz) were enhanced due to PAP (156 and 137%, respectively, P<0.001), while voluntary maximal efforts were depressed due to fatiguing mechanisms. Following the fatiguing task, prolonged low-frequency force depression (PLFFD) was evident by reduced 10:50 Hz peak power ratios (21 - 24%) from 3-min onwards during the 30-min recovery (P<0.005). Inducing PAP with maximal voluntary contractions during PLFFD enhanced the peak power responses of low frequencies (1 and 10 Hz) by 128 - 160 %, P<0.01. This PAP response mitigated the effects of PLFFD as the 1:50 (P<0.05) and 10:50 (P>0.4) Hz peak power ratios were greater or not different from the pre-fatigue values. Additionally, PAP enhanced peak torque more than peak angular velocity during both baseline and fatigue measurements (P<0.03). These results indicate that PAP can ameliorate PLFFD acutely when evaluated during concentric isotonic contractions and that peak torque is enhanced to a greater degree compared to peak angular velocity at baseline and in a fatigued state.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, grid.39381.30Western University, London, ON, Canada
| | - Michael T Paris
- School of Kinesiology, Faculty of Health Sciences, grid.39381.30Western University, London, ON, Canada
| | - Charles L Rice
- Department of Anatomy and Cell Biology, grid.443228.bWestern University, London, Ontario, Canada
| |
Collapse
|
15
|
Nogueira L, Gilmore NK, Hogan MC. Role of parvalbumin in fatigue-induced changes in force and cytosolic calcium transients in intact single mouse myofibers. J Appl Physiol (1985) 2022; 132:1041-1053. [PMID: 35238653 PMCID: PMC8993520 DOI: 10.1152/japplphysiol.00861.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the most important cytosolic Ca2+ buffers present in mouse fast-twitch myofibers, but not in human myofibers, is parvalbumin (PV). Previous work using conventional PV knockout mice suggests that lifelong PV ablation increases fatigue resistance, possibly due to compensations in mitochondrial volume. In this work, PV gene ablation was induced only in adult mice (PV-KO), and contractile and cytosolic Ca2+ responses during fatigue were studied in isolated muscle and intact single myofibers. Results were compared to control littermates (PV-Ctr). We hypothesized that the reduced myofiber cytosolic Ca2+ buffering developed only in adult PV-KO mice leads to a larger cytosolic free Ca2+ concentration ([Ca2+]c) during repetitive contractions, increasing myofiber fatigue resistance. Extensor digitorum longus (EDL) muscles from PV-KO mice had higher force in unfused stimulations (~50%, P<0.05) and slowed relaxation (~46% higher relaxation time, P<0.05) vs PV-Ctr, but muscle fatigue resistance or fatigue-induced changes in relaxation were not different between genotypes (P>0.05). In intact single myofibers from flexor digitorum brevis (FDB) muscles, basal and tetanic [Ca2+]c during fatiguing contractions were higher in PV-KO (P<0.05), accompanied by a greater slowing in estimated sarcoplasmic reticulum (SR) Ca2+ pumping vs PV-Ctr myofibers (~84% reduction, P<0.05), but myofiber fatigue resistance was not different between genotypes (P>0.05). Our results demonstrate that although the estimated SR Ca2+ uptake was accelerated in PV-KO, the total energy demand by the major energy consumers in myofibers, the cross-bridges and SR Ca2+ ATPase, were not altered enough to affect the energy supply for contractions, and therefore fatigue resistance remained unaffected.
Collapse
Affiliation(s)
- Leonardo Nogueira
- Section of Physiology; Division of Pulmonary, Critical Care and Sleep Medicine; Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Natalie K Gilmore
- Section of Physiology; Division of Pulmonary, Critical Care and Sleep Medicine; Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Michael C Hogan
- Section of Physiology; Division of Pulmonary, Critical Care and Sleep Medicine; Department of Medicine, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
16
|
Moyle LA, Davoudi S, Gilbert PM. Innovation in culture systems to study muscle complexity. Exp Cell Res 2021; 411:112966. [PMID: 34906582 DOI: 10.1016/j.yexcr.2021.112966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/31/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
Endogenous skeletal muscle development, regeneration, and pathology are extremely complex processes, influenced by local and systemic factors. Unpinning how these mechanisms function is crucial for fundamental biology and to develop therapeutic interventions for genetic disorders, but also conditions like sarcopenia and volumetric muscle loss. Ex vivo skeletal muscle models range from two- and three-dimensional primary cultures of satellite stem cell-derived myoblasts grown alone or in co-culture, to single muscle myofibers, myobundles, and whole tissues. Together, these systems provide the opportunity to gain mechanistic insights of stem cell behavior, cell-cell interactions, and mature muscle function in simplified systems, without confounding variables. Here, we highlight recent advances (published in the last 5 years) using in vitro primary cells and ex vivo skeletal muscle models, and summarize the new insights, tools, datasets, and screening methods they have provided. Finally, we highlight the opportunity for exponential advance of skeletal muscle knowledge, with spatiotemporal resolution, that is offered by guiding the study of muscle biology and physiology with in silico modelling and implementing high-content cell biology systems and ex vivo physiology platforms.
Collapse
Affiliation(s)
- Louise A Moyle
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Sadegh Davoudi
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
17
|
Romagnoli C, Iantomasi T, Brandi ML. Available In Vitro Models for Human Satellite Cells from Skeletal Muscle. Int J Mol Sci 2021; 22:ijms222413221. [PMID: 34948017 PMCID: PMC8706222 DOI: 10.3390/ijms222413221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle accounts for almost 40% of the total adult human body mass. This tissue is essential for structural and mechanical functions such as posture, locomotion, and breathing, and it is endowed with an extraordinary ability to adapt to physiological changes associated with growth and physical exercise, as well as tissue damage. Moreover, skeletal muscle is the most age-sensitive tissue in mammals. Due to aging, but also to several diseases, muscle wasting occurs with a loss of muscle mass and functionality, resulting from disuse atrophy and defective muscle regeneration, associated with dysfunction of satellite cells, which are the cells responsible for maintaining and repairing adult muscle. The most established cell lines commonly used to study muscle homeostasis come from rodents, but there is a need to study skeletal muscle using human models, which, due to ethical implications, consist primarily of in vitro culture, which is the only alternative way to vertebrate model organisms. This review will survey in vitro 2D/3D models of human satellite cells to assess skeletal muscle biology for pre-clinical investigations and future directions.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
18
|
Rincón OA, Milán AF, Calderón JC, Giraldo MA. Comprehensive Simulation of Ca 2+ Transients in the Continuum of Mouse Skeletal Muscle Fiber Types. Int J Mol Sci 2021; 22:12378. [PMID: 34830262 PMCID: PMC8624975 DOI: 10.3390/ijms222212378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Mag-Fluo-4 has revealed differences in the kinetics of the Ca2+ transients of mammalian fiber types (I, IIA, IIX, and IIB). We simulated the changes in [Ca2+] through the sarcomere of these four fiber types, considering classical (troponin -Tn-, parvalbumin -Pv-, adenosine triphosphate -ATP-, sarcoplasmic reticulum Ca2+ pump -SERCA-, and dye) and new (mitochondria -MITO-, Na+/Ca2+ exchanger -NCX-, and store-operated calcium entry -SOCE-) Ca2+ binding sites, during single and tetanic stimulation. We found that during a single twitch, the sarcoplasmic peak [Ca2+] for fibers type IIB and IIX was around 16 µM, and for fibers type I and IIA reached 10-13 µM. The release rate in fibers type I, IIA, IIX, and IIB was 64.8, 153.6, 238.8, and 244.5 µM ms-1, respectively. Both the pattern of change and the peak concentrations of the Ca2+-bound species in the sarcoplasm (Tn, PV, ATP, and dye), the sarcolemma (NCX, SOCE), and the SR (SERCA) showed the order IIB ≥ IIX > IIA > I. The capacity of the NCX was 2.5, 1.3, 0.9, and 0.8% of the capacity of SERCA, for fibers type I, IIA, IIX, and IIB, respectively. MITO peak [Ca2+] ranged from 0.93 to 0.23 µM, in fibers type I and IIB, respectively, while intermediate values were obtained in fibers IIA and IIX. The latter numbers doubled during tetanic stimulation. In conclusion, we presented a comprehensive mathematical model of the excitation-contraction coupling that integrated most classical and novel Ca2+ handling mechanisms, overcoming the limitations of the fast- vs. slow-fibers dichotomy and the use of slow dyes.
Collapse
Affiliation(s)
- Oscar A. Rincón
- Biophysics Group, Institute of Physics, University of Antioquia, Medellín 050010, Colombia;
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia; (A.F.M.); (J.C.C.)
| | - Andrés F. Milán
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia; (A.F.M.); (J.C.C.)
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia; (A.F.M.); (J.C.C.)
| | - Marco A. Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
19
|
Matsunaga Y, Takahashi K, Takahashi Y, Hatta H. Effects of glucose ingestion at different frequencies on glycogen recovery in mice during the early hours post exercise. J Int Soc Sports Nutr 2021; 18:69. [PMID: 34743706 PMCID: PMC8574022 DOI: 10.1186/s12970-021-00467-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background When a high-carbohydrate diet is ingested, whether as small frequent snacks or as large meals, there is no difference between the two with respect to post-exercise glycogen storage for a period of 24 h. However, the effect of carbohydrate intake frequency on glycogen recovery a few hours after exercise is not clear. Athletes need to recover glycogen quickly after physical exercise as they sometimes exercise multiple times a day. The aim of this study was to determine the effect of carbohydrate intake at different frequencies on glycogen recovery during the first few hours after exercise. Methods After 120 min of fasting, 6-week-old male ICR mice were subjected to treadmill running exercise (20 m/min for 60 min) to decrease the levels of muscle and liver glycogen. Mice were then given glucose as a bolus (1.2 mg/g of body weight [BW], immediately after exercise) or as a pulse (1.2 mg/g of BW, every 15 min × 4 times). Following this, the blood, tissue, and exhaled gas samples were collected. Results In the bolus group, blood glucose concentration was significantly lower and plasma insulin concentration was significantly higher than those in the pulse group (p < 0.05). The plantaris muscle glycogen concentration in the bolus group was 25.3% higher than that in the pulse group at 60 min after glucose ingestion (p < 0.05). Liver glycogen concentration in the pulse group was significantly higher than that in the bolus group at 120 min after glucose ingestion (p < 0.05). Conclusions The present study showed that ingesting a large amount of glucose immediately after exercise increased insulin secretion and enhanced muscle glycogen recovery, whereas frequent and small amounts of glucose intake was shown to enhance liver glycogen recovery.
Collapse
Affiliation(s)
- Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yumiko Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
20
|
Øvretveit K, Laginestra FG. Mechanisms and Trainability of Peripheral Fatigue in Grappling. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Rannou F, Nybo L, Andersen JE, Nordsborg NB. Muscle Contractile Characteristics During Exhaustive Dynamic Exercise and Recovery. Front Physiol 2021; 12:660099. [PMID: 34276393 PMCID: PMC8283014 DOI: 10.3389/fphys.2021.660099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Our aim was to provide an in vivo assessment of human muscle twitch characteristics during and following an exhaustive dynamic exercise to explore temporal alterations of the rate of force development (RFD) and relaxation (RFR). Eleven healthy participants (mean age ± SD: 24 ± 3 years) completed a dynamic knee-extensor exercise in randomized order at three different intensities, eliciting exhaustion after ∼9 min (56 ± 10 W), ∼6 min (60 ± 10 W), and ∼4 min (63 ± 10 W), in addition to a low-intensity (28 ± 5 W) bout. In a novel setup, an electrical doublet stimulation of m. vastus lateralis was applied during exercise (every 30 s) and recovery for frequent evaluation of key contractile properties (maximal force, RFD, RFR, and electromechanical delay) in addition to M-wave characteristics. RFD and RFR remained stable throughout the low-intensity trial but declined in all exhaustive trials to reach a similar level of ∼40% of pre-exercise values at task failure but with the exponential decay augmented by intensity. Following exhaustion, there was a fast initial recovery of RFD and RFR to ∼80% of pre-exercise values within 1 min, followed by a longer suppression at this level. The M-wave characteristics remained unchanged during all trials. In conclusion, this is the first study to quantify the intensity-dependent alterations of RFD and RFR during and after exhaustive dynamic exercise in humans. A hypothesized reduction and fast reversion of RFD was confirmed, and a surprising compromised RFR is reported. The present unique experimental approach allows for novel insight to exercise-induced alterations in human muscle contractile properties which is relevant in health and disease.
Collapse
Affiliation(s)
- Fabrice Rannou
- Department of Sport Medicine and Functional Explorations-ASMS, CRNH, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Janni Enghave Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Nikolai B Nordsborg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Gejl KD, Hvid LG, Andersson EP, Jensen R, Holmberg HC, Ørtenblad N. Contractile Properties of MHC I and II Fibers From Highly Trained Arm and Leg Muscles of Cross-Country Skiers. Front Physiol 2021; 12:682943. [PMID: 34220547 PMCID: PMC8242206 DOI: 10.3389/fphys.2021.682943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Little is known about potential differences in contractile properties of muscle fibers of the same type in arms and legs. Accordingly, the present study was designed to compare the force-generating capacity and Ca2+ sensitivity of fibers from arm and leg muscles of highly trained cross-country skiers. Method Single muscle fibers of m. vastus lateralis and m. triceps brachii of eight highly trained cross-country skiers were analyzed with respect to maximal Ca2+-activated force, specific force and Ca2+ sensitivity. Result The maximal Ca2+-activated force was greater for myosin heavy chain (MHC) II than MHC I fibers in both the arm (+62%, P < 0.001) and leg muscle (+77%, P < 0.001), with no differences between limbs for each MHC isoform. In addition, the specific force of MHC II fibers was higher than that of MHC I fibers in both arms (+41%, P = 0.002) and legs (+95%, P < 0.001). The specific force of MHC II fibers was the same in both limbs, whereas MHC I fibers from the m. triceps brachii were, on average, 39% stronger than fibers of the same type from the m. vastus lateralis (P = 0.003). pCa50 was not different between MHC I and II fibers in neither arms nor legs, but the MHC I fibers of m. triceps brachii demonstrated higher Ca2+ sensitivity than fibers of the same type from m. vastus lateralis (P = 0.007). Conclusion Comparison of muscles in limbs equally well trained revealed that MHC I fibers in the arm muscle exhibited a higher specific force-generating capacity and greater Ca2+ sensitivity than the same type of fiber in the leg, with no such difference in the case of MHC II fibers. These distinct differences in the properties of fibers of the same type in equally well-trained muscles open new perspectives in muscle physiology.
Collapse
Affiliation(s)
- Kasper Degn Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Lars G Hvid
- Department of Public Health, Exercise Biology, Aarhus University, Aarhus, Denmark
| | - Erik P Andersson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,School of Sport Sciences, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsö, Norway
| | - Rasmus Jensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Department of Health Sciences, Luleå University of Technology, Luleå, Sweden.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Sarmento A, Fregonezi G, Lira M, Marques L, Pennati F, Resqueti V, Aliverti A. Changes in electromyographic activity, mechanical power, and relaxation rates following inspiratory ribcage muscle fatigue. Sci Rep 2021; 11:12475. [PMID: 34127754 PMCID: PMC8203654 DOI: 10.1038/s41598-021-92060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Muscle fatigue is a complex phenomenon enclosing various mechanisms. Despite technological advances, these mechanisms are still not fully understood in vivo. Here, simultaneous measurements of pressure, volume, and ribcage inspiratory muscle activity were performed non-invasively during fatigue (inspiratory threshold valve set at 70% of maximal inspiratory pressure) and recovery to verify if inspiratory ribcage muscle fatigue (1) leads to slowing of contraction and relaxation properties of ribcage muscles and (2) alters median frequency and high-to-low frequency ratio (H/L). During the fatigue protocol, sternocleidomastoid showed the fastest decrease in median frequency and slowest decrease in H/L. Fatigue was also characterized by a reduction in the relative power of the high-frequency and increase of the low-frequency. During recovery, changes in mechanical power were due to changes in shortening velocity with long-lasting reduction in pressure generation, and slowing of relaxation [i.e., tau (τ), half-relaxation time (½RT), and maximum relaxation rate (MRR)] was observed with no significant changes in contractile properties. Recovery of median frequency was faster than H/L, and relaxation rates correlated with shortening velocity and mechanical power of inspiratory ribcage muscles; however, with different time courses. Time constant of the inspiratory ribcage muscles during fatigue and recovery is not uniform (i.e., different inspiratory muscles may have different underlying mechanisms of fatigue), and MRR, ½RT, and τ are not only useful predictors of inspiratory ribcage muscle recovery but may also share common underlying mechanisms with shortening velocity.
Collapse
Affiliation(s)
- Antonio Sarmento
- PneumoCardioVascular Laboratory - Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares (EBSERH) and Laboratório de Inovação Tecnológica Em Reabilitação, Departamento de Fisioterapia, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Guilherme Fregonezi
- PneumoCardioVascular Laboratory - Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares (EBSERH) and Laboratório de Inovação Tecnológica Em Reabilitação, Departamento de Fisioterapia, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.
| | - Maria Lira
- PneumoCardioVascular Laboratory - Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares (EBSERH) and Laboratório de Inovação Tecnológica Em Reabilitação, Departamento de Fisioterapia, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Layana Marques
- PneumoCardioVascular Laboratory - Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares (EBSERH) and Laboratório de Inovação Tecnológica Em Reabilitação, Departamento de Fisioterapia, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Francesca Pennati
- Dipartimento Di Elettronica, Informazione E Bioingegneria, Politecnico Di Milano, Milan, Italy
| | - Vanessa Resqueti
- PneumoCardioVascular Laboratory - Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares (EBSERH) and Laboratório de Inovação Tecnológica Em Reabilitação, Departamento de Fisioterapia, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Andrea Aliverti
- Dipartimento Di Elettronica, Informazione E Bioingegneria, Politecnico Di Milano, Milan, Italy
| |
Collapse
|
24
|
Morning Preconditioning Exercise Does Not Increase Afternoon Performance in Competitive Runners. Int J Sports Physiol Perform 2021; 16:1816-1823. [PMID: 34044367 DOI: 10.1123/ijspp.2020-0747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Preconditioning exercise is a widely used strategy believed to enhance performance later the same day. The authors examined the influence of preconditioning exercises 6 hours prior to a time-to-exhaustion (TTE) test during treadmill running. METHODS Ten male competitive runners (age = 26 [3] y, height = 184 [8] cm, weight = 73 [9] kg, maximum oxygen consumption = 72 [7] mL·kg-1·min-1) did a preconditioning session of running (RUN) or resistance exercise (RES) or no morning exercise (NoEx) in a randomized order, separated by >72 hours. The RUN consisted of 15 minutes of low-intensity running and 4 × 15 seconds at race pace (21-24 km·h-1) on a treadmill; RES involved 5 minutes of low-intensity running and 2 × 3 repetitions of isokinetic 1-leg shallow squats with maximal mobilization. Following a 6-hour break, electrically evoked force (m. vastus medialis), countermovement jump, running economy, and a TTE of approximately 2 minutes were examined. RESULTS Relative to NoEx, no difference was seen for RUN or RES in TTE (mean ± 95% CI: -1.3% ± 3.4% and -0.5% ± 6.0%) or running economy (0.2% ± 1.6% and 1.9% ± 2.7%; all Ps > .05). Jump height was not different for the RUN condition (1.0% ± 2.7%]) but tended to be higher in RES than in the NoEx condition (1.5% ± 1.6%, P = .07). The electrically evoked force tended to reveal low-frequency fatigue (reduced 20:50-Hz peak force ratio) only after RES compared to NoEx (-4.5% ± 4.6%, P = .06). CONCLUSION The RUN or RES 6 hours prior to approximately 2 minutes of TTE running test did not improve performance in competitive runners.
Collapse
|
25
|
The Effect of Resistance Exercise Priming in the Morning on Afternoon Sprint Cross-Country Skiing Performance. Int J Sports Physiol Perform 2021; 16:1786-1793. [PMID: 34021095 DOI: 10.1123/ijspp.2020-0881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE We tested whether a single session of heavy-load resistance priming conducted in the morning improved double-poling (DP) performance in the afternoon. METHODS Eight national-level male cross-country skiers (mean [SD]: 23 [3] y, 184 [6] cm, 73 [7] kg, maximum oxygen consumption = 69 [6] mL·kg-1·min-1) carried out 2 days of afternoon performance tests. In the morning, 5 hours before tests, subjects were counterbalanced to either a session of 3 × 3 repetitions (approximately 85%-90% 1-repetition maximum) of squat and sitting pullover exercises or no exercise. The performance was evaluated in DP as time to exhaustion (TTE) (approximately 3 min) on a treadmill and 30-m indoor sprints before and after TTE (30-m DP pre/post). Furthermore, submaximal DP oxygen cost, countermovement jump, and isometric knee-extension force during electrical stimulation were conducted. Participants reported perceived readiness on test days. RESULTS Resistance exercise session versus no exercise did not differ for TTE (approximately 3 min above) (mean ± 95% confidence interval = 3.6% ± 6.0%; P = .29; effect size [ES], Cohen d = 0.27), 30-m DP pre (-0.56% ± 0.80%; P = .21; ES = 0.20), 30-m DP post (-0.18% ± 1.13%; P = .76; ES = 0.03), countermovement jump (-2.0% ± 2.8%; P = .21; ES = 0.12), DP oxygen cost (-0.13% ± 2.04%; P = .91; ES = 0.02), or perceived readiness (P ≥ .11). Electrical stimulation force was not different in contraction or relaxation time but revealed low-frequency fatigue in the afternoon for the resistance exercise session only (-12% [7%]; P = .01; ES = 1.3). CONCLUSION A single session of heavy-load, low-volume resistance exercise in the morning did not increase afternoon DP performance of short duration in high-level skiers. However, leg low-frequency fatigue after resistance priming, together with the presence of small positive effects in 2 out of 3 DP tests, may indicate that the preconditioning was too strenuous.
Collapse
|
26
|
Watanabe D, Wada M. Orthograde signal of dihydropyridine receptor increases Ca 2+ leakage after repeated contractions in rat fast-twitch muscles in vivo. Am J Physiol Cell Physiol 2021; 320:C806-C821. [PMID: 33596151 DOI: 10.1152/ajpcell.00364.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the mechanism underlying sarcoplasmic reticulum (SR) Ca2+ leakage after in vivo contractions. Rat gastrocnemius muscles were electrically stimulated in vivo, and then mechanically skinned fibers and SR microsomes were prepared from the muscles excised 30 min after repeated high-intensity contractions. The mechanically skinned fibers maintained the interaction between dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs), whereas the SR microsomes did not. Interestingly, skinned fibers from the stimulated muscles showed increased SR Ca2+ leakage, whereas Ca2+ leakage decreased in SR microsomes from the stimulated muscles. To enhance the orthograde signal of DHPRs, SR Ca2+ leakage in the skinned fiber was measured 1) under a continuously depolarized condition and 2) in the presence of nifedipine. As a result, in either of the two conditions, SR Ca2+ leakage in the rested fibers reached a level similar to that in the stimulated fibers. Furthermore, the increased SR Ca2+ leakage from the stimulated fibers was alleviated by treatment with 1 mM tetracaine (Tet) but not by treatment with 3 mM free Mg2+ (3 Mg). Tet exerted a greater inhibitory effect on the DHPR signal to RyR than 3 Mg, although their inhibitory effects on RyR were almost similar. These results suggest that the increased Ca2+ leakage after muscle contractions is mainly caused by the orthograde signal of DHPRs to RyRs.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
27
|
MacDougall KB, Devrome AN, Kristensen AM, MacIntosh BR. Force-frequency relationship during fatiguing contractions of rat medial gastrocnemius muscle. Sci Rep 2020; 10:11575. [PMID: 32665563 PMCID: PMC7360560 DOI: 10.1038/s41598-020-68392-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
The force–frequency relationship presents the amount of force a muscle can produce as a function of the frequency of activation. During repetitive muscular contractions, fatigue and potentiation may both impact the resultant contractile response. However, both the apparent fatigue observed, and the potential for activity-dependent potentiation can be affected by the frequency of activation. Thus, we wanted to explore the effects that repetitive stimulation had on the force–frequency relationship. The force–frequency relationship of the rat medial gastrocnemius muscle was investigated during consecutive bouts of increasing fatigue with 20 to 100 Hz stimulation. Force was measured prior to the fatiguing protocol, during each of three levels of fatigue, and after 30 min of recovery. Force at each frequency was quantified relative to the pre-fatigued 100 Hz contractions, as well as the percentage reduction of force from the pre-fatigued level at a given frequency. We observed less reduction in force at low frequencies compared to high frequencies, suggesting an interplay of fatigue and potentiation, in which potentiation can “protect” against fatigue in a frequency-dependent manner. The exact mechanism of fatigue is unknown, however the substantial reduction of force at high frequency suggests a role for reduced force per cross-bridge.
Collapse
Affiliation(s)
| | - Andrea N Devrome
- Faculty of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | - Brian R MacIntosh
- Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
28
|
Froyd C, Beltrami FG, Millet GY, MacIntosh BR, Noakes TD. Greater Short-Time Recovery of Peripheral Fatigue After Short- Compared With Long-Duration Time Trial. Front Physiol 2020; 11:399. [PMID: 32477158 PMCID: PMC7240104 DOI: 10.3389/fphys.2020.00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/02/2020] [Indexed: 01/24/2023] Open
Abstract
The kinetics of recovery from neuromuscular fatigue resulting from exercise time trials (TTs) of different durations are not well-known. The aim of this study was to determine if TTs of three different durations would result in different short-term recovery in maximal voluntary contraction (MVC) and evoked peak forces. Twelve trained subjects performed repetitive concentric right knee extensions on an isokinetic dynamometer self-paced to last 3, 10, and 40 min (TTs). Neuromuscular function was assessed immediately (<2 s) and 1, 2, 4, and 8 min after completion of each TT using MVCs and electrical stimulation. Electrical stimulations consisted of single stimulus (SS), paired stimuli at 10 Hz (PS10), and paired stimuli at 100 Hz (PS100). Electrically evoked forces including the ratio of low- to high-frequency doublets were similar between trials at exercise cessation but subsequently increased more (P < 0.05) after the 3 min TT compared with either the 10 or 40 min TT when measured at 1 or 2 min of recovery. MVC force was not different between trials. The results demonstrate that recovery of peripheral fatigue including low-frequency fatigue depends on the duration and intensity of the preceding self-paced exercise. These differences in recovery probably indicate differences in the mechanisms of fatigue for these different TTs. Because recovery is faster after a 3 min TT than a 40 min TT, delayed assessment of fatigue will detect a difference in peripheral fatigue between trials that was not present at exercise cessation.
Collapse
Affiliation(s)
- Christian Froyd
- Faculty of Education, Arts and Sport, Western Norway University of Applied Sciences, Bergen, Norway.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Fernando G Beltrami
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Guillaume Y Millet
- Laboratoire Interuniversitaire de Biologie de la Motricité, University of Lyon, UJM Saint-Etienne, Saint Etienne, France
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Timothy D Noakes
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
29
|
Cheng AJ, Chaillou T, Kamandulis S, Subocius A, Westerblad H, Brazaitis M, Venckunas T. Carbohydrates do not accelerate force recovery after glycogen-depleting followed by high-intensity exercise in humans. Scand J Med Sci Sports 2020; 30:998-1007. [PMID: 32187403 DOI: 10.1111/sms.13655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prolonged low-frequency force depression (PLFFD) induced by fatiguing exercise is characterized by a persistent depression in submaximal contractile force during the recovery period. Muscle glycogen depletion is known to limit physical performance during prolonged low- and moderate-intensity exercise, and accelerating glycogen resynthesis with post-exercise carbohydrate intake can facilitate recovery and improve repeated bout exercise performance. Short-term, high-intensity exercise, however, can cause PLFFD without any marked decrease in glycogen. Here, we studied whether recovery from PLFFD was accelerated by carbohydrate ingestion after 60 minutes of moderate-intensity glycogen-depleting cycling exercise followed by six 30-seconds all-out cycling sprints. We used a randomized crossover study design where nine recreationally active males drank a beverage containing either carbohydrate or placebo after exercise. Blood glucose and muscle glycogen concentrations were determined at baseline, immediately post-exercise, and during the 3-hours recovery period. Transcutaneous electrical stimulation of the quadriceps muscle was performed to determine the extent of PLFFD by eliciting low-frequency (20 Hz) and high-frequency (100 Hz) stimulations. Muscle glycogen was severely depleted after exercise, with a significantly higher rate of muscle glycogen resynthesis during the 3-hours recovery period in the carbohydrate than in the placebo trials (13.7 and 5.4 mmol glucosyl units/kg wet weight/h, respectively). Torque at 20 Hz was significantly more depressed than 100 Hz torque during the recovery period in both conditions, and the extent of PLFFD (20/100 Hz ratio) was not different between the two trials. In conclusion, carbohydrate supplementation enhances glycogen resynthesis after glycogen-depleting exercise but does not improve force recovery when the exercise also involves all-out cycling sprints.
Collapse
Affiliation(s)
- Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Faculty of Health, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Thomas Chaillou
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Sigitas Kamandulis
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| | - Andrejus Subocius
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania.,Department of Surgery, Kaunas Clinical Hospital, Kaunas, Lithuania.,Clinic of Surgery, Republican Hospital of Kaunas, Kaunas, Lithuania
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckunas
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
30
|
Allen DG. Human muscle performance. J Physiol 2019; 598:613-614. [PMID: 31834947 DOI: 10.1113/jp279364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- David G Allen
- School of Medicine, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|