1
|
Majumder R. In silico thermal control of spiral wave dynamics in excitable cardiac tissue. BIOPHYSICAL REPORTS 2024; 4:100170. [PMID: 38960373 PMCID: PMC11304022 DOI: 10.1016/j.bpr.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Self-organizing spiral waves of excitation occur in many complex excitable systems. In the heart, for example, they are associated with the occurrence of fatal cardiac arrhythmias such as tachycardia and fibrillation, which can lead to sudden cardiac death. The control of these waves is therefore necessary for the treatment of the disease. In this letter, I present an innovative approach to control cardiac arrhythmias using low (nonfreezing) temperatures. This approach differs from all previous established techniques in that it involves no drugs, no genetic modification, no injection of foreign bodies, no application of voltage shocks (high or low, single or pulsed), and no curative damage to the heart. It relies on regional cooling of cardiac tissue to create a transient inhomogeneity in the electrophysiological properties. This inhomogeneity can then be manipulated to control the dynamics of the reentrant waves. This approach is, to my knowledge, the most sustainable theoretical proposal for the treatment of cardiac arrhythmias in the clinic.
Collapse
|
2
|
Verkerk AO, Wilders R. Injection of I K1 through dynamic clamp can make all the difference in patch-clamp studies on hiPSC-derived cardiomyocytes. Front Physiol 2023; 14:1326160. [PMID: 38152247 PMCID: PMC10751953 DOI: 10.3389/fphys.2023.1326160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Human-induced stem cell-derived cardiomyocytes (hiPSC-CMs) are a valuable tool for studying development, pharmacology, and (inherited) arrhythmias. Unfortunately, hiPSC-CMs are depolarized and spontaneously active, even the working cardiomyocyte subtypes such as atrial- and ventricular-like hiPSC-CMs, in contrast to the situation in the atria and ventricles of adult human hearts. Great efforts have been made, using many different strategies, to generate more mature, quiescent hiPSC-CMs with more close-to-physiological resting membrane potentials, but despite promising results, it is still difficult to obtain hiPSC-CMs with such properties. The dynamic clamp technique allows to inject a current with characteristics of the inward rectifier potassium current (IK1), computed in real time according to the actual membrane potential, into patch-clamped hiPSC-CMs during action potential measurements. This results in quiescent hiPSC-CMs with a close-to-physiological resting membrane potential. As a result, action potential measurements can be performed with normal ion channel availability, which is particularly important for the physiological functioning of the cardiac SCN5A-encoded fast sodium current (INa). We performed in vitro and in silico experiments to assess the beneficial effects of the dynamic clamp technique in dissecting the functional consequences of the SCN5A-1795insD+/- mutation. In two separate sets of patch-clamp experiments on control hiPSC-CMs and on hiPSC-CMs with mutations in ACADVL and GNB5, we assessed the value of dynamic clamp in detecting delayed afterdepolarizations and in investigating factors that modulate the resting membrane potential. We conclude that the dynamic clamp technique has highly beneficial effects in all of the aforementioned settings and should be widely used in patch-clamp studies on hiPSC-CMs while waiting for the ultimate fully mature hiPSC-CMs.
Collapse
Affiliation(s)
- Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Usuda K, Hayashi K, Nakajima T, Kurata Y, Cui S, Kusayama T, Tsuda T, Tada H, Kato T, Sakata K, Usui S, Fujino N, Tanaka Y, Kaneko Y, Kurabayashi M, Tange S, Saito T, Ohta K, Yamagishi M, Takamura M. Mechanisms of fever-induced QT prolongation and torsades de pointes in patients with KCNH2 mutation. Europace 2023; 25:euad161. [PMID: 37386841 PMCID: PMC10310978 DOI: 10.1093/europace/euad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/13/2023] [Indexed: 07/01/2023] Open
Abstract
AIMS Patients with particular mutations of type-2 long QT syndrome (LQT2) are at an increased risk for malignant arrhythmia during fever. This study aimed to determine the mechanism by which KCNH2 mutations cause fever-induced QT prolongation and torsades de pointes (TdP). METHODS AND RESULTS We evaluated three KCNH2 mutations, G584S, D609G, and T613M, in the Kv11.1 S5-pore region, identified in patients with marked QT prolongation and TdP during fever. We also evaluated KCNH2 M124T and R269W, which are not associated with fever-induced QT prolongation. We characterized the temperature-dependent changes in the electrophysiological properties of the mutant Kv11.1 channels by patch-clamp recording and computer simulation. The average tail current densities (TCDs) at 35°C for G584S, WT+D609G, and WT+T613M were significantly smaller and less increased with rising temperature from 35°C to 40°C than those for WT, M124T, and R269W. The ratios of the TCDs at 40°C to 35°C for G584S, WT+D609G, and WT+T613M were significantly smaller than for WT, M124T, and R269W. The voltage dependence of the steady-state inactivation curve for WT, M124T, and R269W showed a significant positive shift with increasing temperature; however, that for G584S, WT+D609G, and WT+T613M showed no significant change. Computer simulation demonstrated that G584S, WT+D609G, and WT+T613M caused prolonged action potential durations and early afterdepolarization formation at 40°C. CONCLUSION These findings indicate that KCNH2 G584S, D609G, and T613M in the S5-pore region reduce the temperature-dependent increase in TCDs through an enhanced inactivation, resulting in QT prolongation and TdP at a febrile state in patients with LQT2.
Collapse
Affiliation(s)
- Keisuke Usuda
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasutaka Kurata
- Department of Physiology, Kanazawa Medical University, Uchinada, Japan
| | - Shihe Cui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Takashi Kusayama
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Toyonobu Tsuda
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Takeshi Kato
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Yoshihiro Tanaka
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
- Department of Preventive Medicine Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shoichi Tange
- Department of Cardiovascular Medicine, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Takekatsu Saito
- Department of Pediatrics, Kanazawa University, Kanazawa, Japan
| | - Kunio Ohta
- Department of Pediatrics, Kanazawa University, Kanazawa, Japan
| | | | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| |
Collapse
|
4
|
The fungicide Tebuconazole induces electromechanical cardiotoxicity in murine heart and human cardiomyocytes derived from induced pluripotent stem cells. Toxicol Lett 2022; 359:96-105. [PMID: 35202779 DOI: 10.1016/j.toxlet.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/05/2022] [Accepted: 02/15/2022] [Indexed: 02/02/2023]
Abstract
Tebuconazole (TEB) is an important fungicide that belongs to the triazole family. It is widely used in agriculture and its use has experienced a tremendous increase in the last decade. The long-term exposure of humans to this pesticide is a real threat because it is stable in water and soil. The association between long-term exposure to TEB and damage of several biological systems, including hepatotoxicity and cardiotoxicity is evident, however, acute toxicological studies to reveal the toxicity of TEB are limited. This research paper addressed the acute exposure of TEB in murine hearts, cardiomyocytes, and human cardiomyocytes derived from an induced pluripotent stem cell (hiPSC-CMs), spelling out TEB's impact on electromechanical properties of the cardiac tissue. In ex vivo experiments, TEB dose dependently, caused significant electrocardiogram (ECG) remodeling with prolonged PR and QTc interval duration. The TEB was also able to change the action potential waveform in murine cardiomyocytes and hiPSC-CMs. These effects were associated with the ability of the compound to block the L-type calcium current (IC50 = 33.2 ± 7.4 μmol.l-1) and total outward potassium current (IC50 = 5.7 ± 1.5 μmol.l-1). TEB also increased the sodium/calcium exchanger current in its forward and reverse modes. Additionally, sarcomere shortening and calcium transient in isolated cardiomyocytes were enhanced when cells were exposed to TEB at 30 μmol.l-1. Combined, our results demonstrated that acute TEB exposure affects the cardiomyocyte's electro-contractile properties and triggers the appearance of ECG abnormalities.
Collapse
|
5
|
Kanade PP, Oyunbaatar NE, Lee DW. Effects of low temperature on electrophysiology and mechanophysiology of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractStudies related to low temperature and their effect on cardiomyocytes are essential as hypothermia—like situations have been known to induce arrhythmia or ventricular fibrillation. Till date, several studies have been carried out on animals and their electrophysiological responses have been studied in the form of action potential. However, for a complete assessment of the effect of low temperature, mechanophysiological changes along with electrophysiological changes need to be investigated, at the tissue level. In this study, the effect of culture temperature on cell growth has been studied by measuring the field potential and contractility of human induced pluripotent stem cell-derived cardiomyocytes. This study has the potential to further improve the understanding of low temperature on human cells.
Collapse
|
6
|
Majumder R, Mohamed Nazer AN, Panfilov AV, Bodenschatz E, Wang Y. Electrophysiological Characterization of Human Atria: The Understated Role of Temperature. Front Physiol 2021; 12:639149. [PMID: 34366877 PMCID: PMC8346027 DOI: 10.3389/fphys.2021.639149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
Ambient temperature has a profound influence on cellular electrophysiology through direct control over the gating mechanisms of different ion channels. In the heart, low temperature is known to favor prolongation of the action potential. However, not much is known about the influence of temperature on other important characterization parameters such as the resting membrane potential (RMP), excitability, morphology and characteristics of the action potential (AP), restitution properties, conduction velocity (CV) of signal propagation, etc. Here we present the first, detailed, systematic in silico study of the electrophysiological characterization of cardiomyocytes from different regions of the normal human atria, based on the effects of ambient temperature (5-50°C). We observe that RMP decreases with increasing temperature. At ~ 48°C, the cells lose their excitability. Our studies show that different parts of the atria react differently to the same changes in temperature. In tissue simulations a drop in temperature correlated positively with a decrease in CV, but the decrease was region-dependent, as expected. In this article we show how this heterogeneous response can provide an explanation for the development of a proarrhythmic substrate during mild hypothermia. We use the above concept to propose a treatment strategy for atrial fibrillation that involves severe hypothermia in specific regions of the heart for a duration of only ~ 200 ms.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | | | - Alexander V Panfilov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.,Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Laboratory of Computational Biology and Medicine, Ural Federal University, Yekaterinburg, Russia
| | - Eberhard Bodenschatz
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Laboratory of Atomic and Solid-State Physics and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Yong Wang
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Boulay E, Troncy E, Accardi MV, Pugsley MK, Downey AM, Miraucourt L, Huang H, Menard A, Tan W, Dubuc-Mageau M, Sanfacon A, Guerrier M, Authier S. Confounders and Pharmacological Characterization When Using the QT, JTp, and Tpe Intervals in Beagle Dogs. Int J Toxicol 2020; 39:530-541. [PMID: 33063577 DOI: 10.1177/1091581820954865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Corrected QT (QTc) interval is an essential proarrhythmic risk biomarker, but recent data have identified limitations to its use. The J to T-peak (JTp) interval is an alternative biomarker for evaluating drug-induced proarrhythmic risk. The aim of this study was to evaluate pharmacological effects using spatial magnitude leads and DII electrocardiogram (ECG) leads and common ECG confounders (ie, stress and body temperature changes) on covariate adjusted QT (QTca), covariate adjusted JTp (JTpca), and covariate adjusted T-peak to T-end (Tpeca) intervals. METHODS Beagle dogs were exposed to body hyper- (42 °C) or hypothermic (33 °C) conditions or were administered epinephrine to assess confounding effects on heart rate corrected QTca, JTpca, and Tpeca intervals. Dofetilide (0.1, 0.3, 1.0 mg/kg), ranolazine (100, 140, 200 mg/kg), and verapamil (7, 15, 30, 43, 62.5 mg/kg) were administered to evaluate pharmacological effects. RESULTS Covariate adjusted QT (slope -12.57 ms/°C) and JTpca (-14.79 ms/°C) were negatively correlated with body temperature but Tpeca was minimally affected. Epinephrine was associated with QTca and JTpca shortening, which could be related to undercorrection in the presence of tachycardia, while minimal effects were observed for Tpeca. There were no significant ECG change following ranolazine administration. Verapamil decreased QTca and JTpca intervals and increased Tpeca, whereas dofetilide increased QTca and JTpca intervals but had inconsistent effects on Tpeca. CONCLUSION Results highlight potential confounders on QTc interval, but also on JTpca and Tpeca intervals in nonclinical studies. These potential confounding effects may be relevant to the interpretation of ECG data obtained from nonclinical drug safety studies with Beagle dogs.
Collapse
Affiliation(s)
- Emmanuel Boulay
- Charles River Laboratories, Laval, Quebec, Canada.,70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | - Eric Troncy
- 70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | | | | | | | | | - Hai Huang
- Charles River Laboratories, Laval, Quebec, Canada
| | | | - Wendy Tan
- 70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | | | - Audrey Sanfacon
- 70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | - Mireille Guerrier
- 70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | - Simon Authier
- Charles River Laboratories, Laval, Quebec, Canada.,70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| |
Collapse
|
8
|
Arteyeva NV. Dispersion of ventricular repolarization: Temporal and spatial. World J Cardiol 2020; 12:437-449. [PMID: 33014291 PMCID: PMC7509993 DOI: 10.4330/wjc.v12.i9.437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Repolarization heterogeneity (RH) is an intrinsic property of ventricular myocardium and the reason for T-wave formation on electrocardiogram (ECG). Exceeding the physiologically based RH level is associated with appearance of life-threatening ventricular arrhythmias and sudden cardiac death. In this regard, an accurate and comprehensive evaluation of the degree of RH parameters is of importance for assessment of heart state and arrhythmic risk. This review is devoted to comprehensive consideration of RH phenomena in terms of electrophysiological processes underlying RH, cardiac electric field formation during ventricular repolarization, as well as clinical significance of RH and its reflection on ECG parameters. The formation of transmural, apicobasal, left-to-right and anterior-posterior gradients of action potential durations and end of repolarization times resulting from the heterogenous distribution of repolarizing ion currents and action potential morphology throughout the heart ventricles, and the different sensitivity of myocardial cells in different ventricular regions to the action of pharmacological agents, temperature, frequency of stimulation, etc., are being discussed. The review is focused on the fact that RH has different aspects – temporal and spatial, global and local; ECG reflection of various RH aspects and their clinical significance are being discussed. Strategies for comprehensive assessment of ventricular RH using different ECG indices reflecting various RH aspects are presented.
Collapse
Affiliation(s)
- Natalia V Arteyeva
- Laboratory of Cardiac Physiology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia
| |
Collapse
|
9
|
Cardiac Spiral Wave Termination by Linear Regional Cooling Toward the Anatomical Boundary of the Heart. J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00517-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose
We hypothesized that linear regional cooling (LRC) toward the atrio-ventricular groove (AV-G) can move the spiral wave (SW) center to the AV-G effectively and terminate SW. The effectiveness of LRC in ex vivo 2D ventricle rabbit experiments was tested.
Methods
We developed an experimental system to operate LRC and optical mapping simultaneously. To realize simultaneous cooling and optical mapping, a transparent cooling device was developed. LRC for 60 s toward 2D subepicardial ventricular myocardium of Langendorff-perfused rabbit hearts (n = 4) was conducted during constant pacing and persistent ventricular tachyarrhythmias (VTs).
Results
Action potential duration at 90% repolarization (APD90) at the cooling area was prolonged by LRC from 187 to 228 ms. 41% of persistent VTs were terminated by LRC (12/29 cases). Cases where the original SW center moved toward the AV-G were observed via optical mapping. However, there were some cases where VT was not terminated by LRC. When the action potential duration (APD) of VT sustained cases were analyzed, LRC prolonged APD, but the APD prolonged area did not move toward the AV-G in most VT sustained cases
Conclusion
Proper LRC toward the AV-G near the original SW center could move this center toward the AV-G and terminate SW excitation.
Collapse
|
10
|
Wu CI, Lu YY, Chen YC, Lin FZ, Huang JH, Lin YK, Higa S, Chan CS, Liu CM, Chen SA, Chen YJ. The AMP-activated protein kinase modulates hypothermia-induced J wave. Eur J Clin Invest 2020; 50:e13247. [PMID: 32307703 DOI: 10.1111/eci.13247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanism underlying the occurrence of the J wave in low temperature remains unclear. However, low temperature is associated with metabolic disorder and 5' AMP-activated protein kinase (AMPK), which modulates ionic currents and cardiac metabolism. This study investigated whether AMPK regulation can modulate the occurrence of the J wave at low temperature. METHODS Unipolar and bipolar leads were used to record monophasic action potential (the endocardium and epicardium) and pseudo-electrocardiograms (inferior leads) to study the cardiac electrical activity. Measurements were taken in isolated Langendorff rabbit hearts at both 30℃ and 37℃ before and after administration of 4-aminopyridine (an ultrarapid delayed rectifier potassium current inhibitor, IKur , 50 µmol L-1 ), PF06409577 (an AMPK activator, 1 µmol L-1 ), compound C (an AMPK inhibitor, 10 µmol L-1 ) and glibenclamide (an ATP-sensitive inward rectifier potassium channel inhibitor, IKATP , 20 µmol L-1 ). RESULTS The amplitude of the J wave (2.46 ± 0.34 mV vs. 1.11 ± 0.23 mV, P < .01) at 30℃ (n = 15) was larger than that at 37℃ (n = 15). PF06409577 (1 µmol L-1 ) increased the J waves at both 30℃ and 37℃. In contrast, compound C (10 µmol L-1 ) reduced J wave at both 37℃ and 30℃. Low-temperature-induced J waves were individually suppressed by 4-AP (50 µmol L-1 ) and glibenclamide (20 µmol L-1 ). CONCLUSIONS AMPK inhibition reduces low-temperature-induced J waves and possible ventricular arrhythmogenesis by modulating IKATP and IKur channels.
Collapse
Affiliation(s)
- Cheng-I Wu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Yu Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering and Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Zhi Lin
- Grade Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Hung Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan
| | - Chao-Shun Chan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cardiovacular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Saitoh O, Watanabe J, Oikawa A, Sugai A, Furushima H, Chinushi M. Therapy-Resistant Ventricular Arrhythmias Developed More Often in Advanced Than in Therapeutic Mild Hypothermic Condition. Int Heart J 2019; 60:1161-1167. [PMID: 31484866 DOI: 10.1536/ihj.18-711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Therapy-resistant ventricular arrhythmias can occur during accidental advanced hypothermic conditions. On the other hand, hypothermic therapy using mild cooling has been successfully accomplished with infrequent ventricular arrhythmia events.To further clarify the therapeutic-resistant arrhythmogenic substrate which develops in hypothermic conditions, an experimental study was performed using a perfusion wedge preparation model of porcine ventricle, and electrophysiological characteristics, inducibility of ventricular arrhythmias, and effects of therapeutic interventions were assessed at 3 target temperatures (37, 32 and 28°C).As the myocardial temperature decreased, myocardial contractions and the number of spontaneous beats deceased. Depolarization (QRS width, stimulus-QRS interval) and repolarization (QT interval, ERP) parameters progressively increased, and dispersion of the ventricular repolarization increased. At 28°C, VF tended to be inducible more frequently (1/11 at 37°C, 1/11 at 32°C, and 5/11 hearts at 28°C), and some VFs at 28°C required greater defibrillation energy to resume basic rhythm.An advanced but not a mild hypothermic condition had an enhanced arrhythmogenic potential in our model. In the advanced hypothermic condition, VF with relatively prolonged F-F intervals and a greater defibrillation energy were occasionally inducible based on the arrhythmogenic substrate characterized as slowed conduction and prolonged repolarization of the ventricle.
Collapse
Affiliation(s)
- Osamu Saitoh
- Cardiovascular Research of Graduate School of Health Sciences, Niigata University School of Medicine
| | - Junya Watanabe
- Cardiovascular Research of Graduate School of Health Sciences, Niigata University School of Medicine
| | - Ayaka Oikawa
- Cardiovascular Research of Graduate School of Health Sciences, Niigata University School of Medicine
| | - Ayari Sugai
- Cardiovascular Research of Graduate School of Health Sciences, Niigata University School of Medicine
| | - Hiroshi Furushima
- Cardiovascular Research of Graduate School of Health Sciences, Niigata University School of Medicine
| | - Masaomi Chinushi
- Cardiovascular Research of Graduate School of Health Sciences, Niigata University School of Medicine
| |
Collapse
|
12
|
Kernik DC, Morotti S, Wu H, Garg P, Duff HJ, Kurokawa J, Jalife J, Wu JC, Grandi E, Clancy CE. A computational model of induced pluripotent stem-cell derived cardiomyocytes incorporating experimental variability from multiple data sources. J Physiol 2019; 597:4533-4564. [PMID: 31278749 PMCID: PMC6767694 DOI: 10.1113/jp277724] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Key points Induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs) capture patient‐specific genotype–phenotype relationships, as well as cell‐to‐cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole‐cell model of iPSC‐CMs, composed of single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC‐CMs This framework links molecular mechanisms to cellular‐level outputs by revealing unique subsets of model parameters linked to known iPSC‐CM phenotypes
Abstract There is a profound need to develop a strategy for predicting patient‐to‐patient vulnerability in the emergence of cardiac arrhythmia. A promising in vitro method to address patient‐specific proclivity to cardiac disease utilizes induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs). A major strength of this approach is that iPSC‐CMs contain donor genetic information and therefore capture patient‐specific genotype–phenotype relationships. A cited detriment of iPSC‐CMs is the cell‐to‐cell variability observed in electrical activity. We postulated, however, that cell‐to‐cell variability may constitute a strength when appropriately utilized in a computational framework to build cell populations that can be employed to identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have exploited variation in experimental data across multiple laboratories to develop a computational framework for investigating subcellular phenotypic mechanisms. We have developed a whole‐cell model of iPSC‐CMs composed of simple model components comprising ion channel models with single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM data for all major ionic currents. By optimizing ionic current model parameters to multiple experimental datasets, we incorporate experimentally‐observed variability in the ionic currents. The resulting population of cellular models predicts robust inter‐subject variability in iPSC‐CMs. This approach links molecular mechanisms to known cellular‐level iPSC‐CM phenotypes, as shown by comparing immature and mature subpopulations of models to analyse the contributing factors underlying each phenotype. In the future, the presented models can be readily expanded to include genetic mutations and pharmacological interventions for studying the mechanisms of rare events, such as arrhythmia triggers. Induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs) capture patient‐specific genotype–phenotype relationships, as well as cell‐to‐cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole‐cell model of iPSC‐CMs, composed of single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC‐CMs This framework links molecular mechanisms to cellular‐level outputs by revealing unique subsets of model parameters linked to known iPSC‐CM phenotypes
Collapse
Affiliation(s)
- Divya C Kernik
- Department of Physiology and Membrane Biology, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Stefano Morotti
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - HaoDi Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyanka Garg
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry J Duff
- Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - José Jalife
- Department of Internal Medicine, Center for Arrhythmia Research, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), and CIBERV, Madrid, Spain
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
13
|
Lions S, Dragu R, Carsenty Y, Zukermann R, Aronson D. Determinants of cardiac repolarization and risk for ventricular arrhythmias during mild therapeutic hypothermia. J Crit Care 2019; 46:151-156. [PMID: 29929706 DOI: 10.1016/j.jcrc.2018.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 11/20/2022]
Abstract
PURPOSE We aimed to investigate the factors that modulate the extent of QTc prolongation and potential arrhythmogenic consequences during mild therapeutic hypothermia (MTH). METHODS We studied 205 patients after out-of-hospital cardiac arrest (131 underwent MTH). QTc was measured at baseline, 3h, 6h, 12h, 24h (end of hypothermia), 48h and 72h, and ventricular arrhythmias quantified. RESULTS During MTH, the QTc interval increased progressively peaking at 12h (mean increase 42ms, 95% CI 30-55). There was a strong gender effect (P<0.001) and a significant gender-by-MTH interaction (P=0.004). At 12h, the QTc interval was markedly longer in women as compared with men (mean difference 50ms [95% CI 27-73]. Anoxic brain injury (P=0.002) was also positively associated with QTc prolongation. The risk for ventricular arrhythmic events was not higher with MTH compared with no hypothermia (incidence rate ratio 0.57, 95% CI 0.32-1.02, P=0.06). However, typical cases of Torsade de pointes occurred in association with AV block and LQT2. CONCLUSION QTc prolongation during MTH is strongly affected by female gender and moderately by concomitant anoxic brain injury. Although the overall risk for ventricular arrhythmias is not greater with MTH, Torsade de pointes may develop when other contributing factors coexist.
Collapse
Affiliation(s)
- Svetlana Lions
- Department of Cardiology, Rambam Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Israel
| | - Robert Dragu
- Department of Cardiology, Rambam Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Israel
| | - Yoav Carsenty
- Department of Cardiology, Rambam Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Israel
| | - Robert Zukermann
- Department of Cardiology, Rambam Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Israel.
| |
Collapse
|
14
|
Belhamadia Y, Grenier J. Modeling and simulation of hypothermia effects on cardiac electrical dynamics. PLoS One 2019; 14:e0216058. [PMID: 31050666 PMCID: PMC6499428 DOI: 10.1371/journal.pone.0216058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/12/2019] [Indexed: 11/18/2022] Open
Abstract
Previous experimental evidence has shown the effect of temperature on the action potential duration (APD). It has also been demonstrated that regional cooling of the heart can prolong the APD and promote the termination of ventricular tachycardia. The aim of this study is to demonstrate the effect of hypothermia in suppressing cardiac arrhythmias using numerical modeling. For this purpose, we developed a mathematical model that couples Pennes’ bioheat equation and the bidomain model to simulate the effect of heat on the cardiac action potential. The simplification of the proposed heat–bidomain model to the heat–monodomain model is provided. A suitable numerical scheme for this coupling, based on a time adaptive mesh finite element method, is also presented. First, we performed two-dimensional numerical simulations to study the effect of heat on a regular electrophysiological wave, with the comparison of the calculated and experimental values of Q10. Then, we demonstrated the effect of global hypothermia in suppressing single and multiple spiral waves.
Collapse
Affiliation(s)
- Youssef Belhamadia
- Department of Mathematics and Statistics, American University of Sharjah, Sharjah, United Arab Emirates
- * E-mail:
| | - Justin Grenier
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
15
|
Witt CM, Dalton S, O'Neil S, Ritrivi CA, Sanders R, Sharma A, Seifert G, Berhow S, Beinborn D, Witz A, McCaw T, Scott CG, Padmanabhan D, Killu AM, Naksuk N, Asirvatham SJ, Friedman PA. Termination of Atrial Fibrillation With Epicardial Cooling in the Oblique Sinus. JACC Clin Electrophysiol 2018; 4:1362-1368. [PMID: 30336883 DOI: 10.1016/j.jacep.2018.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/03/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES This study aimed to determine if epicardial cooling could repeatedly terminate induced atrial fibrillation (AF) in a canine heart. BACKGROUND Rapid termination of AF could control symptoms and prevent atrial remodeling; however, defibrillation by internal electrical cardioversion is not tolerable to most patients. Cooling of the epicardium slows atrial conduction and may provide a less painful method to quickly terminate AF. METHODS AF was induced with atrial myocardial epinephrine injections and rapid atrial pacing in an open-chest canine. Attempts at termination were performed with a small metal device that was either cooled to 5°C or kept at body temperature (control module). The device was placed on the epicardial surface in the oblique sinus. The time from device contact to termination of AF was recorded. RESULTS In 5 different canine studies, there were 57 attempts at AF termination with either a 5°C module (34 attempts) or a control module (23 attempts). The median (interquartile range [IQR]) time to AF termination was 24 s (IQR: 15 to 35 s) for the 5°C therapy and 100 s (IQR: 47 to 240 s) for the body temperature treatments (p < 0.001). In the control group, there were 8 AF episodes that continued up to 4 min. Subsequent application of the 5°C cooling module terminated AF in all cases. CONCLUSIONS Epicardial cooling in the oblique sinus is effective for repeated termination of AF in a canine heart. If reproduced in human studies, epicardial cooling with an implantable device may provide a method for management of patients with AF.
Collapse
Affiliation(s)
- Chance M Witt
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sean Dalton
- Medicool Technologies, Inc., Rochester, Minnesota
| | | | | | - Rich Sanders
- Medicool Technologies, Inc., Rochester, Minnesota
| | - Arjun Sharma
- Medical Device Consultants, LLC., St. Paul, Minnesota
| | - Greg Seifert
- Advanced Medical Electronics Corporation, Maple Grove, Minnesota
| | | | | | - Allan Witz
- Medicool Technologies, Inc., Rochester, Minnesota
| | - Trevor McCaw
- Medicool Technologies, Inc., Rochester, Minnesota
| | | | - Deepak Padmanabhan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ammar M Killu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Niyada Naksuk
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
16
|
Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, Li AY, Hove-Madsen L, Tibbits GF. Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:69-90. [DOI: 10.1016/j.pbiomolbio.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
17
|
Patejdl R, Noack T. Calcium movement in smooth muscle and evaluation of graded functional intercellular coupling. CHAOS (WOODBURY, N.Y.) 2018; 28:106311. [PMID: 30384639 DOI: 10.1063/1.5035168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Spontaneous activity of vascular smooth muscle is present in small arteries and some venous tissues like the hepatic portal vein. Whereas the ability to generate rhythmic membrane potential changes is expressed in a high number of primary oscillators, the generation of physiological tone and phasic activity requires synchronization of specialized pacemaker activity (Interstitial Cajal-like cells) by intercellular propagation and regeneration of excitation or a strong coupling mechanism of smooth muscle cells. The aim of this study was to deduce oscillator coupling by analyzing the spatiotemporal homogeneity of calcium oscillations within a native tissue preparation. Portal vein tissue was loaded with a calcium-sensitive dye (Fluo-3). By combining confocal microscopy and computation of spatial auto- and cross-correlation of the calcium signals, temporal and spatial coupling between cells was characterized. Spontaneous oscillations of calcium signals were measured at different predefined regions of interest. Cross-correlation analysis of these signals revealed that their damping was very similar in all directions of the investigated z-plane. In single experiments, improved cell-to-cell coupling was seen when noradrenaline (1-10 μM) was added to the bath-solution. With the chosen parameters of frame refresh, the velocity of signal propagation was faster than the maximum detectable velocity, but it could be estimated to exceed 0.1 mm/s. Correlative Network Analysis is a new and very useful tool to determine the functional coupling parameters of quasi-homogenous biological networks and their temporal changes. The action and significance of pharmacological modulators can be well studied on cellular and functional aspects with this newly introduced technique in biological sciences.
Collapse
Affiliation(s)
- R Patejdl
- Department of Physiology, University of Rostock, Universitätsmedizin, Oscar-Langendorff Institut für Physiologie, Gertrudenstr. 9, D-18057 Rostock, Germany
| | - T Noack
- Department of Physiology, University of Rostock, Universitätsmedizin, Oscar-Langendorff Institut für Physiologie, Gertrudenstr. 9, D-18057 Rostock, Germany
| |
Collapse
|
18
|
Malki G, Zlochiver S. Cardiac spiral wave drifting due to spatial temperature gradients - A numerical study. Med Eng Phys 2018; 61:69-80. [PMID: 30201284 DOI: 10.1016/j.medengphy.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/16/2018] [Accepted: 08/26/2018] [Indexed: 01/07/2023]
Abstract
Cardiac rotors are believed to be a major driver source of persistent atrial fibrillation (AF), and their spatiotemporal characterization is essential for successful ablation procedures. However, electrograms guided ablation have not been proven to have benefit over empirical ablation thus far, and there is a strong need of improving the localization of cardiac arrhythmogenic targets for ablation. A new approach for characterize rotors is proposed that is based on induced spatial temperature gradients (STGs), and investigated by theoretical study using numerical simulations. We hypothesize that such gradients will cause rotor drifting due to induced spatial heterogeneity in excitability, so that rotors could be driven towards the ablating probe. Numerical simulations were conducted in single cell and 2D atrial models using AF remodeled kinetics. STGs were applied either linearly on the entire tissue or as a small local perturbation, and the major ion channel rate constants were adjusted following Arrhenius equation. In the AF-remodeled single cell, recovery time increased exponentially with decreasing temperatures, despite the marginal effect of temperature on the action potential duration. In 2D models, spiral waves drifted with drifting velocity components affected by both temperature gradient direction and the spiral wave rotation direction. Overall, spiral waves drifted towards the colder tissue region associated with global minimum of excitability. A local perturbation with a temperature of T = 28 °C was found optimal for spiral wave attraction for the studied conditions. This work provides a preliminary proof-of-concept for a potential prospective technique for rotor attraction. We envision that the insights from this study will be utilize in the future in the design of a new methodology for AF characterization and termination during ablation procedures.
Collapse
Affiliation(s)
- Guy Malki
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | - Sharon Zlochiver
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| |
Collapse
|
19
|
Lane JD, Montaigne D, Tinker A. Tissue-Level Cardiac Electrophysiology Studied in Murine Myocardium Using a Microelectrode Array: Autonomic and Thermal Modulation. J Membr Biol 2017; 250:471-481. [PMID: 28766006 PMCID: PMC5613071 DOI: 10.1007/s00232-017-9973-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Cardiac electrophysiology is regulated by the autonomic nervous system, and this has both pathophysiological, and possibly therapeutic importance. Furthermore, chamber differences in electrophysiology exist between atria and ventricles, yet there have been few direct comparisons. There is substantial literature on ion channel modulation at the single-cell level but less work on how this affects tissue-level parameters. We used a microelectrode array system to explore these issues using murine atrial and ventricular tissue slices. Activation time, conduction velocity and repolarisation were measured, and their modulation by temperature and pharmacological autonomic agonists were assessed. The system recorded reliable measurements under control conditions in the absence of drug/thermal challenge, and significant baseline differences were found in chamber electrophysiology. The sodium channel blocker mexiletine, produced large magnitude changes in all three measured parameters. Carbachol and isoprenaline induced differing effects in atria and ventricles, whereas temperature produced similar effects on activation and repolarisation.
Collapse
Affiliation(s)
- Jem D Lane
- William Harvey Heart Centre, Barts & The London School of Medicine and Dentistry, London, UK
| | - David Montaigne
- William Harvey Heart Centre, Barts & The London School of Medicine and Dentistry, London, UK.,Department of Cardiac Functional Investigations, CHU Lille, 59000, Lille, France.,Univ. Lille, 59000, Lille, France.,Inserm, UMR 1011, 59000, Lille, France.,Institut Pasteur de Lille, Lille, France.,European Genomic Institute for Diabetes (E.G.I.D.), FR 3508, 59000, Lille, France
| | - Andrew Tinker
- William Harvey Heart Centre, Barts & The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
20
|
Badr A, Hassinen M, El-Sayed MF, Vornanen M. Effects of seasonal acclimatization on action potentials and sarcolemmal K+ currents in roach (Rutilus rutilus) cardiac myocytes. Comp Biochem Physiol A Mol Integr Physiol 2017; 205:15-27. [DOI: 10.1016/j.cbpa.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
|
21
|
Mann SA, Imtiaz M, Winbo A, Rydberg A, Perry MD, Couderc JP, Polonsky B, McNitt S, Zareba W, Hill AP, Vandenberg JI. Convergence of models of human ventricular myocyte electrophysiology after global optimization to recapitulate clinical long QT phenotypes. J Mol Cell Cardiol 2016; 100:25-34. [DOI: 10.1016/j.yjmcc.2016.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/11/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022]
|
22
|
Chavez LO, Leon M, Einav S, Varon J. Editor's Choice- Inside the cold heart: A review of therapeutic hypothermia cardioprotection. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2016; 6:130-141. [PMID: 26714973 DOI: 10.1177/2048872615624242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Targeted temperature management has been originally used to reduce neurological injury and improve outcome in patients after out-of-hospital cardiac arrest. Myocardial infarction remains a major cause of death in the world and several investigators are studying the effect of mild therapeutic hypothermia during an acute cardiac ischemic injury. A search on MEDLINE, Scopus and EMBASE databases was conducted to obtain data regarding the cardioprotective properties of therapeutic hypothermia. Preclinical studies have shown that therapeutic hypothermia provides a cardioprotective effect in animals. The proposed pathways for the cardioprotective effects of therapeutic hypothermia include stabilization of mitochondrial permeability, production of nitric oxide, equilibration of reactive oxygen species, and calcium channels homeostasis. Clinical trials in humans have yielded controversial results. Current trials are therefore seeking to combine therapeutic hypothermia with other treatment modalities in order to improve the outcomes of patients with acute ischemic injury. This article provides a review of the hypothermia effects on the cardiovascular system, from the basic science of physiological changes in the human body and molecular mechanisms of cardioprotection to the bench of clinical trials with therapeutic hypothermia in patients with acute ischemic injury.
Collapse
Affiliation(s)
- Luis O Chavez
- 1 University General Hospital, Houston, USA.,2 Universidad Autonoma de Baja California, Facultad de Medicina y Psicología, Tijuana, Mexico
| | - Monica Leon
- 1 University General Hospital, Houston, USA.,3 Universidad Popular Autonoma del Estado de Puebla, Facultad de Medicina Puebla, Mexico
| | - Sharon Einav
- 4 Shaare Zedek Medical Center and Hadassah-Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | |
Collapse
|
23
|
Effect of epicardial cooling Peltier elements on atrial conduction: A proof-of-concept study for a potentially painless method of atrial defibrillation. Heart Rhythm 2016; 13:2253-2258. [PMID: 27374310 DOI: 10.1016/j.hrthm.2016.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/23/2022]
|
24
|
Lu HR, Gallacher DJ, Yan GX. Assessment of drug-induced proarrhythmia: The importance of study design in the rabbit left ventricular wedge model. J Pharmacol Toxicol Methods 2016; 81:151-60. [PMID: 27374776 DOI: 10.1016/j.vascn.2016.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 01/09/2023]
Abstract
In the present study, we investigated an impact of the stimulation rate on the detection of the proarrhythmic potential of 10 reference compounds with effects on different cardiac ion channels in the isolated arterially-perfused rabbit left ventricular wedge preparation. The compounds were tested in the wedge model using two distinct protocols; including baseline stimulation at 1-Hz followed by a brief period at 0.5-Hz, either without an additional brief period of 2-Hz stimulation (i.e. Protocol 1) or with 2-Hz stimulation (i.e. Protocol 2). As expected, QT-prolonging drugs (ibutilide and quinidine) prolonged the QT interval, similarly increased the Torsades de Pointes (TdP) score, and elicited early afterdepolarizations (EADs) in both protocols. HMR1556 and JNJ-303 (IKs blockers) also prolonged the QT interval up to 1μM similarly in both protocols. Nifedipine (Ca(2+) antagonist) shortened the QT interval, and reduced force of contraction similarly in both protocols. However, Na(+) channel blockers (Ia, Ib, Ic) widened the QRS duration more in Protocol 2 than in Protocol 1. Furthermore, it was only possible to detect non-TdP-like ventricular tachycardia/fibrillation (VT/VF) induced by Na(+) blockers and by QT-shortening drugs (levcromakalim and mallotoxin) using the 2-Hz stimulation (Protocol 2). Our data suggest that the inclusion of a brief period of fast stimulation at 2Hz is critical for detecting drug-induced slowing of conduction (QRS widening), QT shortening and associated (non-TdP-like) VT/VF, which are distinct from the QT prolongation/TdP proarrhythmia in isolated, arterially-perfused rabbit left ventricular wedges.
Collapse
Affiliation(s)
- Hua Rong Lu
- Global Safety Pharmacology, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Belgium.
| | - David J Gallacher
- Global Safety Pharmacology, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Belgium
| | - Gan-Xin Yan
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| |
Collapse
|
25
|
Alexandre J, Hof T, Puddu PE, Rouet R, Guinamard R, Manrique A, Beygui F, Sallé L, Milliez P. Rapid and MR-Independent IK1 Activation by Aldosterone during Ischemia-Reperfusion. PLoS One 2015. [PMID: 26222262 PMCID: PMC4519293 DOI: 10.1371/journal.pone.0132592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In ST elevation myocardial infarction (STEMI) context, clinical studies have shown the deleterious effect of high aldosterone levels on ventricular arrhythmia occurrence and cardiac mortality. Previous in vitro reports showed that during ischemia-reperfusion, aldosterone modulates K+ currents involved in the holding of the resting membrane potential (RMP). The aim of this study was to assess the electrophysiological impact of aldosterone on IK1 current during myocardial ischemia-reperfusion. We used an in vitro model of “border zone” using right rabbit ventricle and standard microelectrode technique followed by cell-attached recordings from freshly isolated rabbit ventricular cardiomyocytes. In microelectrode experiments, aldosterone (10 and 100 nmol/L, n=7 respectively) increased the action potential duration (APD) dispersion at 90% between ischemic and normoxic zones (from 95±4 ms to 116±6 ms and 127±5 ms respectively, P<0.05) and reperfusion-induced sustained premature ventricular contractions occurrence (from 2/12 to 5/7 preparations, P<0.05). Conversely, potassium canrenoate 100 nmol/L and RU 28318 1 μmol/l alone did not affect AP parameters and premature ventricular contractions occurrence (except Vmax which was decreased by potassium canrenoate during simulated-ischemia). Furthermore, aldosterone induced a RMP hyperpolarization, evoking an implication of a K+ current involved in the holding of the RMP. Cell-attached recordings showed that aldosterone 10 nmol/L quickly activated (within 6.2±0.4 min) a 30 pS K+-selective current, inward rectifier, with pharmacological and biophysical properties consistent with the IK1 current (NPo =1.9±0.4 in control vs NPo=3.0±0.4, n=10, P<0.05). These deleterious effects persisted in presence of RU 28318, a specific MR antagonist, and were successfully prevented by potassium canrenoate, a non specific MR antagonist, in both microelectrode and patch-clamp recordings, thus indicating a MR-independent IK1 activation. In this ischemia-reperfusion context, aldosterone induced rapid and MR-independent deleterious effects including an arrhythmia substrate (increased APD90 dispersion) and triggered activities (increased premature ventricular contractions occurrence on reperfusion) possibly related to direct IK1 activation.
Collapse
Affiliation(s)
- Joachim Alexandre
- CHU de Caen, Department of Cardiology, Caen, France
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
| | - Thomas Hof
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
| | | | - René Rouet
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
| | - Romain Guinamard
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
| | - Alain Manrique
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
| | - Farzin Beygui
- CHU de Caen, Department of Cardiology, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
| | - Laurent Sallé
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
| | - Paul Milliez
- CHU de Caen, Department of Cardiology, Caen, France
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, France
- Université de Caen Basse-Normandie, Medical School, Caen, F-14000, France
- * E-mail:
| |
Collapse
|
26
|
Meijer van Putten RME, Mengarelli I, Guan K, Zegers JG, van Ginneken ACG, Verkerk AO, Wilders R. Ion channelopathies in human induced pluripotent stem cell derived cardiomyocytes: a dynamic clamp study with virtual IK1. Front Physiol 2015; 6:7. [PMID: 25691870 PMCID: PMC4315032 DOI: 10.3389/fphys.2015.00007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are widely used in studying basic mechanisms of cardiac arrhythmias that are caused by ion channelopathies. Unfortunately, the action potential profile of hiPSC-CMs-and consequently the profile of individual membrane currents active during that action potential-differs substantially from that of native human cardiomyocytes, largely due to almost negligible expression of the inward rectifier potassium current (IK1). In the present study, we attempted to "normalize" the action potential profile of our hiPSC-CMs by inserting a voltage dependent in silico IK1 into our hiPSC-CMs, using the dynamic clamp configuration of the patch clamp technique. Recordings were made from single hiPSC-CMs, using the perforated patch clamp technique at physiological temperature. We assessed three different models of IK1, with different degrees of inward rectification, and systematically varied the magnitude of the inserted IK1. Also, we modified the inserted IK1 in order to assess the effects of loss- and gain-of-function mutations in the KCNJ2 gene, which encodes the Kir2.1 protein that is primarily responsible for the IK1 channel in human ventricle. For our experiments, we selected spontaneously beating hiPSC-CMs, with negligible IK1 as demonstrated in separate voltage clamp experiments, which were paced at 1 Hz. Upon addition of in silico IK1 with a peak outward density of 4-6 pA/pF, these hiPSC-CMs showed a ventricular-like action potential morphology with a stable resting membrane potential near -80 mV and a maximum upstroke velocity >150 V/s (n = 9). Proarrhythmic action potential changes were observed upon injection of both loss-of-function and gain-of-function IK1, as associated with Andersen-Tawil syndrome type 1 and short QT syndrome type 3, respectively (n = 6). We conclude that injection of in silico IK1 makes the hiPSC-CM a more reliable model for investigating mechanisms underlying cardiac arrhythmias.
Collapse
Affiliation(s)
- Rosalie M E Meijer van Putten
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Isabella Mengarelli
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Kaomei Guan
- Department of Cardiology and Pneumology, Georg-August-University of Göttingen Göttingen, Germany
| | - Jan G Zegers
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Antoni C G van Ginneken
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Arie O Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Ronald Wilders
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
27
|
Kienast R, Stöger M, Handler M, Hanser F, Baumgartner C. Alterations of field potentials in isotropic cardiomyocyte cell layers induced by multiple endogenous pacemakers under normal and hypothermal conditions. Am J Physiol Heart Circ Physiol 2014; 307:H1013-23. [DOI: 10.1152/ajpheart.00097.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of autonomous contracting randomly grown cardiomyocyte monolayers cultivated on microelectrode arrays (MEAs) represents an accepted experimental setting for preclinical experimental research in the field of cardiac electrophysiology. A dominant pacemaker forces a monolayer to adhere to a regular and synchronized contraction. Randomly distributed multiple pacemakers interfere with this dominant center, resulting in more or less frequent changes of propagation direction. This study aims to characterize the impact of changing propagation directions at single electrodes of the MEA on the four intrinsic parameters of registered field potentials (FPs) FPrise, FPMIN, FPpre, and FPdur and conduction velocity (CV) under normal and hypothermal conditions. Primary cultures of chicken cardiomyocytes ( n = 18) were plated directly onto MEAs and FPs were recorded in a temperature range between 37 and 29°C. The number and spatiotemporal distribution of biological and artificial pacemakers of each cell layer inside and outside of the MEA registration area were evaluated using an algorithm developed in-house. In almost every second myocardial cell layer, interfering autonomous pacemakers were detected at stable temperatures, showing random spatial distributions with similar beating rates. Additionally, a temperature-dependent change of the dominant pacemaker center was observed in n = 16 experiments. A significant spread-direction-dependent variation of CV, FPrise, FPMIN, and FPpre up to 14% could be measured between different endogenous pacemakers. In conclusion, based on our results, disregarding the spatial origin of excitation may lead to misinterpretations and erroneous conclusions of FP parameters in the verification of research hypotheses in cellular electrocardiology.
Collapse
Affiliation(s)
- R. Kienast
- Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and
| | - M. Stöger
- Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and
- Division of Internal Medicine III/Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - M. Handler
- Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and
| | - F. Hanser
- Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and
| | - C. Baumgartner
- Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and
| |
Collapse
|
28
|
Lin E, Ribeiro A, Ding W, Hove-Madsen L, Sarunic MV, Beg MF, Tibbits GF. Optical mapping of the electrical activity of isolated adult zebrafish hearts: acute effects of temperature. Am J Physiol Regul Integr Comp Physiol 2014; 306:R823-36. [PMID: 24671241 DOI: 10.1152/ajpregu.00002.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The zebrafish (Danio rerio) has emerged as an important model for developmental cardiovascular (CV) biology; however, little is known about the cardiac function of the adult zebrafish enabling it to be used as a model of teleost CV biology. Here, we describe electrophysiological parameters, such as heart rate (HR), action potential duration (APD), and atrioventricular (AV) delay, in the zebrafish heart over a range of physiological temperatures (18-28°C). Hearts were isolated and incubated in a potentiometric dye, RH-237, enabling electrical activity assessment in several distinct regions of the heart simultaneously. Integration of a rapid thermoelectric cooling system facilitated the investigation of acute changes in temperature on critical electrophysiological parameters in the zebrafish heart. While intrinsic HR varied considerably between fish, the ex vivo preparation exhibited impressively stable HRs and sinus rhythm for more than 5 h, with a mean HR of 158 ± 9 bpm (means ± SE; n = 20) at 28°C. Atrial and ventricular APDs at 50% repolarization (APD50) were 33 ± 1 ms and 98 ± 2 ms, respectively. Excitation originated in the atrium, and there was an AV delay of 61 ± 3 ms prior to activation of the ventricle at 28°C. APD and AV delay varied between hearts beating at unique HRs; however, APD and AV delay did not appear to be statistically dependent on intrinsic basal HR, likely due to the innate beat-to-beat variability within each heart. As hearts were cooled to 18°C (by 1°C increments), HR decreased by ~40%, and atrial and ventricular APD50 increased by a factor of ~3 and 2, respectively. The increase in APD with cooling was disproportionate at different levels of repolarization, indicating unique temperature sensitivities for ion currents at different phases of the action potential. The effect of temperature was more apparent at lower levels of repolarization and, as a whole, the atrial APD was the cardiac parameter most affected by acute temperature change. In conclusion, this study describes a preparation enabling the in-depth analysis of transmembrane potential dynamics in whole zebrafish hearts. Because the zebrafish offers some critical advantages over the murine model for cardiac electrophysiology, optical mapping studies utilizing zebrafish offer insightful information into the understanding and treatment of human cardiac arrhythmias, as well as serving as a model for other teleosts.
Collapse
Affiliation(s)
- Eric Lin
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Amanda Ribeiro
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Weiguang Ding
- Medical Image Analysis Laboratory, School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Leif Hove-Madsen
- Cardiovascular Research Centre, CSIC-ICCC, Hospital de Sant Pau, Barcelona, Spain
| | - Marinko V Sarunic
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, Canada; and
| | - Mirza Faisal Beg
- Medical Image Analysis Laboratory, School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada; Cardiovascular Sciences, Child and Family Research Institute, Vancouver, Canada
| |
Collapse
|
29
|
Filippi S, Gizzi A, Cherubini C, Luther S, Fenton FH. Mechanistic insights into hypothermic ventricular fibrillation: the role of temperature and tissue size. Europace 2014; 16:424-34. [PMID: 24569897 PMCID: PMC3934849 DOI: 10.1093/europace/euu031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/27/2014] [Indexed: 12/26/2022] Open
Abstract
AIMS Hypothermia is well known to be pro-arrhythmic, yet it has beneficial effects as a resuscitation therapy and valuable during intracardiac surgeries. Therefore, we aim to study the mechanisms that induce fibrillation during hypothermia. A better understanding of the complex spatiotemporal dynamics of heart tissue as a function of temperature will be useful in managing the benefits and risks of hypothermia. METHODS AND RESULTS We perform two-dimensional numerical simulations by using a minimal model of cardiac action potential propagation fine-tuned on experimental measurements. The model includes thermal factors acting on the ionic currents and the gating variables to correctly reproduce experimentally recorded restitution curves at different temperatures. Simulations are implemented using WebGL, which allows long simulations to be performed as they run close to real time. We describe (i) why fibrillation is easier to induce at low temperatures, (ii) that there is a minimum size required for fibrillation that depends on temperature, (iii) why the frequency of fibrillation decreases with decreasing temperature, and (iv) that regional cooling may be an anti-arrhythmic therapy for small tissue sizes however it may be pro-arrhythmic for large tissue sizes. CONCLUSION Using a mathematical cardiac cell model, we are able to reproduce experimental observations, quantitative experimental results, and discuss possible mechanisms and implications of electrophysiological changes during hypothermia.
Collapse
Affiliation(s)
- Simonetta Filippi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
- International Center for Relativistic Astrophysics—I.C.R.A, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
- International Center for Relativistic Astrophysics—I.C.R.A, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
| | - Christian Cherubini
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
- International Center for Relativistic Astrophysics—I.C.R.A, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, 837 State Street Atlanta, Atlanta, GA 30332, USA
| |
Collapse
|
30
|
Jeican II. The pathophysiological mechanisms of the onset of death through accidental hypothermia and the presentation of "The little match girl" case. CLUJUL MEDICAL 2014; 87:54-60. [PMID: 26527999 PMCID: PMC4462406 DOI: 10.15386/cjm.2014.8872.871.iij1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/13/2014] [Indexed: 12/02/2022]
Abstract
Hypothermia and death caused by hypothermia may be found in a number of fiction works, mainly in novels. In the well-known story “The Little Match Girl” by Hans Christian Andersen, one can notice that the descriptions of the phenomena occurring before the girl’s death are in fact a literary presentation of the pathophysiological mechanisms of the onset of death through accidental hypothermia. This essay presents the medical aspects of the story written by Andersen.
Collapse
Affiliation(s)
- Ionuţ Isaia Jeican
- Medical student, Faculty of General Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca
| |
Collapse
|
31
|
Fenton FH, Gizzi A, Cherubini C, Pomella N, Filippi S. Role of temperature on nonlinear cardiac dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042717. [PMID: 23679459 DOI: 10.1103/physreve.87.042717] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/19/2012] [Indexed: 06/02/2023]
Abstract
Thermal effects affecting spatiotemporal behavior of cardiac tissue are discussed by relating temperature variations to proarrhythmic dynamics in the heart. By introducing a thermoelectric coupling in a minimal model of cardiac tissue, we are able to reproduce experimentally measured dynamics obtained simultaneously from epicardial and endocardial canine right ventricles at different temperatures. A quantitative description of emergent proarrhythmic properties of restitution, conduction velocity, and alternans regimes as a function of temperature is presented. Complex discordant alternans patterns that enhance tissue dispersion consisting of one wave front and three wave backs are described in both simulations and experiments. Possible implications for model generalization are finally discussed.
Collapse
Affiliation(s)
- Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
32
|
Kanaporis G, Martišienė I, Jurevičius J, Vosyliūtė R, Navalinskas A, Treinys R, Matiukas A, Pertsov AM. Optical mapping at increased illumination intensities. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:96007-1. [PMID: 23085908 PMCID: PMC3602814 DOI: 10.1117/1.jbo.17.9.096007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/19/2012] [Accepted: 08/14/2012] [Indexed: 05/25/2023]
Abstract
Voltage-sensitive fluorescent dyes have become a major tool in cardiac and neuro-electrophysiology. Achieving high signal-to-noise ratios requires increased illumination intensities, which may cause photobleaching and phototoxicity. The optimal range of illumination intensities varies for different dyes and must be evaluated individually. We evaluate two dyes: di-4-ANBDQBS (excitation 660 nm) and di-4-ANEPPS (excitation 532 nm) in the guinea pig heart. The light intensity varies from 0.1 to 5 mW/mm2, with the upper limit at 5 to 10 times above values reported in the literature. The duration of illumination was 60 s, which in guinea pigs corresponds to 300 beats at a normal heart rate. Within the identified duration and intensity range, neither dye shows significant photobleaching or detectable phototoxic effects. However, light absorption at higher intensities causes noticeable tissue heating, which affects the electrophysiological parameters. The most pronounced effect is a shortening of the action potential duration, which, in the case of 532-nm excitation, can reach ∼30%. At 660-nm excitation, the effect is ∼10%. These findings may have important implications for the design of optical mapping protocols in biomedical applications.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Irma Martišienė
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Jonas Jurevičius
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Rūta Vosyliūtė
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Antanas Navalinskas
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Rimantas Treinys
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Arvydas Matiukas
- SUNY Upstate Medical University, Department of Pharmacology, 750 East Adams Street, Syracuse, New York 13210
| | - Arkady M. Pertsov
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
- SUNY Upstate Medical University, Department of Pharmacology, 750 East Adams Street, Syracuse, New York 13210
| |
Collapse
|
33
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
34
|
Kågström J, Laumola EL, Poijes N, Johansson M, Ericson AC. Assessment of the effects of changes in body temperature on cardiac electrophysiology in anaesthetised guinea pigs. J Pharmacol Toxicol Methods 2011; 65:1-7. [PMID: 22178983 DOI: 10.1016/j.vascn.2011.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Anaesthetised guinea pigs are commonly used within Safety Pharmacology to evaluate drug effects on cardiac electrophysiology. However, anesthesia compromises the ability to thermoregulate, which can be further challenged when more invasive surgery is required. As anaesthetised animals are often used when screening for cardiotoxicity, thereby influencing go/no-go decisions, we wanted to quantify the impact of small temperature changes on the recorded electrophysiological parameters. METHODS Male guinea pigs were anaesthetised by pentobarbital, placed on a pre-heated table and a rectal thermistor inserted for monitoring of body temperature. After intubation animals were vagotomised and β-blocked, and lead II ECG needle electrodes attached. Following thoracotomy an atrial pacing electrode was attached and a suction MAP electrode positioned on the ventricular epicardium. In control animals temperature was kept constant (38.1±0.1°C) over the duration of the experiment. Animals in one group were slowly warmed to 41.9°C by a heating plate and a heating lamp, and in another group slowly cooled to 34.4°C by turning off all heating equipment. MAP duration at 90% repolarisation (MAPD90), AV conduction, ECG and body temperature were recorded during cardiac pacing every 5min up to 50min. RESULTS No time-dependent changes were seen in the control group. In contrast, a linear correlation was found between changes in body temperature and MAPD90, AV conduction, QTc and QRS intervals. For each degree temperature fell below 38°C MAPD90 was prolonged by 6.1ms, and for each degree above 38°C MAPD90 was shortened by 5.3ms. Corresponding changes were seen for QTc interval and AV conduction time, while effects on the QRS interval were smaller. DISCUSSION The data highlights the importance of carefully controlling body temperature when performing electrophysiological recordings in laboratory animals. A change by a single degree can affect electrophysiological parameters by 5-10%, thus increasing the risk for a false positive or negative interpretation of cardiotoxicity.
Collapse
Affiliation(s)
- Jens Kågström
- Safety Pharmacology, Safety Assessment, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Early repolarization - a marker of ventricular fibrillation? COR ET VASA 2011. [DOI: 10.33678/cor.2011.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Benito B, Guasch E, Rivard L, Nattel S. Clinical and mechanistic issues in early repolarization of normal variants and lethal arrhythmia syndromes. J Am Coll Cardiol 2010; 56:1177-86. [PMID: 20883924 DOI: 10.1016/j.jacc.2010.05.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 11/17/2022]
Abstract
Early repolarization, involving ST-segment elevation and, sometimes, prominent J waves at the QRS-ST junction, has been considered a normal electrocardiographic variant for over 60 years. A growing number of case reports and case-control studies indicate that in some instances, early repolarization patterns are associated with increased risk of idiopathic ventricular fibrillation. Epidemiological evidence indicates a dose effect for the risk of cardiac and sudden death with the extent of J-point elevation. This paper reviews present knowledge regarding the epidemiology, presentation, therapeutic response, and mechanisms characteristic of early repolarization. We highlight major unanswered questions relating to our limited ability to determine which individuals with this common electrocardiographic variant are at risk for sudden death, our incomplete understanding of underlying mechanisms, the inadequate information regarding genetic determinants and therapeutic responses, and the unclear relationship between early repolarization and other conditions involving accelerated repolarization and sudden arrhythmic death such as Brugada and short-QT syndromes. This review paper intends to inform the practicing physician about important clinical issues and to stimulate investigators to address the many unresolved questions in this rapidly evolving field.
Collapse
Affiliation(s)
- Begoña Benito
- Research Center and Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
37
|
Abstract
Hypothermia is known to cause specific electrocardiographic (EKG) changes such as Osborne waves and bradycardia. We report diffuse ST segment depression, an atypical EKG change, in a patient with a core temperature of 29.4°C (85°F). This patient had no previous cardiovascular pathology, and his EKG changes resolved gradually with aggressive warming. We also discuss the pathophysiology and clinical significance of ST depression in the general population and the typical EKG changes in hypothermia patients.
Collapse
|
38
|
Burashnikov A, Shimizu W, Antzelevitch C. Fever accentuates transmural dispersion of repolarization and facilitates development of early afterdepolarizations and torsade de pointes under long-QT Conditions. Circ Arrhythm Electrophysiol 2009; 1:202-8. [PMID: 19649147 DOI: 10.1161/circep.107.691931] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The arrhythmogenic effects of hyperthermia have been highlighted in the Brugada syndrome but remain largely unexplored in other arrhythmic syndromes. The present study examines the effect of hyperthermia on transmural dispersion of action potential duration (TD-APD), early afterdepolarization (EAD) activity, and torsade de pointes (TdP) under long-QT conditions. METHODS AND RESULTS Standard and floating glass microelectrodes were used to record action potentials from epicardial, M cell, and endocardial regions of the arterially perfused left ventricle wedge, from tissue slices isolated from these regions, and from isolated Purkinje fibers. A transmural ECG was simultaneously recorded across the wedge. Under baseline conditions and in the presence of I(Ks) block (chromanol 293B), hyperthermia (39 degrees C to 40 degrees C) abbreviated APD in tissue slices from all 3 regions. In the presence of I(Kr) block (E-4031), hyperthermia prolonged APD and induced or augmented EADs in M cell and Purkinje preparations at pacing cycle lengths > or = 800 ms but abbreviated APD in epicardium and endocardium, resulting in a marked accentuation of TD-APD. Ryanodine prevented the hyperthermia- induced EAD. In perfused wedge preparations, hyperthermia abbreviated APD throughout both in the absence or presence of I(Kr) or I(Ks) block and did not induce EADs or TdP. Combined I(Kr) and I(Ks) block increased TD-APD and induced EADs (4/12) and spontaneous TdP (3/12) at 36 degrees C to 37 degrees C; hyperthermia (39 degrees C to 40 degrees C) further accentuated TD-APD and facilitated the development of EAD activity (9/12) and TdP (6/12). CONCLUSIONS Our findings suggest that hyperthermia can be associated with an increased arrhythmic risk when the repolarization reserve of the myocardium is compromised.
Collapse
|
39
|
Huang F, Rabson D, Chen W. Distribution of the NA/K pumps' turnover rates as a function of membrane potential, temperature, and ion concentration gradients and effect of fluctuations. J Phys Chem B 2009; 113:8096-102. [PMID: 19441863 DOI: 10.1021/jp8054153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of structural independence of the Na/K pump molecules, the pumping rates of individual pumps may not be the same, instead showing some sort of distribution. Detailed information about the distribution has not previously been reported. The pumping rate of Na/K pumps depends on many parameters, such as membrane potential, temperature, and ion concentration gradients across the cell membrane. Fluctuation of any of the variables will change the pumping rate, resulting in a distribution. On the basis of a simplified six-state model, a steady-state pumping flux and therefore the pumping rate were obtained. Parameters were determined based on previous experimental results on amphibian skeletal muscle and theoretical work. Gaussian fluctuations of all the variables were considered to determine the changes in the pumping rate. These variable fluctuations may be totally independent or correlated to each other. The results showed that the pumping rates of the Na/K pumps are distributed in an asymmetric profile, which has a higher probability at the lower pumping rate. We present a model distribution of pumping rates as a function of temperature, membrane potential, and ion concentration.
Collapse
Affiliation(s)
- Feiran Huang
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | | | | |
Collapse
|
40
|
Regional, age-dependent, and genotype-dependent differences in ventricular action potential duration and activation time in 410 Langendorff-perfused mouse hearts. Basic Res Cardiol 2009; 104:523-33. [DOI: 10.1007/s00395-009-0019-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/17/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
|
41
|
Tormos A, Chorro FJ, Millet J, Such L, Cánoves J, Mainar L, Trapero I, Such-Miquel L, Guill A, Alberola A. Analyzing the electrophysiological effects of local epicardial temperature in experimental studies with isolated hearts. Physiol Meas 2008; 29:711-28. [PMID: 18560056 DOI: 10.1088/0967-3334/29/7/002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As a result of their modulating effects upon myocardial electrophysiology, both hypo- and hyperthermia can be used to study the mechanisms that generate or sustain cardiac arrhythmias. The present study describes an original electrode developed with thick-film technology and capable of controlling regional temperature variations in the epicardium while simultaneously registering its electrical activity. In this way, it is possible to measure electrophysiological parameters of the heart at different temperatures. The results obtained with this device in a study with isolated and perfused rabbit hearts are reported. An exploration has been made of the effects of local temperature changes upon the electrophysiological parameters implicated in myocardial conduction. Likewise, an analysis has been made of the influence of local temperature upon ventricular fibrillation activation frequency. It is concluded that both regional hypo- and hyperthermia exert reversible and opposite effects upon myocardial refractoriness and conduction velocity in the altered zone. The ventricular activation wavelength determined during constant pacing at 250 ms cycles is not significantly modified, however. During ventricular fibrillation, the changes in the fibrillatory frequency do not seem to be transmitted to normal temperature zones.
Collapse
Affiliation(s)
- Alvaro Tormos
- Bioengineering, Electronics and Telemedicine Group, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Azarov JE, Shmakov DN, Vityazev VA, Roshchevskaya IM, Arteyeva NV, Kharin SN, Roshchevsky MP. Ventricular repolarization pattern under heart cooling in the rabbit. Acta Physiol (Oxf) 2008; 193:129-38. [PMID: 18284376 DOI: 10.1111/j.1748-1716.2008.01835.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Prolongation of ventricular repolarization is characteristic of myocardial cooling. In the present study, we investigated whether this prolongation is uniform or not throughout ventricular epicardium and how these hypothermia-induced changes express in the body surface potential distribution. METHODS Epicardial and body surface potential mapping from 64 unipolar leads was carried out in 18 anaesthetized adult rabbits. Mild hypothermia documented by lowering the mediastinal and rectal temperature from 38 to 32 degrees C was elicited by perfusion of the mediastinum with cooled saline. Activation times, repolarization times and activation-recovery intervals were determined in each epicardial lead. RESULTS Baseline activation-recovery intervals distributed non-uniformly on the ventricular epicardium, increasing progressively from the apex to the base and from the left ventricular (LV) sites to the right ventricular (RV) sites (P < 0.05), governing the repolarization sequence of ventricular epicardium. Heart cooling from 38 to 32 degrees C produced the heterogeneous prolongation of activation-recovery intervals which was more pronounced at the apex than at the base, and in the LV areas compared to the RV areas (P < 0.05). These nonuniform changes in local repolarization durations resulted in the development of base-to-apex repolarization sequence and inversion of the body surface potential distribution during the T wave. CONCLUSION Thus, under cooling the rabbit heart from 38 to 32 degrees C, the nonuniform prolongation of local repolarization durations resulted in the reversal of ventricular epicardial repolarization sequence which, in turn, was responsible for the inversion in the body surface potential distribution during the T wave.
Collapse
Affiliation(s)
- J E Azarov
- Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Division, Russian Academy of Sciences, Syktyvkar, Russia.
| | | | | | | | | | | | | |
Collapse
|
43
|
Harada M, Honjo H, Yamazaki M, Nakagawa H, Ishiguro YS, Okuno Y, Ashihara T, Sakuma I, Kamiya K, Kodama I. Moderate hypothermia increases the chance of spiral wave collision in favor of self-termination of ventricular tachycardia/fibrillation. Am J Physiol Heart Circ Physiol 2008; 294:H1896-905. [DOI: 10.1152/ajpheart.00986.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cardiac arrest due to ventricular fibrillation (VF), moderate hypothermia (MH, 33°C) has been shown to improve defibrillation success compared with normothermia (NR, 37°C) and severe hypothermia (SH, 30°C). The underlying mechanisms remain unclear. We hypothesized that MH might prevent reentrant excitations rotating around functional obstacles (rotors) that are responsible for the genesis of VF. In two-dimensional Langendorff-perfused rabbit hearts prepared by cryoablation ( n = 13), action potential signals were recorded by a high-resolution optical mapping system. During basic stimulation (2.5–5.0 Hz), MH and SH caused significant prolongation of action potential duration and significant reduction of conduction velocity. Wavelength was unchanged at MH, whereas it was shortened significantly at SH at higher stimulation frequencies (4.0–5.0 Hz). The duration of direct current stimulation-induced ventricular tachycardia (VT)/VF was reduced dramatically at MH compared with NR and SH. The spiral wave (SW) excitations documented during VT at NR were by and large organized, whereas those during VT/VF at MH and SH were characterized by disorganization with frequent breakup. Phase maps during VT/VF at MH showed a higher incidence of SW collision (mutual annihilation or exit from the anatomical boundaries), which caused a temporal disappearance of phase singularity points (PS-0), compared with that at NR and SH. There was an inverse relation between PS-0 period in the observation area and VT/VF duration. MH data points were located in a longer PS-0 period and a shorter VT/VF duration zone compared with SH. MH causes a modification of SW dynamics, leading to an increase in the chance of SW collision in favor of self-termination of VT/VF.
Collapse
|
44
|
Fink M, Noble D, Virag L, Varro A, Giles WR. Contributions of HERG K+ current to repolarization of the human ventricular action potential. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 96:357-76. [PMID: 17919688 DOI: 10.1016/j.pbiomolbio.2007.07.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Action potential repolarization in the mammalian heart is governed by interactions of a number of time- and voltage-dependent channel-mediated currents, as well as contributions from the Na+/Ca2+ exchanger and the Na+/K+ pump. Recent work has shown that one of the K+ currents (HERG) which contributes to repolarization in mammalian ventricle is a locus at which a number of point mutations can have significant functional consequences. In addition, the remarkable sensitivity of this K+ channel isoform to inhibition by a variety of pharmacological agents and clinical drugs has resulted in HERG being a major focus for Safety Pharmacology requirements. For these reasons we and others have attempted to define the functional role for HERG-mediated K+ currents in repolarization of the action potential in the human ventricle. Here, we describe and evaluate changes in the formulations for two K+ currents, IK1 and HERG (or IK,r), within the framework of ten Tusscher model of the human ventricular action potential. In this computational study, new mathematical formulations for the two nonlinear K+ conductances, IK1 and HERG, have been developed based upon experimental data obtained from electrophysiological studies of excised human ventricular tissue and/or myocytes. The resulting mathematical model provides much improved simulations of the relative sizes and time courses of the K+ currents which modulate repolarization. Our new formulation represents an important first step in defining the mechanism(s) of repolarization of the membrane action potential in the human ventricle. Our overall goal is to understand the genesis of the T-wave of the human electrocardiogram.
Collapse
Affiliation(s)
- Martin Fink
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
45
|
Cardiovascular manifestations and ECG findings in hypothermia. COR ET VASA 2007. [DOI: 10.33678/cor.2007.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Horan M, Edwards AD, Firmin RK, Ablett T, Rawson H, Field D. The effect of temperature on the QTc interval in the newborn infant receiving extracorporeal membrane oxygenation (ECMO). Early Hum Dev 2007; 83:217-23. [PMID: 16837147 DOI: 10.1016/j.earlhumdev.2006.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 05/20/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To explore the changes in the QTc interval during mild hypothermia in neonates receiving extracorporeal membrane oxygenation (ECMO). DESIGN Twenty seven neonates (median gestation 40 weeks; range 33-41 weeks) enrolled in a pilot study of mild hypothermia were studied during the first five days of ECMO. The first group (N=7) were maintained at 37 degrees C throughout the study period. Subsequent groups (N=5) were cooled to 36 degrees C, 35 degrees C and 34 degrees C respectively for twenty four hours and the final group to 34 degrees C for forty eight hours before being rewarmed to 37 degrees C. Using a 24 h digital monitor, the QT and QTc intervals were recorded continuously during the cooling and rewarming period and validated using standard 12 lead electrocardiograms. Patients were carefully assessed clinically and routine biochemistry (including magnesium and calcium) laboratory tests measured pre ECMO and at timed intervals during cooling and rewarming. RESULTS The mean difference between the continuous digital and 12 lead ECG values for QTc was -13.3 ms. During the first 24 h of cooling, the mean (95th centile) values for the digitally measured QTc interval at 37 degrees C=431(506) milliseconds (ms); 36 degrees C=459(521) ms; 35 degrees C=445(516) ms; 34 degrees C=465(531) ms; 34 degrees C for 48 h=466(521) ms. During this period overall QTc increased by 3.12 ms (95% confidence intervals 6.17 to 0.84; p=0.04) for each degree fall in body temperature. During rewarming, there was no significant relationship between QTc and temperature change. No serious arrhythmias were during cooling. Using univariate analysis, no relationship was found between QTc and electrolytes, heart rate and blood pressure. CONCLUSIONS QTc shows significant variability in individuals, and only a small proportion of this can be explained by rectal temperature. Mild hypothermia was not associated with serious cardiac arrhythmias.
Collapse
Affiliation(s)
- Marie Horan
- Department of Child Health, University of Leicester, Leicester, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Xia L, Zhang Y, Zhang H, Wei Q, Liu F, Crozier S. Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches. Physiol Meas 2006; 27:1125-42. [PMID: 17028406 DOI: 10.1088/0967-3334/27/11/006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brugada syndrome (BS) is a genetic disease identified by an abnormal electrocardiogram (ECG) (mainly abnormal ECGs associated with right bundle branch block and ST-elevation in right precordial leads). BS can lead to increased risk of sudden cardiac death. Experimental studies on human ventricular myocardium with BS have been limited due to difficulties in obtaining data. Thus, the use of computer simulation is an important alternative. Most previous BS simulations were based on animal heart cell models. However, due to species differences, the use of human heart cell models, especially a model with three-dimensional whole-heart anatomical structure, is needed. In this study, we developed a model of the human ventricular action potential (AP) based on refining the ten Tusscher et al (2004 Am. J. Physiol. Heart Circ. Physiol. 286 H1573-89) model to incorporate newly available experimental data of some major ionic currents of human ventricular myocytes. These modified channels include the L-type calcium current (I(CaL)), fast sodium current (I(Na)), transient outward potassium current (I(to)), rapidly and slowly delayed rectifier potassium currents (I(Kr) and I(Ks)) and inward rectifier potassium current (I(Ki)). Transmural heterogeneity of APs for epicardial, endocardial and mid-myocardial (M) cells was simulated by varying the maximum conductance of I(Ks) and I(to). The modified AP models were then used to simulate the effects of BS on cellular AP and body surface potentials using a three-dimensional dynamic heart-torso model. Our main findings are as follows. (1) BS has little effect on the AP of endocardial or mid-myocardial cells, but has a large impact on the AP of epicardial cells. (2) A likely region of BS with abnormal cell AP is near the right ventricular outflow track, and the resulting ST-segment elevation is located in the median precordium area. These simulation results are consistent with experimental findings reported in the literature. The model can reproduce a variety of electrophysiological behaviors and provides a good basis for understanding the genesis of abnormal ECG under the condition of BS disease.
Collapse
Affiliation(s)
- Ling Xia
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
48
|
Appleton GO, Li Y, Taffet GE, Hartley CJ, Michael LH, Entman ML, Roberts R, Khoury DS. Determinants of cardiac electrophysiological properties in mice. J Interv Card Electrophysiol 2006; 11:5-14. [PMID: 15273447 DOI: 10.1023/b:jice.0000035922.14870.56] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The transgenic mouse is a popular model for human inherited cardiac disease. Electrophysiology (EP) studies have recently been performed in transgenic mice to characterize the electrical phenotype of the heart. However, little is known regarding the impact of experimental conditions or model selection on the outcome of EP studies in mice. METHODS AND RESULTS We investigated the effects of experimental conditions on mouse cardiac EP by (1) comparing the findings of transesophageal pacing with those of invasive intracardiac pacing, (2) elucidating the effects of commonly used anesthetic agents, and (3) determining the impact of changes in body temperature. We also investigated the effects of model selection by (1) studying the dependence on mouse strain, and (2) exploring the effects of age. We found that EP parameters derived by both transesophageal and intracardiac pacing/recordings methods were similar. On the other hand, the anesthetic mixture of ketamine, xylazine, and acepromazine had profound effects on cardiac EP compared to sodium pentobarbital or isoflurane. Meanwhile, compared to normal body temperature (97-99 F), low body temperature (92-94 F) prolonged most cardiac EP parameters, while high body temperature (102-104 F) had little effect. Heart rate was a sensitive indicator of changes in body temperature. Significant differences were observed in specialized conduction system properties among the mouse strains studied (FVB, C57, and DBA). Furthermore, atrial electrical remodeling was evidently associated with age, while ventricular electrical properties were virtually unaltered. In comparison with corresponding invasive EP parameters, we found that the QT interval was not a reliable EP index in the mouse. CONCLUSIONS Cardiac EP variability may result from differences in experimental techniques including anesthesia and body temperature and from differences in mouse selection including strain and age. The influence of these factors should be considered when characterizing the electrical phenotype of transgenic mice in cardiovascular research.
Collapse
Affiliation(s)
- Gregory O Appleton
- Section of Cardiology, Department of Medicine, and The DeBakey Heart Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dong MQ, Lau CP, Gao Z, Tseng GN, Li GR. Characterization of Recombinant Human Cardiac KCNQ1/KCNE1 Channels (I Ks) Stably Expressed in HEK 293 Cells. J Membr Biol 2006; 210:183-92. [PMID: 16909339 DOI: 10.1007/s00232-006-0006-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
The present study was designed to characterize pharmacological, biophysical and electrophysiological properties of the recombinant human cardiac I (Ks) (KCNQ1/KCNE1) channels at physiological temperature. Human cardiac KCNQ1 and KCNE1 genes were cotransfected into HEK 293 cells, and a cell clone stably expressing both genes was selected. Membrane currents were recorded using a perforated patch-clamp technique. The typical I (Ks) was slowly activated upon depolarization voltages in HEK 293 cells stably expressing human cardiac KCNQ1 and KCNE1 genes, and the current was inhibited by I (Ks) blockers HMR 1556 and chromanol 293B, with 50% inhibitory concentrations (IC(50)s) of 83.8 nM: and 9.2 muM: , respectively. I (Ks) showed a significant temperature-dependent increase in its magnitude upon elevating bath temperature to 36 degrees C from room temperature (21 degrees C). The current was upregulated by the beta-adrenoceptor agonist isoproterenol, and the effect was reversed by H89. In addition, I (Ks) was inhibited by Ba(2+) in a concentration-dependent manner (IC(50) = 1.4 mM). Action potential clamp revealed a "bell-shaped" time course of I (Ks) during the action potential, and maximal peak current was seen at the plateau of the action potential. A significant use- and frequency-dependent increase of I (Ks) was observed during a train of action potential clamp. These results indicate that the recombinant human cardiac I (Ks) stably expressed in HEK 293 cells is similar to native I (Ks) in drug sensitivity and regulated by Ba(2+) and beta-adrenoceptor via the cyclic adenosine monophosphate/protein kinase A pathway. Importantly, the current exhibits significant temperature dependence, a bell-shaped time course during action potential and prominent use- or frequency-dependent accumulation during a train of action potentials.
Collapse
Affiliation(s)
- Ming-Qing Dong
- Department of Medicine and Research Centre of Heart, Brain, Hormone, and Healthy Aging, Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Vandenberg JI, Varghese A, Lu Y, Bursill JA, Mahaut-Smith MP, Huang CLH. Temperature dependence of human ether-à-go-go-related gene K+ currents. Am J Physiol Cell Physiol 2006; 291:C165-75. [PMID: 16452156 DOI: 10.1152/ajpcell.00596.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The function of voltage-gated human ether-à-go-gorelated gene ( hERG) K+ channels is critical for both normal cardiac repolarization and suppression of arrhythmias initiated by premature excitation. These important functions are facilitated by their unusual kinetics that combine relatively slow activation and deactivation with rapid and voltage-dependent inactivation and recovery from inactivation. The thermodynamics of these unusual features were examined by exploring the effect of temperature on the activation and inactivation processes of hERG channels expressed in Chinese hamster ovary cells. Increased temperature shifted the voltage dependence of activation in the hyperpolarizing direction but that of inactivation in the depolarizing direction. This increases the relative occupancy of the open state and contributes to the marked temperature sensitivity of hERG current magnitude observed during action potential voltage clamps. The rates of activation and deactivation also increase with higher temperatures, but less markedly than do the rates of inactivation and recovery from inactivation. Our results also emphasize that one cannot extrapolate results obtained at room temperature to 37°C by using a single temperature scale factor.
Collapse
Affiliation(s)
- Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Level 9, 384 Victoria St., Darlinghurst, New South Wales 2010, Australia.
| | | | | | | | | | | |
Collapse
|