1
|
Chan SN, Pek JW. Can stable introns and noncoding RNAs be harnessed to improve health through activation of mitohormesis? Bioessays 2024; 46:e2400143. [PMID: 39301980 DOI: 10.1002/bies.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Ever since their introduction a decade ago, stable introns, a type of noncoding (nc)RNAs, are found to be key players in different important cellular processes acting through regulation of gene expression and feedback loops to maintain cellular homeostasis. Despite being commonly regarded as useless byproducts, recent studies in yeast suggested that stable introns are essential for cell survivability under starvation. In Drosophila, we found that a stable intron, sisR-1, has a direct effect in regulating mitochondrial dynamics during short-term fasting and subsequently improved overall oocyte quality. We speculated that the beneficial effects implicated by sisR-1 is through the activation of mitohormesis, an interesting phenomenon in mitochondrial biology. Mitohormesis is suggested to improve health span and lifespan of cells and organisms, but the involvement of ncRNAs is not well-documented. Here, we discuss the potential role of sisR-1 and other ncRNAs in activating mitohormesis and the possible applications in improving cellular and organismal health.
Collapse
Affiliation(s)
- Seow Neng Chan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Zhan Y, Zhang L, Sun J, Yao H, Chen J, Tian M. ADSC-derived exosomes provide neuroprotection in sepsis-associated encephalopathy by regulating hippocampal pyroptosis. Exp Neurol 2024; 380:114900. [PMID: 39059736 DOI: 10.1016/j.expneurol.2024.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
AIMS Adipose-derived stem cell (ADSC)-derived exosomes have been recognized for their neuroprotective effects in various neurological diseases. This study investigates the potential neuroprotective effects of ADSC-derived exosomes in sepsis-associated encephalopathy (SAE). METHODS Behavioral cognitive functions were evaluated using the open field test, Y-maze test, and novel object recognition test. Brain activity was assessed through functional magnetic resonance imaging (fMRI). Pyroptosis was measured using immunofluorescence staining and western blotting. RESULTS Our findings indicate that ADSC-derived exosomes mitigate cognitive impairment, improve survival rates, and prevent weight loss in SAE mice. Additionally, exosomes protect hippocampal function in SAE mice, as demonstrated by fMRI evaluations. Furthermore, SAE mice exhibit neuronal damage and infiltration of inflammatory cells in the hippocampus, conditions which are reversed by exosome treatment. Moreover, our study highlights the downstream regulatory role of the NLRP3/caspase-1/GSDMD signaling pathway as a crucial mechanism in alleviating hippocampal inflammation. CONCLUSION ADSC-derived exosomes confer neuroprotection in SAE models by mediating the NLRP3/caspase-1/GSDMD pathway, thereby ameliorating cognitive impairment.
Collapse
Affiliation(s)
- Yunliang Zhan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210002, Jiangsu Province, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, China.
| | - Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
3
|
Zhao Y, Zhou Y, Xu J, Fan S, Zhu N, Meng Q, Dai S, Yuan X. Cross-Kingdom RNA Transport Based on Extracellular Vesicles Provides Innovative Tools for Plant Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2712. [PMID: 39409582 PMCID: PMC11479161 DOI: 10.3390/plants13192712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
RNA interference (RNAi) shows great potential in plant defense against pathogens through RNA-mediated sequence-specific gene silencing. Among RNAi-based plant protection strategies, spray-induced gene silencing (SIGS) is considered a more promising approach because it utilizes the transfer of exogenous RNA between plants and microbes to silence target pathogen genes. The application of nanovesicles significantly enhances RNA stability and delivery efficiency, thereby improving the effectiveness of SIGS and further enhancing plant resistance to diseases and pathogens. This review explores the role of RNAi in plant protection, focusing on the cross-kingdom transport of small RNAs (sRNAs) via extracellular vesicles. It also explores the potential of nanotechnology to further optimize RNA-based plant protection, offering innovative tools and methods in modern plant biotechnology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaofeng Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.Z.); (Y.Z.); (J.X.); (S.F.); (N.Z.); (Q.M.); (S.D.)
| |
Collapse
|
4
|
Wang KJ, Zhang YX, Mo ZW, Li ZL, Wang M, Wang R, Wang ZC, Chang GQ, Wu WB. Upregulation of Long Noncoding RNA MAGOH-DT Mediates TNF-α and High Glucose-Induced Endothelial-Mesenchymal Transition in Arteriosclerosis Obliterans. TOHOKU J EXP MED 2024; 263:227-238. [PMID: 38811212 DOI: 10.1620/tjem.2024.j031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Arteriosclerosis obliterans (ASO) is characterized by arterial narrowing and blockage due to atherosclerosis, influenced by endothelial dysfunction and inflammation. This research focuses on exploring the role of MAGOH-DT, a long noncoding RNA, in mediating endothelial cell dysfunction through endothelial-mesenchymal transition (EndMT) under inflammatory and hyperglycemic stimuli, aiming to uncover potential therapeutic targets for ASO. Differential expression of lncRNAs, including MAGOH-DT, was initially identified in arterial tissues from ASO patients compared to healthy controls through lncRNA microarray analysis. Validation of MAGOH-DT expression in response to tumor necrosis factor-alpha (TNF-α) and high glucose (HG) was performed in human umbilical vein endothelial cells (HUVECs) using RT-qPCR. The effects of MAGOH-DT and HNRPC knockdown on EndMT were assessed by evaluating EndMT markers and TGF-β2 protein expression with Western blot analysis. RNA-immunoprecipitation assays were used to explore the interaction between MAGOH-DT and HNRPC, focusing on their role in regulating TGF-β2 translation. In the results, MAGOH-DT expression is found to be upregulated in ASO and further induced in HUVECs under TNF-α/HG conditions, contributing to the facilitation of EndMT. Silencing MAGOH-DT or HNRPC is shown to inhibit the TNF-α/HG-induced increase in TGF-β2 protein expression, effectively attenuating EndMT processes without altering TGF-β2 mRNA levels. In conclusion, MAGOH-DT is identified as a key mediator in the process of TNF-α/HG-induced EndMT in ASO, offering a promising therapeutic target. Inhibition of MAGOH-DT presents a novel therapeutic strategy for ASO management, especially in cases complicated by diabetes mellitus. Further exploration into the therapeutic implications of MAGOH-DT modulation in ASO treatment is warranted.
Collapse
Affiliation(s)
- Kang-Jie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Yi-Xin Zhang
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University
| | - Zhi-Wei Mo
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Zi-Lun Li
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Mian Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Rui Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Zhe-Cun Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Guang-Qi Chang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Wei-Bin Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
5
|
Pham PNV, Yahsaly L, Ochsenfarth C, Giebel B, Schnitzler R, Zahn P, Frey UH. Influence of Anesthetic Regimes on Extracellular Vesicles following Remote Ischemic Preconditioning in Coronary Artery Disease. Int J Mol Sci 2024; 25:9304. [PMID: 39273253 PMCID: PMC11395148 DOI: 10.3390/ijms25179304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Remote ischemic preconditioning (RIPC) reduces ischemia-reperfusion injury in aortocoronary bypass surgery, potentially via extracellular vesicles (EVs) and their micro-RNA content. Clinical data implicate that propofol might inhibit the cardioprotective RIPC effect. This prospective, randomized study investigated the influence of different anesthetic regimes on RIPC efficacy and EV micro-RNA signatures. We also assessed the impact of propofol on cell protection after hypoxic conditioning and EV-mediated RIPC in vitro. H9c2 rat cardiomyoblasts were subjected to hypoxia, with or without propofol, and subsequent simulated ischemia-reperfusion injury. Apoptosis was measured by flow cytometry. Blood samples of 64 patients receiving anesthetic maintenance with propofol or isoflurane, along with RIPC or sham procedures, were analyzed, and EVs were enriched using a polymer-based method. Propofol administration corresponded with increased Troponin T levels (4669 ± 435.6 pg/mL), suggesting an inhibition of the cardioprotective RIPC effect. RIPC leads to a notable rise in miR-21 concentrations in the group receiving propofol anesthesia (fold change 7.22 ± 6.6). In vitro experiments showed that apoptosis reduction was compromised with propofol and only occurred in an EV-enriched preconditioning medium, not in an EV-depleted medium. Our study could clinically and experimentally confirm propofol inhibition of RIPC protection. Increased miR-21 expression could provide evidence for a possible inhibitory mechanism.
Collapse
Affiliation(s)
- Phuong N V Pham
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Loubna Yahsaly
- Department of Cardiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Crista Ochsenfarth
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Romina Schnitzler
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Peter Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Ulrich H Frey
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
6
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2024. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
7
|
Omoto ACM, do Carmo JM, da Silva AA, Hall JE, Mouton AJ. Immunometabolism, extracellular vesicles and cardiac injury. Front Endocrinol (Lausanne) 2024; 14:1331284. [PMID: 38260141 PMCID: PMC10800986 DOI: 10.3389/fendo.2023.1331284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Recent evidence from our lab and others suggests that metabolic reprogramming of immune cells drives changes in immune cell phenotypes along the inflammatory-to-reparative spectrum and plays a critical role in mediating the inflammatory responses to cardiac injury (e.g. hypertension, myocardial infarction). However, the factors that drive metabolic reprogramming in immune cells are not fully understood. Extracellular vesicles (EVs) are recognized for their ability to transfer cargo such as microRNAs from remote sites to influence cardiac remodeling. Furthermore, conditions such as obesity and metabolic syndrome, which are implicated in the majority of cardiovascular disease (CVD) cases, can skew production of EVs toward pro-inflammatory phenotypes. In this mini-review, we discuss the mechanisms by which EVs may influence immune cell metabolism during cardiac injury and factors associated with obesity and the metabolic syndrome that can disrupt normal EV function. We also discuss potential sources of cardio-protective and anti-inflammatory EVs, such as brown adipose tissue. Finally, we discuss implications for future therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
8
|
Ahmad S, Deep G, Punzi HA, Su Y, Singh S, Kumar A, Mishra S, Saha AK, Wright KN, VonCannon JL, Dell'Italia LJ, Meredith WJ, Ferrario CM. Chymase in Plasma and Urine Extracellular Vesicles: Novel Biomarkers for Primary Hypertension. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.09.23298324. [PMID: 37986951 PMCID: PMC10659500 DOI: 10.1101/2023.11.09.23298324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) have emerged as a promising liquid biopsy for various diseases. For the first time, using plasma and urinary EVs, we assessed the activity of renin-angiotensin system (RAS), a central regulator of renal, cardiac, and vascular physiology, in patients with control (Group I) or uncontrolled (Group II) primary hypertension. METHODS EVs were isolated from 34 patients with history of hypertension, and characterized for size and concentration by nanoparticle tracking analyses, exosomal biomarkers by immunogold labeling coupled with transmission electron microscopy, flow cytometry and immunoblotting. EVs were analyzed for the hydrolytic activity of chymase, angiotensin converting enzyme (ACE), ACE2, and neprilysin (NEP) by HPLC. RESULTS Plasma and urinary EVs were enriched for small EVs and expressed exosomal markers (CD63, CD9, and CD81). The size of urinary EVs (but not plasma EVs) was significantly larger in Group II compared to Group I. Differential activity of RAS enzymes was observed, with significantly higher chymase activity compared to ACE, ACE2, and NEP in plasma EVs. Similarly, urinary EVs exhibited higher chymase and NEP activity compared to ACE and ACE2 activity. Importantly, compared to Group I, significantly higher chymase activity was observed in urinary EVs (p = 0.03) from Group II, while no significant difference in activity was observed for other RAS enzymes. CONCLUSIONS Bioactive RAS enzymes are present in plasma and urinary EVs. Detecting chymase in plasma and urinary EVs uncovers a novel mechanism of angiotensin II-forming enzyme and could also mediate cell-cell communication and modulate signaling pathways in recipient cells. GRAPHICAL ABSTRACT
Collapse
|
9
|
Currie S, Schultz HD. Extracellular vesicles in organ and systems function in health and disease. J Physiol 2023; 601:4825-4829. [PMID: 37889227 DOI: 10.1113/jp285654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Affiliation(s)
- Susan Currie
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Harold D Schultz
- Department of Cellular & Integrative Physiology, University of Nebraska College of Medicine Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Matsuzaka Y, Yashiro R. Advances in Purification, Modification, and Application of Extracellular Vesicles for Novel Clinical Treatments. MEMBRANES 2022; 12:membranes12121244. [PMID: 36557150 PMCID: PMC9787595 DOI: 10.3390/membranes12121244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EV) are membrane vesicles surrounded by a lipid bilayer membrane and include microvesicles, apoptotic bodies, exosomes, and exomeres. Exosome-encapsulated microRNAs (miRNAs) released from cancer cells are involved in the proliferation and metastasis of tumor cells via angiogenesis. On the other hand, mesenchymal stem cell (MSC) therapy, which is being employed in regenerative medicine owing to the ability of MSCs to differentiate into various cells, is due to humoral factors, including messenger RNA (mRNA), miRNAs, proteins, and lipids, which are encapsulated in exosomes derived from transplanted cells. New treatments that advocate cell-free therapy using MSC-derived exosomes will significantly improve clinical practice. Therefore, using highly purified exosomes that perform their original functions is desirable. In this review, we summarized advances in the purification, modification, and application of EVs as novel strategies to treat some diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-0004, Japan
| |
Collapse
|
11
|
Affiliation(s)
- Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA.,Molecular Medicine Department of Medicine, Stanford University, CA, USA
| |
Collapse
|