1
|
Xu ZQ, Liu TT, Qin QR, Yuan H, Li XM, Qiu CY, Hu WP. Insulin enhances acid-sensing ion channel currents in rat primary sensory neurons. Sci Rep 2024; 14:18077. [PMID: 39103432 PMCID: PMC11300854 DOI: 10.1038/s41598-024-69139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Insulin has been shown to modulate neuronal processes through insulin receptors. The ion channels located on neurons may be important targets for insulin/insulin receptor signaling. Both insulin receptors and acid-sensing ion channels (ASICs) are expressed in dorsal root ganglia (DRG) neurons. However, it is still unclear whether there is an interaction between them. Therefore, the purpose of this investigation was to determine the effects of insulin on the functional activity of ASICs. A 5 min application of insulin rapidly enhanced acid-evoked ASIC currents in rat DRG neurons in a concentration-dependent manner. Insulin shifted the concentration-response plot for ASIC currents upward, with an increase of 46.2 ± 7.6% in the maximal current response. The insulin-induced increase in ASIC currents was eliminated by the insulin receptor antagonist GSK1838705, the tyrosine kinase inhibitor lavendustin A, and the phosphatidylinositol-3 kinase antagonist wortmannin. Moreover, insulin increased the number of acid-triggered action potentials by activating insulin receptors. Finally, local administration of insulin exacerbated the spontaneous nociceptive behaviors induced by intraplantar acid injection and the mechanical hyperalgesia induced by intramuscular acid injections through peripheral insulin receptors. These results suggested that insulin/insulin receptor signaling enhanced the functional activity of ASICs via tyrosine kinase and phosphatidylinositol-3 kinase pathways. Our findings revealed that ASICs were targets in primary sensory neurons for insulin receptor signaling, which may underlie insulin modulation of pain.
Collapse
Affiliation(s)
- Zhong-Qing Xu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ting-Ting Liu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Qing-Rui Qin
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Huan Yuan
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Xue-Mei Li
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Wang-Ping Hu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
- Department of Physiology, Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou, 434020, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Hamaoka T, Leuenberger UA, Drew RC, Murray M, Blaha C, Luck JC, Sinoway LI, Cui J. Glucose metabolism and autonomic function in healthy individuals and patients with type 2 diabetes mellitus at rest and during exercise. Exp Physiol 2024; 109:214-226. [PMID: 38050866 PMCID: PMC10841625 DOI: 10.1113/ep091444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Autonomic dysfunction is a common complication of type 2 diabetes mellitus (T2DM). However, the character of dysfunction varies in different reports. Differences in measurement methodology and complications might have influenced the inconsistent results. We sought to evaluate comprehensively the relationship between abnormal glucose metabolism and autonomic function at rest and the response to exercise in healthy individuals and T2DM patients. We hypothesized that both sympathetic and parasympathetic indices would decrease with the progression of abnormal glucose metabolism in individuals with few complications related to high sympathetic tone. Twenty healthy individuals and 11 T2DM patients without clinically evident cardiovascular disease other than controlled hypertension were examined. Resting muscle sympathetic nerve activity (MSNA), heart rate variability, spontaneous cardiovagal baroreflex sensitivity (CBRS), sympathetic baroreflex sensitivity and the MSNA response to handgrip exercise were measured. Resting MSNA was lower in patients with T2DM than in healthy control subjects (P = 0.011). Resting MSNA was negatively correlated with haemoglobin A1c in all subjects (R = -0.45, P = 0.024). The parasympathetic components of heart rate variability and CBRS were negatively correlated with glycaemic/insulin indices in all subjects and even in the control group only (all, P < 0.05). In all subjects, the MSNA response to exercise was positively correlated with fasting blood glucose (R = 0.69, P < 0.001). Resting sympathetic activity and parasympathetic modulation of heart rate were decreased in relationship to abnormal glucose metabolism. Meanwhile, the sympathetic responses to handgrip were preserved in diabetics. The responses were correlated with glucose/insulin parameters throughout diabetic and control subjects. These results suggest the importance of a comprehensive assessment of autonomic function in T2DM.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Urs A. Leuenberger
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Rachel C. Drew
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Exercise and Health SciencesUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Matthew Murray
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Cheryl Blaha
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Jonathan Carter Luck
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Lawrence I. Sinoway
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Jian Cui
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| |
Collapse
|
3
|
Grotle AK, Langlo JV, Holsbrekken E, Stone AJ, Tanaka H, Fadel PJ. Age-related alterations in the cardiovascular responses to acute exercise in males and females: role of the exercise pressor reflex. Front Physiol 2023; 14:1287392. [PMID: 38028783 PMCID: PMC10652405 DOI: 10.3389/fphys.2023.1287392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Autonomic adjustments of the cardiovascular system are critical for initiating and sustaining exercise by facilitating the redistribution of blood flow and oxygen delivery to meet the metabolic demands of the active skeletal muscle. Afferent feedback from active skeletal muscles evokes reflex increases in sympathetic nerve activity and blood pressure (BP) (i.e., exercise pressor reflex) and contributes importantly to these primary neurovascular adjustments to exercise. When altered, this reflex contributes significantly to the exaggerated sympathetic and BP response to exercise observed in many cardiovascular-related diseases, highlighting the importance of examining the reflex and its underlying mechanism(s). A leading risk factor for the pathogenesis of cardiovascular disease in both males and females is aging. Although regular exercise is an effective strategy for mitigating the health burden of aging, older adults face a greater risk of experiencing an exaggerated cardiovascular response to exercise. However, the role of aging in mediating the exercise pressor reflex remains highly controversial, as conflicting findings have been reported. This review aims to provide a brief overview of the current understanding of the influence of aging on cardiovascular responses to exercise, focusing on the role of the exercise pressor reflex and proposing future directions for research. We reason that this review will serve as a resource for health professionals and researchers to stimulate a renewed interest in this critical area.
Collapse
Affiliation(s)
- A. K. Grotle
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - J. V. Langlo
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - E. Holsbrekken
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - A. J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - H. Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - P. J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
4
|
Kashima H, Endo MY, Kanda M, Miura A, Fukuba Y, Mizuno M. High-glycemic index meal acutely potentiates blood pressure response to static handgrip exercise in healthy humans. J Appl Physiol (1985) 2023; 135:609-620. [PMID: 37471212 PMCID: PMC10538994 DOI: 10.1152/japplphysiol.00703.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Blood glucose levels acutely increase postprandially depending on the type of meal consumed. However, it remains unclear whether postprandial hyperglycemia temporally affects cardiovascular responses to static handgrip exercise (SHG-ex). Thus, this study aimed to examine whether increased blood glucose induced by consumption of a high-glycemic index (HGI) meal affects pressor response to SHG-ex. A total of 14 healthy participants (7 women and 7 men) consumed an HGI meal, a low-glycemic index (LGI) meal, or no meal (control). Participants performed 30% maximal voluntary contraction SHG-ex followed by a postexercise muscle ischemia (PEMI) test before the meal and 60 min after consuming the meal. Blood glucose, plasma insulin, and plasma triglyceride levels were measured, and the area under the curve until 60 min (AUC0-60 min) after meal consumption was calculated. The HGI and LGI groups showed higher blood glucose and insulin AUC0-60 min than the control group (P < 0.001). At 60 min after the meal, the changes in blood pressure during SHG-ex were significantly greater in the HGI group, but not in the LGI group, than in the control group. The changes in blood pressure at the onset and end of SHG-ex 60 min after the meal were positively correlated with blood glucose AUC0-60 min (r = 0.321, P = 0.038; r = 0.402, P = 0.008, respectively) and plasma insulin AUC0-60 min (r = 0.339, P = 0.028; r = 0.302, P = 0.052, respectively). However, no association was observed during PEMI. These data suggest that postprandial hyperglycemia and hyperinsulinemia acutely exaggerate pressor response during SHG-ex in healthy young adults.NEW & NOTEWORTHY Postprandial hyperglycemia following consumption of a high-glycemic index (HGI) meal potentiated blood pressure response to static handgrip exercise (SHG-ex) in healthy young adults. These findings provide important insight into the role of the diet on acute circulatory response to exercise in healthy adults.
Collapse
Affiliation(s)
- Hideaki Kashima
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Masako Yamaoka Endo
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Masako Kanda
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Akira Miura
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Yoshiyuki Fukuba
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
- Faculty of Health and Sports Sciences, Hiroshima International University, Hiroshima, Japan
| | - Masaki Mizuno
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
5
|
Estrada JA, Hotta N, Kim HK, Ishizawa R, Fukazawa A, Iwamoto GA, Smith SA, Vongpatanasin W, Mizuno M. Blockade of endogenous insulin receptor signaling in the nucleus tractus solitarius potentiates exercise pressor reflex function in healthy male rats. FASEB J 2023; 37:e23141. [PMID: 37566482 PMCID: PMC10430879 DOI: 10.1096/fj.202300879rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Insulin not only regulates glucose and/or lipid metabolism but also modulates brain neural activity. The nucleus tractus solitarius (NTS) is a key central integration site for sensory input from working skeletal muscle and arterial baroreceptors during exercise. Stimulation of the skeletal muscle exercise pressor reflex (EPR), the responses of which are buffered by the arterial baroreflex, leads to compensatory increases in arterial pressure to supply blood to working muscle. Evidence suggests that insulin signaling decreases neuronal excitability in the brain, thus antagonizing insulin receptors (IRs) may increase neuronal excitability. However, the impact of brain insulin signaling on the EPR remains fully undetermined. We hypothesized that antagonism of NTS IRs increases EPR function in normal healthy rodents. In decerebrate rats, stimulation of the EPR via electrically induced muscle contractions increased peak mean arterial pressure (MAP) responses 30 min following NTS microinjections of an IR antagonist (GSK1838705, 100 μM; Pre: Δ16 ± 10 mmHg vs. 30 min: Δ23 ± 13 mmHg, n = 11, p = .004), a finding absent in sino-aortic baroreceptor denervated rats. Intrathecal injections of GSK1838705 did not influence peak MAP responses to mechano- or chemoreflex stimulation of the hindlimb muscle. Immunofluorescence triple overlap analysis following repetitive EPR stimulation increased c-Fos overlap with EPR-sensitive nuclei and IR-positive cells relative to sham operation (p < .001). The results suggest that IR blockade in the NTS potentiates the MAP response to EPR stimulation. In addition, insulin signaling in the NTS may buffer EPR stimulated increases in blood pressure via baroreflex-mediated mechanisms during exercise.
Collapse
Affiliation(s)
- Juan A. Estrada
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Han-Kyul Kim
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rie Ishizawa
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ayumi Fukazawa
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary A. Iwamoto
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A. Smith
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wanpen Vongpatanasin
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Fukazawa A, Hori A, Hotta N, Katanosaka K, Estrada JA, Ishizawa R, Kim HK, Iwamoto GA, Smith SA, Vongpatanasin W, Mizuno M. Antagonism of TRPV4 channels partially reduces mechanotransduction in rat skeletal muscle afferents. J Physiol 2023; 601:1407-1424. [PMID: 36869605 PMCID: PMC10106437 DOI: 10.1113/jp284026] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/02/2023] [Indexed: 03/05/2023] Open
Abstract
Mechanical distortion of working skeletal muscle induces sympathoexcitation via thin fibre afferents, a reflex response known as the skeletal muscle mechanoreflex. However, to date, the receptor ion channels responsible for mechanotransduction in skeletal muscle remain largely undetermined. Transient receptor potential vanilloid 4 (TRPV4) is known to sense mechanical stimuli such as shear stress or osmotic pressure in various organs. It is hypothesized that TRPV4 in thin-fibre primary afferents innervating skeletal muscle is involved in mechanotransduction. Fluorescence immunostaining revealed that 20.1 ± 10.1% of TRPV4 positive neurons were small dorsal root ganglion (DRG) neurons that were DiI-labelled, and among them 9.5 ± 6.1% of TRPV4 co-localized with the C-fibre marker peripherin. In vitro whole-cell patch clamp recordings from cultured rat DRG neurons demonstrated that mechanically activated current amplitude was significantly attenuated after the application of the TRPV4 antagonist HC067047 compared to control (P = 0.004). Such reductions were also observed in single-fibre recordings from a muscle-nerve ex vivo preparation where HC067047 significantly decreased afferent discharge to mechanical stimulation (P = 0.007). Likewise, in an in vivo decerebrate rat preparation, the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to passive stretch of hindlimb muscle were significantly reduced by intra-arterial injection of HC067047 (ΔRSNA: P = 0.019, ΔMAP: P = 0.002). The findings suggest that TRPV4 plays an important role in mechanotransduction contributing to the cardiovascular responses evoked by the skeletal muscle mechanoreflex during exercise. KEY POINTS: Although a mechanical stimulus to skeletal muscle reflexively activates the sympathetic nervous system, the receptors responsible for mechanotransduction in skeletal muscle thin fibre afferents have not been fully identified. Evidence suggests that TRPV4 is a mechanosensitive channel that plays an important role in mechanotransduction within various organs. Immunocytochemical staining demonstrates that TRPV4 is expressed in group IV skeletal muscle afferents. In addition, we show that the TRPV4 antagonist HC067047 decreases the responsiveness of thin fibre afferents to mechanical stimulation at the muscle tissue level as well as at the level of dorsal root ganglion neurons. Moreover, we demonstrate that intra-arterial HC067047 injection attenuates the sympathetic and pressor responses to passive muscle stretch in decerebrate rats. These data suggest that antagonism of TRPV4 attenuates mechanotransduction in skeletal muscle afferents. The present study demonstrates a probable physiological role for TRPV4 in the regulation of mechanical sensation in somatosensory thin fibre muscle afferents.
Collapse
Affiliation(s)
- Ayumi Fukazawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amane Hori
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Norio Hotta
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Kimiaki Katanosaka
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Juan A. Estrada
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary A. Iwamoto
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Function of the GABAergic System in Diabetic Encephalopathy. Cell Mol Neurobiol 2023; 43:605-619. [PMID: 35460435 DOI: 10.1007/s10571-022-01214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Diabetes is a common metabolic disease characterized by loss of blood sugar control and a high rate of complications. γ-Aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter in the adult mammalian brain. The normal function of the GABAergic system is affected in diabetes. Herein, we summarize the role of the GABAergic system in diabetic cognitive dysfunction, diabetic blood sugar control disorders, diabetes-induced peripheral neuropathy, diabetic central nervous system damage, maintaining diabetic brain energy homeostasis, helping central control of blood sugar and attenuating neuronal oxidative stress damage. We show the key regulatory role of the GABAergic system in multiple comorbidities in patients with diabetes and hope that further studies elucidating the role of the GABAergic system will yield benefits for the treatment and prevention of comorbidities in patients with diabetes.
Collapse
|
8
|
Huo Y, Grotle AK, McCuller RK, Samora M, Stanhope KL, Havel PJ, Harrison ML, Stone AJ. Exaggerated exercise pressor reflex in male UC Davis type 2 diabetic rats is due to the pathophysiology of the disease and not aging. Front Physiol 2023; 13:1063326. [PMID: 36703927 PMCID: PMC9871248 DOI: 10.3389/fphys.2022.1063326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Studies in humans and animals have found that type 2 diabetes mellitus (T2DM) exaggerates the blood pressure (BP) response to exercise, which increases the risk of adverse cardiovascular events such as heart attack and stroke. T2DM is a chronic disease that, without appropriate management, progresses in severity as individuals grow older. Thus, it is possible that aging may also exaggerate the BP response to exercise. Therefore, the purpose of the current study was to determine the effect of the pathophysiology of T2DM on the exercise pressor reflex independent of aging. Methods: We compared changes in peak pressor (mean arterial pressure; ΔMAP), BP index (ΔBPi), heart rate (ΔHR), and HR index (ΔHRi) responses to static contraction, intermittent contraction, and tendon stretch in UCD-T2DM rats to those of healthy, age-matched Sprague Dawley rats at three different stages of the disease. Results: We found that the ΔMAP, ΔBPi, ΔHR, and ΔHRi responses to static contraction were significantly higher in T2DM rats (ΔMAP: 29 ± 4 mmHg; ΔBPi: 588 ± 51 mmHg•s; ΔHR: 22 ± 5 bpm; ΔHRi: 478 ± 45 bpm•s) compared to controls (ΔMAP: 10 ± 1 mmHg, p < 0.0001; ΔBPi: 121 ± 19 mmHg•s, p < 0.0001; ΔHR: 5 ± 2 bpm, p = 0.01; ΔHRi: 92 ± 19 bpm•s, p < 0.0001) shortly after diabetes onset. Likewise, the ΔMAP, ΔBPi, and ΔHRi to tendon stretch were significantly higher in T2DM rats (ΔMAP: 33 ± 7 mmHg; ΔBPi: 697 ± 70 mmHg•s; ΔHRi: 496 ± 51 bpm•s) compared to controls (ΔMAP: 12 ± 5 mmHg, p = 0.002; ΔBPi: 186 ± 30 mmHg•s, p < 0.0001; ΔHRi: 144 ± 33 bpm•s, p < 0.0001) shortly after diabetes onset. The ΔBPi and ΔHRi, but not ΔMAP, to intermittent contraction was significantly higher in T2DM rats (ΔBPi: 543 ± 42 mmHg•s; ΔHRi: 453 ± 53 bpm•s) compared to controls (ΔBPi: 140 ± 16 mmHg•s, p < 0.0001; ΔHRi: 108 ± 22 bpm•s, p = 0.0002) shortly after diabetes onset. Discussion: Our findings suggest that the exaggerated exercise pressor reflex and mechanoreflex seen in T2DM are due to the pathophysiology of the disease and not aging.
Collapse
Affiliation(s)
- Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Ann-Katrin Grotle
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Science, Bergen, Norway
| | - Richard K. McCuller
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Milena Samora
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Michelle L. Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States,*Correspondence: Audrey J. Stone,
| |
Collapse
|
9
|
Samora M, Huo Y. Sympathetic nervous activation via thin-fiber muscle afferents: the role of insulin. J Physiol 2022; 600:3219-3220. [PMID: 35679519 DOI: 10.1113/jp283282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Milena Samora
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, USA
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, USA
| |
Collapse
|
10
|
Gomes FS, Lopes TR. What is behind the curtain? Revealing muscle metaboreceptor sensitization. J Physiol 2022; 600:2289-2291. [PMID: 35419837 DOI: 10.1113/jp282956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Felipe Silva Gomes
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Thiago Ribeiro Lopes
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil.,São Paulo Association for Medicine Development, São Paulo, SP, Brazil
| |
Collapse
|