1
|
Fernández-Morales JC, Hua W, Yao Y, Morad M. Regulation of Ca 2+ signaling by acute hypoxia and acidosis in cardiomyocytes derived from human induced pluripotent stem cells. Cell Calcium 2018; 78:1-14. [PMID: 30579812 DOI: 10.1016/j.ceca.2018.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
AIMS The effects of acute (100 s) hypoxia and/or acidosis on Ca2+ signaling parameters of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are explored here for the first time. METHODS AND RESULTS 1) hiPSC-CMs express two cell populations: rapidly-inactivating ICa myocytes (τi<40 ms, in 4-5 day cultures) and slowly-inactivating ICa (τi ≥ 40 ms, in 6-8 day cultures). 2) Hypoxia suppressed ICa by 10-20% in rapidly- and 40-55% in slowly-inactivating ICa cells. 3) Isoproterenol enhanced ICa in hiPSC-CMs, but either enhanced or did not alter the hypoxic suppression. 4) Hypoxia had no differential suppressive effects in the two cell-types when Ba2+ was the charge carrier through the calcium channels, implicating Ca2+-dependent inactivation in O2 sensing. 5) Acidosis suppressed ICa by ∼35% and ∼25% in rapidly and slowly inactivating ICa cells, respectively. 6) Hypoxia and acidosis suppressive effects on Ca-transients depended on whether global or RyR2-microdomain were measured: with acidosis suppression was ∼25% in global and ∼37% in RyR2 Ca2+-microdomains in either cell type, whereas with hypoxia suppression was ∼20% and ∼25% respectively in global and RyR2-microdomaine in rapidly and ∼35% and ∼45% respectively in global and RyR2-microdomaine in slowly-inactivating cells. CONCLUSIONS Variability in ICa inactivation kinetics rather than cellular ancestry seems to underlie the action potential morphology differences generally attributed to mixed atrial and ventricular cell populations in hiPSC-CMs cultures. The differential hypoxic regulation of Ca2+-signaling in the two-cell types arises from differential Ca2+-dependent inactivation of the Ca2+-channel caused by proximity of Ca2+-release stores to the Ca2+ channels.
Collapse
Affiliation(s)
| | - Wei Hua
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA
| | - Yuyu Yao
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA
| | - Martin Morad
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA; Department of Pharmacology,Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
2
|
Fernández-Morales JC, Morad M. Regulation of Ca 2+ signaling by acute hypoxia and acidosis in rat neonatal cardiomyocytes. J Mol Cell Cardiol 2017; 114:58-71. [PMID: 29032102 DOI: 10.1016/j.yjmcc.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022]
Abstract
Ischemic heart disease is an arrhythmogenic condition, accompanied by hypoxia, acidosis, and impaired Ca2+ signaling. Here we report on effects of acute hypoxia and acidification in rat neonatal cardiomyocytes cultures. RESULTS Two populations of neonatal cardiomyocyte were identified based on inactivation kinetics of L-type ICa: rapidly-inactivating ICa (τ~20ms) myocytes (prevalent in 3-4-day cultures), and slow-inactivating ICa (τ≥40ms) myocytes (dominant in 7-day cultures). Acute hypoxia (pO2<5mmHg for 50-100s) suppressed ICa reversibly in both cell-types to different extent and with different kinetics. This disparity disappeared when Ba2+ was the channel charge carrier, or when the intracellular Ca2+ buffering capacity was increased by dialysis of high concentrations of EGTA and BAPTA, suggesting critical role for calcium-dependent inactivation. Suppressive effect of acute acidosis on ICa (~40%, pH6.7), on the other hand, was not cell-type dependent. Isoproterenol enhanced ICa in both cell-types, but protected only against suppressive effects of acidosis and not hypoxia. Hypoxia and acidosis suppressed global Ca2+ transients by ~20%, but suppression was larger, ~35%, at the RyR2 microdomains, using GCaMP6-FKBP targeted probe. Hypoxia and acidosis also suppressed mitochondrial Ca2+ uptake by 40% and 10%, respectively, using mitochondrial targeted Ca2+ biosensor (mito-GCaMP6). CONCLUSION Our studies suggest that acute hypoxia suppresses ICa in rapidly inactivating cell population by a mechanism involving Ca2+-dependent inactivation, while compromised mitochondrial Ca2+ uptake seems also to contribute to ICa suppression in slowly inactivating cell population. Proximity of cellular Ca2+ pools to sarcolemmal Ca2+ channels may contribute to the variability of inactivation kinetics of ICa in the two cell populations, while acidosis suppression of ICa appears mediated by proton-induced block of the calcium channel.
Collapse
Affiliation(s)
| | - Martin Morad
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA; Department of Pharmacology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
3
|
Lammers WJEP. Normal and abnormal electrical propagation in the small intestine. Acta Physiol (Oxf) 2015; 213:349-59. [PMID: 25156937 DOI: 10.1111/apha.12371] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/03/2014] [Accepted: 08/19/2014] [Indexed: 12/15/2022]
Abstract
As in other muscular organs, small intestinal motility is determined to a large degree by the electrical activities that occur in the smooth muscle layers of the small intestine. In recent decades, the interstitial cells of Cajal, located in the myenteric plexus, have been shown to be responsible for the generation and propagation of the electrical impulse: the slow wave. It was also known that the slow waves as such do not cause contraction, but that the action potentials ('spikes') that are generated by the slow waves are responsible for the contractions. Recording from large number of extracellular electrodes simultaneously is one method to determine origin and pattern of propagation of these electrical signals. This review reports the characteristics of slow wave propagation through the intestinal tube, the occurrence of propagation blocks along its length, which explains the well-known decrease in frequency, and the specific propagation pattern of the spikes that follow the slow waves. But the value of high-resolution mapping is highest in discovering and analysing mechanisms of arrhythmias in the gut. Most recently, circus movements (also called 're-entries') have been described in the small intestine in several species. Moreover, several types of re-entries have now been described, some similar to what may occur in the heart, such as functional re-entries, but others more unique to the small intestine, such as circumferential re-entry. These findings seem to suggest the possibilities of hitherto unknown pathologies that may be present in the small intestine.
Collapse
Affiliation(s)
- W. J. E. P. Lammers
- Departments of Physiology; College of Medicine and Health Sciences; UAE University; Al Ain United Arab Emirates
| |
Collapse
|
4
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
5
|
Lu HL, Wang ZY, Huang X, Han YF, Wu YS, Guo X, Kim YC, Xu WX. Excitatory regulation of angiotensin II on gastric motility and its mechanism in guinea pig. ACTA ACUST UNITED AC 2011; 167:170-6. [PMID: 21256873 DOI: 10.1016/j.regpep.2011.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 11/24/2022]
Abstract
In the present study, we investigated the effect of Ang II on gastric smooth muscle motility and its mechanism using intracellular recording and whole-cell patch clamp techniques. Ang II dose-dependently increased the tonic contraction and the frequency of spontaneous contraction in the gastric antral circular smooth muscles of guinea pig. ZD7155, an Ang II type 1 receptor (AT(1)R) blocker, completely blocked the effect of Ang II on the spontaneous contraction of gastric smooth muscle. In contrast, TTX, a sodium channel blocker, failed to block the effect. Furthermore, nicardipine, a voltage-gated Ca(2+)-channel antagonist, did not block the effect of Ang II on the tonic contraction of gastric smooth muscle, but external free-calcium almost completely blocked this effect. Both ryanodine, an inhibitor of calcium-induced Ca(2+) release (CICR) from ryanodine-sensitive calcium stores, and thapsigargin, which depletes calcium in calcium stores, almost completely blocked the effect of Ang II on tonic contraction. However, 2-APB, an inositol trisphosphate (IP(3)) receptor blocker, significantly, but not completely, blocked the Ang II effect on tonic contraction. We also determined that Ang II depolarized membrane potential and increased slow wave frequency in a dose-dependent manner. It also inhibited delayed rectifying potassium currents in a dose-dependent manner, but did not affect L-type calcium currents or calcium-activated potassium currents. These results suggest that Ang II plays an excitatory regulation in gastric motility via AT(1)R-IP(3) and the CICR signaling pathway. The Ang II-induced inhibition of delayed rectifying potassium currents that depolarize membrane potential is also involved in the potentiation of tonic contraction and the frequency of spontaneous contraction in the gastric smooth muscle of guinea pig.
Collapse
Affiliation(s)
- Hong-Li Lu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, 800 Dongchuan Road, 328# Wenxuan Medical Building, Shanghai, 200240, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Interplay of voltage and Ca-dependent inactivation of L-type Ca current. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:44-50. [PMID: 20184915 DOI: 10.1016/j.pbiomolbio.2010.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 11/22/2022]
Abstract
Inactivation of L-type Ca channels (LTCC) is regulated by both Ca and voltage-dependent processes (CDI and VDI). To differentiate VDI and CDI, several experimental and theoretical studies have considered the inactivation of Ba current through LTCC (I(Ba)) as a measure of VDI. However, there is evidence that Ba can weakly mimic Ca, such that I(Ba) inactivation is still a mixture of CDI and VDI. To avoid this complication, some have used the monovalent cation current through LTCC (I(NS)), which can be measured when divalent cation concentrations are very low. Notably, I(NS) inactivation rate does not depend on current amplitude, and hence may reflect purely VDI. However, based on analysis of existent and new data, and modeling, we find that I(NS) can inactivate more rapidly and completely than I(Ba), especially at physiological temperature. Thus VDI that occurs during I(Ba) (or I(Ca)) must differ intrinsically from VDI during I(NS). To account for this, we have extended a previously published LTCC mathematical model of VDI and CDI into an excitation-contraction coupling model, and assessed whether and how experimental I(Ba) inactivation results (traditionally used in VDI experiments and models) could be recapitulated by modifying CDI to account for Ba-dependent inactivation. Thus, the view of a slow and incomplete I(NS) inactivation should be revised, and I(NS) inactivation is a poor measure of VDI during I(Ca) or I(Ba). This complicates VDI analysis experimentally, but raises intriguing new questions about how the molecular mechanisms of VDI differ for divalent and monovalent currents through LTCCs.
Collapse
|
7
|
Kim YC, Choi W, Sung R, Kim H, You RY, Park SM, Youn SJ, Kim MJ, Song YJ, Xu WX, Lee SJ, Yun HY. Relaxation patterns of human gastric corporal smooth muscle by cyclic nucleotides producing agents. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:503-10. [PMID: 20054499 DOI: 10.4196/kjpp.2009.13.6.503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/01/2009] [Accepted: 12/05/2009] [Indexed: 11/15/2022]
Abstract
To elucidate the mechanism of cyclic nucleotides, such as adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5' -cyclic monophosphate (cGMP), in the regulation of human gastric motility, we examined the effects of forskolin (FSK), isoproterenol (ISO) and sodium nitroprusside (SNP) on the spontaneous, high K(+) and acetylcholine (ACh)-induced contractions of corporal circular smooth muscle in human stomach. Gastric circular smooth muscle showed regular spontaneous contraction, and FSK, ISO and SNP inhibited its phasic contraction and basal tone in a concentration-dependent manner. High K(+) (50 mM) produced sustained tonic contraction, and ACh (10 microM) produced initial transient contraction followed by later sustained tonic contraction with superimposed phasic contractions. FSK, ISO and SNP inhibited high K(+)-induced tonic contraction and also ACh-induced phasic and tonic contraction in a reversible manner. Nifedipine (1 microM), inhibitor of voltage-dependent L-type calcium current (VDCC(L)), almost abolished ACh-induced phasic contractions. These findings suggest that FSK, ISO and SNP, which are known cyclic nucleotide stimulators, inhibit smooth muscle contraction in human stomach partly via inhibition of VDCC(L).
Collapse
Affiliation(s)
- Young Chul Kim
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim YC, Sim JH, Choi W, Kim CH, You RY, Xu WX, Lee SJ. Relaxant Effect of Spermidine on Acethylcholine and High K-induced Gastric Contractions of Guinea-Pig. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:59-64. [PMID: 20157395 DOI: 10.4196/kjpp.2008.12.2.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In our previous study, we found that spermine and putrescine inhibited spontaneous and acetylcholine (ACh)-induced contractions of guinea-pig stomach via inhibition of L-type voltage-dependent calcium current (VDCC(L)). In this study, we also studied the effect of spermidine on mechanical contractions and calcium channel current (I(Ba)), and then compared its effects to those by spermine and putrescine. Spermidine inhibited spontaneous contraction of the gastric smooth muscle in a concentration-dependent manner (IC(50)=1.1+/-0.11 mM). Relationship between inhibition of contraction and calcium current by spermidine was studied using 50 mM high K(+)-induced contraction: Spermidine (5 mM) significantly reduced high K(+) (50 mM)-induced contraction to 37+/-4.7% of the control (p<0.05), and inhibitory effect of spermidine on I(Ba) was also observed at a wide range of test potential in current/voltage (I/V) relationship. Pre- and post-application of spermidine (5 mM) also significantly inhibited carbachol (CCh) and ACh-induced initial and phasic contractions. Finally, caffeine (10 mM)-induced contraction which is activated by Ca(2+)-induced Ca(2+) release (CICR),' was also inhibited by pretreatment of spermidine (5 mM). These findings suggest that spermidine inhibits spontaneous and CCh-induced contraction via inhibition of VDCC(L) and Ca(2+) releasing mechanism in guinea-pig stomach.
Collapse
Affiliation(s)
- Young Chul Kim
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Mubagwa K, Gwanyanya A, Zakharov S, Macianskiene R. Regulation of cation channels in cardiac and smooth muscle cells by intracellular magnesium. Arch Biochem Biophys 2007; 458:73-89. [PMID: 17123458 DOI: 10.1016/j.abb.2006.10.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 10/16/2006] [Accepted: 10/16/2006] [Indexed: 01/06/2023]
Abstract
Magnesium regulates various ion channels in many tissues, including those of the cardiovascular system. General mechanisms by which intracellular Mg(2+) (Mg(i)(2+)) regulates channels are presented. These involve either a direct interaction with the channel, or an indirect modification of channel function via other proteins, such as enzymes or G proteins, or via membrane surface charges and phospholipids. To provide an insight into the role of Mg(i)(2+) in the cardiovascular system, effects of Mg(i)(2+) on major channels in cardiac and smooth muscle cells and the underlying mechanisms are then reviewed. Although Mg(i)(2+) concentrations are known to be stable, conditions under which they may change exist, such as following stimulation of beta-adrenergic receptors and of insulin receptors, or during pathophysiological conditions such as ischemia, heart failure or hypertension. Modifications of cardiovascular electrical or mechanical function, possibly resulting in arrhythmias or hypertension, may result from such changes of Mg(i)(2+) and their effects on cation channels.
Collapse
Affiliation(s)
- Kanigula Mubagwa
- Division of Experimental Cardiac Surgery, Department of Heart and Vessel Diseases, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
10
|
Kim YC, Sim JH, Kim YH, Kwon SC, Lee SJ, Kim SR, Kim DW, Park SM, Youn SJ, Lee SJ, Xing DG, Xu WX, Kim KW. Effects of polyamines on contractility of guinea-pig gastric smooth muscle. J Korean Med Sci 2007; 22:48-56. [PMID: 17297251 PMCID: PMC2693568 DOI: 10.3346/jkms.2007.22.1.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to investigate the effects of polyamines on mechanical contraction and voltage-dependent calcium current (VDCC) of guinea-pig gastric smooth muscle. Mechanical contraction and calcium channel current I(Ba) were recorded by isometric tension recording and whole-cell patch clamp technique. Spermine, spermidine and putrescine inhibited spontaneous contraction of the gastric smooth muscle in a concentration-dependent manner. Spermine (2 mM) reduced high K+ (50 mM)-induced contraction to 16+/-6.4% of the control (n=9), and significantly inhibited I(Ba) in a reversible manner (p<0.05; IC50=0.8 mM). Pre- and post-treatment of tissue with spermine (2-5 mM, n=10) also inhibited acetylcholine (10 microM)-induced phasic contraction to 5+/-6.4% of the control. Inhibitory effect of spermine on I(Ba) was observed at a wide range of test potentials of current/voltage (I/V) relationship (p<0.05), and steady-state activation of I(Ba) was shifted to the right by spermine (p<0.05). Spermidine and putrescine (1 mM each) also inhibited I(Ba) to 51+/-5.7% and 81+/-5.3% of the control, respectively. And putrescine (1 mM) inhibited I(Ba) at whole tested potentials (p<0.05) without significant change of kinetics (p<0.05). Finally, 5 mM putrescine also inhibited high K+-induced contraction to 53+/-7.1% of the control (n=4). These findings suggest that polyamines inhibit contractions of guinea-pig gastric smooth muscle via inhibition of VDCC.
Collapse
Affiliation(s)
- Young Chul Kim
- Department of Physiology, Chungbuk National University, College of Medicine, Cheongju, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Morita H, Abe K, Ito Y, Inoue R. Possible involvement of M5 muscarinic receptor in the enhancing actions of the novel gastroprokinetic agent Z-338 on nifedipine-sensitive voltage-dependent Ca2+ currents in guinea pig stomach. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 89:356-65. [PMID: 12233813 DOI: 10.1254/jjp.89.356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigated the effects of the novel gastroprokinetic agent Z-338 (N-(N-N'-diisopropylaminoethyl)-[2-(2-hydroxy-4,5-dimethoxybenzoylamino)-1,3-thiazole-4-yl] carboxyamide monohydrochloride trihydrate) on L-type voltage-dependent Ca2+ currents (ICa) in guinea pig gastric myocytes by using the whole-cell patch clamp technique. Bath-applied acetylcholine (ACh) produced biphasic effects on ICa, i.e., enhancement (1-100 nM) and inhibition (1-100 microM), both of which were abolished by pretreatment with atropine (10 microM) or intracellular perfusion of GDPbetaS (500 microM). Z-338 (> or = 1 nM, ED50: 120 nM) mimicked the enhancing effects of ACh, but did not inhibit ICa. The effects of Z-338 and ACh were non-additive and blocked by atropine and GDPbetaS, but not by pertussis toxin (PTX) pretreatment (500 ng/ml). ACh (> or = 1 microM) induced slow inward currents via activation of the muscarinic receptor/PTX-sensitive G-protein pathway, but Z-338 was devoid of these effects. Neither pirenzepine (1 microM), AF-DX116 (1 microM), nor oxybutynin (100 nM) could prevent Z-338 (1 microM) and ACh (10 nM) from enhancing ICa, whilst 4-DAMP (100 nM) blocked the effects of Z-338 and ACh. Bath-application of protein kinase C (PKC) activator PDBu (phorbol-12,13-dibutyrate) (250 nM) enhanced ICa, and conversely, pipette inclusion of PKC inhibitor peptide (150 microM) abolished the effects of ACh and Z-338 on ICa. These results collectively suggest that although contribution of the M3 receptor is not excluded, the major actions of Z-338 on gastric myocytes are potentiation of ICa through activation of M5-like receptor.
Collapse
Affiliation(s)
- Hiromitsu Morita
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
12
|
Kajioka S, Nakayama S, McMurray G, Abe K, Brading AF. Ca(2+) channel properties in smooth muscle cells of the urinary bladder from pig and human. Eur J Pharmacol 2002; 443:19-29. [PMID: 12044787 DOI: 10.1016/s0014-2999(02)01593-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca(2+) channel properties of pig and human bladder smooth muscle were investigated utilizing standard whole-cell patch clamp techniques. Both the amplitude obtained and the current density of Ca(2+) channel current evoked by step depolarization were larger in human than in pig myocytes. The inward currents were sensitive to an L-type Ca(2+) channel antagonist, nifedipine, the effects of which were not significantly different between species. In both species, prior application of ATP (0.1 mM) had no effect on activation of this voltage-sensitive channel current, while a muscarinic receptor agonist, carbachol (0.1 mM), significantly attenuated the amplitude of this current. Furthermore, inclusion of GDP-beta-S or Heparin in the pipette abolished or had no effect on the suppression of Ca(2+) current by carbachol, respectively. These results forward the pig as a good model for the human in detrusor Ca(2+) channel properties, especially with regard to neural modulation, although voltage-sensitive Ca(2+) channels seem to make greater contribution in human bladder physiology.
Collapse
Affiliation(s)
- Shunichi Kajioka
- University Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | | | | | | |
Collapse
|
13
|
Koh SD, Monaghan K, Ro S, Mason HS, Kenyon JL, Sanders KM. Novel voltage-dependent non-selective cation conductance in murine colonic myocytes. J Physiol 2001; 533:341-55. [PMID: 11389196 PMCID: PMC2278626 DOI: 10.1111/j.1469-7793.2001.0341a.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Two components of voltage-gated, inward currents were observed from murine colonic myocytes. One component had properties of L-type Ca(2+) currents and was inhibited by nicardipine (5 x 10(-7) M). A second component did not 'run down' during dialysis and was resistant to nicardipine (up to 10(-6) M). The nicardipine-insensitive current was activated by small depolarizations above the holding potential and reversed near 0 mV. 2. This low-voltage-activated current (I(LVA)) was resolved with step depolarizations positive to -60 mV, and the current rapidly inactivated upon sustained depolarization. The voltage of half-inactivation was -65 mV. Inactivation and activation time constants at -45 mV were 86 and 15 ms, respectively. The half-recovery time from inactivation was 98 ms at -45 mV. I(LVA) peaked at -40 mV and the current reversed at 0 mV. 3. I(LVA) was inhibited by Ni(2+) (IC(50) = 1.4 x 10(-5) M), mibefradil (10(-6) to 10(-5) M), and extracellular Ba(2+). Replacement of extracellular Na(+) with N-methyl-D-glucamine inhibited I(LVA) and shifted the reversal potential to -7 mV. Increasing extracellular Ca(2+) (5 x 10(-3) M) increased the amplitude of I(LVA) and shifted the reversal potential to +22 mV. I(LVA) was also blocked by extracellular Cs(+) (10(-4) M) and Gd(3+) (10(-6) M). 4. Warming increased the rates of activation and deactivation without affecting the amplitude of the peak current. 5. We conclude that the second component of voltage-dependent inward current in murine colonic myocytes is not a 'T-type' Ca(2+) current but rather a novel, voltage-gated non-selective cation current. Activation of this current could be important in the recovery of membrane potential following inhibitory junction potentials in gastrointestinal smooth muscle or in mediating responses to agonists.
Collapse
Affiliation(s)
- S D Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Ion channels are the unitary elements that underlie electrical activity of gastrointestinal smooth muscle cells and of interstitial cells of Cajal. The result of ion channel activity in the gastrointestinal smooth muscle layers is a rhythmic change in membrane potential that in turn underlies events leading to organized motility patterns. Gastrointestinal smooth muscle cells and interstitial cells of Cajal express a wide variety of ion channels that are tightly regulated. This review summarizes 20 years of data obtained from patch-clamp studies on gastrointestinal smooth muscle cells and interstitial cells, with a focus on regulation.
Collapse
Affiliation(s)
- G Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
15
|
Huang S, Nakayama S, Iino S, Tomita T. Voltage sensitivity of slow wave frequency in isolated circular muscle strips from guinea pig gastric antrum. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G518-28. [PMID: 9950827 DOI: 10.1152/ajpgi.1999.276.2.g518] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In circular muscle preparations isolated from the guinea pig gastric antrum, regular spontaneous electrical activity (slow waves) was recorded. Under normal conditions (6 mM K+), the frequency and shape of the slow waves were similar to those observed in ordinary stomach smooth muscle preparations. When the resting membrane potential was hyperpolarized and depolarized by changing the extracellular K+ concentration (2-18 mM), the frequency of slow waves decreased and increased, respectively. Application of cromakalim hyperpolarized the cell membrane and reduced the frequency of slow waves in a dose-dependent manner. Cromakalim (3 microM) hyperpolarized the membrane, and slow waves ceased in most preparations. In the presence of cromakalim, subsequent increases in the extracellular K+ concentration restored the frequency of slow waves accompanied by depolarization. Also, glibenclamide completely antagonized this effect of cromakalim. In smooth muscle strips containing both circular and longitudinal muscle layers, such changes in the slow wave frequency were not observed. It was concluded that the maneuver of isolating circular smooth muscle altered the voltage dependence of the slow wave frequency.
Collapse
Affiliation(s)
- S Huang
- Department of Physiology,Fujita Health University, Toyoake Aichi 470-11 Japan
| | | | | | | |
Collapse
|
16
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
17
|
Xu WX, Kim SJ, Kim SJ, So I, Kang TM, Rhee JC, Kim KW. Effect of stretch on calcium channel currents recorded from the antral circular myocytes of guinea-pig stomach. Pflugers Arch 1996; 432:159-64. [PMID: 8662289 DOI: 10.1007/s004240050119] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of membrane stretch on voltage-activated Ba2+ current (IBa) was studied in antral circular myocytes of guinea-pig using the whole- cell patch-clamp technique. The changes in cell volume were elicited by superfusing the myocytes with anisosmotic solutions. Hyposmotic superfusate (202 mosmol/l) induced cell swelling and increased peak values of IBa at 0 mV (from -406.6 +/- 45.5 pA to -547.5 +/- 65.6 pA, mean +/- SEM, n = 8) and hyperosmotic superfusate (350 mosmol/l) induced cell shrinkage and decreased peak values of IBa at 0 mV (to -269.5 +/- 39.1 pA, n = 8). Such changes were reversible and the extent of change was dependent on the osmolarity of superfusate. The values of normalized IBa at 0 mV were 1.43 +/- 0.04, 1.30 +/- 0.06, 1.23 +/- 0.04, 1.19 +/- 0.04, 1 and 0. 68 +/- 0.06 at 202, 220, 245, 267, 290 and 350 mosmol/l, respectively (n = 8). IBa was almost completely blocked by nicardipine (5 microM) under hyposmotic conditions. The values of steady-state half-inactivation voltage (-37.7 +/- 3.3 and -36.5 +/- 2.6 mV, under control and hyposmotic conditions, respectively) or the half-activation voltage (-13.6 +/- 2.3 and -13.9 +/- 1.9 mV) of IBa were not significantly changed (P > 0.05, n = 6). Cell membrane capacitance was slightly increased from 50.00 +/- 2.86 pF to 50.22 +/- 2.82 pF by a hyposmotic superfusate (P < 0.05, n = 6). It is suggested that cell swelling increases voltage-operated L-type calcium channel current and that such a property is related to the response of gastric smooth muscle to mechanical stimuli.
Collapse
Affiliation(s)
- W X Xu
- Department of Physiology and Biophysics, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Rubart M, Patlak JB, Nelson MT. Ca2+ currents in cerebral artery smooth muscle cells of rat at physiological Ca2+ concentrations. J Gen Physiol 1996; 107:459-72. [PMID: 8722560 PMCID: PMC2217006 DOI: 10.1085/jgp.107.4.459] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4-10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization.
Collapse
Affiliation(s)
- M Rubart
- Department of Pharmacology, University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
19
|
Wade GR, Barbera J, Sims SM. Cholinergic inhibition of Ca2+ current in guinea-pig gastric and tracheal smooth muscle cells. J Physiol 1996; 491 ( Pt 2):307-19. [PMID: 8866856 PMCID: PMC1158727 DOI: 10.1113/jphysiol.1996.sp021217] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Cholinergic regulation of L-type Ca2+ channels was investigated in freshly dissociated guinea-pig gastric and tracheal smooth muscle cells. Acetylcholine (ACh, 50 microM) decreased Ca2+ channel current (ICa) by 37 +/- 3% (mean +/- S.E.M., 46 cells). 2. ACh reduced ICa at all voltages, with no shift in the current-voltage relationship. Effects of ACh were rapid (within 5 s) and repeatable, with multiple applications reproducibly inhibiting ICa in the continued presence of extracellular Ca2+ and in the presence of protein kinase C inhibitors. 3. The involvement of Ca2+ stores in this inhibition was investigated using Ca(2+)-free solution or cyclopiazonic acid (CPA) to deplete the stores. ACh initially inhibited ICa in the Ca(2+)-free solution (Na+ as charge carrier, 53 +/- 4% decrease, 18 cells) with subsequent responses significantly attenuated (n = 9). CPA (1 microM) reduced, then abolished, the effects of ACh on ICa (n = 5). 4. When studied in cell-attached patches (Ba2+ as charge carrier), ACh reduced Ca2+ channel open probability in twenty-two of thirty-six cells, consistent with the involvement of a diffusible cytosolic messenger. 5. ACh also inhibited ICa in tracheal muscle cells (reduction of 38 +/- 6% in 1 mM Ca2+, 4 cells; 77 +/- 3% in Ca(2+)-free solution, 7 cells). Furthermore, in cells where ACh elicited oscillating Ca(2+)-activated Cl- current, oscillatory inhibition of ICa was also observed (3 cells). 6. In summary, ACh causes rapid and reversible inhibition of ICa in gastric and tracheal muscles. Ca2+ stores were required to initiate this effect, with the rapid onset and oscillatory inhibition consistent with Ca2+ inhibition of the channel. Suppression of ICa would reduce Ca2+ entry during cholinergic excitation.
Collapse
Affiliation(s)
- G R Wade
- Department of Physiology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
20
|
Abstract
Recent studies have revealed that excitation of specific nerve pathways can produce localized changes of pH in nervous tissue. It is important to determine both how these pH changes are generated and, even more importantly, how the excitability of neurons in the localized areas are affected. Evidence indicates that activation of both gamma-aminobutyric acid (GABA) and L-glutamate receptor channels in inhibitory and excitatory pathways, respectively, can raise extracellular pH (pHo) and lower intracellular pH (pHi). At the target location, it has been shown that several types of voltage-gated ion channels in neurons were modified by a change in pHi. These studies, taken together, enable us to hypothesize that intracellular hydrogen ions (H+) might function as neuromodulatory factors, like other types of intracellular second messengers. This hypothesis was tested by using horizontal cells enzymatically dissociated from catfish retina. We found that the high-voltage-activated (HVA) Ca2+ current, inward rectifier K+ current and hemi-gap junctional current are modulated by a change in intracellular H+ concentration, and that L-glutamate suppresses the HVA Ca2+ current by raising the intracellular H+ concentration. These observations support the hypothesis that intracellular H+, acting as a second messenger, governs neuronal excitability via modulation of ionic channel activity. This article reviews recent studies of ours and others on the effect of pHi upon neuronal function.
Collapse
Affiliation(s)
- K I Takahashi
- Division of Biological Sciences, Faculty of Commercial Sciences, Hiroshima Shudo University, Japan.
| | | |
Collapse
|
21
|
Tsugeno M, Huang SM, Pang YW, Chowdhury JU, Tomita T. Effects of phosphodiesterase inhibitors on spontaneous electrical activity (slow waves) in the guinea-pig gastric muscle. J Physiol 1995; 485 ( Pt 2):493-502. [PMID: 7666370 PMCID: PMC1158008 DOI: 10.1113/jphysiol.1995.sp020745] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The effects of the phosphodiesterase inhibitors caffeine, theophylline, isobutylmethylxanthine (IBMX) and rolipram on spontaneous electrical activity (slow waves) were studied in the circular muscle of the guinea-pig gastric antrum. 2. All the inhibitors reduced slow wave frequency without changing the membrane potential and the slow wave configuration, but at higher concentrations they blocked the slow waves and caused membrane hyperpolarization. In the presence of the inhibitors a low level of irregular electrical activity could be observed in many preparations. 3. Isoprenaline, forskolin, dibutyryl cAMP and 8-bromo-cAMP all produced effects essentially similar to those of phosphodiesterase inhibitors. K+ (12 mM) and removal of K+ both depolarized the membrane and these were not affected by IBMX (1-3 microM). A decrease in frequency caused by IBMX was also not significantly affected by 12 mM K+ or K+ removal and only partially antagonized by TEA or 4-aminopyridine. 4. These results suggest that an increase in intracellular cAMP inhibits pacemaker activity of slow waves. An increase in K+ conductance does not seem to be a major factor in this inhibition. Slow waves appear to be a compound electrical activity in a group of muscle cells and are likely to be disintegrated by xanthine derivatives.
Collapse
Affiliation(s)
- M Tsugeno
- Department of Neurosurgery, School of Medicine, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
22
|
Yoshino M, Matsufuji Y, Yabu H. Properties of Ca(2+)-mediated inactivation of L-type Ca channel in smooth muscle cells of the guinea-pig urinary bladder. Can J Physiol Pharmacol 1995; 73:27-35. [PMID: 7600449 DOI: 10.1139/y95-004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The properties of Ca(2+)-mediated inactivation as revealed by a conventional double-pulse protocol were examined by using the whole-cell patch clamp technique. A U-shaped relationship between the conditioning potential and the Ca2+ current (ICa) inactivation was observed, with a maximum inactivation of 52 +/- 4% (n = 5) at 10 mV with 0.5 mM EGTA in the patch pipettes. The maximum inactivation was reduced significantly, to 31 +/- 5.7% (n = 12) and 32 +/- 7.0% (n = 5), when a high concentration of EGTA (20 mM) or a more efficient Ca2+ chelator, BAPTA, was included in the patch pipettes, respectively. The same double-pulse protocol was applied under conditions where the stored Ca2+ was depleted by using caffeine or the stored Ca2+ release function was blocked by using ryanodine or procaine and heparin. No significant difference in the maximum ICa inactivation before (45%) and after (50%) application of 10 mM caffeine was observed. The maximum ICa inactivations of 48 +/- 3.2% (n = 4) and 52 +/- 8.4% (n = 6) were still observed after treatment of the cell with ryanodine (20 microM) or loading 10 mM procaine and 1 mg/mL heparin in the patch pipettes, respectively. These results suggest that Ca2+ mobilization from an internal Ca2+ store is not essential for the Ca(2+)-mediated inactivation observed in the double-pulse experiment, rather influx of Ca2+ through a voltage-dependent Ca channel seems to be important for ICa inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Yoshino
- Department of Physiology, Sapporo Medical University, Japan
| | | | | |
Collapse
|
23
|
Dixon DB, Takahashi K, Copenhagen DR. L-glutamate suppresses HVA calcium current in catfish horizontal cells by raising intracellular proton concentration. Neuron 1993; 11:267-77. [PMID: 8102533 DOI: 10.1016/0896-6273(93)90183-r] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Catfish horizontal cells exhibit a high voltage-activated, slowly inactivating calcium (HVA) current. In isolated cells, this current underlies a sustained action potential that can be evoked by depolarization. L-Glutamate at concentrations as low as 1 microM suppressed HVA current and shortened the duration of action potentials. pH indicator dye measurements revealed that L-glutamate acidified cells by up to 0.3 pH units. pH/HVA current dose-response curves indicated that the EC50 for pH inhibition of HVA current was 7.1 and the Hill coefficient was 1.98. L-Glutamate's suppression of HVA current was eliminated when the patch pipette solution contained a high concentration of proton buffer, but was not affected when pipettes contained GTP gamma S. These results support the hypothesis that L-glutamate can modulate HVA current by changing intracellular pH.
Collapse
Affiliation(s)
- D B Dixon
- Department of Ophthalmology, University of California, San Francisco 94143-0730
| | | | | |
Collapse
|
24
|
Lacinova L, Cleemann L, Morad M. Ca2+ channel modulating effects of heparin in mammalian cardiac myocytes. J Physiol 1993; 465:181-201. [PMID: 8229833 PMCID: PMC1175425 DOI: 10.1113/jphysiol.1993.sp019672] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The effect of heparin on L-type Ca2+ channels in rabbit, rat and guinea-pig cardiac myocytes was studied using the whole-cell patch clamp method. 2. Sodium salts of heparin uniformly suppressed the Ca2+ current, ICa, independent of their molecular weight, in the rat and guinea-pig ventricular and rabbit atrial myocytes. The suppression of ICa by heparin was dose dependent and reached its maximum, about 30%, around 10 microM. Heparin did not alter the voltage-dependence or the steady-state inactivation properties of ICa. These effects were specific to heparin as another polysaccharide, dextran, failed to have any effect on ICa. 3. The suppressive effect of heparin was not diminished when [Ca2+]o was increased to 10 mM, or when Ba2+ was the charge carrier through the Ca2+ channel. 4. Spectrophotometric assays showed that heparin-induced changes in [Ca2+]o generally were too small to alter ICa significantly. 5. In myocytes buffered with 0.1 mM EGTA, the suppressive effect of heparin was more prominent on the inactivating than on the maintained component of ICa. 6. When extracellular Na+ was replaced by Cs+, the heparin suppressive effect was accompanied by a 10 mV shift of both the voltage dependence of activation and the steady-state inactivation parameters toward more negative potentials. 7. When both Mg2+ and Na+ were omitted from the bathing solutions, the suppressive effect of heparin was significantly enhanced such that almost 80% of the current was blocked. 8. In Cs(+)-based solutions 10 mM [Mg2+]o suppressed ICa by about 70% and heparin partially relieved this block. Heparin, however, did not counteract the Mg(2+)-induced suppression of ICa in Na(+)-based solution. 9. Extracellularly applied heparin did not alter the isoprenaline-induced enhancement of ICa or interfere with the blocking effect of phorbol esters on ICa. 10. Heparin thus appears to interfere with the permeation of Ca2+ through the channel by a mechanism regulating the Ca(2+)-induced inactivation of the Ca2+ channel. Na+ and Mg2+ appear to alter the kinetics and the magnitude of the suppressive effect of heparin on the Ca2+ channel, suggesting an interaction of these cations with either the Ca2+ or the heparin-binding sites of the channel.
Collapse
Affiliation(s)
- L Lacinova
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085
| | | | | |
Collapse
|
25
|
Takahashi K, Dixon DB, Copenhagen DR. Modulation of a sustained calcium current by intracellular pH in horizontal cells of fish retina. J Gen Physiol 1993; 101:695-714. [PMID: 7687644 PMCID: PMC2216781 DOI: 10.1085/jgp.101.5.695] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A sustained high voltage-activated (HVA), nifedipine- and cadmium-sensitive calcium current and a sustained calcium action potential (AP) were recorded from horizontal cells isolated from catfish retina. pH indicator dyes showed that superfusion with NH4Cl alkalinized these cells and that washout of NH4Cl or superfusion with Na-acetate acidified them. HVA current was slightly enhanced during superfusion of NH4Cl but was suppressed upon NH4Cl washout or application of Na-acetate. When 25 mM HEPES was added to the patch pipette to increase intracellular pH buffering, the effects of NH4Cl and Na-acetate on HVA current were reduced. These results indicated that intracellular acidification reduces HVA calcium current and alkalinization increases it. Sustained APs, recorded with high resistance, small diameter microelectrodes, were blocked by cobalt and cadmium and their magnitude varied with extracellular calcium concentration. These results provide confirmatory evidence that the HVA current is a major component of the AP and indicate that the AP can be used as a measure of how the HVA current can be modified in intact, undialyzed cells. The duration of APs was increased by superfusion with NH4Cl and reduced by washout of NH4Cl or superfusion with Na-acetate. The Na-acetate and NH4Cl washout-dependent shortening of the APs was observed in the presence of intracellular BAPTA, a calcium chelator, IBMX, a phosphodiesterase inhibitor, and in Na-free or TEA-enriched saline. These findings provide supportive evidence that intracellular acidification may directly suppress the HVA calcium current in intact cells. Intracellular pH changes would thereby be expected to modulate not only the resting membrane potential of these cells in darkness, but calcium-dependent release of neurotransmitter from these cells as well. Furthermore, this acidification-dependent suppression of calcium current could serve a protective role by reducing calcium entry during retinal ischemia, which is usually thought to be accompanied by intracellular acidosis.
Collapse
Affiliation(s)
- K Takahashi
- Department of Ophthalmology, University of California, San Francisco 94143-0730
| | | | | |
Collapse
|
26
|
Abstract
1. An inward current carried by Ca2+ was recorded from single smooth muscle cells of rabbit oesophageal muscularis mucosae using a whole-cell gigaseal technique with physiological (2 mM) external calcium concentration ([Ca2+]o) in the presence of intracellular Cs+ ([Cs+]i 130 mM). Only one type of Ca2+ current could be identified. The threshold for its activation was approximately -30 mV and maximum inward current (approximately 300 pA) was recorded at 0 mV. 2. This inward current was blocked by Co2+ (4 mM), Cd2+ (0.5 mM) and nifedipine (1 microM) and was enhanced by Bay K 8644 (5 microM). We therefore classify it as a L-type Ca2+ current and denote it ICa. 3. Steady-state inactivation data were well-fitted by a Boltzmann distribution, indicating that inactivation of the Ca2+ current is strongly modulated by membrane potential. However, the inactivation of ICa slowed significantly and became less complete when BaCl2 replaced CaCl2 in the Tyrode solution suggesting that the inactivation of ICa may also be dependent on [Ca2+]i. The steady-state activation and inactivation curves for ICa overlap between -40 and 0 mV indicating that there may be a Ca2+ window current in this range of potentials. 4. When EGTA was omitted from the pipette-filling solution, depolarizations positive to -10 mV resulted in a transient as opposed to a maintained inward Ca2+ current which was followed by a relatively large outward current. Under these conditions, slowly decaying inward tail currents were also recorded upon repolarization to the holding potential, -60 mV. However, when EGTA was omitted from the pipette, marked 'run-down' of the Ca2+ current occurred within 10 min after starting the whole-cell recording. 5. This run-down of ICa was reduced significantly when the nystatin perforated patch technique was used. Under these conditions stable ICa records could be obtained for over 1 h. Outward currents and slow decaying inward tail currents similar to those recorded with no EGTA in the pipette were also obtained consistently using the nystatin recording technique. 6. In nystatin perforated patch recordings, CoCl2 (2 mM) completely abolished the Ca2+ current, the outward currents and the slow inward tails. These findings suggest that the outward currents and slow inward tails are activated by a transmembrane influx of Ca2+. 7. Ion replacement and pharmacological tests provided evidence that both the outward currents and the slow inward tails are due to Ca(2+)-activated Cl- current (ICl(Ca)).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H I Akbarali
- Department of Medical Physiology, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
27
|
West GA, Leppla DC, Simard JM. Effects of external pH on ionic currents in smooth muscle cells from the basilar artery of the guinea pig. Circ Res 1992; 71:201-9. [PMID: 1606662 DOI: 10.1161/01.res.71.1.201] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
pHo is an important determinant of vascular tone in cerebral blood vessels. We investigated the effects of changes in pHo on isolated smooth muscle cells from the basilar artery of the guinea pig. Single cells contracted rapidly in response to an elevation in pHo (constant CO2), and contraction was blocked by nifedipine, suggesting a role for dihydropyridine-sensitive Ca2+ channels. In whole-cell patch-clamp experiments, changes in pHo (pHo 5.7-8.1, pHi 7.2 with 10 mM HEPES) strongly affected the amplitude of the peak Ca2+ channel current (10 mM Ba2+, +15 mV, holding potential of -55 mV), with an apparent pK of 6.9. The current-voltage curves were minimally shifted, indicating no important effect of surface charge. To separate the slowly inactivating L-type Ca2+ channel current from the more rapidly inactivating B-type current, the decaying portions of inward currents from cells studied with repetitive 1-second pulses (+15 mV, holding potential of -55 mV) were fit to a two-component model. Titration curves for the L-type and B-type currents indicated maximum increases by factors of 3.65 and 1.28 at alkaline pHo and gave apparent pK values of 7.71 and 6.47 (Hill coefficient unity). The time constant of inactivation for the B-type current at +15 mV was little affected by pHo, whereas that for the L-type current increased somewhat with increasing pHo. Additional experiments showed no significant effect of pHo on holding current or on voltage-activated outward currents (pCai 7 with 11 mM EGTA). Our results provide additional evidence for participation of Ca2+ channels in regulating basal tone in cerebral smooth muscle and indicate that pHo regulates current through slowly inactivating, dihydropyridine-sensitive L-type Ca2+ channels.
Collapse
Affiliation(s)
- G A West
- Department of Neurological Surgery, Unversity of Washington, Seattle
| | | | | |
Collapse
|
28
|
|
29
|
Muraki K, Imaizumi Y, Watanabe M. Sodium currents in smooth muscle cells freshly isolated from stomach fundus of the rat and ureter of the guinea-pig. J Physiol 1991; 442:351-75. [PMID: 1665861 PMCID: PMC1179893 DOI: 10.1113/jphysiol.1991.sp018797] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. Inward currents elicited by depolarization from holding potentials of -80 to -10 mV in single smooth muscle cells isolated from stomach fundus of the rat and ureter of the guinea-pig had two components. The initial fast component (Ifi) was activated and mostly inactivated within 1-2 and 10 ms, respectively, at 21 degrees C. The following sustained component (Isi) lasted over 50 and 500 ms in fundus and ureter cells, respectively. Ifi was blocked by tetrodotoxin but not affected by 0.5 microM-mu-conotoxin in both types of cells. Isi was abolished by the substitution of extracellular Ca2+ with Mn2+. 2. The sensitivity of Ifis to TTX was markedly different in fundus and ureter cells. The half-inhibition was obtained at 870 and 11 nM, respectively. The amplitude of Ifi was highly dependent on extracellular Na+ concentration in a solution containing 2.2 mM-Mn2+ and 0 mM-Ca2+ in both cells. It is concluded that Ifis in these cells are TTX-sensitive and mu-conotoxin-insensitive Na+ currents. 3. Some of the kinetics of INa measured at 10 degrees C were markedly different in fundus and ureter cells. The current-voltage relationships for Ifi in fundus and ureter cells had peaks at about -10 and 0 mV, respectively. The voltage dependence of the steady-state inactivation of Ifi was also significantly different in these cell types. The half-inactivation voltages were about -74 and -45 mV, respectively. The recovery time course from inactivation in fundus cells was about 10 times slower than that in ureter at -80 mV, where it was 25 ms. 4. The contribution of Ifi to the rising phase of an action potential was examined using TTX under current clamp mode at 21 degrees C. A fast notch-like potential elicited by a subthreshold stimulus for action potential generation was blocked by TTX in both types of cells. Action potentials elicited by a stimulus around threshold were occasionally suppressed by TTX, whereas an action potential was never observed when extracellular Ca2+ was replaced with Mn2+. 5. In conclusion, the existence of at least two types of Na+ channel currents, which were distinguished by their TTX sensitivity and kinetics, was strongly suggested in smooth muscle cells from the rat fundus and the guinea-pig ureter. INa in these cells may have a physiological role to accelerate the generation of an action potential by triggering a rapid activation of ICa, while not being essential for activation of action potentials.
Collapse
Affiliation(s)
- K Muraki
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | |
Collapse
|
30
|
Vogalis F, Sanders KM. Characterization of ionic currents of circular smooth muscle cells of the canine pyloric sphincter. J Physiol 1991; 436:75-92. [PMID: 1712043 PMCID: PMC1181495 DOI: 10.1113/jphysiol.1991.sp018540] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The ionic currents of circular muscle cells from canine pyloric sphincter were characterized using the whole-cell patch clamp technique. 2. Subpopulations of circular muscle cells from the myenteric and submucosal halves of the circular layer were isolated and studied separately to determine whether differences in the currents expressed by these cells could explain differences in electrical behaviour observed in situ. 3. Resting potentials of isolated cells were about 20 mV positive to cells in intact muscles. Polarization under current clamp to the level of tissue resting potentials caused spontaneous discharge of action potentials in many cells. 4. Outward current measured under voltage clamp could be divided into a voltage-dependent component and a voltage- and Ca(2+)-dependent component. The latter was affected by manipulations of external [Ca2+], nifedipine and dialysis of cells with EGTA. 5. A few cells exhibited a channel that was activated with hyperpolarization. These channels produced inward current at potentials positive to the potassium reversal potential, EK, and reversed at -13 mV. 6. Inward currents, recorded from Cs(+)-loaded cells, were characterized by a transient phase and a sustained phase that persisted throughout the test depolarization. The inward current was reduced by nifedipine but in some cells a nifedipine-resistant component was observed. 7. There were no fundamental differences in the ionic currents recorded from circular muscle cells from the myenteric and submucosal regions, suggesting that the electrical activity of the tissue must be dependent upon structural characteristics (i.e. electrical coupling, fibre bundle dimensions, etc.) of the tissue. 8. The ionic conductance characterized can be related to many of the excitable events recorded from pyloric muscles.
Collapse
Affiliation(s)
- F Vogalis
- Department of Physiology, University of Nevada School of Medicine, Reno 89557
| | | |
Collapse
|
31
|
Lang RJ, Paul RJ. Effects of 2,3-butanedione monoxime on whole-cell Ca2+ channel currents in single cells of the guinea-pig taenia caeci. J Physiol 1991; 433:1-24. [PMID: 1726794 PMCID: PMC1181356 DOI: 10.1113/jphysiol.1991.sp018411] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The inhibitory actions of cadmium (Cd2+), nifedipine and 2,3-butanedione monoxime (BDM) on whole-cell Ca2+ channel currents in single cells of the guinea-pig taenia caeci were investigated using a single-electrode whole-cell voltage-clamp technique. 2. Calcium channel currents were isolated using pipette solutions containing Cs+, tetraethylammonium and ATP (3 mM). Ca2+ or Ba2+ (7.5 mM) in the bathing solution acted as the charge carrier during inward current flow. Ca2+ channel currents in 7.5 mM-Ba2+ (IBa) were recorded at potentials positive to -40 mV, were maximal near 0 mV and reversed near +60 mV. Ca2+ channel activation showed a sigmoidal relationship with potential, which was half-maximal at -13 mV. 3. Both the inward and outward flow of current was depressed and eventually blocked by 0.3-100 microM-Cd2+, 0.1-10 microM-nifedipine and 2-20 mM-BDM. Half-maximal blockade of IBa at 0 mV was achieved with approximately 3 microM-Cd2+, 1 microM-nifedipine and 10 microM-BDM. Steady-state activation curves were not affected by Cd2+ or BDM, but were shifted in the hyperpolarizing direction by nifedipine at concentrations > 1 microM. 4. Calcium channel currents in single cells and K+ contractures in intact strips were both blocked in a voltage-dependent manner. Steady-state inactivation curves (f infinity (V)) for IBa were shifted 20 mV in the hyperpolarizing direction by 0.3 microM-nifedipine and 4 mV by 10 mM-BDM. From these shifts a dissociation binding constant to inactivated Ca2+ channels for nifedipine was estimated as 78 nM, and for BDM, 5 mM. 5. At 10 microM Cd2+ produced a 43 +/- 6% (n = 3) block of the inward current at 0 mV when Ca2+ (7.5 mM) was the charge carrier (ICa), compared with the 36 +/- 3% block of IBa induced by 1 microM-Cd2+, consistent with the suggestion that Ca2+, Ba2+ and Cd2+ compete for the same binding site. In contrast, nifedipine (1 microM) and BDM (10 mM) blocked ICa more effectively than IBa. 6. Bay K 8644 (1.0 microM) increased Ca2+ channel currents two- to fourfold at all potentials due to a shift, of approximately 10 mV in the negative direction, of their activation curve and an equal shift in the positive direction of their inactivation curve. BDM (5-10 mM) could antagonize the action of Bay K 8644, shifting both curves back towards their control.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R J Lang
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|