1
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
2
|
McCarron JG, Wilson C, Heathcote HR, Zhang X, Buckley C, Lee MD. Heterogeneity and emergent behaviour in the vascular endothelium. Curr Opin Pharmacol 2019; 45:23-32. [PMID: 31005824 PMCID: PMC6700393 DOI: 10.1016/j.coph.2019.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
The endothelium is the single layer of cells lining all blood vessels, and it is a remarkable cardiovascular control centre. Each endothelial cell has only a small number (on average six) of interconnected neighbours. Yet this arrangement produces a large repertoire of behaviours, capable of controlling numerous cardiovascular functions in a flexible and dynamic way. The endothelium regulates the delivery of nutrients and removal of waste by regulating blood flow and vascular permeability. The endothelium regulates blood clotting, responses to infection and inflammation, the formation of new blood vessels, and remodelling of the blood vessel wall. To carry out these roles, the endothelium autonomously interprets a complex environment crammed with signals from hormones, neurotransmitters, pericytes, smooth muscle cells, various blood cells, viral or bacterial infection and proinflammatory cytokines. It is generally assumed that the endothelium responds to these instructions with coordinated responses in a homogeneous population of endothelial cells. Here, we highlight evidence that shows that neighbouring endothelial cells are highly heterogeneous and display different sensitivities to various activators. Cells with various sensitivities process different extracellular signals into distinct streams of information in parallel, like a vast switchboard. Communication occurs among cells and new ‘emergent’ signals are generated that are non-linear composites of the inputs. Emergent signals cannot be predicted or deduced from the properties of individual cells. Heterogeneity and emergent behaviour bestow capabilities on the endothelial collective that far exceed those of individual cells. The implications of heterogeneity and emergent behaviour for understanding vascular disease and drug discovery are discussed.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Helen R Heathcote
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
3
|
Loh YC, Tan CS, Ch'ng YS, Ng CH, Yeap ZQ, Yam MF. Mechanisms of action of Panax notoginseng ethanolic extract for its vasodilatory effects and partial characterization of vasoactive compounds. Hypertens Res 2018; 42:182-194. [PMID: 30464217 DOI: 10.1038/s41440-018-0139-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
Panax notoginseng is the most valuable medicinal plant and has been used clinically for more than two thousand years to treat various diseases, including hypertension. Previous studies claimed that different isolated compounds from P. notoginseng are involved in different pathways for vasodilation. It is strongly believed that these vasodilating compounds might act synergistically in contributing vasodilatory effects via holistic signaling pathways. The present study aims to evaluate the vasodilatory effect and mechanism of action employed by the crude extract of P. notoginseng. The fingerprint of P. notoginseng was developed using tri-step FTIR and HPTLC. The contents of Rg1 and Rb1 in the active extract (PN95) were further quantified via HPTLC. The vasodilatory effect of PN95 was evaluated using an in vitro aortic ring model. The results showed that PN95 contains a high amount of Rg1 and Rb1, 25.9 and 13.6%, respectively. The vasodilatory effect of PN95 was elicited via the NO/sGC/cGMP and β2-adrenergic receptors pathways. Furthermore, PN95 could manage vascular tone by regulating action potentials via potassium and both VOCC and IP3R pathways. The results obtained fulfilled the expected outcome where the PN95 employed more signaling pathways than any of the single active compounds; hence, the holistic therapeutic effect could be achieved and would more easily translate to applications for the treatment of human diseases.
Collapse
Affiliation(s)
- Yean Chun Loh
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Chu Shan Tan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Yung Sing Ch'ng
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Chiew Hoong Ng
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Zhao Qin Yeap
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
4
|
Park SK, Herrnreiter A, Pfister SL, Gauthier KM, Falck BA, Falck JR, Campbell WB. GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem 2018; 293:10675-10691. [PMID: 29777058 DOI: 10.1074/jbc.ra117.001297] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) have numerous vascular activities mediated by G protein-coupled receptors. Long-chain free fatty acids and EETs activate GPR40, prompting us to investigate the role of GPR40 in some vascular EET activities. 14,15-EET, 11,12-EET, arachidonic acid, and the GPR40 agonist GW9508 increase intracellular calcium concentrations in human GPR40-overexpressing HEK293 cells (EC50 = 0.58 ± 0.08 μm, 0.91 ± 0.08 μm, 3.9 ± 0.06 μm, and 19 ± 0.37 nm, respectively). EETs with cis- and trans-epoxides had similar activities, whereas substitution of a thiirane sulfur for the epoxide oxygen decreased the activities. 8,9-EET, 5,6-EET, and the epoxide hydrolysis products 11,12- and 14,15-dihydroxyeicosatrienoic acids were less active than 11,12-EET. The GPR40 antagonist GW1100 and siRNA-mediated GPR40 silencing blocked the EET- and GW9508-induced calcium increases. EETs are weak GPR120 agonists. GPR40 expression was detected in human and bovine endothelial cells (ECs), smooth muscle cells, and arteries. 11,12-EET concentration-dependently relaxed preconstricted coronary arteries; however, these relaxations were not altered by GW1100. In human ECs, 11,12-EET increased MAP kinase (MAPK)-mediated ERK phosphorylation, phosphorylation and levels of connexin-43 (Cx43), and expression of cyclooxygenase-2 (COX-2), all of which were inhibited by GW1100 and the MAPK inhibitor U0126. Moreover, siRNA-mediated GPR40 silencing decreased 11,12-EET-induced ERK phosphorylation. These results indicated that GPR40 is a low-affinity EET receptor in vascular cells and arteries. We conclude that epoxidation of arachidonic acid to EETs enhances GPR40 agonist activity and that 11,12-EET stimulation of GPR40 increases Cx43 and COX-2 expression in ECs via ERK phosphorylation.
Collapse
Affiliation(s)
- Sang-Kyu Park
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Anja Herrnreiter
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Sandra L Pfister
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Kathryn M Gauthier
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Benjamin A Falck
- the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John R Falck
- the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William B Campbell
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
5
|
Vasodilation and Antihypertensive Activities of Swietenia macrophylla (Mahogany) Seed Extract. J Med Food 2018; 21:289-301. [DOI: 10.1089/jmf.2017.4008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
6
|
Tan CS, Loh YC, Ng CH, Ch'ng YS, Asmawi MZ, Ahmad M, Yam MF. Anti-hypertensive and vasodilatory effects of amended Banxia Baizhu Tianma Tang. Biomed Pharmacother 2017; 97:985-994. [PMID: 29136777 DOI: 10.1016/j.biopha.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Although Banxia Baizhu Tianma Tang (BBT) has been long administered for hypertensive treatment in Traditional Chinese Medicine (TCM), the ratio of the herbal components that makes up the formulation has not been optimized with respect to the anti-hypertensive effect that it inherently possesses. A newly amended BBT (ABBT) formulation was developed using the evidence-based approach of orthogonal stimulus-response compatibility model. The ABBT showed enhanced therapeutic effect while maintaining its traditional theoretical approach rooted in TCM. This study was designed to investigate the possible mechanism of actions involved in the vasodilatory activity of ABBT-50 by evaluating its vasodilative effect on isolated Sprague Dawley rats in the presence of absence of various antagonists. When pre-contracted with phenylephrine, relaxation was observed in endothelium intact (EC50=0.027±0.003mg/ml, Rmax=109.8±2.12%) and denuded aortic rings (EC50=0.409±0.073mg/ml, Rmax=63.15±1.78%), as well as in endothelium intact aortic rings pre-contracted with potassium chloride (EC50=32.7±12.16mg/ml, Rmax=34.02±3.82%). Significant decrease in the vasodilative effect of ABBT-50 was observed in the presence of Nω-nitro-l-arginine methyl ester (EC50=0.12±0.021mg/ml, Rmax=75.33±3.28%), 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (EC50=0.463±0.18mg/ml, Rmax=54.48±2.02%), methylene blue (EC50=0.19±0.037mg/ml, Rmax=83.69±3.19%), indomethacin (EC50=0.313±0.046mg/ml, Rmax=71.33±4.12%), atropine (EC50=0.146±0.013mg/ml, Rmax=77.2±3.41%), and 4-aminopyridine (EC50=0.045±0.008mg/ml, Rmax=95.55±2.36%). ABBT-50 was also suppressing Ca2+ release from sarcoplasmic reticulum and inhibiting calcium channels. Vasodilatory effects of ABBT-50 are mediated through NO/sGC/cGMP cascade and PGI2, followed by muscarinic pathways and calcium channels.
Collapse
Affiliation(s)
- Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Yean Chun Loh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Chiew Hoong Ng
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Yung Sing Ch'ng
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Mariam Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800 Minden, Pulau Pinang, Malaysia; College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China.
| |
Collapse
|
7
|
Loh YC, Tan CS, Ch'ng YS, Ahmad M, Ng CH, Yam MF. Overview of Signaling Mechanism Pathways Employed by BPAid in Vasodilatory Activity. J Med Food 2017; 20:1201-1213. [PMID: 28953423 DOI: 10.1089/jmf.2017.3958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypertension, one of the famous "silent killers" that can attack people at any age, is a current hot topic among scientists due to multiple syndromic behavior and concomitant diseases. The new scientific-based Traditional Chinese Medicine (TCM) formulation approach was used in a previous study by combining five TCM herbs, including Gastrodia elata Bl., Uncaria rhynchophylla (Miq.) Miq. ex Havil., Pueraria thomsonii Benth., Panax notoginseng (Burk.) F.H. Chen, and Alisma orientalis (Sam.) Juzep in optimized ratio (named BPAid). The objective of the present study was to evaluate the mechanism pathways employed by BPAid for vasodilatory effect with the use of an in vitro isolated aortic rings assay. Interestingly, all the mechanisms investigated were involved in the BPAid's vasodilation activity in which the majority contributed through the nitric oxide/soluble guanylyl cyclase/cyclic guanosine monophosphate (NO/sGC/cGMP) pathways, followed by prostacyclin (PGI2), β2-adrenergic, and M3-receptors pathways. Furthermore, the BPAid appeared to manage vascular tone by regulating action potential through potassium and both voltage-operated calcium channel and inositol triphosphate receptor (IP3R) pathways. The results obtained has confirmed the expected outcome that the benefits of TCM herbs in BPAid can meet the criteria of counteracting multiple signaling mechanism pathways involved in the etiology of hypertension. In addition to this study, the fingerprints and chemical properties of BPAid was identified by using tri-step Fourier transform infrared spectroscopy and compared with its derivatives. The results obtained suggested that the majority of the vasodilatory effects exerted by BPAid were attributed to the presence of saponins and aromatic ring-containing vasoactive compounds.
Collapse
Affiliation(s)
- Yean Chun Loh
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
| | - Chu Shan Tan
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
| | - Yung Sing Ch'ng
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
| | - Mariam Ahmad
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
| | - Chiew Hoong Ng
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
| | - Mun Fei Yam
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Minden, Penang, Malaysia
- 2 College of Pharmacy, Fujian University of Traditional Chinese Medicine , Fuzhou, Fujian, China
| |
Collapse
|
8
|
Loh YC, Ch'ng YS, Tan CS, Ahmad M, Asmawi MZ, Yam MF. Mechanisms of Action of Uncaria rhynchophylla Ethanolic Extract for Its Vasodilatory Effects. J Med Food 2017; 20:895-911. [DOI: 10.1089/jmf.2016.3804] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yean Chun Loh
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Yung Sing Ch'ng
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Chu Shan Tan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mariam Ahmad
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohd Zaini Asmawi
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
9
|
McCarron JG, Lee MD, Wilson C. The Endothelium Solves Problems That Endothelial Cells Do Not Know Exist. Trends Pharmacol Sci 2017; 38:322-338. [PMID: 28214012 PMCID: PMC5381697 DOI: 10.1016/j.tips.2017.01.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
The endothelium is the single layer of cells that lines the entire cardiovascular system and regulates vascular tone and blood-tissue exchange, recruits blood cells, modulates blood clotting, and determines the formation of new blood vessels. To control each function, the endothelium uses a remarkable sensory capability to continuously monitor vanishingly small changes in the concentrations of many simultaneously arriving extracellular activators that each provides cues to the physiological state. Here we suggest that the extraordinary sensory capabilities of the endothelium do not come from single cells but from the combined activity of a large number of endothelial cells. Each cell has a limited, but distinctive, sensory capacity and shares information with neighbours so that sensing is distributed among cells. Communication of information among connected cells provides system-level sensing substantially greater than the capabilities of any single cell and, as a collective, the endothelium solves sensory problems too complex for any single cell.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
10
|
Direct activation of Ca 2+ and voltage-gated potassium channels of large conductance by anandamide in endothelial cells does not support the presence of endothelial atypical cannabinoid receptor. Eur J Pharmacol 2017; 805:14-24. [PMID: 28327344 DOI: 10.1016/j.ejphar.2017.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/23/2022]
Abstract
Endocannabinoid anandamide induces endothelium-dependent relaxation commonly attributed to stimulation of the G-protein coupled endothelial anandamide receptor. The study addressed the receptor-independent effect of anandamide on large conductance Ca2+-dependent K+ channels expressed in endothelial cell line EA.hy926. Under resting conditions, 10µM anandamide did not significantly influence the resting membrane potential. In a Ca2+-free solution the cells were depolarized by ~10mV. Further administration of 10µM anandamide hyperpolarized the cells by ~8mV. In voltage-clamp mode, anandamide elicited the outwardly rectifying whole-cell current sensitive to paxilline but insensitive to GDPβS, a G-protein inhibitor. Administration of 70µM Mn2+, an agent used to promote integrin clustering, reversibly stimulated whole-cell current, but failed to further facilitate the anandamide-stimulated current. In an inside-out configuration, anandamide (0.1-30µM) facilitated single BKCa channel activity in a concentration-dependent manner within a physiological Ca2+ range and a wide range of voltages, mainly by reducing mean closed time. The effect is essentially eliminated following chelation of Ca2+ from the cytosolic face and pre-exposure to cholesterol-reducing agent methyl-β-cyclodextrin. O-1918 (3µM), a cannabidiol analog used as a selective antagonist of endothelial anandamide receptor, reduced BKCa channel activity in inside-out patches. These results do not support the existence of endothelial cannabinoid receptor and indicate that anandamide acts as a direct BKCa opener. The action does not require cell integrity or integrins and is caused by direct modification of BKCa channel activity.
Collapse
|
11
|
Bondarenko AI, Montecucco F, Panasiuk O, Sagach V, Sidoryak N, Brandt KJ, Mach F. GPR55 agonist lysophosphatidylinositol and lysophosphatidylcholine inhibit endothelial cell hyperpolarization via GPR-independent suppression of Na +-Ca 2+ exchanger and endoplasmic reticulum Ca 2+ refilling. Vascul Pharmacol 2017; 89:39-48. [PMID: 28064014 DOI: 10.1016/j.vph.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 11/18/2022]
Abstract
Lysophosphatidylinositol (LPI) and lysophosphatidylcholine (LPC) are lipid signaling molecules that induce endothelium-dependent vasodilation. In addition, LPC suppresses acetylcholine (Ach)-induced responses. We aimed to determine the influence of LPC and LPI on hyperpolarizing responses in vitro and in situ endothelial cells (EC) and identify the underlying mechanisms. Using patch-clamp method, we show that LPI and LPC inhibit EC hyperpolarization to histamine and suppress Na+/Ca2+ exchanged (NCX) currents in a concentration-dependent manner. The inhibition is non-mode-specific and unaffected by intracellular GDPβS infusion and tempol, a superoxide dismutase mimetic. In excised mouse aorta, LPI strongly inhibits the sustained and the peak endothelial hyperpolarization induced by Ach, but not by SKA-31, an opener of Ca2+-dependent K+ channels of intermediate and small conductance. The hyperpolarizing responses to consecutive histamine applications are strongly reduced by NCX inhibition. In a Ca2+-re-addition protocol, bepridil, a NCX inhibitor, and KB-R7943, a blocker of reversed NCX, inhibit the hyperpolarizing responses to Ca2+-re-addition following Ca2+ stores depletion. These finding indicate that LPC and LPI inhibit endothelial hyperpolarization to Ach and histamine independently of G-protein coupled receptors and superoxide anions. Reversed NCX is critical for ER Ca2+ refilling in EC. The inhibition of NCX by LPI and LPC underlies diminished endothelium-dependent responses and endothelial dysfunction accompanied by increased levels of these lipids in the blood.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine; Medical University of Graz, Institute of Molecular Biology and Biochemistry, Graz 8010, Austria.
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo Benzi 10, 16132 Genoa, Italy
| | - Olga Panasiuk
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine
| | - Vadim Sagach
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine
| | - Nataliya Sidoryak
- Department of Physiology of Human and Animals, Melitopol State Pedagogical University, Ukraine
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
12
|
Aikawa M. Studies on falciparum malaria with atomic-force and surface-potential microscopes. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Bondarenko AI. Endothelial atypical cannabinoid receptor: do we have enough evidence? Br J Pharmacol 2014; 171:5573-88. [PMID: 25073723 PMCID: PMC4290703 DOI: 10.1111/bph.12866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1 , non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, O.O.Bogomoletz Institute of PhysiologyKiev, Ukraine
- Institute of Molecular Biology and Biochemistry, Medical University of GrazGraz, Austria
| |
Collapse
|
14
|
Bondarenko AI, Drachuk K, Panasiuk O, Sagach V, Deak AT, Malli R, Graier WF. N-Arachidonoyl glycine suppresses Na⁺/Ca²⁺ exchanger-mediated Ca²⁺ entry into endothelial cells and activates BK(Ca) channels independently of GPCRs. Br J Pharmacol 2014; 169:933-48. [PMID: 23517055 PMCID: PMC3687672 DOI: 10.1111/bph.12180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/14/2013] [Accepted: 02/20/2013] [Indexed: 02/03/2023] Open
Abstract
Background and Purpose N-arachidonoyl glycine (NAGly) is a lipoamino acid with vasorelaxant properties. We aimed to explore the mechanisms of NAGly's action on unstimulated and agonist-stimulated endothelial cells. Experimental Approach The effects of NAGly on endothelial electrical signalling were studied in combination with vascular reactivity. Key Results In EA.hy926 cells, the sustained hyperpolarization to histamine was inhibited by the non-selective Na+/Ca2+ exchanger (NCX) inhibitor bepridil and by an inhibitor of reversed mode NCX, KB-R7943. In cells dialysed with Cs+-based Na+-containing solution, the outwardly rectifying current with typical characteristics of NCX was augmented following histamine exposure, further increased upon external Na+ withdrawal and inhibited by bepridil. NAGly (0.3–30 μM) suppressed NCX currents in a URB597- and guanosine 5′-O-(2-thiodiphosphate) (GDPβS)-insensitive manner, [Ca2+]i elevation evoked by Na+ removal and the hyperpolarization to histamine. In rat aorta, NAGly opposed the endothelial hyperpolarization and relaxation response to ACh. In unstimulated EA.hy926 cells, NAGly potentiated the whole-cell current attributable to large-conductance Ca2+-activated K+ (BKCa) channels in a GDPβS-insensitive, paxilline-sensitive manner and produced a sustained hyperpolarization. In cell-free inside-out patches, NAGly stimulated single BKCa channel activity. Conclusion and Implications Our data showed that NCX is a Ca2+ entry pathway in endothelial cells and that NAGly is a potent G-protein-independent modulator of endothelial electrical signalling and has a dual effect on endothelial electrical responses. In agonist pre-stimulated cells, NAGly opposes hyperpolarization and relaxation via inhibition of NCX-mediated Ca2+ entry, while in unstimulated cells, it promotes hyperpolarization via receptor-independent activation of BKCa channels.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
15
|
Bondarenko A, Panasiuk O, Stepanenko L, Goswami N, Sagach V. Reduced hyperpolarization of endothelial cells following high dietary Na+: effects of enalapril and tempol. Clin Exp Pharmacol Physiol 2012; 39:608-13. [PMID: 22540516 DOI: 10.1111/j.1440-1681.2012.05718.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. High dietary Na(+) is associated with impaired vascular endothelial function. However, the underlying mechanisms are not completely understood. In the present study, we investigated whether the endothelial hyperpolarization response to acetylcholine (ACh) exhibited any abnormalities in Wistar rats fed a high-salt diet (HSD) for 1 month and, if so, whether chronic treatment with the angiotensin-converting enzyme inhibitor enalapril or the anti-oxidant tempol could normalize the response. Membrane potential was recorded using the perforated patch-clamp technique on the endothelium of rat aorta. 2. Acetylcholine (2 μmol/L) produced a hyperpolarization sensitive to TRAM-34, a blocker of intermediate-conductance Ca(2+) -sensitive K(+) channels (IK(Ca)), but not to apamin, a blocker of small-conductance Ca(2+)-sensitive K(+) channels (SK(Ca)). NS309 (3 μmol/L), an activator of SK(Ca) and IK(Ca) channels, produced a hyperpolarization of similar magnitude as ACh. 3. In the HSD group, the ACh-evoked hyperpolarization was significantly attenuated compared with that in the control group, which was fed normal chow rather than an HSD. Similarly, the hyperpolarization produced by NS309 was weaker in tissues from HSD-fed rats. 4. Combination of HSD with chronic enalapril treatment (20 mg/kg per day for 1 month) normalized endothelial hyperpolarizing responses to ACh. Chronic tempol treatment (1 mmol/L in tap water for 1 month) prevented the reduced hyperpolarization to ACh. 5. The results of the present study indicate that excess in dietary Na(+) results in a failure of endothelial cells to generate normal IK(Ca) channel-mediated hyperpolarizing responses. Our observations implicate oxidative stress mediated by increased angiotensin II signalling as a mechanism underlying altered endothelial hyperpolarization during dietary salt loading.
Collapse
Affiliation(s)
- Alexander Bondarenko
- Circulatory Physiology Department, AA Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
16
|
Johnson BD, Mather KJ, Wallace JP. Mechanotransduction of shear in the endothelium: basic studies and clinical implications. Vasc Med 2012; 16:365-77. [PMID: 22003002 DOI: 10.1177/1358863x11422109] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The endothelium plays an integral role in the development and progression of atherosclerosis. Hemodynamic forces, particularly shear stress, have a powerful influence on endothelial phenotype and function; however, there is no clear consensus on how endothelial cells sense shear. Nevertheless, multiple endothelial cell signal transduction pathways are activated when exposed to shear stress in vitro. The type of shear, laminar or oscillatory, impacts which signal transduction pathways are initiated as well as which subsequent genes are up- or down-regulated, thereby influencing endothelial phenotype and function. Recently, human studies have examined the impact of shear stress and different shear patterns at rest and during exercise on endothelial function. Current evidence supports the theory that augmented exercise-induced shear stress contributes to improved endothelial function following acute exercise and exercise training, whereas retrograde shear initiates vascular dysfunction. The purpose of this review is to examine the current theories on how endothelial cells sense shear stress, to provide an overview on shear stress-induced signal transduction pathways and subsequent gene expression, and to review the current literature pertaining to shear stress and shear patterns at rest as well as during exercise in humans and the related effects on endothelial function.
Collapse
|
17
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
|
19
|
de Wit C, Griffith TM. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch 2010; 459:897-914. [PMID: 20379740 DOI: 10.1007/s00424-010-0830-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 03/16/2010] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly evident that electrical signaling via gap junctions plays a central role in the physiological control of vascular tone via two related mechanisms (1) the endothelium-derived hyperpolarizing factor (EDHF) phenomenon, in which radial transmission of hyperpolarization from the endothelium to subjacent smooth muscle promotes relaxation, and (2) responses that propagate longitudinally, in which electrical signaling within the intimal and medial layers of the arteriolar wall orchestrates mechanical behavior over biologically large distances. In the EDHF phenomenon, the transmitted endothelial hyperpolarization is initiated by the activation of Ca(2+)-activated K(+) channels channels by InsP(3)-induced Ca(2+) release from the endoplasmic reticulum and/or store-operated Ca(2+) entry triggered by the depletion of such stores. Pharmacological inhibitors of direct cell-cell coupling may thus attenuate EDHF-type smooth muscle hyperpolarizations and relaxations, confirming the participation of electrotonic signaling via myoendothelial and homocellular smooth muscle gap junctions. In contrast to isolated vessels, surprisingly little experimental evidence argues in favor of myoendothelial coupling acting as the EDHF mechanism in arterioles in vivo. However, it now seems established that the endothelium plays the leading role in the spatial propagation of arteriolar responses and that these involve poorly understood regenerative mechanisms. The present review will focus on the complex interactions between the diverse cellular signaling mechanisms that contribute to these phenomena.
Collapse
Affiliation(s)
- Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | | |
Collapse
|
20
|
Ledoux J, Bonev AD, Nelson MT. Ca2+-activated K+ channels in murine endothelial cells: block by intracellular calcium and magnesium. ACTA ACUST UNITED AC 2008; 131:125-35. [PMID: 18195387 PMCID: PMC2213563 DOI: 10.1085/jgp.200709875] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.
Collapse
Affiliation(s)
- Jonathan Ledoux
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
21
|
Yamamoto Y, Suzuki H. Effects of increased intracellular Cl- concentration on membrane responses to acetylcholine in the isolated endothelium of guinea pig mesenteric arteries. J Physiol Sci 2006; 57:31-41. [PMID: 17190590 DOI: 10.2170/physiolsci.rp012606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Accepted: 12/25/2006] [Indexed: 11/05/2022]
Abstract
ACh-induced membrane responses in vascular endothelial cells that have been reported vary between preparations from a sustained hyperpolarization to a transient hyperpolarization followed by a depolarization; the reason for this variation is unknown. Using the perforated whole-cell clamp technique, we investigated ACh-induced membrane currents in freshly isolated endothelial layers having a resting membrane potential of less negative than -10 mV. A group of cells was electrically isolated using a wide-bore micropipette, and their membrane potential was well controlled. ACh activated K(+) and Cl(-) currents simultaneously. The K(+) current was blocked by a combination of charybdotoxin and apamin and appears to result from the opening of IK(Ca) and SK(Ca) channels. The Cl(-) current was partially blocked by tamoxifen, niflumic acid, or DIDS and appears to be produced by Ca(2+)-activated Cl(-) channels. When the pipettes contained 20 mM Cl(-), the ACh-induced K(+) conductance started decreasing during a 1-min application of ACh while the Cl(-) conductance continued, making the ACh-induced hyperpolarization sustained. When the pipettes contained 150 mM Cl(-), both conductances started decreasing during a 1-min application of ACh, making the ACh-induced hyperpolarization small and transient. [Cl(-)](i) is very likely modified by experimental procedures such as the cell isolation and the intracellular dialysis with the pipette solution. Such a variability in [Cl(-)](i) may be one of the reasons for the variations in the ACh-induced membrane response.
Collapse
Affiliation(s)
- Yoshimichi Yamamoto
- Laboratory of Physiology, Nagoya City University School of Nursing, Mizuho-ku, Nagoya, 467-8601, Japan.
| | | |
Collapse
|
22
|
Kusama N, Kajikuri J, Yamamoto T, Watanabe Y, Suzuki Y, Katsuya H, Itoh T. Reduced hyperpolarization in endothelial cells of rabbit aortic valve following chronic nitroglycerine administration. Br J Pharmacol 2006; 146:487-97. [PMID: 16056232 PMCID: PMC1751179 DOI: 10.1038/sj.bjp.0706363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study was undertaken to determine whether long-term in vivo administration of nitroglycerine (NTG) downregulates the hyperpolarization induced by acetylcholine (ACh) in aortic valve endothelial cells (AVECs) of the rabbit and, if so, whether antioxidant agents can normalize this downregulated hyperpolarization. ACh (0.03-3 microM) induced a hyperpolarization through activations of both apamin- and charybdotoxin-sensitive Ca2+-activated K+ channels (K(Ca)) in rabbit AVECs. The intermediate-conductance K(Ca) channel (IK(Ca)) activator 1-ethyl-2-benzimidazolinone (1-EBIO, 0.3 mM) induced a hyperpolarization of the same magnitude as ACh (3 microM). The ACh-induced hyperpolarization was significantly weaker, although the ACh-induced [Ca2+]i increase was unchanged, in NTG-treated rabbits (versus NTG-untreated control rabbits). The hyperpolarization induced by 1-EBIO was also weaker in NTG-treated rabbits. The reduced ACh-induced hyperpolarization seen in NTG-treated rabbits was not modified by in vitro application of the superoxide scavengers Mn-TBAP, tiron or ascorbate, but it was normalized when ascorbate was coadministered with NTG in vivo. Superoxide production within the endothelial cell (estimated by ethidium fluorescence) was increased in NTG-treated rabbits and this increased production was normalized by in vivo coadministration of ascorbate with the NTG. It is suggested that long-term in vivo administration of NTG downregulates the ACh-induced hyperpolarization in rabbit AVECs, possibly through chronic actions mediated by superoxide.
Collapse
Affiliation(s)
- Nobuyoshi Kusama
- Department of Cellular and Molecular Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Anesthesiology and Medical Crisis Management, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Junko Kajikuri
- Department of Cellular and Molecular Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Tamao Yamamoto
- Department of Cellular and Molecular Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Yoshimasa Watanabe
- Department of Cellular and Molecular Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yoshikatsu Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Hirotada Katsuya
- Department of Anesthesiology and Medical Crisis Management, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Takeo Itoh
- Department of Cellular and Molecular Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Author for correspondence:
| |
Collapse
|
23
|
Tolsa JF, Marino M, Peyter AC, Beny JL. Role of membrane potential in endothelium-dependent relaxation of isolated mouse main pulmonary artery. J Cardiovasc Pharmacol 2006; 47:501-7. [PMID: 16680062 DOI: 10.1097/01.fjc.0000211742.86078.8b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The physiology of smooth muscle and endothelial cells of a particular vascular bed and from different species differs from each other. Acetylcholine causes an endothelium-dependent relaxation of preconstricted pulmonary arteries from the rat. This relaxation is mediated by nitric oxide (NO) plus a yet-unidentified endothelium-derived hyperpolarizing factor, which relaxes the smooth muscles by hyperpolarizing them. Our aim is to test whether these observations could be generalized to the smooth muscle cells from the mouse pulmonary artery. Smooth muscle or endothelial cell membrane potential of strips of murine pulmonary artery were measured simultaneously with the force developed by the strip. Acetylcholine hyperpolarized the endothelial cells. However, acetylcholine did not induce an endothelium-dependent hyperpolarization of the smooth muscle, while it relaxed the strip in an endothelium-dependent manner. This relaxation was abolished by an inhibitor of NO synthesis, nitro-L-arginine. Moreover, nitroglycerin relaxed the strips without changing the membrane potential of the smooth muscle cells. Injection of Lucifer yellow into the endothelial cells and the smooth muscle cells did not show heterocellular dye coupling. Furthermore, electron microscopy did not show gap junction plate at the myoendothelial junctions. We conclude that in the mouse main pulmonary artery, NO alone is responsible for the acetylcholine-induced endothelium-dependent vasodilatation, whereas the phenomenon called endothelium-derived hyperpolizing factor is not present. Therefore, caution should be taken when comparing different animal models to study pulmonary circulation and its reactivity.
Collapse
Affiliation(s)
- Jean-Francoise Tolsa
- Neonatal Research Laboratory, Division of Neonatology, Department of Pediatrics, University Hospital CHUV, Lausanne, Switzerland
| | | | | | | |
Collapse
|
24
|
Fang Y, Mohler ER, Hsieh E, Osman H, Hashemi SM, Davies PF, Rothblat GH, Wilensky RL, Levitan I. Hypercholesterolemia suppresses inwardly rectifying K+ channels in aortic endothelium in vitro and in vivo. Circ Res 2006; 98:1064-71. [PMID: 16556870 DOI: 10.1161/01.res.0000218776.87842.43] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inwardly rectifying K+ (Kir) channels are responsible for maintaining endothelial membrane potential and play a key role in endothelium-dependent vasorelaxation. In this study, we show that endothelial Kir channels are suppressed by hypercholesterolemic levels of lipoproteins in vitro and by serum hypercholesterolemia in vivo. Specifically, exposing human aortic endothelial cells to acetylated low-density lipoprotein or very low density lipoprotein resulted in a time- and concentration-dependent decrease in Kir current that correlated with the degree of cholesterol loading. The suppression was fully reversible by cholesterol depletion. Furthermore, a decrease in Kir current resulted in depolarization of endothelial membrane potential. Most important, the flow sensitivity of Kir currents was also impaired by cholesterol loading. Specifically, flow-induced increase in Kir current was suppressed by 70%, and flow-induced hyperpolarization was almost completely abrogated. Furthermore, we show that hypercholesterolemia in vivo also strongly suppresses endothelial Kir currents and causes a shift in endothelial membrane potential, as determined by comparing the currents in aortic endothelial cells freshly isolated from healthy or hypercholesterolemic pigs. Therefore, we suggest that suppression of Kir current is one of the important factors in hypercholesterolemia-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Yun Fang
- Institute for Medicine and Engineering, Department of Pathology and Laboratory Medicine, University of Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rug M, Prescott SW, Fernandez KM, Cooke BM, Cowman AF. The role of KAHRP domains in knob formation and cytoadherence of P falciparum-infected human erythrocytes. Blood 2006; 108:370-8. [PMID: 16507777 PMCID: PMC1895844 DOI: 10.1182/blood-2005-11-4624] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface protrusions of Plasmodium falciparum-infected erythrocytes, called knobs, display focal aggregates of P falciparum erythrocyte membrane protein 1 (PfEMP1), the adhesion ligand binding endothelial-cell receptors. The resulting sequestration of infected erythrocytes in tissues represents an important factor in the course of fatalities in patients with malaria. The main component of knobs is the knob-associated histidine-rich protein (KAHRP), and it contributes to altered mechanical properties of parasite-infected erythrocytes. The role of KAHRP domains in these processes is still elusive. We generated stable transgenic P falciparum-infected erythrocytes expressing mutant versions of KAHRP. Using atomic force and electron microscopy we show that the C-terminal repeat region is critical for the formation of functional knobs. Elasticity of the membrane differs dramatically between cells with different KAHRP mutations. We propose that the 5' repeat region of KAHRP is important in cross-linking to the host-cell cytoskeleton and this is required for knob protrusion and efficient adhesion under physiologic flow conditions.
Collapse
Affiliation(s)
- Melanie Rug
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | | | | | | |
Collapse
|
26
|
Yamamoto Y, Suzuki H. Dependency of endothelial cell function on vascular smooth muscle cells in guinea-pig mesenteric arteries and arterioles. J Smooth Muscle Res 2005; 41:77-85. [PMID: 15988151 DOI: 10.1540/jsmr.41.77] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using guinea-pig mesenteric arteries and arterioles, we investigated the membrane potential of endothelial cells at rest and during application of acetylcholine (ACh) with and without the smooth muscle layers attached. When smooth muscle and endothelial layers were in close apposition, the resting membrane potentials of the two types of cells were closely related and were slightly more negative in the smooth muscle cells than in the endothelial cells. Once the endothelial layer was separated from the smooth muscle layer, the endothelial cells depolarized (the average, -4.2 mV). In the isolated endothelial layer, ACh did not induce a membrane hyperpolarization as expected, but did induce a quick depolarization soon after conventional whole-cell recording was started. However, as the pipette solution (high K+) gradually diffused into the endothelial layer, the membrane response to ACh gradually changed toward hyperpolarization. ACh-induced hyperpolarization was also observed after incubating preparations in a high-potassium bath solution. Our results indicate that vascular smooth muscle cells and endothelial cells are influencing each other as a functional unit and that the endothelial cells rely on the smooth muscle cells for their intracellular ionic composition and resting membrane potential.
Collapse
|
27
|
Gluais P, Edwards G, Weston AH, Falck JR, Vanhoutte PM, Félétou M. Role of SK(Ca) and IK(Ca) in endothelium-dependent hyperpolarizations of the guinea-pig isolated carotid artery. Br J Pharmacol 2005; 144:477-85. [PMID: 15655533 PMCID: PMC1576024 DOI: 10.1038/sj.bjp.0706003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. This study was designed to determine whether the endothelium-dependent hyperpolarizations evoked by acetylcholine in guinea-pig carotid artery involve a cytochrome P450 metabolite and whether they are linked to the activation of two distinct populations of endothelial K(Ca) channels, SK(Ca) and IK(Ca.) 2. The membrane potential was recorded in the vascular smooth muscle cells of the guinea-pig isolated carotid artery. All the experiments were performed in the presence of N(omega)-L-nitro arginine (100 microM) and indomethacin (5 microM). 3. Under control conditions (Ca(2+): 2.5 mM), acetylcholine (10 nM to 10 muM) induced a concentration- and endothelium-dependent hyperpolarization of the vascular smooth muscle cells. Two structurally different specific blockers of SK(Ca), apamin (0.5 microM) or UCL 1684 (10 microM), produced a partial but significant inhibition of the hyperpolarization evoked by acetylcholine whereas charybdotoxin (0.1 microM) and TRAM-34 (10 microM), a nonpeptidic and specific blocker of IK(Ca), were ineffective. In contrast, the combinations of apamin plus charybdotoxin, apamin plus TRAM-34 (10 microM) or UCL 1684 (10 microM) plus TRAM-34 (10 microM) virtually abolished the acetylcholine-induced hyperpolarization. 4. In the presence of a combination of apamin and a subeffective dose of TRAM-34 (5 microM), the residual hyperpolarization produced by acetylcholine was not inhibited further by the addition of either an epoxyeicosatrienoic acid antagonist, 14,15-EEZE (10 microM) or the specific blocker of BK(Ca), iberiotoxin (0.1 microM). 5. In presence of 0.5 mM Ca(2+), the hyperpolarization in response to acetylcholine (1 microM) was significantly lower than in 2.5 mM Ca(2+). The EDHF-mediated responses became predominantly sensitive to charybdotoxin or TRAM-34 but resistant to apamin. 6. This investigation shows that the production of a cytochrome P450 metabolite, and the subsequent activation of BK(Ca), is unlikely to contribute to the EDHF-mediated responses in the guinea-pig carotid artery. Furthermore, the EDHF-mediated response involves the activation of both endothelial IK(Ca) and SK(Ca) channels, the activation of either one being able to produce a true hyperpolarization.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Calcium/pharmacology
- Carotid Artery, Internal/cytology
- Carotid Artery, Internal/metabolism
- Carotid Artery, Internal/physiology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Guinea Pigs
- In Vitro Techniques
- Male
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Calcium-Activated/metabolism
Collapse
Affiliation(s)
| | | | | | - John R Falck
- Department of Biochemistry, University of Texas, Dallas, U.S.A
| | - Paul M Vanhoutte
- Department of Pharmacology, Faculty of Medicine, Hong Kong, China
| | - Michel Félétou
- Institut de Recherches Servier, Suresnes, France
- Author for correspondence:
| |
Collapse
|
28
|
Griffith TM. Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol 2005; 141:881-903. [PMID: 15028638 PMCID: PMC1574270 DOI: 10.1038/sj.bjp.0705698] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An endothelium-derived hyperpolarizing factor (EDHF) that is distinct from nitric oxide (NO) and prostanoids has been widely hypothesized to hyperpolarize and relax vascular smooth muscle following stimulation of the endothelium by agonists. Candidates as diverse as K(+) ions, eicosanoids, hydrogen peroxide and C-type natriuretic peptide have been implicated as the putative mediator, but none has emerged as a 'universal EDHF'. An alternative explanation for the EDHF phenomenon is that direct intercellular communication via gap junctions allows passive spread of agonist-induced endothelial hyperpolarization through the vessel wall. In some arteries, eicosanoids and K(+) ions may themselves initiate a conducted endothelial hyperpolarization, thus suggesting that electrotonic signalling may represent a general mechanism through which the endothelium participates in the regulation of vascular tone.
Collapse
Affiliation(s)
- Tudor M Griffith
- Department of Diagnostic Radiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN.
| |
Collapse
|
29
|
Bondarenko A. Sodium-calcium exchanger contributes to membrane hyperpolarization of intact endothelial cells from rat aorta during acetylcholine stimulation. Br J Pharmacol 2004; 143:9-18. [PMID: 15289290 PMCID: PMC1575260 DOI: 10.1038/sj.bjp.0705866] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The role of sodium-calcium exchanger in acetylcholine (Ach)-induced hyperpolarization of intact endothelial cells was studied in excised rat aorta. The membrane potential was recorded using perforated patch-clamp technique. 2. The mean resting potential of endothelial cells was -44.1+/-1.4 mV. A selective inhibitor of sodium-calcium exchanger benzamil (100 microm) had no significant effect on resting membrane potential, but reversibly decreased the amplitude of sustained Ach-induced endothelial hyperpolarization from 20.9+/-1.4 to 5.7+/-1.1 mV when applied during the plateau phase. 3. The blocker of reversed mode of the exchanger KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate, 20 microm) reversibly decreased the amplitude of sustained Ach-induced hyperpolarization from 20.5+/-2.9 to 7.5+/-1.8 mV. 4. Introduction of tetraethylammonium (10 mm) in the continuous presence of Ach decreased the sustained phase of hyperpolarization from 17.9+/-1.5 by 12.9+/-0.9 mV. Subsequent addition of 20 microm KB-R7943 further depolarized endothelial cells by 4.8+/-1.1 mV. 5. Substituting external sodium with N-methyl d-glucamine during the plateau phase of Ach-evoked hyperpolarization reversibly decreased the hyperpolarization from -61.8+/-2.7 to -54.2+/-1.9 mV. In the majority of preparations, the initial response to removal of external sodium was a transient further rise in the membrane potential of several mV. Sodium ionophore monensin hyperpolarized endothelium by 10.3+/-0.7 mV. 6. The inhibitory effect of benzamil on Ach-induced endothelial sustained hyperpolarization was observed in endothelium mechanically isolated from smooth muscle. 7. These results suggest that the sodium-calcium exchanger of intact endothelial cells is able to operate in reverse following stimulation by Ach, contributing to sustained hyperpolarization. Myoendothelial electrical communications do not mediate the effect of blockers of sodium-calcium exchanger.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adrenergic alpha-Agonists/pharmacology
- Amiloride/analogs & derivatives
- Amiloride/pharmacology
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Calcium/metabolism
- Cell Membrane/metabolism
- Cell Membrane/physiology
- Diuretics/pharmacology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/physiology
- Female
- Gap Junctions/drug effects
- In Vitro Techniques
- Ionophores/pharmacology
- Male
- Membrane Potentials/drug effects
- Monensin/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Phenylephrine/pharmacology
- Rats
- Sodium/physiology
- Sodium-Calcium Exchanger/physiology
- Stimulation, Chemical
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
Collapse
Affiliation(s)
- Alexander Bondarenko
- Department of Blood Circulation, AA Bogomoletz Institute of Physiology, NAS of Ukraine, 4, Bogomoletz Str., Kiev 01024, Ukraine.
| |
Collapse
|
30
|
Adams DJ, Hill MA. Potassium Channels and Membrane Potential in the Modulation of Intracellular Calcium in Vascular Endothelial Cells. J Cardiovasc Electrophysiol 2004; 15:598-610. [PMID: 15149433 DOI: 10.1046/j.1540-8167.2004.03277.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)). This rise in [Ca(2+)](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca(2+) entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.
Collapse
Affiliation(s)
- David J Adams
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
31
|
Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol Heart Circ Physiol 2003; 285:H1590-9. [PMID: 12805022 DOI: 10.1152/ajpheart.00376.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study evaluated the role of endothelial intermediate conductance calcium-sensitive potassium channels (IKCa) in the mechanism of endothelium-derived hyperpolarizing factor (EDHF)-mediated dilations in pressurized cerebral arteries. Male rat middle cerebral arteries (MCA) were mounted in an isolated vessel chamber, pressurized (85 mmHg), and luminally perfused (100 microl/min). Artery diameter was measured simultaneously with either endothelial intracellular Ca2+ concentration ([Ca2+]i; fura-2) or changes in endothelial membrane potential [4-[2-[6-(dioctylamino)-2-naphthalenyl]ethenyl]1-(3-sulfopropyl)-pyridinium (di-8-ANEPPS)]. Nitric oxide synthase and cyclooxygenase inhibitors were present throughout. Luminal application of UTP produced EDHF-mediated dilations that correlated with significant endothelial hyperpolarization. The dilation and endothelial hyperpolarization were virtually abolished by inhibitors of IKCa channels but not by selective inhibitors of small or large conductance KCa channels (apamin and iberiotoxin, respectively). Additionally, direct stimulation of endothelial IKCa channels with 1-ethyl-2-benzimidazolinone (1-EBIO) produced endothelial hyperpolarization and vasodilatation that were blocked by inhibitors of IKCa channels. 1-EBIO hyperpolarized the endothelium but did not affect endothelial [Ca2+]i. We conclude that the mechanism of EDHF-mediated dilations in cerebral arteries requires stimulation of endothelial IKCa channels to promote endothelial hyperpolarization and subsequent vasodilatation.
Collapse
Affiliation(s)
- Sean P Marrelli
- Baylor College of Medicine, Department of Anesthesiology, One Baylor Plaza, Suite 434-D, Houston, TX 77030, USA.
| | | | | |
Collapse
|
32
|
Abstract
The endothelium is more than just a passive vessel lining. New advances have revealed and expanded the multifactorial role of the endothelium in the homeostatic regulation of the microvasculature, including control of primary hemostasis, blood coagulation and fibrinolysis, platelet and leukocyte interactions with the vessel wall, lipoprotein metabolism, presentation of histocompatibility antigens, regulation of vascular tone and growth, and regulation of blood pressure. It possesses numerous receptors and releases compounds that affect the regulation of vascular tone and contribute to vascular permeability. Many crucial vasoactive endogenous compounds are formed in the endothelial cells to control the functions of vascular smooth muscle cells and circulating blood cells. Gap junctions facilitate the exchange of metabolites, ions, and other messenger molecules among endothelial cells and smooth muscle cells, and regulate cell growth. Among the numerous regulatory systems affecting microvascular function are the cholinergic and adrenergic (α1, α2, and β) systems. Flow-metabolism coupling is affected by a variety of signaling systems, including adenosine, oxygen, carbon dioxide, lactate, nitric oxide, and others. Agents such as the angiotensin system and endothelin, as well as others, play a role in autoregulation (maintenance of constant flow in the face of changing pressure). All of these are discussed in detail.
Collapse
Affiliation(s)
- Danja Striimper
- University of Münster, University Hospital Maastrich, The Netherlands
| | - Marcel Durieux
- University of Münster; Department of Anesthesiology, University Hospital Maastrich, The Netherlands
| | - Paul Roekaerts
- Department of Anesthesiology, University Hospital Maastrich, The Netherlands
| |
Collapse
|
33
|
Sadanaga T, Ohya Y, Ohtsubo T, Goto K, Fujii K, Abe I. Decreased 4-aminopyridine sensitive K+ currents in endothelial cells from hypertensive rats. Hypertens Res 2002; 25:589-96. [PMID: 12358146 DOI: 10.1291/hypres.25.589] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endothelial cell function is altered in hypertension. The present study was performed to evaluate the alterations in K+ channels in endothelial cells from hypertensive rats. Currents and membrane potentials were recorded in endothelial cells freshly dissociated from the aorta of stroke-prone spontaneously hypertensive rats (SHR-SP) and Wistar-Kyoto rats (WKY). Ca2+-dependent K+ channel blockers, charybdotoxin and apamin, a voltage-dependent K+ channel blocker, 4-aminopyridine, and a non-selective K+ channel blocker, tetrabutylammonium, were used to characterize K+ currents. Depolarizing command steps evoked delayed K+ outward currents in cells from both strains. The current density of 4-aminopyridine sensitive K+ currents was significantly smaller in SHR-SP than in WKY (1.5 +/- 0.4 vs. 4.9 +/- 0.6 pA/pF, at 36 mV, n = 13, p < 0.01), whereas that of other K+ current components did not differ between strains. The resting membrane potential of cells was significantly less negative in SHR-SP than in WKY (-25.0 +/- 1.7, n = 54 vs. -33.5 +/- 1.4 mV, n = 50, p < 0.01). Depolarization by 4-aminopyridine, but not that by charybdotoxin+apamin, abolished the difference in membrane potentials between SHR-SP and WKY (n=7-10 in each strain). Immunostaining of endothelial cells by anti-Kv1.5 antibody was decreased in SHR-SP compared to WKY. In summary, the 4-aminopyridine sensitive K+ currents in aortic endothelial cells were decreased in SHR-SP, which could contribute to the membrane depolarization. Decreased expression of Kv1.5 in SHR-SP might be associated with this alteration.
Collapse
Affiliation(s)
- Tsuneaki Sadanaga
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Coleman HA, Tare M, Parkington HC. Myoendothelial electrical coupling in arteries and arterioles and its implications for endothelium-derived hyperpolarizing factor. Clin Exp Pharmacol Physiol 2002; 29:630-7. [PMID: 12060109 DOI: 10.1046/j.1440-1681.1999.03701.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. Considerable progress has been made over the past decade in evaluating the presence of electrical coupling between the endothelial and smooth muscle layers of blood vessels, prompted, in part, by ultrastructural evidence for the presence of myoendothelial junctions. 2. In a variety of vessels ranging in size from conduit arteries down to small arterioles, action potentials have been recorded from endothelial cells that were associated with constriction of the vessels and/or occurred in synchrony with and were indistinguishable from action potentials recorded from the smooth muscle. From these results, it is now firmly established that myoendothelial electrical coupling occurs in at least some blood vessels. 3. Spread of hyperpolarizing current from the endothelium to the smooth muscle is the most likely explanation of the smooth muscle hyperpolarization attributed to endothelium-derived hyperpolarizing factor. Because this hyperpolarization can evoke considerable relaxation of the smooth muscle, myoendothelial electrical coupling has important implications for endothelial regulation of the contractile activity of blood vessels.
Collapse
Affiliation(s)
- Harold A Coleman
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
35
|
Abstract
Endothelial cells (EC) form a unique signal-transducing surface in the vascular system. The abundance of ion channels in the plasma membrane of these nonexcitable cells has raised questions about their functional role. This review presents evidence for the involvement of ion channels in endothelial cell functions controlled by intracellular Ca(2+) signals, such as the production and release of many vasoactive factors, e.g., nitric oxide and PGI(2). In addition, ion channels may be involved in the regulation of the traffic of macromolecules by endocytosis, transcytosis, the biosynthetic-secretory pathway, and exocytosis, e.g., tissue factor pathway inhibitor, von Willebrand factor, and tissue plasminogen activator. Ion channels are also involved in controlling intercellular permeability, EC proliferation, and angiogenesis. These functions are supported or triggered via ion channels, which either provide Ca(2+)-entry pathways or stabilize the driving force for Ca(2+) influx through these pathways. These Ca(2+)-entry pathways comprise agonist-activated nonselective Ca(2+)-permeable cation channels, cyclic nucleotide-activated nonselective cation channels, and store-operated Ca(2+) channels or capacitative Ca(2+) entry. At least some of these channels appear to be expressed by genes of the trp family. The driving force for Ca(2+) entry is mainly controlled by large-conductance Ca(2+)-dependent BK(Ca) channels (slo), inwardly rectifying K(+) channels (Kir2.1), and at least two types of Cl( -) channels, i.e., the Ca(2+)-activated Cl(-) channel and the housekeeping, volume-regulated anion channel (VRAC). In addition to their essential function in Ca(2+) signaling, VRAC channels are multifunctional, operate as a transport pathway for amino acids and organic osmolytes, and are possibly involved in endothelial cell proliferation and angiogenesis. Finally, we have also highlighted the role of ion channels as mechanosensors in EC. Plasmalemmal ion channels may signal rapid changes in hemodynamic forces, such as shear stress and biaxial tensile stress, but also changes in cell shape and cell volume to the cytoskeleton and the intracellular machinery for metabolite traffic and gene expression.
Collapse
Affiliation(s)
- B Nilius
- Department of Physiology, KU Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | |
Collapse
|
36
|
Chen Y, Rivers RJ. Measurement of membrane potential and intracellular Ca(2+) of arteriolar endothelium and smooth muscle in vivo. Microvasc Res 2001; 62:55-62. [PMID: 11421660 DOI: 10.1006/mvre.2001.2315] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an intensity analysis technique for fluorescence microscopy that allows us to measure, in real time, the diameter and the membrane potential or intracellular calcium ([Ca(2+)]i) of in vivo arteriolar endothelium or smooth muscle. Cheek pouch arterioles of anesthetized hamsters were luminally or abluminally labeled with Di-8-ANEPPS, a voltage-sensitive dye, or Fura PE3, a calcium indicator. The peak fluorescence intensities of the images were used to locate the endothelium or smooth muscle. The changes in membrane potential or [Ca(2+)]i were determined based on the ratiometric analysis of fluorescence intensity of the endothelium or smooth muscle. Membrane depolarization of the smooth muscle using KCl caused a decrease in the ratio of emission, 620 nm/560 nm ( approximately 6 mV/% ratio). The ratio of excitation, 340 nm/380 nm, increased with increasing free Ca(2+). Methacholine, a muscarinic receptor agonist, caused arteriolar dilation (12.2 +/- 0.9 µm). It produced hyperpolarization of the endothelium and smooth muscle (2.8 +/- 0.6% and 2.3 +/- 0.3% in ratio). Methacholine also induced an increase in [Ca(2+)]i (11.0 +/- 1.1% in ratio) of the endothelium. In contrast, methacholine caused a biphasic change in [Ca(2+)]i of the smooth muscle, a rapid reduction (-3.4 +/- 0.2% in ratio) followed by a prolonged increase (2.4 +/- 0.2% in ratio). These results demonstrate that the peak intensity analysis can be used to determine in real time the changes in membrane potential or [Ca(2+)]i of in vivo endothelium or smooth muscle.
Collapse
Affiliation(s)
- Y Chen
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
37
|
Gauthier KM, Rusch NJ. Rat Coronary Endothelial Cell Membrane Potential Responses During Hypertension. Hypertension 2001; 37:66-71. [PMID: 11208758 DOI: 10.1161/01.hyp.37.1.66] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
-The purpose of this study was to provide the first membrane potential profile in coronary endothelial cells from normotensive sham-operated control and 1-kidney, 1-clip renal hypertensive rats. Dilator responses were assessed in cannulated coronary arteries from control and 1-kidney, 1-clip rats, and the perforated patch-clamp method was used to compare membrane potential responses between the intact endothelial cells. Under these conditions, acetylcholine (100 pmol/L to 10 µmol/L) induced similar large dilations of coronary arteries from control and 1-kidney, 1-clip rats that were associated with endothelial cell hyperpolarizing responses of 16+/-3 and 18+/-2 mV, respectively. Substance P (10 fmol/L to 1 nmol/L) and bradykinin (100 fmol/L to 10 nmol/L) also substantially dilated coronary arteries from control rats but only induced small (2 to 4 mV) endothelial cell hyperpolarizing responses. These dilations, which appeared independent of membrane potential changes, were highly blunted or absent in arteries from 1-kidney, 1-clip rats. Thus, dilator responses to acetylcholine that are associated with large endothelial hyperpolarizing responses are normal in the small coronary arteries of 1-kidney, 1-clip rats. However, dilator response to substance P and bradykinin, which apparently are not heavily dependent on endothelial cell hyperpolarizations, are selectively targeted for impairment in the coronary arteries of this model of hypertension
Collapse
Affiliation(s)
- Kathryn M. Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee
| | | |
Collapse
|
38
|
White R, Hiley CR. Hyperpolarisation of rat mesenteric endothelial cells by ATP-sensitive K(+) channel openers. Eur J Pharmacol 2000; 397:279-90. [PMID: 10844125 DOI: 10.1016/s0014-2999(00)00271-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Membrane potential responses of rat mesenteric endothelial cells were investigated in intact arteries using sharp electrodes. Levcromakalim, an activator of ATP-sensitive K(+) channels (K(ATP)) induced concentration-dependent hyperpolarisation of the endothelial cells, which was reversible by glibenclamide and ciclazindol, inhibitors of K(ATP). Another K(ATP) activator, diazoxide, also hyperpolarised the endothelial cells. Carbachol induced endothelial hyperpolarisation that was inhibited by combinations of apamin and charybdotoxin, but not Ba(2+) and ouabain. Prior stimulation with levcromakalim inhibited carbachol-induced responses, and this inhibitory effect was also sensitive to glibenclamide. 1, 3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl) -2H-benzimidazol-2-one (NS 1619), an activator of large conductance, Ca(2+)-activated K(+) channels (BK(Ca)), induced only small hyperpolarisations of the endothelial cells. Preincubation of tissues with 18 alpha- or 18 beta-glycyrrhetinic acid, inhibitors of gap junction communication, increased the input resistance and depolarised the endothelial cells, and inhibited the hyperpolarising effect of levcromakalim. It is concluded that activation of K(ATP) causes hyperpolarisation of rat mesenteric endothelial cells, probably through gap junctional transfer of smooth muscle hyperpolarisation, and that this may represent an important modulator of endothelial function.
Collapse
Affiliation(s)
- R White
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1QJ, Cambridge, UK
| | | |
Collapse
|
39
|
Mederos y Schnitzler M, Derst C, Daut J, Preisig-Müller R. ATP-sensitive potassium channels in capillaries isolated from guinea-pig heart. J Physiol 2000; 525 Pt 2:307-17. [PMID: 10835035 PMCID: PMC2269954 DOI: 10.1111/j.1469-7793.2000.t01-1-00307.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1999] [Accepted: 03/13/2000] [Indexed: 11/26/2022] Open
Abstract
The full-length cDNAs of two different alpha-subunits (Kir6.1 and Kir6.2) and partial cDNAs of three different beta-subunits (SUR1, SUR2A and SUR2B) of ATP-sensitive potassium (KATP) channels of the guinea-pig (gp) were obtained by screening a cDNA library from the ventricle of guinea-pig heart. Cell-specific reverse-transcriptase PCR with gene-specific intron-spanning primers showed that gpKir6.1, gpKir6.2 and gpSUR2B were expressed in a purified fraction of capillary endothelial cells. In cardiomyocytes, gpKir6.1, gpKir6.2, gpSUR1 and gpSUR2A were detected. Patch-clamp measurements were carried out in isolated capillary fragments consisting of 3-15 endothelial cells. The membrane capacitance measured in the whole-cell mode was 19.9 +/- 1.0 pF and was independent of the length of the capillary fragment, which suggests that the endothelial cells were not electrically coupled under our experimental conditions. The perforated-patch technique was used to measure the steady-state current-voltage relation of capillary endothelial cells. Application of K+ channel openers (rilmakalim or diazoxide) or metabolic inhibition (250 microM 2,4-dinitrophenol plus 10 mM deoxyglucose) induced a current that reversed near the calculated K+ equilibrium potential. Rilmakalim (1 microM), diazoxide (300 microM) and metabolic inhibition increased the slope conductance measured at -55 mV by a factor of 9.0 (+/-1.8), 2.5 (+/-0.2) and 3.9 (+/-1.7), respectively. The effects were reversed by glibenclamide (1 microM). Our results suggest that capillary endothelial cells from guinea-pig heart express KATP channels composed of SUR2B and Kir6.1 and/or Kir6.2 subunits. The hyperpolarization elicited by the opening of KATP channels may lead to an increase in free cytosolic Ca2+, and thus modulate the synthesis of NO and the permeability of the capillary wall.
Collapse
Affiliation(s)
- M Mederos y Schnitzler
- Institut fur Normale und Pathologische Physiologie, Universitat Marburg, Deutschhausstrasse 2, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
40
|
Chaytor AT, Martin PE, Evans WH, Randall MD, Griffith TM. The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication. J Physiol 1999; 520 Pt 2:539-50. [PMID: 10523421 PMCID: PMC2269589 DOI: 10.1111/j.1469-7793.1999.00539.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. We have shown that the endocannabinoid anandamide and its stable analogue methanandamide relax rings of rabbit superior mesenteric artery through endothelium-dependent and -independent mechanisms that are unaffected by blockade of NO synthase and cyclooxygenase. 2. The endothelium-dependent component of the responses was attenuated by the gap junction inhibitor 18alpha-glycyrrhetinic acid (18alpha-GA; 50 microM), and a synthetic connexin-mimetic peptide homologous to the extracellular Gap 27 sequence of connexin 43 (43Gap 27, SRPTEKTIFII; 300 microM). By contrast, the corresponding connexin 40 peptide (40Gap 27, SRPTEKNVFIV) was inactive. 3. The cannabinoid CB1 receptor antagonist SR141716A (10 microM) also attenuated endothelium-dependent relaxations but this inhibition was not observed with the CB1 receptor antagonist LY320135 (10 microM). Furthermore, SR141716A mimicked the effects of 43Gap 27 peptide in blocking Lucifer Yellow dye transfer between coupled COS-7 cells (a monkey fibroblast cell line), whereas LY320135 was without effect, thus suggesting that the action of SR141716A was directly attributable to effects on gap junctions. 4. The endothelium-dependent component of cannabinoid-induced relaxation was also attenuated by AM404 (10 microM), an inhibitor of the high-affinity anandamide transporter, which was without effect on dye transfer. 5. Taken together, the findings suggest that cannabinoids derived from arachidonic acid gain access to the endothelial cytosol via a transporter mechanism and subsequently stimulate relaxation by promoting diffusion of an to adjacent smooth muscle cells via gap junctions. 6. Relaxations of endothelium-denuded preparations to anandamide and methanandamide were unaffected by 43Gap 27 peptide, 18alpha-GA, SR141716A, AM404 and indomethacin and their genesis remains to be established.
Collapse
Affiliation(s)
- A T Chaytor
- Departments of Diagnostic Radiology and Medical Biochemistry, Cardiovascular Sciences Research Group, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN, UK
| | | | | | | | | |
Collapse
|
41
|
Griffith TM, Taylor HJ. Cyclic AMP mediates EDHF-type relaxations of rabbit jugular vein. Biochem Biophys Res Commun 1999; 263:52-7. [PMID: 10486252 DOI: 10.1006/bbrc.1999.1313] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolated rings of rabbit jugular vein have been used to test the hypothesis that formation of cAMP within the endothelial cell contributes to relaxations that are attributable to the endothelium-derived hyperpolarizing factor, EDHF. Relaxations induced by acetylcholine under conditions of combined NO synthase and cyclooxygenase blockade were almost abolished by inhibition of adenylate cyclase with the selective P-site agonist 2', 3'-dideoxyadenosine (2',3'-DDA). They were similarly attenuated by the gap junction inhibitors 18alpha-glycyrrhetinic acid (18alpha-GA) and Gap 27 peptide which interrupt direct endothelium-smooth muscle communication without themselves affecting smooth muscle tone. By contrast, stimulation of adenylate cyclase with forskolin promoted gap junction-dependent relaxations, with concentration-relaxation curves to this agent exhibiting an equivalent rightward shift in the presence of 18alpha-GA and following endothelial denudation. The findings suggest that cAMP may cross from the endothelium to smooth muscle via gap junction channels and/or enhance the endothelial hyperpolarization normally associated with agonist stimulation. Both mechanisms may contribute to EDHF/gap junction-dependent relaxations.
Collapse
Affiliation(s)
- T M Griffith
- Cardiovascular Sciences Research Group, University of Wales College of Medicine, Cardiff, CF4 4XN, United Kingdom.
| | | |
Collapse
|
42
|
Dittrich M, Daut J. Voltage-dependent K(+) current in capillary endothelial cells isolated from guinea pig heart. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H119-27. [PMID: 10409189 DOI: 10.1152/ajpheart.1999.277.1.h119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Capillary fragments were isolated from guinea pig hearts, and their electrical properties were studied using the perforated-patch and cell-attached mode of the patch-clamp technique. A voltage-dependent K(+) current was discovered that was activated at potentials positive to -20 mV and showed a sigmoid rising phase. For depolarizing voltage steps from -128 to +52 mV, the time to peak was 71 +/- 5 ms (mean +/- SE) and the amplitude of the current was 3.7 +/- 0.5 pA/pF in the presence of 5 mM external K(+). The time course of inactivation was exponential with a time constant of 7.2 +/- 0.5 s at +52 mV. The current was blocked by tetraethylammonium (inhibitory constant approximately 3 mM) but was not affected by charybdotoxin (1 microM) or apamin (1 microM). In the cell-attached mode, depolarization-activated single-channel currents were found that inactivated completely within 30 s; the single-channel conductance was 12.3 +/- 2.4 pS. The depolarization-activated K(+) current described here may play a role in membrane potential oscillations of the endothelium.
Collapse
Affiliation(s)
- M Dittrich
- Institut für Normale und Pathologische Physiologie, Universität Marburg, D-35037 Marburg, Germany.
| | | |
Collapse
|
43
|
Li L, Bressler B, Prameya R, Dorovini-Zis K, Van Breemen C. Agonist-stimulated calcium entry in primary cultures of human cerebral microvascular endothelial cells. Microvasc Res 1999; 57:211-26. [PMID: 10329249 DOI: 10.1006/mvre.1998.2131] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary cultures of human cerebral microvascular endothelial cells (HCMEC) were loaded with fura-2. The intracellular free Ca2+ concentration ([Ca2+]i) was measured by digital imaging microscopy. Agonists ATP (100 micro), thrombin (10 units/ml), and histamine (25 microM) induced a transient [Ca2+]i increase. Histamine (100 microM) induced a biphasic [Ca2+]i increase with an initial [Ca2+]i peak followed by a [Ca2+]i plateau. The [Ca2+]i plateau was blocked by the receptor-operated Ca2+ channel (ROC) blockers SK&F 96365 and NCDC, indicating a contribution by Ca2+ influx through ROC to the [Ca2+]i plateau. However, this [Ca2+]i plateau was not blocked by the voltage-gated Ca2+ channel (VGC) blocker diltiazem (DTZ). Depolarization with 80K+ or application of the VGC agonist BAY K 8644 did not alter the resting [Ca2+]i; but 80K+ reduced the histamine (100 microM) induced [Ca2+]i plateau. These results show that HCMEC are devoid of functional VGC. Thus the membrane potential (Em) regulates Ca2+ entry mainly by enhancing the electrochemical Ca2+ gradient, such that hyperpolarization increases while depolarization decreases [Ca2+]i. Blockade of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) by CPA increased [Ca2+]i. This effect was dependent on extracellular Ca2+ and reduced by iberiotoxin (IBTX) blockade of Ca2+-activated K+ channels (Kca), suggesting a role for Kca in regulating Ca2+ influx. Ca2+ is the principal activator of endothelial nitric oxide synthase (eNOS), which stimulates cyclic GMP production. The final result that the eNOS inhibitor L-NAME enhanced the histamine (100 microM) induced [Ca2+]i plateau suggests a negative feedback loop (via cGMP) of endothelial NO on its own synthesis in the regulation of endothelial [Ca2+]i signal.
Collapse
Affiliation(s)
- L Li
- The Vancouver Vascular Biology Research Center, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
44
|
Shimamura K, Sekiguchi F, Sunano S. Tension oscillation in arteries and its abnormality in hypertensive animals. Clin Exp Pharmacol Physiol 1999; 26:275-84. [PMID: 10225137 DOI: 10.1046/j.1440-1681.1999.03030.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The mechanisms of oscillatory contraction of arterial smooth muscle in vitro are discussed. 2. The membrane potential and cytoplasmic free Ca2+ concentration in smooth muscle cells oscillate in the presence of agonists. 3. The oscillatory change in the membrane potential of smooth muscle cells is related to Ca2+ release from intracellular stores. 4. Gap junctions between smooth muscle cells play important roles in the synchronized oscillation of the cytoplasmic free Ca2+ concentration in this population of cells. 5. Endothelial cells may increase or decrease the tension oscillation of smooth muscle cells. 6. In arteries from hypertensive rats, an increase in membrane excitability and the number of gap junctions between smooth muscle cells and impaired endothelial function are the main factors responsible for the modulation of tension oscillation.
Collapse
Affiliation(s)
- K Shimamura
- Research Institute of Hypertension, Kinki University, Osaka, Japan.
| | | | | |
Collapse
|
45
|
Ohashi M, Satoh K, Itoh T. Acetylcholine-induced membrane potential changes in endothelial cells of rabbit aortic valve. Br J Pharmacol 1999; 126:19-26. [PMID: 10051116 PMCID: PMC1565773 DOI: 10.1038/sj.bjp.0702262] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Using a microelectrode technique, acetylcholine (ACh)-induced membrane potential changes were characterized using various types of inhibitors of K+ and Cl- channels in rabbit aortic valve endothelial cells (RAVEC). 2. ACh produced transient then sustained membrane hyperpolarizations. Withdrawal of ACh evoked a transient depolarization. 3. High K+ blocked and low K+ potentiated the two ACh-induced hyperpolarizations. Charybdotoxin (ChTX) attenuated the ACh-induced transient and sustained hyperpolarizations; apamin inhibited only the sustained hyperpolarization. In the combined presence of ChTX and apamin, ACh produced a depolarization. 4. In Ca2+-free solution or in the presence of Co2+ or Ni2+, ACh produced a transient hyperpolarization followed by a depolarization. In BAPTA-AM-treated cells, ACh produced only a depolarization. 5. A low concentration of A23187 attenuated the ACh-induced transient, but not the sustained, hyperpolarization. In the presence of cyclopiazonic acid, the hyperpolarization induced by ACh was maintained after ACh removal; this maintained hyperpolarization was blocked by Co2+. 6. Both NPPB and hypertonic solution inhibited the membrane depolarization seen after ACh washout. Bumetanide also attenuated this depolarization. 7. It is concluded that in RAVEC, ACh produces a two-component hyperpolarization followed by a depolarization. It is suggested that ACh-induced Ca2+ release from the storage sites causes a transient hyperpolarization due to activation of ChTX-sensitive K+ channels and that ACh-activated Ca2+ influx causes a sustained hyperpolarization by activating both ChTX- and apamin-sensitive K+ channels. Both volume-sensitive Cl- channels and the Na+-K+-Cl- cotransporter probably contribute to the ACh-induced depolarization.
Collapse
Affiliation(s)
- M Ohashi
- Department of Pharmacology, Nagoya City University Medical School, Nagoya, Japan.
| | | | | |
Collapse
|
46
|
Fransen P, Katnik C, Adams DJ. ACh- and caffeine-induced Ca2+ mobilization and current activation in rabbit arterial endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1748-58. [PMID: 9815082 DOI: 10.1152/ajpheart.1998.275.5.h1748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fura 2 microfluorometry and perforated-patch whole cell recording were carried out simultaneously to investigate the relationship between intracellular free Ca2+ concentration ([Ca2+]i) and membrane current activation in response to ACh and caffeine in freshly dissociated arterial endothelial cells. ACh and caffeine evoked transient increases in [Ca2+]i. The initial increase in [Ca2+]i was accompanied by a transient outward current, which caused membrane hyperpolarization. The amplitudes of the [Ca2+]i transient and outward current were dependent on caffeine concentration (EC50 approximately 1 mM). Cyclopiazonic acid raised resting [Ca2+]i levels by >/=50 nM and failed to completely block caffeine- or ACh-induced [Ca2+]i transients but slowed [Ca2+]i recovery fourfold. The reversal potential of caffeine-induced currents was dependent on external K+ and Cl- concentrations. Caffeine-induced current amplitudes, but not [Ca2+]i responses, were attenuated by external tetraethylammonium, Zn2+, and La3+. A consistent temporal relationship between agonist-activated membrane current and [Ca2+]i increases was not observed, and, in some cases, time differences were greater than expected for simple diffusion of Ca2+ throughout the cell. These results suggest that Ca2+-dependent current activation monitors local [Ca2+]i changes adjacent to the plasmalemma, whereas single-cell photometry provides a measure of global changes in [Ca2+]i.
Collapse
Affiliation(s)
- P Fransen
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
47
|
Ono K, Nakao M, Iijima T. Chloride-sensitive nature of the histamine-induced Ca2+ entry in cultured human aortic endothelial cells. J Physiol 1998; 511 ( Pt 3):837-49. [PMID: 9714864 PMCID: PMC2231165 DOI: 10.1111/j.1469-7793.1998.837bg.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Whole-cell currents and intracellular Ca2+ concentration ([Ca2+]i) were recorded in cultured human aortic endothelial cells (HAECs) to study the mechanisms underlying Cl--sensitive Ca2+ entry. 2. In the absence of histamine the membrane potential ranged between -90 and +5 mV and showed bimodal distribution with peaks at -17.8 and -67.5 mV. 3. Histamine (1-100 microM) activated an outward current, followed by a sustained inward current at -50 mV. The reversal potential (Vrev) was more negative than -60 mV for the initial outward current, and approximately -30 mV for the sustained inward current with normal Tyrode solution and internal solution containing 30 mM Cl-. 4. Vrev of the sustained inward current was hardly affected by varying the external concentrations of K+, Na+ and Ca2+, but was greatly changed by varying the external Cl- concentration ([Cl-]o). The relationship between Vrev and log[Cl-]o showed a slope of -44.8 mV per tenfold increase of [Cl-]o. 5. The Cl- channel blockers 9-anthracene carboxylic acid (1 mM), N-phenylanthranilic acid (0.1 mM) and niflumic acid (0.1 mM) all depressed the histamine-induced inward current. The non-selective cation channel blocker Gd3+ (10 microM) was without effect on the current. 6. In the absence of histamine, [Ca2+]i was not affected by varying the membrane potential. During the continuous presence of histamine, however, hyperpolarization increased and depolarization decreased [Ca2+]i, indicating that Ca2+ entry through the plasma membrane was activated by histamine. 7. Vrev of the histamine-induced Cl- current, measured by the gramicidin-perforated patch clamp method, was -28.4 +/- 6.6 mV (n = 8), which gave an intracellular Cl- concentration of approximately 34 mM. Under the current clamp condition, the membrane potential varied from cell to cell in the control, but application of histamine induced either depolarization or hyperpolarization, depending on the membrane potential before histamine application, and the membrane potential became stable near the equilibrium potential for Cl-. 8. We conclude that the histamine-induced inward current is carried mainly by Cl-. Although Ca2+ entry was also activated, we consider that its amplitude was too small to be resolved by the patch clamp method. The Cl- current may play a functional role in the sustained [Ca2+]i elevation by providing a constant driving force for Ca2+ entry in the presence of histamine.
Collapse
Affiliation(s)
- K Ono
- Department of Pharmacology, Akita University School of Medicine, 1-1-1 Hondoh, Akita 010-8543, Japan
| | | | | |
Collapse
|
48
|
McGahren ED, Beach JM, Duling BR. Capillaries demonstrate changes in membrane potential in response to pharmacological stimuli. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H60-5. [PMID: 9458852 DOI: 10.1152/ajpheart.1998.274.1.h60] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been proposed that capillaries can detect changes in tissue metabolites and generate signals that are communicated upstream to resistance vessels. The mechanism for this communication may involve changes in capillary endothelial cell membrane potentials which are then conducted to upstream arterioles. We have tested the capacity of capillary endothelial cells in vivo to respond to pharmacological stimuli. In a hamster cheek pouch preparation, capillary endothelial cells were labeled with the voltage-sensitive dye di-8-ANEPPS. Fluorescence from capillary segments (75-150 microns long) was excited at 475 nm and recorded at 560 and 620 nm with a dual-wavelength photomultiplier system. KCl was applied using pressure injection, and acetylcholine (ACh) and phenylephrine (PE) were applied iontophoretically to these capillaries. Changes in the ratio of the fluorescence emission at two emission wavelengths were used to estimate changes in the capillary endothelial membrane potential. Application of KCl resulted in depolarization, whereas application of the vehicle did not. Application of ACh and PE resulted in hyperpolarization and depolarization, respectively. The capillary responses could be blocked by including a receptor antagonist (atropine or prazosin, respectively) in the superfusate. We conclude that the capillary membrane potential is capable of responding to pharmacological stimuli. We hypothesize that capillaries can respond to changes in the milieu of surrounding tissue via changes in endothelial membrane potential.
Collapse
Affiliation(s)
- E D McGahren
- Department of Surgery, University of Virginia Health Sciences Center, Charlottesville 22906-0011, USA
| | | | | |
Collapse
|
49
|
Kamouchi M, Trouet D, De Greef C, Droogmans G, Eggermont J, Nilius B. Functional effects of expression of hslo Ca2+ activated K+ channels in cultured macrovascular endothelial cells. Cell Calcium 1997; 22:497-506. [PMID: 9502199 DOI: 10.1016/s0143-4160(97)90077-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of the present study is to elucidate the effects of the expression of large conductance Ca2+ activated K+ channels (BK[Ca]) in an endothelial cell type normally lacking this channel. The human homologue hslo of BK(Ca) was expressed in cultured bovine pulmonary artery endothelial (CPAE) cells, which have no endogenous BK(Ca). Membrane potential, ionic currents and Ca2+ signals were investigated in non-transfected and transfected cells using a combined patch clamp and Fura-2 fluorescence technique. In non-transfected control CPAE cells, ATP evoked a Ca2+ activated Cl- current (I[Cl,Ca]). The most prominent current component during ATP stimulation in hslo expressing cells was conducted BK(Ca) which resulted in a pronounced transient hyperpolarization. This hyperpolarization, which was absent in non-transfected cells, was enhanced if I(Cl,Ca) was blocked with niflumic acid. The sustained component of the Ca2+ response during ATP stimulation was significantly larger in hslo transfected cells than in non-transfected cells. This plateau level correlated well with the corresponding effects of ATP on the membrane potential, indicating that the expression of cloned BK(Ca) exerts a positive feedback on Ca2+ signals in endothelial cells by counteracting the negative (depolarizing)effect of stimulation of Ca2+-activated Cl- channels.
Collapse
Affiliation(s)
- M Kamouchi
- Laboratorium voor Fysiologie, Campus Gasthuisberg, KU Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Membrane knobs of unfixed Babesia bovis-infected erythrocytes: new findings as revealed by atomic force microscopy and surface potential spectroscopy. Parasitol Int 1997. [DOI: 10.1016/s1383-5769(97)00031-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|