1
|
El-Sakkary N, Chen S, Arkin MR, Caffrey CR, Ribeiro P. Octopamine signaling in the metazoan pathogen Schistosoma mansoni: localization, small-molecule screening and opportunities for drug development. Dis Model Mech 2018; 11:dmm033563. [PMID: 29925529 PMCID: PMC6078403 DOI: 10.1242/dmm.033563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis is a tropical disease caused by a flatworm trematode parasite that infects over 200 million people worldwide. Treatment and control of the disease rely on just one drug, praziquantel. The possibility of drug resistance coupled with praziquantel's variable efficacy encourages the identification of new drugs and drug targets. Disruption of neuromuscular homeostasis in parasitic worms is a validated strategy for drug development. In schistosomes, however, much remains to be understood about the organization of the nervous system, its component neurotransmitters and potential for drug discovery. Using synapsin as a neuronal marker, we map the central and peripheral nervous systems in the Schistosoma mansoni adult and schistosomulum (post-infective larva). We discover the widespread presence of octopamine (OA), a tyrosine-derived and invertebrate-specific neurotransmitter involved in neuromuscular coordination. OA labeling facilitated the discovery of two pairs of ganglia in the brain of the adult schistosome, rather than the one pair thus far reported for this and other trematodes. In quantitative phenotypic assays, OA and the structurally related tyrosine-derived phenolamine and catecholamine neurotransmitters differentially modulated schistosomulum motility and length. Similarly, from a screen of 28 drug agonists and antagonists of tyrosine-derivative signaling, certain drugs that act on OA and dopamine receptors induced robust and sometimes complex concentration-dependent effects on schistosome motility and length; in some cases, these effects occurred at concentrations achievable in vivo The present data advance our knowledge of the organization of the nervous system in this globally important pathogen and identify a number of drugs that interfere with tyrosine-derivative signaling, one or more of which might provide the basis for a new chemotherapeutic approach to treat schistosomiasis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nelly El-Sakkary
- Institute of Parasitology, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste Anne de Bellevue, Quebec, Canada H9X-3V9
| | - Steven Chen
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste Anne de Bellevue, Quebec, Canada H9X-3V9
| |
Collapse
|
2
|
Solitary electromechanical pulses in lobster neurons. Biophys Chem 2016; 216:51-59. [DOI: 10.1016/j.bpc.2016.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/14/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
|
3
|
Badreddine AH, Jordan T, Bigio IJ. Real-time imaging of action potentials in nerves using changes in birefringence. BIOMEDICAL OPTICS EXPRESS 2016; 7:1966-73. [PMID: 27231635 PMCID: PMC4871095 DOI: 10.1364/boe.7.001966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 05/09/2023]
Abstract
Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time "movies". This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue.
Collapse
Affiliation(s)
- Ali H. Badreddine
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Tomas Jordan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Irving J. Bigio
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
- Boston University Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
4
|
Christie AE. Crustacean neuroendocrine systems and their signaling agents. Cell Tissue Res 2011; 345:41-67. [PMID: 21597913 DOI: 10.1007/s00441-011-1183-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/20/2011] [Indexed: 11/24/2022]
Abstract
Decapod crustaceans have long served as important models for the study of neuroendocrine signaling. For example, the process of neurosecretion was first formally demonstrated by using a member of this order. In this review, the major decapod neuroendocrine organs are described, as are their phylogenetic conservation and neurochemistry. In addition, recent advances in crustacean neurohormone discovery and tissue mapping are discussed, as are several recent advances in our understanding of hormonal control in this group of animals.
Collapse
Affiliation(s)
- Andrew E Christie
- Neuroscience Program, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| |
Collapse
|
5
|
Hess CR, McGuirl MM, Klinman JP. Mechanism of the insect enzyme, tyramine beta-monooxygenase, reveals differences from the mammalian enzyme, dopamine beta-monooxygenase. J Biol Chem 2007; 283:3042-3049. [PMID: 18032384 DOI: 10.1074/jbc.m705911200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyramine beta-monooxygenase (TbetaM) catalyzes the synthesis of the neurotransmitter, octopamine, in insects. Kinetic and isotope effect studies have been carried out to determine the kinetic mechanism of TbetaM for comparison with the homologous mammalian enzymes, dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase. A new and distinctive feature of TbetaM is very strong substrate inhibition that is dependent on the level of the co-substrate, O(2), and reductant as well as substrate deuteration. This has led to a model in which tyramine can bind to either the Cu(I) or Cu(II) forms of TbetaM, with substrate inhibition ameliorated at very high ascorbate levels. The rate of ascorbate reduction of the E-Cu(II) form of TbetaM is also reduced at high tyramine, leading us to propose the existence of a binding site for ascorbate to this class of enzymes. These findings may be relevant to the control of octopamine production in insect cells.
Collapse
Affiliation(s)
- Corinna R Hess
- Department of Chemistry , University of California, Berkeley, California 94720
| | - Michele M McGuirl
- Division of Biological Sciences and the Biomolecular Structure and Dynamics Program, University of Montana, Missoula, Montana 59812
| | - Judith P Klinman
- Department of Chemistry , University of California, Berkeley, California 94720; Molecular and Cell Biology, University of California, Berkeley, California 94720.
| |
Collapse
|
6
|
Santhoshi S, Sugumar V, Munuswamy N. Localization of Serotonin Neuropiles in the Brain and Thoracic Ganglia of the Indian White Shrimp,Fenneropenaeus indicus: Phylogenetic Comparisons and Implications for Arthropod Relationships. Microsc Res Tech 2007. [DOI: 10.1002/jemt.20468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Shuranova Z, . YB, . JS, . RC. Evidence for an Autonomic Nervous System in Decapod Crustaceans. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/ijzr.2006.242.283] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Gray EE, Small SN, McGuirl MA. Expression and characterization of recombinant tyramine beta-monooxygenase from Drosophila: a monomeric copper-containing hydroxylase. Protein Expr Purif 2005; 47:162-70. [PMID: 16376104 DOI: 10.1016/j.pep.2005.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 10/31/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
We report here the development of a robust recombinant expression system for Drosophila melanogaster tyramine beta-monooxygenase (TbetaM), the insect analog of mammalian dopamine beta-monooxygenase. Recombinant TbetaM is rapidly purified from the host cell media in three chromatographic steps. The expression system produces approximately 3-10 mg of highly purified, active protein per liter of culture. Recombinant TbetaM requires copper for activity and has a typical type 2 copper EPR spectrum. While TbetaM efficiently hydroxylates the aliphatic carbon of phenolic amines such as tyramine (the physiological substrate) and dopamine, phenethylamine is a poor substrate. TbetaM is most likely a monomer under physiological conditions, although under conditions of high pH and low ionic strength the dimeric form predominates. The lower oligomeric state of TbetaM may provide an advantage for structural studies over DbetaM, which exists as a mixture of dimer and tetramer.
Collapse
Affiliation(s)
- Erin E Gray
- Division of Biological Sciences and the Biomolecular Structure and Dynamics Program, The University of Montana/Missoula, MT 59812, USA
| | | | | |
Collapse
|
9
|
Fu Q, Kutz KK, Schmidt JJ, Hsu YWA, Messinger DI, Cain SD, de la Iglesia HO, Christie AE, Li L. Hormone complement of theCancer productus sinus gland and pericardial organ: An anatomical and mass spectrometric investigation. J Comp Neurol 2005; 493:607-26. [PMID: 16304631 DOI: 10.1002/cne.20773] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In crustaceans, circulating hormones influence many physiological processes. Two neuroendocrine organs, the sinus gland (SG) and the pericardial organ (PO), are the sources of many of these compounds. As a first step in determining the roles played by hemolymph-borne agents in the crab Cancer productus, we characterized the hormone complement of its SG and PO. We show via transmission electron microscopy that the nerve terminals making up each site possess dense-core and/or electron-lucent vesicles, suggesting diverse complements of bioactive molecules for both structures. By using immunohistochemistry, we show that small molecule transmitters, amines and peptides, are among the hormones present in these tissues, with many differentially distributed between the two sites (e.g., serotonin in the PO but not the SG). With several mass spectrometric (MS) methods, we identified many of the peptides responsible for the immunolabeling and surveyed the SG and PO for peptides for which no antibodies exist. By using MS, we characterized 39 known peptides [e.g., beta-pigment-dispersing hormone (beta-PDH), crustacean cardioactive peptide, and red pigment-concentrating hormone] and de novo sequenced 23 novel ones (e.g., a new beta-PDH isoform and the first B-type allatostatins identified from a non-insect species). Collectively, our results show that diverse and unique complements of hormones, including many previously unknown peptides, are present in the SG and PO of C. productus. Moreover, our study sets the stage for future biochemical and physiological studies of these molecules and ultimately the elucidation of the role(s) they play in hormonal control in C. productus.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706-1396, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Christie AE, Cain SD, Edwards JM, Clason TA, Cherny E, Lin M, Manhas AS, Sellereit KL, Cowan NG, Nold KA, Strassburg HP, Graubard K. The anterior cardiac plexus: an intrinsic neurosecretory site within the stomatogastric nervous system of the crab Cancer productus. ACTA ACUST UNITED AC 2004; 207:1163-82. [PMID: 14978058 DOI: 10.1242/jeb.00856] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stomatogastric nervous system (STNS) of decapod crustaceans is modulated by both locally released and circulating substances. In some species, including chelate lobsters and freshwater crayfish, the release zones for hormones are located both intrinsically to and at some distance from the STNS. In other crustaceans, including Brachyuran crabs, the existence of extrinsic sites is well documented. Little, however, is known about the presence of intrinsic neuroendocrine structures in these animals. Putative intrinsic sites have been identified within the STNS of several crab species, though ultrastructural confirmation that these structures are in fact neuroendocrine in nature remains lacking. Using a combination of anatomical techniques, we demonstrate the existence of a pair of neurosecretory sites within the STNS of the crab Cancer productus. These structures, which we have named the anterior cardiac plexi (ACPs), are located on the anterior cardiac nerves (acns), which overlie the cardiac sac region of the foregut. Each ACP starts several hundred micro m from the origin of the acn and extends distally for up to several mm. Transmission electron microscopy done on these structures shows that nerve terminals are present in the peripheral portion of each acn, just below a well defined epineurium. These terminals contain dense-core and, occasionally, electron-lucent vesicles. In many terminals, morphological correlates of hormone secretion are evident. Immunocytochemistry shows that the ACPs are immunopositive for FLRFamide-related peptide. All FLRFamide labeling in the ACPs originates from four axons, which descend to these sites through the superior oesophageal and stomatogastric nerves. Moreover, these FLRFamide-immunopositive axons are the sole source of innervation to the ACPs. Collectively, our results suggest that the STNS of C. productus is not only a potential target site for circulating hormones, but also serves as a neuroendocrine release center itself.
Collapse
Affiliation(s)
- Andrew E Christie
- Department of Biology, University of Washington, Box 351800, Seattle, Washington 98195-1800 USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li L, Kelley WP, Billimoria CP, Christie AE, Pulver SR, Sweedler JV, Marder E. Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J Neurochem 2003; 87:642-56. [PMID: 14535947 DOI: 10.1046/j.1471-4159.2003.02031.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The crustacean stomatogastric ganglion (STG) is modulated by both locally released neuroactive compounds and circulating hormones. This study presents mass spectrometric characterization of the complement of peptide hormones present in one of the major neurosecretory structures, the pericardial organs (POs), and the detection of neurohormones released from the POs. Direct peptide profiling of Cancer borealis PO tissues using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) revealed many previously identified peptides, including proctolin, red pigment concentrating hormone (RPCH), crustacean cardioactive peptide (CCAP), several orcokinins, and SDRNFLRFamide. This technique also detected corazonin, a well-known insect hormone, in the POs for the first time. However, most mass spectral peaks did not correspond to previously known peptides. To characterize and identify these novel peptides, we performed MALDI postsource decay (PSD) and electrospray ionization (ESI) MS/MS de novo sequencing of peptides fractionated from PO extracts. We characterized a truncated form of previously identified TNRNFLRFamide, NRNFLRFamide. In addition, we sequenced five other novel peptides sharing a common C-terminus of RYamide from the PO tissue extracts. High K+ depolarization of isolated POs released many peptides present in this tissue, including several of the novel peptides sequenced in the current study.
Collapse
Affiliation(s)
- Lingjun Li
- School of Pharmacy & Department of Chemistry, University of Wisconsin, Madison 53705-2222, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Pulver SR, Marder E. Neuromodulatory complement of the pericardial organs in the embryonic lobster, Homarus americanus. J Comp Neurol 2002; 451:79-90. [PMID: 12209843 DOI: 10.1002/cne.10331] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pericardial organs (POs) are a pair of neurosecretory organs that surround the crustacean heart and release neuromodulators into the hemolymph. In adult crustaceans, the POs are known to contain a wide array of peptide and amine modulators. However, little is known about the modulatory content of POs early in development. We characterize the morphology and modulatory content of pericardial organs in the embryonic lobster, Homarus americanus. The POs are well developed by midway through embryonic (E50) life and contain a wide array of neuromodulatory substances. Immunoreactivities to orcokinin, extended FLRFamide peptides, tyrosine hydroxylase, proctolin, allatostatin, serotonin, Cancer borealis tachykinin-related peptide, cholecystokinin, and crustacean cardioactive peptide are present in the POs by approximately midway through embryonic life. There are two classes of projection patterns to the POs. Immunoreactivities to orcokinin, extended FLRFamide peptides, and tyrosine hydroxylase project solely from the subesophageal ganglion (SEG), whereas the remaining modulators project from the SEG as well as from the thoracic ganglia. Double-labeling experiments with a subset of modulators did not reveal any colocalized peptides in the POs. These results suggest that the POs could be a major source of neuromodulators early in development.
Collapse
Affiliation(s)
- Stefan R Pulver
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
13
|
Antonsen BL, Paul DH. Serotonergic and octopaminergic systems in the squat lobster Munida quadrispina (Anomura, Galatheidae). J Comp Neurol 2001; 439:450-68. [PMID: 11596066 DOI: 10.1002/cne.1362] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Immunocytochemical mapping of serotonergic and octopaminergic neurons in the central nervous system of the squat lobster Munida quadrispina reveal approximately 120 serotonin-immunoreactive cell bodies (distributed throughout the neuromeres except in abdominal ganglion 5) and 48 octopamine-immunoreactive cell bodies (in brain and thoracic neuromeres but none in the circumesophageal or abdominal ganglia). Immunopositive neuropils for both amines are distributed in multiple areas in each neuromere and overlap extensively. Serotonergic and octopaminergic neurons have extensive bilateral projections in abdominal ganglia, whereas the majority of projections in thoracic and subesophageal ganglia are unilateral (contralateral to soma). This difference correlates with typical differences between abdominal and thoracic motor system coordination. Processes of immunoreactive cells for both amines form extensive, peripheral, neurosecretory-like structures. Serotonin seems to be released peripherally in more segments, and from more nerves per segment, than octopamine. M. quadrispina has fewer serotonergic and octopaminergic immunoreactive cells, in particular, fewer segmentally repeated cells, than other species studied to date. Nevertheless, the general organization of the aminergic systems is similar, and several aminergic cells have locations and morphologies that strongly suggest homology with identified aminergic cells in other crustaceans. Among these are segmentally repeated neurons that, in M. quadrispina, form serotonin-immunopositive tubular structures in the thoracic hemiganglia innervating pereiopods 1-3 that are unlike anything reported previously for any species. Comparisons of immunocytochemical maps within one species and between species exhibiting different behaviors provide insights into possible sites of action, functional differences between, and evolution of biogenic aminergic systems.
Collapse
Affiliation(s)
- B L Antonsen
- Biology Department, Georgia State University, Atlanta, Georgia, USA
| | | |
Collapse
|
14
|
Chang ES. Crustacean Hyperglycemic Hormone Family: Old Paradigms and New Perspectives. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.3.380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
15
|
Southard RC, Haggard J, Crider ME, Whiteheart SW, Cooper RL. Influence of serotonin on the kinetics of vesicular release. Brain Res 2000; 871:16-28. [PMID: 10882778 DOI: 10.1016/s0006-8993(00)02347-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mechanisms by which synaptic vesicles are transported and primed to fuse with the presynaptic membrane are important to all chemical synapses. Processes of signal transduction that affect vesicular dynamics, such as the second-messenger cascades induced by neuromodulators, are more readily addressed in assessable synaptic preparations of neuromuscular junctions in the crayfish. We assessed the effects of serotonin (5-HT) through the analysis of the latency jitter and the quantal parameters: n and p in the opener muscle of the walking leg in crayfish. There is an increase in the size of the postsynaptic currents due to more vesicles being released. Quantal analysis reveals a presynaptic mechanism by an increase in the number of vesicles being released. Latency measures show more events occur with a short latency in the presence of 5-HT. No effect on the frequency or size of spontaneous release was detected. Thus, the influence of 5-HT is presynaptic, leading to a release of more vesicles at a faster rate.
Collapse
Affiliation(s)
- R C Southard
- Department of Biology, 101 Morgan Building, University of Kentucky, 40506-0225, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
16
|
Listerman LR, Deskins J, Bradacs H, Cooper RL. Heart rate within male crayfish: social interactions and effects of 5-HT. Comp Biochem Physiol A Mol Integr Physiol 2000; 125:251-63. [PMID: 10825697 DOI: 10.1016/s1095-6433(99)00180-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Behaviors, such as those that establish dominant and subordinate social status, are thought to be driven by various neuromodulators and hormones. In crustaceans, the level of serotonin (5-HT) in the hemolymph is correlated with degree of aggressiveness. The crustacean heart is neurogenic and is modulated by neural secretion of 5-HT in the hemolymph, which bathes the cardiac tissue. We discuss and present the results of measuring heart rate (HR) of crayfish during interactions, as an indication of their state of excitability. HR is the result of multiple influences: a cocktail of hormones and modulators. HR was monitored during the periods in which crayfish established aggressive and submissive social status, during sham injections, and following injections of various doses of 5-HT. Crayfish, during an interaction to establish social status, can increase HR. Both the aggressive and submissive crayfish can dampen their HR within seconds during a pause in the interaction, while still posturing in an aggressive or submissive state. Injections of 5-HT to obtain systemic levels of approximately 100 nM-10 microM increase HR substantially for hours. This suggests that aggressive interactions and the establishment of a dominant posture may not be related to large increases in the free concentrations of 5-HT within the circulating hemolymph, since a sustained HR is not observed in aggressive animals. Instead, the results may demonstrate that inhibitory cardiac regulation is present in the aggressors during interactions and that a regulator is possibly 5-HT.
Collapse
Affiliation(s)
- L R Listerman
- Thomas Hunt Morgan School of Biological Sciences and Center for Ecology Evolution and Behavior, University of Kentucky, Lexington, KY 40506-0225, USA
| | | | | | | |
Collapse
|
17
|
Chang ES, Chang SA, Beltz BS, Kravitz EA. Crustacean hyperglycemic hormone in the lobster nervous system: Localization and release from cells in the subesophageal ganglion and thoracic second roots. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991108)414:1<50::aid-cne4>3.0.co;2-q] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Cournil I, Casasnovas B, Helluy SM, Beltz BS. Dopamine in the lobster Homarus gammarus: II. Dopamine-immunoreactive neurons and development of the nervous system. J Comp Neurol 1995; 362:1-16. [PMID: 8576424 DOI: 10.1002/cne.903620102] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dopamine-immunoreactive neurons were revealed in lobster embryos, larvae, and postlarvae, and staining patterns were compared to neuronal labeling in the juvenile lobster nervous system (Cournil et al. [1994] J. Comp. Neurol. 344:455-469). Dopamine immunoreactivity is first detected by midembryonic life in 35-40 neuronal somata located anteriorly in brain and subesophageal ganglion. When the lobsters assume a benthic life during the first postlarval stage, an average of 58 cell bodies are labeled. The acquisition of dopamine in lobster neurons is a protracted event spanning embryonic, larval, and postlarval life and finally reaching the full complement of roughly 100 neurons in juvenile stages. Some of the dopaminergic neurons previously identified in the mature nervous system, such as the paired Br cells, L cells, and mandibular cells, are labeled in embryos and persist throughout development. In contrast, other neurons stain transiently for dopamine during the developmental period, but, by the adult stage, these neurons are no longer immunoreactive. Such transiently labeled neurons project to the foregut, the thoracic dorsal muscles, the neurohormonal pericardial plexus, and the pericardial pouches. It is proposed that these neurons are alive and functioning in adult lobster but that dopamine levels have been abolished, providing that neurotransmitter status is a dynamic, changing process.
Collapse
Affiliation(s)
- I Cournil
- Laboratoire de Neurobiologie et Physiologie Comparées, CNRS, Arcachon, France
| | | | | | | |
Collapse
|
19
|
Monastirioti M, Gorczyca M, Rapus J, Eckert M, White K, Budnik V. Octopamine immunoreactivity in the fruit fly Drosophila melanogaster. J Comp Neurol 1995; 356:275-87. [PMID: 7629319 PMCID: PMC4664080 DOI: 10.1002/cne.903560210] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Octopamine has been proposed as a neurotransmitter/modulator/hormone serving a variety of physiological functions in invertebrates. We have initiated a study of octopamine in the fruit fly Drosophila melanogaster, which provides an excellent system for genetic and molecular analysis of neuroactive molecules. As a first step, the distribution of octopamine immunoreactivity was studied by means of an octopamine-specific antiserum. We focused on the central nervous system (CNS) and on the innervation of the larval body wall muscles. The larval octopamine neuronal pattern was composed of prominent neurons along the midline of the ventral ganglion, whereas brain lobes were devoid of immunoreactive somata. However, intense immunoreactive neuropil was observed both in the ventral ganglion and in the brain lobes. Some of the immunoreactive neurons sent peripheral fibers that innervated most of the muscles of the larval body wall. Octopamine immunoreactivity was observed at neuromuscular junctions in all larval stages, being present in a well-defined subset of synaptic boutons, type II. Octopamine immunoreactivity in the adult CNS revealed many additional neurons compared to the larval CNS, indicating that at least a subset of adult octopamine neurons may differentiate during metamorphosis. Major octopamine-immunoreactive neuronal clusters and neuronal processes were observed in the subesophageal ganglion, deutocerebrum, and dorsal protocerebrum, and intense neuropil staining was detected primarily in the optic lobes and in the central complex.
Collapse
Affiliation(s)
- M Monastirioti
- Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | | | | | | | |
Collapse
|
20
|
Chrachri A, Neil D, Mulloney B. State-dependent responses of two motor systems in the crayfish, Pacifastacus leniusculus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1994; 175:371-80. [PMID: 7993501 DOI: 10.1007/bf00192996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The expression of both swimmeret and postural motor patterns in crayfish (Pacifastacus leniusculus) were affected by stimulation of a second root of a thoracic ganglion. The response of the swimmeret system depended on the state of the postural system. In most cases, the response of the swimmeret system outlasted the stimulus. Stimulation of a thoracic second root also elicited coordinated responses from the postural system, that outlasted the stimulus. In different preparations, either the flexor excitor motor neurones or the extensor excitor motor neurones were excited by this stimulation. In every case, excitation of one set of motor neurones was accompanied by inhibition of that group's functional antagonists. This stimulation seemed to coordinate the activity of both systems; when stimulation inhibited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were excited. When stimulation excited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were inhibited. Two classes of interneurones that responded to stimulation of a thoracic second root were encountered in the first abdominal ganglion. These interneurones could be the pathway that coordinates the response of the postural and swimmeret systems to stimulation of a thoracic second root.
Collapse
Affiliation(s)
- A Chrachri
- Marine Biological Association of the UK, Laboratory Citadel Hill, Plymouth
| | | | | |
Collapse
|
21
|
Worden MK, Rahamimoff R, Kravitz EA. A voltage-sensitive cation channel present in clusters in lobster skeletal muscle membrane. J Membr Biol 1994; 141:167-75. [PMID: 7528802 DOI: 10.1007/bf00238250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The single channel properties of a voltage-sensitive cation channel are described in a study of ion channel activity in enzymatically induced blebs of lobster skeletal muscle membrane. This cation channel, one of several that are spontaneously active in excised patches from bleb membrane, can be distinguished from other channels on the basis of its large single channel conductance (293 pS), voltage-sensitive gating properties, the presence of a subconductance state of the fully open channel, and a weak selectivity for K > Na. At hyperpolarizing voltages, this channel displays flickering or bursting behavior, and a single state of the fully open channel is observed. At depolarizing voltages, the mean channel open time increases and a second longer-lived open state is observed. The voltage dependence of the mean channel open time and the linear i-V relation of this channel predict that the macroscopic current carried through this cation channel would be outwardly rectifying. Channels of this type are infrequently observed in this preparation, but when present in the patch are often present in multiple copies. We describe a statistical test for examining the clustering of ion channels in excised patches of membrane. The result of this test shows that the cation channels appear in clusters in the blebs.
Collapse
Affiliation(s)
- M K Worden
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | |
Collapse
|
22
|
Cournil I, Helluy SM, Beltz BS. Dopamine in the lobster Homarus gammarus. I. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the nervous system of the juvenile. J Comp Neurol 1994; 344:455-69. [PMID: 7914897 DOI: 10.1002/cne.903440308] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
As a catecholamine, dopamine belongs to a class of molecules that have multiple transmitter and hormonal functions in vertebrate and invertebrate nervous systems. However, in the lobster, where many central neurons have been identified and the peripheral innervation pattern is well known, the distribution of dopamine-containing neurons has not been examined in detail. Therefore, immunocytochemical methods were used to identify neurons likely to contain dopamine and tyrosine hydroxylase in the central nervous system of the juvenile lobster Homarus gammarus. Approximately 100 neuronal somata stain for the catecholamine and/or its synthetic enzyme in the brain and ventral nerve cord. The systems of neurons labeled with dopamine and tyrosine hydroxylase antibodies have the following characteristics: 1) the two systems are nearly identical; 2) every segmental ganglion contains at least one pair of labeled neurons; 3) the positions and numbers of cell bodies labeled with each antiserum are similar in the various segmental ganglia; 4) six labeled neurons are anatomically identified; two interneurons from the brain project within the ventral cord to reach the last abdominal ganglion, two neurons from the commissural ganglia are presumably neurosecretory neurons, and two anterior unpaired medial abdominal neurons project to the hindgut muscles; and 5) no cell bodies are labeled in the stomatogastric ganglion, but fibers and terminals in the neuropil are stained. The remarkably small numbers of labeled neurons and the presence of very large labeled somata with far-reaching projections are distinctive features consistent with other modulatory aminergic systems in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- I Cournil
- Laboratoire de Neurobiologie et Physiologie Comparées, CNRS et Université de Bordeaux I, Arcachon, France
| | | | | |
Collapse
|
23
|
Seyfarth EA, Hammer K, Spörhase-Eichmann U, Hörner M, Vullings HG. Octopamine immunoreactive neurons in the fused central nervous system of spiders. Brain Res 1993; 611:197-206. [PMID: 8334514 DOI: 10.1016/0006-8993(93)90503-f] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using antisera directed against octopamine (OA), we identified and mapped octopamine-immunoreactive (OA-ir) neurons and their projections in the fused, central ganglion complex of wandering spiders, Cupiennius salei. Labeled cell bodies are concentrated in the subesophageal ganglion complex (SEG) where they are arranged serially in ventral, midline clusters. OA-ir processes from these cells project dorsally. Some neurites end close to segmental septa; others merge into longitudinal tracts connecting the neuromeres. Labeled collaterals leaving these tracts project into peripheral neuropil. In the brain, OA-ir somata were found only in the two cheliceral hemiganglia, where a cluster of 4-5 relatively large cells (soma diameter 25 microns) lies next to a group of small somata (diameter < 10 microns). Neurites originating from the large somata descend into the SEG and merge into longitudinal tracts. The central body of the brain contains profuse ascending projections. Except for fine varicosities that are confined to the roots of nerves, we found no OA-ir fibers leaving the central nervous system (CNS). Within the CNS, however, OA-ir varicosities are concentrated in neuropil and near hemolymph spaces. This distribution suggests that OA acts as a neurotransmitter and/or local neuromodulator at central synapses, while it is also released into the hemolymph and presumably acts hormonally at peripheral sites. Using high-pressure liquid chromatography measurements, the hemolymph was in fact found to contain 12-40 nM of free octopamine.
Collapse
Affiliation(s)
- E A Seyfarth
- Zoologisches Institut, J.W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
24
|
Schneider H, Trimmer BA, Rapus J, Eckert M, Valentine DE, Kravitz EA. Mapping of octopamine-immunoreactive neurons in the central nervous system of the lobster. J Comp Neurol 1993; 329:129-42. [PMID: 8454723 DOI: 10.1002/cne.903290109] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been suggested that serotonin and octopamine serve important roles in behavioral regulation in lobsters. In this paper the locations of octopamine-immunoreactive neurons were mapped in wholemount preparations of the ventral nerve cord of 4th stage lobster (Homarus americanus) larvae. Approximately 86 neurons were found, distributed as follows: brain, 12; circumesophageal ganglia, 2; subesophageal ganglion, 38; thoracic ganglia, 6 each; and 4th and 5th abdominal ganglia, 2 each. All the octopamine-immunoreactive neurons are paired and located along the midline. Of the 86 neurons, 28 were identified as neurosecretory, and 26 as intersegmental ascending thoracic, ascending abdominal, or descending interneurons. The neurosecretory system is arranged segmentally and located entirely within the thoracic and subesophageal neuromeres with extensive terminal fields of endings along 2nd thoracic and subesophageal nerve roots. This set of neurons shares the features of central and peripheral endings with 2 pairs of large serotonin-containing neurosecretory neurons found in the fifth thoracic and first abdominal ganglia. The intersegmental neurons include: (1) two cells in the brain and 2 pairs of cells in the 3rd and 4th neuromeres of the subesophageal ganglion, which project to the 6th abdominal ganglion; (2) a segmentally organized group of ascending interneurons found in the subesophageal and in all thoracic ganglia; and (3) pairs of ascending interneurons found in the 4th and 5th ganglia in the abdominal nerve cord. By means of a biochemical assay, the cell bodies of octopamine-immunoreactive neurosecretory cells in the thoracic segment of the nerve cord were found to contain 40-100 fmol of octopamine, while control neurons had none.
Collapse
Affiliation(s)
- H Schneider
- Department of Neurobiology, Harvard Medical School, Boston 02115
| | | | | | | | | | | |
Collapse
|
25
|
Howard DR, Talbot P. In vitro contraction of lobster (Homarus) ovarian muscle: Methods for assaying contraction and effects of biogenic amines. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/jez.1402630403] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Díaz-Miranda L, de Motta GE, García-Arrarás JE. Monoamines and neuropeptides as transmitters in the sedentary polychaete Sabellastarte magnifica: actions on the longitudinal muscle of the body wall. ACTA ACUST UNITED AC 1992; 263:54-67. [PMID: 1353783 DOI: 10.1002/jez.1402630107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pharmacological studies on the body wall musculature of the sedentary polychaete Sabellastarte magnifica show a potential neurotransmitter role for monoamines and neuropeptides in this organism. All catecholamines induced contraction of longitudinal muscle strips, while serotonin and the neuropeptides FMRFamide and substance P caused a relaxation of both resting and active muscle. In addition, we demonstrate catecholaminergic and serotonergic pathways in the nervous system of this sabellid, using immunohistochemistry and catecholamine-induced fluorescence. The presence of neuropeptide-containing fibers in the nervous system of this polychaete has been previously reported. Together these results suggest that catecholamines act as excitatory transmitters on the longitudinal muscle cells of the body wall of S. magnifica, while serotonin and FMRFamide, and possible substance P, are inhibitory transmitters. The possibility of coexistence of serotonin and FMRFamide within the same neuronal cell bodies and fibers of this polychaete is also explored.
Collapse
Affiliation(s)
- L Díaz-Miranda
- Department of Biology, University of Puerto Rico, Río Piedras 00931
| | | | | |
Collapse
|
27
|
Hewes RS, Truman JW. The roles of central and peripheral eclosion hormone release in the control of ecdysis behavior in Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1991; 168:697-707. [PMID: 1920164 DOI: 10.1007/bf00224359] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. Ecdysis, a behavior by which insects shed the old cuticle at the culmination of each molt, is triggered by a unique peptide hormone, eclosion hormone (EH). In pupal Manduca sexta, EH is released into the hemolymph just prior to ecdysis, and circulating hormone is sufficient to elicit this behavior. 2. Removal of the proctodeal nerves in prepupal animals eliminated the appearance of blood-borne EH, but ecdysis behavior occurred on schedule. Therefore, circulating EH is not necessary for the triggering of ecdysis. 3. In contrast, a set of dermal glands failed to show their expected bout of secretion after proctodeal nerve removal. Injection of exogenous EH rescued this secretion. Thus, circulating EH appears necessary for action on peripheral but not central targets. 4. A major reduction in EH immunostaining is seen in the proctodeal nerves just preceding ecdysis; this coincides with a greater than 90% reduction in extractable EH from this structure and the appearance of circulating EH. A similar, concomitant reduction was seen in central EH cell processes, suggesting release of peptide within the CNS. 5. Antidromic stimulation of the proctodeal nerve stumps following proctodeal nerve removal triggered precocious ecdysis. This result further supports the conclusion that centrally released EH is sufficient to trigger the motor program.
Collapse
Affiliation(s)
- R S Hewes
- Department of Zoology, University of Washington, Seattle 98195
| | | |
Collapse
|
28
|
Walker RJ, Holden-Dye L. Evolutionary aspects of transmitter molecules, their receptors and channels. Parasitology 1991; 102 Suppl:S7-29. [PMID: 1711668 DOI: 10.1017/s0031182000073261] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Classical transmitters are present in all phyla that have been studied; however, our detailed understanding of the process of neurotransmission in these phyla is patchy and has centred on those neurotransmitter receptor mechanisms which are amenable to study with the tools available at the time, for example, high-affinity ligands, tissues with high density of receptor protein, suitable electrophysiological recording systems. Studies also clearly show that many neurones exhibit co-localization of classical transmitters and neuropeptides. However, the physiological implications of this co-localization have yet to be elucidated in the vast majority of examples. The application of molecular biological techniques to the study of neurotransmitter receptors (to date mainly in vertebrates) is contributing to our understanding of the evolution of these proteins. Striking similarities in the structure of ligand-gated receptors have been revealed. Thus, although ligand-gated receptors differ markedly in terms of the endogenous ligands they recognize and the ion channels that they gate, the structural similarities suggest a strong evolutionary relationship. Pharmacological differences also exist between receptors that recognize the same neurotransmitter but in different phyla, and this may also be exploited to further the understanding of structure-function relationships for receptors. Thus, for instance, some invertebrate GABA receptors are similar to mammalian GABAA receptors but lack a modulatory site operated by benzodiazepines. Knowledge of the structure and subunit composition of these receptors and comparison with those that have already been elucidated for the mammalian nervous system might indicate the functional importance of certain amino acid residues or receptor subunits. These differences could also be exploited in the development of new agents to control agrochemical pests and parasites of medical importance. The study of the pharmacology of receptor proteins for neurotransmitters in invertebrates, together with the application of biochemical and molecular biological techniques to elucidate the structure of these molecules, is now gathering momentum. For certain receptors, e.g. the nicotinic receptor, we can expect to have fundamental information on the function of this receptor at the molecular level in both invertebrates and vertebrates in the near future.
Collapse
Affiliation(s)
- R J Walker
- Department of Physiology and Pharmacology, School of Biological Sciences, University of Southampton
| | | |
Collapse
|
29
|
Murphy BF, Larimer JL. The effect of various neurotransmitters and some of their agonists and antagonists on the crayfish abdominal positioning system. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1991; 100:687-98. [PMID: 1687570 DOI: 10.1016/0742-8413(91)90062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Crayfish abdominal nerve cords were perfused with selected transmitters or their agonists or antagonists. Motor activity underlying abdominal positioning behavior was monitored. 2. All the neurotransmitters except glycine had a measurable effect on this system. 3. Acetylcholine and its agonists were slightly stimulatory. Both muscarinic and nicotinic receptors were indicated. 4. GABA was weakly inhibitory. Picrotoxin was strongly stimulatory, perhaps as a result of its known ability to block GABA and inhibitory acetylcholine receptors. 5. Histamine was strongly inhibitory. Both H1 and H2 receptors were indicated. 6. Glutamate was found to be slightly inhibitory while its agonist, NMDA, showed no effect. 7. Finally, L-Dopa was stimulatory, but only at a high concentration.
Collapse
Affiliation(s)
- B F Murphy
- Department of Zoology, University of Texas, Austin 78712
| | | |
Collapse
|
30
|
Walker RJ, Holden-Dye L. Commentary on the evolution of transmitters, receptors and ion channels in invertebrates. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1989; 93:25-39. [PMID: 2472917 DOI: 10.1016/0300-9629(89)90188-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- R J Walker
- Department of Neurophysiology, University of Southampton, UK
| | | |
Collapse
|
31
|
Fadool DA, Cobb SJ, Kass-Simon G, Brown PR. Liquid chromatographic procedures for the analysis of compounds in the serotonergic and octopamine pathways of lobster hemolymph. J Chromatogr A 1988; 452:491-501. [PMID: 3149648 DOI: 10.1016/s0021-9673(01)81472-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
High-performance liquid chromatography, with serial electrochemical and ultraviolet detectors, was used with a reduced activity catecholamine C18 column to separate and quantify compounds important in the serotonergic and octopamine pathways in lobster hemolymph. The chromatographic mobile phase was composed of potassium dihydrogenphosphate buffer, trichloroacetic acid, sodium dodecyl sulfate, the sodium salt of ethylenedinitrilotetraacetic acid and the organic solvents, acetonitrile and methanol. The compounds serotonin, 5-hydroxyindoleacetic acid, tryptophan, 5-hydroxytryptophan, tryptamine, melatonin, octopamine and tyrosine were well resolved within 13 min. Good electrode maintenance, the use of a silica gel precolumn and careful sample preparation were necessary to give a stable baseline, high resolution of these compounds and reproducibility of retention times and peak heights. The electrochemical detector extended the range of detection to the picogram level. Because of the instability of the solutes and of the chromatographic baseline, sample preparation procedures were investigated. Deproteinization with ammonium sulfate gave the best recovery of the compounds of interest and the most stable baseline with the electrochemical detector. Peaks in the hemolymph were characterized by addition of standards, dual detection (electrochemical and ultraviolet) and the enzyme peak shift technique. With this methodology, important endogenous neurohormones in the hemolymph of lobsters can be quantitatively determined with respect to the molt cycle.
Collapse
Affiliation(s)
- D A Fadool
- Department of Zoology, University of Rhode Island, Kingston 02881
| | | | | | | |
Collapse
|
32
|
Juorio AV, Sloley BD. The presence of tyramine and related monoamines in the nerve cord and some other tissues of the lobster, Homarus americanus. Brain Res 1988; 444:380-2. [PMID: 3359304 DOI: 10.1016/0006-8993(88)90951-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This report shows the existence of endogenous p-tyramine in the nerve cord and some organs of the lobster. Their concentrations are lower than those of dopamine or 5-hydroxytryptamine. The nerve cord levels of m-tyramine, beta-phenylethylamine and tryptamine are much lower than those of the phenolic or catecholic amines. The finding that the administration of an aromatic-L-amino acid decarboxylase inhibitor leads to a decrease of p-tyramine gives further evidence that this amine is synthesized from p-tyrosine, which is also found in high concentrations in the lobster nerve cord. The widespread distribution of p-tyramine in the nervous system and peripheral tissues of the lobster suggests that this amine may have additional roles rather than functioning only as a precursor of p-octopamine.
Collapse
Affiliation(s)
- A V Juorio
- Neuropsychiatric Research Unit, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
33
|
Myers CM, Evans PD. Peripheral neurosecretory cells on the thoracic median nerves of the locust,Schistocerca gregaria. J Morphol 1988; 195:45-58. [DOI: 10.1002/jmor.1051950105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Goy MF, Mandelbrot DA, York CM. Identification and characterization of a polypeptide from a lobster neurosecretory gland that induces cyclic GMP accumulation in lobster neuromuscular preparations. J Neurochem 1987; 48:954-66. [PMID: 3027264 DOI: 10.1111/j.1471-4159.1987.tb05610.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several observations suggest that cyclic GMP might regulate some aspect of neuromuscular physiology or metabolism in the lobster. Homarus americanus: lobster muscle is one of the richest known sources of cyclic GMP-dependent protein kinase, the preparation contains several phosphoproteins whose state of phosphorylation is affected by cyclic GMP more effectively than by cyclic AMP, and guanylate cyclase and phosphodiesterase are active in this tissue. However, no factor has yet been identified that alters lobster muscle cyclic GMP levels. We have screened extracts of neural and neurosecretory structures for the capacity to promote cyclic GMP accumulation in isolated exoskeletal muscles. Extracts of the sinus gland (a neurohemal organ found in the eyestalk) contain a factor that induces up to 100-fold increases in muscle cyclic GMP content, whereas extracts of other tissues are ineffective. This factor can also act on targets other than muscle, with hepatopancreas, testis, and neuronal tissue showing the largest responses. The sinus gland factor does not appear to affect cyclic GMP metabolism by depolarizing the preparation or by mobilizing extracellular Ca2+. The effect on cyclic GMP levels is dose-dependent and linear with time. Biological activity is destroyed by boiling and by 90% ethanol. It is also destroyed by trypsin, chymotrypsin, or pronase, which suggests that the factor is a protein or peptide. Both gel filtration chromatography and experiments using dialysis tubing with different molecular weight exclusion limits indicate that the factor has an apparent molecular weight of 5,000-12,000 daltons. A preliminary fractionation scheme, based on gel filtration, ion-exchange, and reverse-phase chromatography, gives greater than 1,300-fold purification. Our long-range goal is to purify this factor to homogeneity, compare it to other peptide hormones, and use it as a probe to evaluate the role of cyclic GMP at the neuromuscular junction.
Collapse
|
35
|
Maitland DP, Heitler WJ. A Motorneurone Cell Body Located Either Dorsally or Ventrally within a Crustacean Abdominal Ganglion. ACTA ZOOL-STOCKHOLM 1987. [DOI: 10.1111/j.1463-6395.1987.tb00872.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Siwicki KK, Bishop CA. Mapping of proctolinlike immunoreactivity in the nervous systems of lobster and crayfish. J Comp Neurol 1986; 243:435-53. [PMID: 3512628 DOI: 10.1002/cne.902430402] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Whole-mount immunocytochemical techniques have been used to map candidate proctolin-containing cells in the central nervous systems of the lobster, Homarus americanus, and the crayfish, Procambarus clarkii. Proctolinlike immunoreactivity was detected in cell bodies and neuropil regions in all central ganglia, and immunoreactive axons were detected in most interganglionic connectives and nerve roots. Cell body staining was confined to fewer than 2% of all cells. Immunoreactive neurons include motoneurons, sensory neurons, neurosecretory cells, and interneurons. Colocalization of the proctolinlike antigen with other neurotransmitters was indicated in a number of cases. Many aspects of the distribution of immunoreactivity were similar in lobster and crayfish; however, staining differences were detected in a number of identified neurons and neural groups, including neurons that innervate the pericardial organs and hindgut motoneurons. Further studies of such neurons might provide interesting clues about the physiological functions of proctolin and the evolution of peptide transmission.
Collapse
|
37
|
Edwards SC, Pierce SK. Octopamine potentiates intracellular Na+ and Cl- reductions during cell volume regulation in Limulus exposed to hypoosmotic stress. J Comp Physiol B 1986; 156:481-9. [PMID: 3090114 DOI: 10.1007/bf00691033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The biogenic amine octopamine (OCT) appears to be involved in cell volume regulation in the horseshoe crab, Limulus polyphemus, during hypoosmotic stress. OCT is present in relatively large amounts (160 nmoles/g dry wt) in the cardiac ganglion. Furthermore, OCT is released from the isolated ganglion during exposure to hypoosmotic media. This release is reflected in the elevation of blood OCT concentrations from basal levels of 4 X 10(-9) M reaching 1.2 X 10(-8) M within 72 h of exposure of animals to hypoosmotic media. The circulating OCT potentiates the hypoosmotically-induced reductions of intracellular Na+ and Cl- by a ouabain-sensitive mechanism which complements the main ion regulating (ouabain-insensitive) mechanisms utilized during cell volume recovery.
Collapse
|
38
|
Mercier AJ, Wilkens JL. Modulatory effects of proctolin on a crab ventilatory muscle. JOURNAL OF NEUROBIOLOGY 1985; 16:401-8. [PMID: 2864391 DOI: 10.1002/neu.480160507] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proctolin enhances nerve-evoked, phasic contractions of a selected respiratory muscle of the shore crab, Carcinus maenas, but has no effect on muscle tonus. Proctolin also increases the work and power output of this muscle. These effects are functionally appropriate in view of previous reports that proctolin stimulates the ventilatory rhythm. They also suggest that proctolin exerts coordinated modulatory control at the central and peripheral levels of the gill ventilatory system. In contrast, serotonin, dopamine and octopamine have no effect on this muscle.
Collapse
|
39
|
Nässel DR, Elekes K. Serotonergic terminals in the neural sheath of the blowfly nervous system: electron microscopical immunocytochemistry and 5,7-dihydroxytryptamine labelling. Neuroscience 1985; 15:293-307. [PMID: 3892362 DOI: 10.1016/0306-4522(85)90136-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
With serotonin immunocytochemistry we have demonstrated an extensive plexus of immunoreactive varicose fibres in the neural sheath of the nervous system of the blowfly, Calliphora. These fibres are located in the neural sheath of the following regions: the maxillary-labial and labrofrontal nerves of the cerebral ganglia, the cervical connective, the dorsal surface of the thoracicoabdominal ganglia, two pairs of prothoracic nerves and the median abdominal nerve. We identified the serotonin-immunoreactive neural processes in the electron microscope by means of the peroxidase-antiperoxidase method. Immunoreactivity was seen in large granular vesicles (ca 100 nm), on membranes of smaller (ca 60 nm) and larger (ca 100 nm) agranular vesicles, along the inner surface of the axolemma, along neurotubules and outer membranes of mitochondria. By conventional electron microscopy we found numerous varicose neural processes in the neural sheath of some of the above regions. These varicosities are of at least two types. One type corresponds to the serotonin-immunoreactive profiles. A second type contains large granular vesicles (ca 200 nm) of variable electron density. 5,7-Dihydroxytryptamine injected into the head capsule labelled varicosities in the neural sheath, corresponding to the ones identified with serotonin immunocytochemistry. The electron-dense labelling was seen in flattened vesicles within these varicosities. We propose that the serotonin-immunoreactive fibers in the neural sheath constitute neurohemal regions for the release of serotonin into the circulation. The finding of another morphological type of varicose fibers in the neural sheath suggests the presence of further putative neurohormones in these regions.
Collapse
|
40
|
|
41
|
Amine modulation of extension command element-evoked motor activity in the lobster abdomen. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1985. [DOI: 10.1007/bf00610838] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
|
43
|
Chamberlain SC, Battelle BA, Calman BG. Subcellular localization of neutral red staining in Limulus ventral photoreceptors. JOURNAL OF NEUROBIOLOGY 1984; 15:79-87. [PMID: 6325595 DOI: 10.1002/neu.480150202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Limulus ventral photoreceptors are vitally stained by neutral red. In other systems such staining has been correlated with the presence of monoamines or neuropeptides. The stained cellular components in ventral photoreceptors are clusters of small ovoids which have been identified as residual bodies. These structures are unlikely candidates for monoamine or neuropeptide synthesis or storage sites, but may be part of the cyclic synthesis and degradation of photosensitive membrane. While vital staining with neutral red is a particularly useful method for identifying certain classes of neurons in vivo, in the case of ventral photoreceptors, the association of the vital staining property with the presence of a particular class of neurotransmitter candidates has proven difficult. Neutral red is useful, however, for visualizing the segmentation of ventral photoreceptors in vivo.
Collapse
|
44
|
Laxmyr L. Biogenic amines and DOPA in the central nervous system of decapod crustaceans. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1984; 77:139-43. [PMID: 6141868 DOI: 10.1016/0742-8413(84)90142-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The biogenic amines serotonin (5-HT), dopamine (DA), noradrenaline (NA), octopamine (OA) and the amino acid dihydroxyphenylalanine (DOPA) were identified and measured in the brain and the eyestalks of five decapod crustacean species using high pressure liquid chromatography (HPLC) with electrochemical detection. The amounts fall within 0.01-1.1 micrograms/g or 0.17-60 pmoles, and OA is the dominating amine in most species. THe DOPA levels in many of the species varied considerably between different measurements. It is concluded that the biogenic amines and DOPA are ubiquitous in the central nervous system of decapod crustaceans and the presence of NA and DOPA increases the number of presumed neurotransmitter/modulator candidates in the crustacean nervous system.
Collapse
|
45
|
Davenport AP, Evans PD. Stress-induced changes in the octopamine levels of insect haemolymph. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0020-1790(84)90021-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Abstract
Octopamine, a biogenic amine, is synthesized and stored within centrifugal (efferent) fibers that project from the brain to the lateral and ventral eyes of the horseshoe crab, Limulus polyphemus. The experiments described here show that depolarization of Limulus lateral and ventral eyes, produced by elevating the concentration of extracellular K+, causes the selective release of newly synthesized octopamine from centrifugal fibers in a manner that requires the influx of extracellular Ca2+. Conjugates of octopamine and tyramine that are also stored within centrifugal fibers are not released in response to K+-induced depolarization. These findings add further support to the hypothesis that octopamine is a neurotransmitter synthesized by and released from centrifugal fibers in Limulus eyes. This amine may be responsible for many of the alterations in lateral eye structure and function that are mediated by centrifugal innervation.
Collapse
|
47
|
Jones KA, Page CH. Differential backfilling of interneuron populations based upon axon projections in a lobster abdominal ganglion. JOURNAL OF NEUROBIOLOGY 1983; 14:441-56. [PMID: 6196443 DOI: 10.1002/neu.480140604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intersegmental interneurons in the lobster second abdominal ganglion were differentially stained by simultaneously backfilling their axons in the anterior and posterior hemiconnectives with nickel and cobalt ions. When precipitated with rubeanic acid the nickel and cobalt formed different colors in the cell bodies depending upon the location of the axon(s) in the connectives. In the most completely stained preparations 55 ascending, 56 descending, and 25 bidirectional interneurons were observed. Soma diameters ranged from 15-120 micron. One of the somata was located in the connective. The differential staining technique has advantages over conventional backfilling techniques for examining the morphological relationships of populations of neurons having different axon projections.
Collapse
|
48
|
Kirk MD, Prugh JI, Glantz RM. Retinal illumination produces synaptic inhibition of a neurosecretory organ in the crayfish, Pacifastacus leniusculus (Dana). JOURNAL OF NEUROBIOLOGY 1983; 14:473-80. [PMID: 6644288 DOI: 10.1002/neu.480140608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have identified a cluster of neurosecretory cells in the crayfish eyestalk that possess dendrites in the second optic neuropil (Medulla) and project axons to the first optic neuropil (Lamina). Illumination of the ipsilateral retina produces a synaptic inhibition of these cells that is mimicked by iontophoresis of gamma-aminobutyric acid within the medullary neuropil. The neurosecretory nature of the cells, the efferent projection of their axons, and the strong inhibition of their spiking activity upon retinal illumination suggest that they may be involved in the feedback control of dark adaptation and/or circadian changes in visual sensitivity.
Collapse
|
49
|
Bishop CA, O'Shea M. Serotonin immunoreactive neurons in the central nervous system of an insect (Periplaneta americana). JOURNAL OF NEUROBIOLOGY 1983; 14:251-69. [PMID: 6350536 DOI: 10.1002/neu.480140402] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Serotonin-like immunoreactivity was mapped in the central nervous system (CNS) of the cockroach, Periplaneta americana. Immunoreactive staining occurred in every ganglion of the CNS. The largest numbers of immunoreactive somata were detected in the optic lobes and the brain, and lowest numbers in the first and second thoracic ganglia. Dense stained fibers, ramifications, and varicosities were found in all ganglia, and numerous axon like processes occurred in all interganglionic connectives. Immunoreactive processes were not, however, detected in most of the peripherally projecting nerve roots. Processes were found only in roots of the suboesophageal ganglion and the tritocerebral lobes of the brain. A comparison of the map for serotonin immunoreactivity with one generated for the pentapeptide transmitter proctolin suggests that the two systems overlap only in the suboesophageal ganglion and the tritocerebrum. The amine and peptide may co-occur in neurons in these regions. The serotonin immunoreactive system appeared significantly different from the octopaminergic system of the ventral nerve cord. Seventy-two potentially identifiable immunoreactive cells were located in the cockroach CNS. Some of these may be suitable for physiological study of the functional role of serotonin.
Collapse
|
50
|
Budziakowski ME, Mettrick DF, Webb RA. Aminergic neurons in the anterior nervous system of the rat acanthocephalan Moniliformis dubius. JOURNAL OF NEUROBIOLOGY 1983; 14:313-25. [PMID: 6411864 DOI: 10.1002/neu.480140406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cerebral ganglion and nerve tracts of Moniliformis dubius show intense, specific, green fluorescence that is also associated with the lateral and apical sensory bulbs. Radioenzymatic assays showed that high levels of dopamine were present but only small amounts of the catecholamines norepinephrine and epinephrine were identified. Incubations of the proboscis sac in dilute solutions of dopamine increased fluorescence while incubations in reserpine resulted in loss of fluorescence. Nonfluorogenic amine octopamine was also detected radioenzymatically. Neutral red vitally stained a number of cells in the cerebral ganglion and the nerve tracts extending from the ganglion. Electron microscopy showed that many neurons contained electron-dense vesicles. The close association of the fluorescing, amine-containing nerve tracts with the sensory bulbs suggests that they may play a functional role in sensory reception and transmission in M. dubius. This is the first report on the presence of biogenic amines in the Acanthocephala.
Collapse
|