1
|
Jimenez C, Hawn MB, Akin E, Leblanc N. Translational potential of targeting Anoctamin-1-Encoded Calcium-Activated chloride channels in hypertension. Biochem Pharmacol 2022; 206:115320. [PMID: 36279919 DOI: 10.1016/j.bcp.2022.115320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Calcium-activated chloride channels (CaCC) provide a depolarizing stimulus to a variety of tissues through chloride efflux in response to a rise in internal Ca2+ and voltage. One of these channels, Anoctamin-1 (ANO1 or TMEM16A) is now recognized to play a central role in promoting smooth muscle tone in various types of blood vessels. Its role in hypertension, and thus the therapeutic promise of targeting ANO1, is less straightforward. This review gives an overview of our current knowledge about the potential role ANO1 may play in hypertension within the systemic, portal, and pulmonary vascular systems and the importance of this information when pursuing potential treatment strategies. While the role of ANO1 is well-established in several forms of pulmonary hypertension, its contributions to both the generation of vascular tone and its role in hypertension within the systemic and portal systems are much less clear. This, combined with ANO1's various roles throughout a multitude of tissues throughout the body, command caution when targeting ANO1 as a therapeutic target and may require tissue-selective strategies.
Collapse
Affiliation(s)
- Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Matthew B Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Elizabeth Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA.
| |
Collapse
|
2
|
Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HAT, Singer CA, Valencik ML, Britton F, Greenwood IA. Molecular and functional significance of Ca(2+)-activated Cl(-) channels in pulmonary arterial smooth muscle. Pulm Circ 2015; 5:244-68. [PMID: 26064450 DOI: 10.1086/680189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022] Open
Abstract
Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca(2+) levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K(+) channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca(2+) channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl(-) and is activated by a rise in intracellular Ca(2+) concentration (Ca(2+)-activated Cl(-) channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca(2+) activating CaCCs, which include stimulation by mobilization from intracellular Ca(2+) stores and Ca(2+) entry through voltage-dependent and voltage-independent Ca(2+) channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH.
Collapse
Affiliation(s)
- Normand Leblanc
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Abigail S Forrest
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Ramon J Ayon
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Michael Wiwchar
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, Nevada, USA
| | - Harry A T Pritchard
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Maria L Valencik
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Fiona Britton
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| |
Collapse
|
3
|
Bulley S, Jaggar JH. Cl⁻ channels in smooth muscle cells. Pflugers Arch 2014; 466:861-72. [PMID: 24077695 DOI: 10.1007/s00424-013-1357-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
In smooth muscle cells (SMCs), the intracellular chloride ion (Cl−) concentration is high due to accumulation by Cl−/HCO3− exchange and Na+–K+–Cl− cotransportation. The equilibrium potential for Cl− (ECl) is more positive than physiological membrane potentials (Em), with Cl− efflux inducing membrane depolarization. Early studies used electrophysiology and nonspecific antagonists to study the physiological relevance of Cl− channels in SMCs. More recent reports have incorporated molecular biological approaches to identify and determine the functional significance of several different Cl− channels. Both "classic" and cGMP-dependent calcium (Ca2+)-activated (ClCa) channels and volume-sensitive Cl− channels are present, with TMEM16A/ANO1, bestrophins, and ClC-3, respectively, proposed as molecular candidates for these channels. The cystic fibrosis transmembrane conductance regulator (CFTR) has also been described in SMCs. This review will focus on discussing recent progress made in identifying each of these Cl− channels in SMCs, their physiological functions, and contribution to diseases that modify contraction, apoptosis, and cell proliferation.
Collapse
|
4
|
Abstract
TMEM16 proteins, also known as anoctamins, are involved in a variety of functions that include ion transport, phospholipid scrambling, and regulation of other membrane proteins. The first two members of the family, TMEM16A (anoctamin-1, ANO1) and TMEM16B (anoctamin-2, ANO2), function as Ca2+-activated Cl- channels (CaCCs), a type of ion channel that plays important functions such as transepithelial ion transport, smooth muscle contraction, olfaction, phototransduction, nociception, and control of neuronal excitability. Genetic ablation of TMEM16A in mice causes impairment of epithelial Cl- secretion, tracheal abnormalities, and block of gastrointestinal peristalsis. TMEM16A is directly regulated by cytosolic Ca2+ as well as indirectly by its interaction with calmodulin. Other members of the anoctamin family, such as TMEM16C, TMEM16D, TMEM16F, TMEM16G, and TMEM16J, may work as phospholipid scramblases and/or ion channels. In particular, TMEM16F (ANO6) is a major contributor to the process of phosphatidylserine translocation from the inner to the outer leaflet of the plasma membrane. Intriguingly, TMEM16F is also associated with the appearance of anion/cation channels activated by very high Ca2+ concentrations. Furthermore, a TMEM16 protein expressed in Aspergillus fumigatus displays both ion channel and lipid scramblase activity. This finding suggests that dual function is an ancestral characteristic of TMEM16 proteins and that some members, such as TMEM16A and TMEM16B, have evolved to a pure channel function. Mutations in anoctamin genes (ANO3, ANO5, ANO6, and ANO10) cause various genetic diseases. These diseases suggest the involvement of anoctamins in a variety of cell functions whose link with ion transport and/or lipid scrambling needs to be clarified.
Collapse
|
5
|
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) are plasma membrane proteins involved in various important physiological processes. In epithelial cells, CaCC activity mediates the secretion of Cl(-) and of other anions, such as bicarbonate and thiocyanate. In smooth muscle and excitable cells of the nervous system, CaCCs have an excitatory role coupling intracellular Ca(2+) elevation to membrane depolarization. Recent studies indicate that TMEM16A (transmembrane protein 16 A or anoctamin 1) and TMEM16B (transmembrane protein 16 B or anoctamin 2) are CaCC-forming proteins. Induced expression of TMEM16A and B in null cells by transfection causes the appearance of Ca(2+)-activated Cl(-) currents similar to those described in native tissues. Furthermore, silencing of TMEM16A by RNAi causes disappearance of CaCC activity in cells from airway epithelium, biliary ducts, salivary glands, and blood vessel smooth muscle. Mice devoid of TMEM16A expression have impaired Ca(2+)-dependent Cl(-) secretion in the epithelial cells of the airways, intestine, and salivary glands. These animals also show a loss of gastrointestinal motility, a finding consistent with an important function of TMEM16A in the electrical activity of gut pacemaker cells, that is, the interstitial cells of Cajal. Identification of TMEM16 proteins will help to elucidate the molecular basis of Cl(-) transport.
Collapse
Affiliation(s)
- Loretta Ferrera
- Laboratory of Molecular Genetics, Istituto Giannina Gaslini, Genova, Italy
| | | | | |
Collapse
|
6
|
Makino A, Firth AL, Yuan JXJ. Endothelial and smooth muscle cell ion channels in pulmonary vasoconstriction and vascular remodeling. Compr Physiol 2013; 1:1555-602. [PMID: 23733654 DOI: 10.1002/cphy.c100023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease.
Collapse
Affiliation(s)
- Ayako Makino
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
7
|
Firth AL, Remillard CV, Platoshyn O, Fantozzi I, Ko EA, Yuan JXJ. Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels. Pulm Circ 2011; 1:48-71. [PMID: 21927714 PMCID: PMC3173772 DOI: 10.4103/2045-8932.78103] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The activity of voltage-gated ion channels is critical for the maintenance of cellular membrane potential and generation of action potentials. In turn, membrane potential regulates cellular ion homeostasis, triggering the opening and closing of ion channels in the plasma membrane and, thus, enabling ion transport across the membrane. Such transmembrane ion fluxes are important for excitation–contraction coupling in pulmonary artery smooth muscle cells (PASMC). Families of voltage-dependent cation channels known to be present in PASMC include voltage-gated K+ (Kv) channels, voltage-dependent Ca2+-activated K+ (Kca) channels, L- and T- type voltage-dependent Ca2+ channels, voltage-gated Na+ channels and voltage-gated proton channels. When cells are dialyzed with Ca2+-free K+- solutions, depolarization elicits four components of 4-aminopyridine (4-AP)-sensitive Kvcurrents based on the kinetics of current activation and inactivation. In cell-attached membrane patches, depolarization elicits a wide range of single-channel K+ currents, with conductances ranging between 6 and 290 pS. Macroscopic 4-AP-sensitive Kv currents and iberiotoxin-sensitive Kca currents are also observed. Transcripts of (a) two Na+ channel α-subunit genes (SCN5A and SCN6A), (b) six Ca2+ channel α–subunit genes (α1A, α1B, α1X, α1D, α1Eand α1G) and many regulatory subunits (α2δ1, β1-4, and γ6), (c) 22 Kv channel α–subunit genes (Kv1.1 - Kv1.7, Kv1.10, Kv2.1, Kv3.1, Kv3.3, Kv3.4, Kv4.1, Kv4.2, Kv5.1, Kv 6.1-Kv6.3, Kv9.1, Kv9.3, Kv10.1 and Kv11.1) and three Kv channel β-subunit genes (Kvβ1-3) and (d) four Kca channel α–subunit genes (Sloα1 and SK2-SK4) and four Kca channel β-subunit genes (Kcaβ1-4) have been detected in PASMC. Tetrodotoxin-sensitive and rapidly inactivating Na+ currents have been recorded with properties similar to those in cardiac myocytes. In the presence of 20 mM external Ca2+, membrane depolarization from a holding potential of -100 mV elicits a rapidly inactivating T-type Ca2+ current, while depolarization from a holding potential of -70 mV elicits a slowly inactivating dihydropyridine-sensitive L-type Ca2+ current. This review will focus on describing the electrophysiological properties and molecular identities of these voltage-dependent cation channels in PASMC and their contribution to the regulation of pulmonary vascular function and its potential role in the pathogenesis of pulmonary vascular disease.
Collapse
Affiliation(s)
- Amy L Firth
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
9
|
McKenzie C, Alapati VR, MacDonald A, Shaw AM. Mechanisms involved in the regulation of bovine pulmonary vascular tone by the 5-HT1B receptor. Br J Pharmacol 2009; 159:188-200. [PMID: 19958363 DOI: 10.1111/j.1476-5381.2009.00519.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-HT(1B) receptors may have a role in pulmonary hypertension. Their relationship with the activity of BK(Ca,) a T-type voltage-operated calcium channel (VOCC) and cyclic nucleotide-mediated relaxation was examined. EXPERIMENTAL APPROACH Ring segments of bovine pulmonary arteries were mounted in organ baths in modified Krebs-Henseleit buffer (37 degrees C) under a tension of 20 mN and gassed with 95% O(2)/5% CO(2). Isometric recordings were made using Chart 5 software. KEY RESULTS Contractile responses to 5-HT (10 nM-300 microM) were inhibited similarly by the 5-HT(1B) receptor antagonist SB216641 (100 nM) and the T-type VOCC blockers mibefradil (10 microM) and NNC550396 (10 microM) with no additive effect between SB216641 and mibefradil. Inhibition by SB216641 was prevented by the potassium channel blocker, charybdotoxin (100 nM). 5-HT(1B) receptor activation and charybdotoxin produced a mibefradil-sensitive potentiation of responses to U46619. Bradykinin (0.1 nM-30 microM), sodium nitroprusside (0.01 nM-3 microM), zaprinast (1 nM-3 microM), isoprenaline (0.1 nM-10 microM) and rolipram (1 nM-3 microM) produced 50% relaxation of arteries constricted with 5-HT (1-3 microM) or U46619 (30-50 nM) in the presence of 5-HT(1B) receptor activation, but full relaxation of arteries constricted with U46619, the 5-HT(2A) receptor agonist 2,5 dimethoxy-4 iodoamphetamine (1 microM) or 5-HT in the presence of 5-HT(1B) receptor antagonism. Enhanced relaxation of 5-HT-constricted arteries by cGMP-dependent pathways, seen in the presence of the 5-HT(1B) receptor antagonist, was reversed by charybdotoxin whereas cAMP-dependent relaxation was only partly reversed by charybdotoxin. CONCLUSIONS AND IMPLICATIONS 5-HT(1B) receptors couple to inhibition of BK(Ca), thus increasing tissue sensitivity to contractile agonists by activating a T-type VOCC and impairing cGMP-mediated relaxation. Impaired cAMP-mediated relaxation was only partly mediated by inhibition of BK(Ca).
Collapse
Affiliation(s)
- C McKenzie
- Department of Biological & Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | | | | |
Collapse
|
10
|
McKenzie C, MacDonald A, Shaw AM. Mechanisms of U46619-induced contraction of rat pulmonary arteries in the presence and absence of the endothelium. Br J Pharmacol 2009; 157:581-96. [PMID: 19389160 DOI: 10.1111/j.1476-5381.2008.00084.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Thromboxane A(2) and endothelial dysfunction are implicated in the development of pulmonary hypertension. The receptor-transduction pathway for U46619 (9,11-dideoxy-9 alpha, 11 alpha-methanoepoxy prostaglandin F(2 alpha))-induced contraction was examined in endothelium-intact (E+) and denuded (E-) rat pulmonary artery rings. EXPERIMENTAL APPROACH Artery rings were mounted on a wire myograph under a tension of 7-7.5 mN at 37 degrees C and gassed with 95% O(2)/5% CO(2). Isometric recording was made by using Powerlab data collection and Chart 5 software. KEY RESULTS Both E+ and E- contractile responses were sensitive to Rho-kinase inhibition and the chloride channel blocker NPPB [5-nitro-2-(3-phenylpropylamino)benzoic acid]. The E+ response was sensitive to the store-operated calcium channel blockers SKF-96365 {1-[B-[3-(4-methoxyphenyl)propoxy]-4-methoxy-phenethyl]-1H-imidazole hydrochloride} and 2-APB (2-amino ethoxy diphenylborate) (75-100 micromol x L(-1)). The E- response was sensitive to 2-APB (10-30 micromol x L(-1)), a putative IP(3) receptor antagonist, and the calcium and chloride channel blockers nifedipine, DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid) and niflumic acid but was insensitive to SKF-96365. Inhibiting K(V) with 4-AP in E+ rings exposed a contraction sensitive to nifedipine, DIDS and niflumic acid, whereas inhibiting BK(Ca) exposed a contraction sensitive to mibefradil, DIDS and niflumic acid. This indicates that removal of the endothelium allows the TP receptor to inhibit K(V), which may involve coupling to phospholipase C, because inhibition of phospholipase C with U73122 (1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-y]amino]hexyl]- 1H-pyrrole-2,5-dione) switched the E- pathway to the E+ pathway. CONCLUSIONS AND IMPLICATIONS The results from this study indicate that distinct transduction pathways can be employed by the TP receptor to produce contraction and that the endothelium is able to influence the coupling of the TP receptor.
Collapse
Affiliation(s)
- C McKenzie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | | |
Collapse
|
11
|
Mauban JRH, Wilkinson K, Schach C, Yuan JXJ. Histamine-mediated increases in cytosolic [Ca2+] involve different mechanisms in human pulmonary artery smooth muscle and endothelial cells. Am J Physiol Cell Physiol 2005; 290:C325-36. [PMID: 16162658 PMCID: PMC1351365 DOI: 10.1152/ajpcell.00236.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agonist stimulation of human pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) with histamine showed similar spatiotemporal patterns of Ca(2+) release. Both sustained elevation and oscillatory patterns of changes in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) were observed in the absence of extracellular Ca(2+). Capacitative Ca(2+) entry (CCE) was induced in PASMC and PAEC by passive depletion of intracellular Ca(2+) stores with 10 microM cyclopiazonic acid (CPA; 15-30 min). The pyrazole derivative BTP2 inhibited CPA-activated Ca(2+) influx, suggesting that depletion of CPA-sensitive internal stores is sufficient to induce CCE in both PASMC and PAEC. The recourse of histamine-mediated Ca(2+) release was examined after exposure of cells to CPA, thapsigargin, caffeine, ryanodine, FCCP, or bafilomycin. In PASMC bathed in Ca(2+)-free solution, treatment with CPA almost abolished histamine-induced rises in [Ca(2+)](cyt). In PAEC bathed in Ca(2+)-free solution, however, treatment with CPA eliminated histamine-induced sustained and oscillatory rises in [Ca(2+)](cyt) but did not affect initial transient increase in [Ca(2+)](cyt). Furthermore, treatment of PAEC with a combination of CPA (or thapsigargin) and caffeine (and ryanodine), FCCP, or bafilomycin did not abolish histamine-induced transient [Ca(2+)](cyt) increases. These observations indicate that 1) depletion of CPA-sensitive stores is sufficient to cause CCE in both PASMC and PAEC; 2) induction of CCE in PAEC does not require depletion of all internal Ca(2+) stores; 3) the histamine-releasable internal stores in PASMC are mainly CPA-sensitive stores; 4) PAEC, in addition to a CPA-sensitive functional pool, contain other stores insensitive to CPA, thapsigargin, caffeine, ryanodine, FCCP, and bafilomycin; and 5) although the CPA-insensitive stores in PAEC may not contribute to CCE, they contribute to histamine-mediated Ca(2+) release.
Collapse
Affiliation(s)
- Joseph R H Mauban
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla 92093-0725, USA
| | | | | | | |
Collapse
|
12
|
Wellman GC, Nelson MT. Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium 2003; 34:211-29. [PMID: 12887969 DOI: 10.1016/s0143-4160(03)00124-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intracellular calcium ions are involved in the regulation of nearly every aspect of cell function. In smooth muscle, Ca2+ can be delivered to Ca2+-sensitive effector molecules either by influx through plasma membrane ion channels or by intracellular Ca2+ release events. Ca2+ sparks are transient local increases in intracellular Ca2+ that arise from the opening of ryanodine-sensitive Ca2+ release channels (ryanodine receptors) located in the sarcoplasmic reticulum. In arterial myocytes, Ca2+ sparks occur near the plasma membrane and act to deliver high (microM) local Ca2+ to plasmalemmal Ca2+-sensitive ion channels, without directly altering global cytosolic Ca2+ concentrations. The two major ion channel targets of Ca2+ sparks are Ca2+-activated chloride (Cl(Ca)) channels and large-conductance Ca2+-activated potassium (BK) channels. The activation of BK channels by Ca2+ sparks play an important role in the regulation of arterial diameter and appear to be involved in the action of a variety of vasodilators. The coupling of Ca2+ sparks to BK channels can be influenced by a number of factors including membrane potential and modulatory beta subunits of BK channels. Cl(Ca) channels, while not present in all smooth muscle, can also be activated by Ca2+ sparks in some types of smooth muscle. Ca2+ sparks can also influence the activity of Ca2+-dependent transcription factors and expression of immediate early response genes such as c-fos. In summary, Ca2+ sparks are local Ca2+ signaling events that in smooth muscle can act on plasma membrane ion channels to influence excitation-contraction coupling as well as gene expression.
Collapse
Affiliation(s)
- George C Wellman
- Department of Pharmacology, The University of Vermont College of Medicine, Given Building, Room B-321, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | |
Collapse
|
13
|
Piper AS, Large WA. Multiple conductance states of single Ca2+-activated Cl- channels in rabbit pulmonary artery smooth muscle cells. J Physiol 2003; 547:181-96. [PMID: 12562904 PMCID: PMC2342635 DOI: 10.1113/jphysiol.2002.033688] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 12/05/2002] [Indexed: 11/08/2022] Open
Abstract
Ca2+-activated Cl- channels contribute to agonist-evoked contraction and spontaneous activity in some smooth muscle preparations. Patch pipette techniques were used to study the properties of single Ca2+-activated Cl- channels in freshly dispersed rabbit pulmonary artery myocytes. In the cell-attached recording mode, two conductance states of 3.5 and 1.8 pS were recorded either spontaneously or in response to increasing [Ca2+]i. With inside-out patches, the 3.5 pS channel current predominated at 50 nM [Ca2+]i, but at 500 nM [Ca2+]i most channels opened to the 1.8 pS level and an additional 1.2 pS channel conductance was resolved. At 1 microM [Ca2+]i all of the Cl- channels opened either to the 1.8 pS or 1.2 pS level. In 0 [Ca2+]i, no channel activity was observed at -100 mV to +100 mV, but with 10-250 nM [Ca2+]i the total single channel open probability (NP(o)) increased with depolarisation. This voltage dependence was not seen at higher values of [Ca2+]i. The plot of NPo vs. [Ca2+]i yielded Ca2+ affinity constants of 8 and 250 nM and Hill slopes of 1.3 and 2.3 at +100 and -100 mV, respectively. The distribution of open times was fitted by two exponentials of about 5 and 30 ms, which were neither voltage nor Ca2+ dependent. Replacement of external Cl- by I- shifted the reversal potential by about -30 mV and lengthened the longer of the two mean open times without significant effects on other kinetic parameters. Based on these data, a model for the activation of Ca2+-activated Cl- channels is proposed.
Collapse
Affiliation(s)
- A S Piper
- Department of Pharmacology and Clinical Pharmacology, Cardiovascular Research Group, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | |
Collapse
|
14
|
Dai Y, Zhang JH. Manipulation of chloride flux affects histamine-induced contraction in rabbit basilar artery. Am J Physiol Heart Circ Physiol 2002; 282:H1427-36. [PMID: 11893580 DOI: 10.1152/ajpheart.00837.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cl(-) efflux induces depolarization and contraction of smooth muscle cells. This study was undertaken to explore the role of Cl(-) flux in histamine-induced contraction in the rabbit basilar artery. Male New Zealand White rabbits (n = 16) weighing 1.8-2.5 kg were euthanized by an overdose of pentobarbital sodium. The basilar arteries were removed for isometric tension recording. Histamine produced a concentration-dependent contraction that was attenuated by the H(1) receptor antagonist chlorpheniramine (10(-8) M) but not by the H(2) receptor antagonist cimetidine (3 x 10(-6) M) in normal Cl(-) Krebs-Henseleit bicarbonate solution (123 mM Cl(-)). The histamine-induced contraction was reduced by the following manipulations: 1) inhibition of Na(+)-K(+)-2Cl(-) cotransporter with bumetanide (3 x 10(-5) and 10(-4) M), 2) bicarbonate-free HEPES solution to disable Cl(-)/HCO exchanger, and 3) blockade of Cl(-) channels with the use of niflumic acid, 5-nitro-2-(3-phenylpropylamino) benzoic acid, and indoleacetic acid 94 R-(+)-methylindazone. In addition, substitution of extracellular Cl(-) (10 mM) with methanesulfonate acid (113 mM) transiently enhanced histamine-induced contraction. Manipulation of Cl(-) flux affects histamine-induced contraction in the rabbit basilar artery.
Collapse
Affiliation(s)
- Yun Dai
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | |
Collapse
|
15
|
Piper AS, Greenwood IA, Large WA. Dual effect of blocking agents on Ca2+-activated Cl(-) currents in rabbit pulmonary artery smooth muscle cells. J Physiol 2002; 539:119-31. [PMID: 11850506 PMCID: PMC2290117 DOI: 10.1113/jphysiol.2001.013270] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effects of the Cl- channel antagonists, niflumic acid (NFA), dichloro-diphenylamine 2-carboxylic acid (DCDPC) and diisothiocyanato-stilbene-2,2'-disulphonic acid (DIDS) on Ca2+-activated Cl- current (I(Cl(Ca))) evoked by adding fixed intracellular calcium concentrations ([Ca2+]i) to the pipette solution were studied in rabbit pulmonary artery myocytes. With 250 and 500 nM [Ca2+]i bath application of NFA (100 microM) increased inward current at negative potentials, but inhibited outward current at positive potentials. On wash out of NFA, I(Cl(Ca)) was greatly enhanced at all potentials. When external Na+ ions were replaced by N-methyl-D-glucamine (NMDG+) NFA still enhanced I(Cl(Ca)) at negative potentials but the increase of I(Cl(Ca)) on wash out was blocked. When the mean reversal potential (E(r)) of I(Cl(Ca)) was shifted to negative potentials by replacing external Cl- with SCN-, NFA increased inward current but blocked outward current suggesting that the effect of NFA is dependent on current flow. Inclusion of NFA in the pipette solution had no effect on I(Cl(Ca)). Voltage jump experiments indicated that I(Cl(Ca)) displayed characteristic outward current relaxations at +70 mV and inward current relaxations at -80 mV that were abolished by NFA. DCDPC (100 microM) produced similar effects to NFA but 1 mM DIDS produced inhibition of I(Cl(Ca)) at both positive and negative potentials and there was no increase in current on wash out of DIDS. These results suggest that NFA and DCDPC, but not DIDS, simultaneously enhance and block I(Cl(Ca)) by binding to an external site, probably close to the mouth of the chloride channel.
Collapse
Affiliation(s)
- A S Piper
- Department of Pharmacology and Clinical Pharmacology, Cardiovascular Research Group, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | | | |
Collapse
|
16
|
Yamazaki J, Kitamura K. Cell-to-cell communication via nitric oxide modulation of oscillatory Cl(-) currents in rat intact cerebral arterioles. J Physiol 2001; 536:67-78. [PMID: 11579157 PMCID: PMC2278835 DOI: 10.1111/j.1469-7793.2001.00067.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Diffusion-mediated changes in ion channel function within blood vessels have not been demonstrated directly in a patch-clamp study. Here, we examined the hypothesis that endothelium-derived diffusible bioactive substances would modify endothelin-1 (ET-1)-evoked membrane currents in smooth muscle cells situated within intact arterioles. 2. In pieces of arterioles dissected from the rat cerebral pial membrane, patch electrodes were placed on single smooth muscle cells identified under the microscope. Under perforated patch-clamp conditions, ET-1 evoked an oscillatory inward current at negative potentials in such cells in the presence of the gap junction disrupter 18alpha-glycyrrhetinic acid. ET-1 also elicited an oscillation superimposed on a membrane depolarization in current-clamp mode. 3. The oscillatory current exhibited an outwardly rectifying current-voltage relationship, a sensitivity to niflumic acid, a requirement for inositol 1,4,5-trisphosphate (IP(3))- and caffeine-sensitive Ca(2+) stores and for external Ca(2+) and a rank order of anion permeabilities characteristic of Ca(2+)-activated Cl(-) currents (I(Ca(Cl))). 4. This oscillatory response was inhibited by bradykinin (an effect distinct from the electrical propagation of hyperpolarization) and this effect was attenuated by the NO-synthase inhibitor N(omega)-nitro-L-arginine and by the NO scavenger oxyhaemoglobin but not by the cyclo-oxygenease inhibitor indomethacin. 8-Bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) and nitroprusside closely mimicked the effect of bradykinin. 5. The present patch-clamp study has revealed diffusion-mediated cell-to-cell interaction in an intact blood vessel: bradykinin appears to cause NO to move from endothelium to smooth muscle, there to inhibit an ET-1-evoked oscillatory I(Ca(Cl)) via the NO-cGMP pathway.
Collapse
Affiliation(s)
- J Yamazaki
- Department of Pharmacology, Fukuoka Dental College, Sawara-ku, Fukuoka 814-0193, Japan.
| | | |
Collapse
|
17
|
Walker RL, Hume JR, Horowitz B. Differential expression and alternative splicing of TRP channel genes in smooth muscles. Am J Physiol Cell Physiol 2001; 280:C1184-92. [PMID: 11287332 DOI: 10.1152/ajpcell.2001.280.5.c1184] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonselective cation channels (NSCC) are targets of excitatory agonists in smooth muscle, representing the nonselective cation current I(cat). Na(+) influx through NSCC causes depolarizations and activates voltage-dependent Ca(2+) channels, resulting in contraction. The molecular identity of I(cat) in smooth muscle has not been elucidated; however, products of the transient receptor potential (TRP) genes have characteristics similar to native I(cat). We have determined the levels of TRP transcriptional expression in several murine and canine gastrointestinal and vascular smooth muscles and have analyzed the alternative processing of these transcripts. Of the seven TRP gene family members, transcripts for TRP4, TRP6, and TRP7 were detected in all murine and canine smooth muscle cell preparations. TRP3 was detected only in canine renal artery smooth muscle cells. The full-length cDNAs for TRP4, TRP6, and TRP7, as well as one splice variant of TRP4 and two splice variants of TRP7, were cloned from murine colonic smooth muscle. Quantitative RT-PCR determined the relative amounts of TRP4, TRP6, and TRP7 transcripts, as well as that of the splice variants, in several murine smooth muscles. TRP4 is the most highly expressed, while TRP6 and TRP7 are expressed at a lower level in the same tissues. Splice variants for TRP7, deleted for exons encoding amino acids including transmembrane segment S1, predominated in murine smooth muscles, while the full-length form of the transcript was expressed in canine smooth muscles.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Calcium Channels/chemistry
- Calcium Channels/genetics
- Cells, Cultured
- Cloning, Molecular
- Colon/cytology
- Colon/physiology
- Dogs
- Exons
- Female
- Gene Expression Regulation
- Genetic Variation
- Jejunum
- Male
- Mice
- Models, Molecular
- Molecular Sequence Data
- Muscle, Smooth/cytology
- Muscle, Smooth/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Polymerase Chain Reaction
- Protein Structure, Secondary
- Pulmonary Artery/cytology
- Pulmonary Artery/physiology
- Renal Artery/cytology
- Renal Artery/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Deletion
- Sequence Homology, Amino Acid
- TRPC Cation Channels
Collapse
Affiliation(s)
- R L Walker
- Department of Physiology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
18
|
Karkanis T, Jiao Y, Hurley BR, Li S, Pickering JG, Sims SM. Functional receptor-channel coupling compared in contractile and proliferative human vascular smooth muscle. J Cell Physiol 2001; 187:244-55. [PMID: 11268004 DOI: 10.1002/jcp.1069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have previously identified a human vascular smooth muscle clone that can reversibly convert between proliferative and contractile phenotypes. Here we compared receptor-channel coupling in these cells using fura-2 to monitor [Ca(2+)](i) and patch-clamp to record currents. Histamine elevated [Ca(2+)](i) in all cells and caused contraction of cells exhibiting the contractile phenotype. The rise of [Ca(2+)](i) persisted in Ca(2+)-free solution and was abolished by thapsigargin, indicating involvement of stores. Whole cell electrophysiological recording revealed that histamine evoked transient outward K(+) current, indicating functional receptor-channel coupling. The time-course and amplitude of the histamine-activated current were similar in cells of the proliferative and contractile phenotypes. Moreover, a large conductance K(+) channel was recorded in cell-attached patches and was activated by histamine as well as the Ca(2+) ionophore A-23187, identifying it as the large conductance Ca(2+)-dependent K(+) channel. This K(+) channel showed similar characteristics and activation in both proliferative and contractile phenotypes, indicating that expression was independent of phenotype. In contrast, histamine also elicited an inward Cl(-) current in some contractile cells, suggesting differential regulation of this current depending on phenotype. These studies demonstrate the usefulness of this human vascular cell clone for studying functional plasticity of smooth muscle, while avoiding complications arising from extended times in culture.
Collapse
Affiliation(s)
- T Karkanis
- Department of Physiology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Gokina NI, Bevan JA. Role of intracellular Ca(2+) release in histamine-induced depolarization in rabbit middle cerebral artery. Am J Physiol Heart Circ Physiol 2000; 278:H2105-14. [PMID: 10843910 DOI: 10.1152/ajpheart.2000.278.6.h2105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of Ca(2+) mobilization from intracellular stores and Ca(2+)-activated Cl(-) channels in caffeine- and histamine-induced depolarization and contraction of the rabbit middle cerebral artery has been studied by recording membrane potential and isometric force. Caffeine induced a transient contraction and a transient followed by sustained depolarization. The transient depolarization was abolished by ryanodine, DIDS, and niflumic acid, suggesting involvement of Ca(2+)-activated Cl(-) channels. Histamine-evoked transient contraction in Ca(2+)-free solution was abolished by ryanodine or by caffeine-induced depletion of Ca(2+) stores. Ryanodine slowed the development of depolarization induced by histamine in Ca(2+)-containing solution but did not affect its magnitude. In arteries treated with 1 mM Co(2+), histamine elicited a transient depolarization and contraction, which was abolished by ryanodine. DIDS and niflumic acid reduced histamine-evoked depolarization and contraction. Histamine caused a sustained depolarization and contraction in low-Cl(-) solution. These results suggest that Ca(2+) mobilization from ryanodine-sensitive stores is involved in histamine-induced initial, but not sustained, depolarization and contraction. Ca(2+)-activated Cl(-) channels contribute mainly to histamine-induced initial depolarization and less importantly to sustained depolarization, which is most likely dependent on activation of nonselective cation channels.
Collapse
Affiliation(s)
- N I Gokina
- Department of Pharmacology, College of Medicine, The University of Vermont, Burlington 05405, USA.
| | | |
Collapse
|
20
|
Gokina NI, Bevan JA. Histamine-induced depolarization: ionic mechanisms and role in sustained contraction of rabbit cerebral arteries. Am J Physiol Heart Circ Physiol 2000; 278:H2094-104. [PMID: 10843909 DOI: 10.1152/ajpheart.2000.278.6.h2094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of membrane depolarization in the histamine-induced contraction of the rabbit middle cerebral artery was examined by simultaneous measurements of membrane potential and isometric force. Histamine (1-100 microM) induced a concentration-dependent sustained contraction associated with sustained depolarization. Action potentials were observed during depolarization caused by histamine but not by high-K(+) solution. K(+)-induced contraction was much smaller than sustained contraction associated with the same depolarization caused by histamine. Nifedipine attenuates histamine-induced sustained contraction by 80%, with no effect on depolarization. Inhibition of nonselective cation channels with Co(2+) (100-200 microM) reversed the histamine-induced depolarization and relaxed the arteries but induced only a minor change in K(+)-induced contraction. In the presence of Co(2+) and in low-Na(+) solution, histamine-evoked depolarization and contraction were transient. We conclude that nonselective cation channels contribute to histamine-induced sustained depolarization, which stimulates Ca(2+) influx through voltage-dependent Ca(2+) channels participating in contraction. The histamine-induced depolarization, although an important and necessary mechanism, cannot fully account for sustained contraction, which may be due in part to augmentation of currents through voltage-dependent Ca(2+) channels and Ca(2+) sensitization of the contractile process.
Collapse
Affiliation(s)
- N I Gokina
- Department of Pharmacology, College of Medicine, The University of Vermont, Burlington 05405, USA.
| | | |
Collapse
|
21
|
Wang YX, Kotlikoff MI. Signalling pathway for histamine activation of non-selective cation channels in equine tracheal myocytes. J Physiol 2000; 523 Pt 1:131-8. [PMID: 10673549 PMCID: PMC2269777 DOI: 10.1111/j.1469-7793.2000.t01-3-00131.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The signalling pathway underlying histamine activation of non-selective cation channels was investigated in single equine tracheal myocytes. Application of histamine (100 microM) activated the transient calcium-activated chloride current (ICl(Ca)) and sustained, low amplitude non-selective cation current (ICat). The H1 receptor antagonist pyrilamine (10 microM) blocked activation of ICl(Ca) and ICat. Simultaneous application of histamine (100 microM) and caffeine (8 mM) during H1 receptor blockade activated ICl(Ca), but not ICat. Neither the H2 receptor antagonist cimetidine (20 microM) nor the H3 receptor antagonist thioperamide (20 microM) prevented activation of ICl(Ca) and ICat. 2. Intracellular dialysis of anti-Galphai/Galphao antibodies completely blocked activation of ICat by histamine, whereas ICl(Ca) was not affected. By contrast, anti-Galphaq/Galpha11 antibodies greatly inhibited ICl(Ca), but did not alter activation of ICat. 3. 1-Oleoyl-2-acetyl-sn-glycerol (OAG, 20-100 microM) did not induce any current or affect currents activated by histamine or methacholine (mACH). Simultaneous application of OAG and caffeine activated ICl(Ca), but not ICat, indicating that a rise in [Ca2+]i and stimulation of diacylglycerol-sensitive protein kinase C (PKC) is not sufficient to activate ICat. The phospholipase C inhibitor U73122 (2 microM) blocked histamine activation of ICl(Ca) and ICat, but simultaneous exposure of myocytes to histamine and caffeine restored both ICl(Ca) and ICat in the presence of U73122. 4. Histamine and mACH activated currents with equivalent I-V relationships. The currents activated by these agonists were not additive; following activation of ICat by mACH, histamine failed to induce an additional membrane current. Similarly, mACH did not induce an additional current after full activation of ICat by histamine. 5. We conclude that H1 histamine receptors activate ICat through coupling to Gi/Go proteins. Activation of ICat also requires intracellular calcium release, mediated by H1 receptors coupling to Gq/G11 proteins. This coupling is analogous to the activation of ICat by co-stimulation of M2 and M3 receptors.
Collapse
Affiliation(s)
- Y X Wang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6046, USA
| | | |
Collapse
|
22
|
Abstract
Local intracellular Ca(2+) transients, termed Ca(2+) sparks, are caused by the coordinated opening of a cluster of ryanodine-sensitive Ca(2+) release channels in the sarcoplasmic reticulum of smooth muscle cells. Ca(2+) sparks are activated by Ca(2+) entry through dihydropyridine-sensitive voltage-dependent Ca(2+) channels, although the precise mechanisms of communication of Ca(2+) entry to Ca(2+) spark activation are not clear in smooth muscle. Ca(2+) sparks act as a positive-feedback element to increase smooth muscle contractility, directly by contributing to the global cytoplasmic Ca(2+) concentration ([Ca(2+)]) and indirectly by increasing Ca(2+) entry through membrane potential depolarization, caused by activation of Ca(2+) spark-activated Cl(-) channels. Ca(2+) sparks also have a profound negative-feedback effect on contractility by decreasing Ca(2+) entry through membrane potential hyperpolarization, caused by activation of large-conductance, Ca(2+)-sensitive K(+) channels. In this review, the roles of Ca(2+) sparks in positive- and negative-feedback regulation of smooth muscle function are explored. We also propose that frequency and amplitude modulation of Ca(2+) sparks by contractile and relaxant agents is an important mechanism to regulate smooth muscle function.
Collapse
Affiliation(s)
- J H Jaggar
- Department of Pharmacology, College of Medicine, The University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
23
|
Frings S, Reuter D, Kleene SJ. Neuronal Ca2+ -activated Cl- channels--homing in on an elusive channel species. Prog Neurobiol 2000; 60:247-89. [PMID: 10658643 DOI: 10.1016/s0301-0082(99)00027-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca2+ -activated Cl- channels control electrical excitability in various peripheral and central populations of neurons. Ca2+ influx through voltage-gated or ligand-operated channels, as well as Ca2+ release from intracellular stores, have been shown to induce substantial Cl- conductances that determine the response to synaptic input, spike rate, and the receptor current of various kinds of neurons. In some neurons, Ca2+ -activated Cl- channels are localized in the dendritic membrane, and their contribution to signal processing depends on the local Cl- equilibrium potential which may differ considerably from those at the membranes of somata and axons. In olfactory sensory neurons, the channels are expressed in ciliary processes of dendritic endings where they serve to amplify the odor-induced receptor current. Recent biophysical studies of signal transduction in olfactory sensory neurons have yielded some insight into the functional properties of Ca2+ -activated Cl- channels expressed in the chemosensory membrane of these cells. Ion selectivity, channel conductance, and Ca2+ sensitivity have been investigated, and the role of the channels in the generation of receptor currents is well understood. However, further investigation of neuronal Ca2+ -activated Cl- channels will require information about the molecular structure of the channel protein, the regulation of channel activity by cellular signaling pathways, as well as the distribution of channels in different compartments of the neuron. To understand the physiological role of these channels it is also important to know the Cl- equilibrium potential in cells or in distinct cell compartments that express Ca2+ -activated Cl- channels. The state of knowledge about most of these aspects is considerably more advanced in non-neuronal cells, in particular in epithelia and smooth muscle. This review, therefore, collects results both from neuronal and from non-neuronal cells with the intent of facilitating research into Ca2+ -activated Cl- channels and their physiological functions in neurons.
Collapse
Affiliation(s)
- S Frings
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Germany.
| | | | | |
Collapse
|
24
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
25
|
Wang Q, Wang YX, Yu M, Kotlikoff MI. Ca(2+)-activated Cl- currents are activated by metabolic inhibition in rat pulmonary artery smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C520-30. [PMID: 9277349 DOI: 10.1152/ajpcell.1997.273.2.c520] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report the electrophysiological and functional properties of Ca(2+)-activated Cl- currents [ICl(Ca)] in rat pulmonary artery smooth muscle and the activation of these currents by the metabolic inhibitor cyanide. Caffeine and norepinephrine (NE) evoked both Ca(2+)-activated K+ currents [IK(Ca)] and ICl(Ca) currents in voltage-clamped myocytes (-50 mV). Niflumic acid (10 microM) reduced the caffeine-induced ICl(Ca) by approximately 64% and reversibly reduced NE-induced tension. Exposure of myocytes to cyanide (2-10 mM) induced a slowly developing inward current (-50 mV) in physiological and K(+)-free solutions, which was identified as ICl(Ca) on the basis of ion selectivity and Ca2+ dependence. Cyanide elevated cytosolic Ca2+ concentration, and this elevation was markedly inhibited by preexposure to caffeine and slightly inhibited by nisoldipine. During exposure to caffeine, the Ca(2+)-activated K+ current was also augmented. Cyanide markedly prolonged ICl(Ca) activated by caffeine, increasing the half-decay time from 3.5 (control) to 29 s (cyanide); the half-decay time of the caffeine-induced IK(Ca) was not significantly affected by cyanide. The results indicate that metabolic inhibition increases [Ca2+]i and activates a prolonged, depolarizing Cl- current in pulmonary artery myocytes.
Collapse
Affiliation(s)
- Q Wang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104-6046, USA
| | | | | | | |
Collapse
|
26
|
Nelson MT, Conway MA, Knot HJ, Brayden JE. Chloride channel blockers inhibit myogenic tone in rat cerebral arteries. J Physiol 1997; 502 ( Pt 2):259-64. [PMID: 9263908 PMCID: PMC1159547 DOI: 10.1111/j.1469-7793.1997.259bk.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. We have investigated the role of chloride channels in pressure-induced depolarization and contraction of cerebral artery smooth muscle cells. 2. Two chloride channel blockers, indanyloxyacetic acid (IAA-94) and 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS), caused hyperpolarizations (10-15 mV) and dilatations (up to 90%) of pressurized (80 mmHg), rat posterior cerebral arteries. Niflumic acid, a blocker of calcium-activated chloride channels, did not affect arterial tone. 3. Dilatations to IAA-94 and DIDS were unaffected by potassium channel blockers, but were prevented by elevated potassium. IAA-94 and DIDS had no effect on membrane potential or diameter of arteries at low intravascular pressure, where myogenic tone is absent. Reduction of extracellular chloride (60 mM Cl-) increased the pressure-induced contractions. Removal of extracellular sodium did not affect the pressure-induced responses. 4. Our results suggest that intravascular pressure activates DIDS- and IAA-94-sensitive chloride channels to depolarize arterial smooth muscle, thereby contributing to the myogenic constriction.
Collapse
Affiliation(s)
- M T Nelson
- Department of Pharmacology, University of Vermont, Colchester 05446, USA
| | | | | | | |
Collapse
|
27
|
Kirkup AJ, Edwards G, Weston AH. Investigation of the effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) on membrane currents in rat portal vein. Br J Pharmacol 1996; 117:175-83. [PMID: 8825360 PMCID: PMC1909371 DOI: 10.1111/j.1476-5381.1996.tb15171.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) were investigated on evoked and spontaneous currents in freshly-isolated cells from the rat portal vein by use of conventional whole-cell recording and perforated-patch techniques. 2. At a holding potential of -60 mV in potassium-free, caesium-containing solutions, NPPB (10 microM) inhibited calcium (Ca)-sensitive chloride currents (ICl(Ca)) evoked by caffeine (10 mM) and by noradrenaline (10 microM) by 58% and 96%, respectively. 3. At a holding potential of -2 mV in potassium (K)-containing solutions, NPPB (10 microM) inhibited charybdotoxin-sensitive K-currents (IBK(Ca)) induced by noradrenaline (10 microM) and acetylcholine (10 microM) by approximately 90%. In contrast, IBK(Ca) induced by caffeine (10 mM) was unaffected in the presence of NPPB (10 microM). Conversely, IBK(Ca) elicited by caffeine (2 mM) was reduced by approximately 50% whereas IBK(Ca) evoked by noradrenaline (50 microM) was not significantly inhibited by NPPB. 4. In K-containing solutions, NPPB (10 microM) abolished spontaneous transient outward currents (STOCs) and induced a slowly-developing outward K-current. Bath application of glibenclamide (10 microM) abolished the outward current but did not antagonize the inhibitory effects of NPPB on STOCs or on IBK(Ca) evoked by noradrenaline. 5. In caesium-containing solutions, NPPB (30 microM) inhibited voltage-sensitive Ca-currents. 6. In Ca-free, K-containing solutions and in the presence of glibenclamide (5 microM), IBK(Ca) induced by 20 microM NS1619 was enhanced by NPPB (10 microM). 7. It is concluded that NPPB inhibits agonist-induced ICl(Ca) in rat portal vein smooth muscle. However, this agent also inhibits agonist-evoked IBK(Ca) and STOCs. Moreover, NPPB inhibits voltage-sensitive Ca-currents and stimulates a glibenclamide-sensitive K-current and IBK(Ca). The effects of this agent on evoked ICl(Ca) and IBK(Ca) and on STOCs probably involves an inhibitory action on intracellular Ca-stores.
Collapse
Affiliation(s)
- A J Kirkup
- School of Biological Sciences, University of Manchester
| | | | | |
Collapse
|
28
|
Kang TM, So I, Kim KW. Caffeine- and histamine-induced oscillations of K(Ca) current in single smooth muscle cells of rabbit cerebral artery. Pflugers Arch 1995; 431:91-100. [PMID: 8584422 DOI: 10.1007/bf00374381] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present experiment, we characterized the intracellular Ca2+ oscillations induced by caffeine (1mM) or histamine (1-3microM) in voltage-clamped single smooth muscle cells of rabbit cerebral (basilar) artery. Superfusion of caffeine or histamine induced periodic oscillations of large whole-cell K+ current with fairly uniform amplitudes and intervals. The oscillatory K+ current was abolished by inclusion of ethylenebis(oxonitrilo)tetraacetate (EGTA, 5mM) in the pipette solution. Caffeine- and histamine-induced periodic activation of the large-conductance Ca2+-activated K+ [K(Ca)] channel was recorded in the cell-attached patch mode. These results suggest that the oscillations of K+ current are carried by the K(Ca) channel and reflect the oscillations of intracellular Ca2+ concentration ([Ca2+]i). Ryanodine (1-10microM) abolished both caffeine- and histamine-induced oscillations. Caffeine-induced oscillations were abolished by the sarcoplasmic reticulum Ca2+-adenosine 5'-triphosphatase (Ca2+-ATPase) inhibitor, cyclopiazonic acid (10microM), and a high concentration of caffeine (10mM). Inclusion of heparin (3mg/ml) in the pipette solution blocked histamine-induced oscillations, but did not block caffeine-induced oscillations. By the removal of extracellular Ca2+, but not by the addition of verapamil and Cd2+, the caffeine-induced oscillations were abolished. Increasing Ca2+ influx rate increased the frequencies of caffeine-induced oscillations. Spontaneous oscillations were also observed in cells that were not superfused with agonists, and had similar characteristics to the caffeine-induced oscillations. From the above results, it is concluded, that in smooth muscle cells of the rabbit cerebral (basilar) artery, ryanodine-sensitive Ca2+-induced Ca2+ release pools play key roles in the generation of caffeine- and histamine-induced intracellular Ca2+ oscillations.
Collapse
Affiliation(s)
- T M Kang
- Department of Physiology and Biophysics, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, Korea
| | | | | |
Collapse
|
29
|
Henmi S, Imaizumi Y, Muraki K, Watanabe M. Characteristics of caffeine-induced and spontaneous inward currents and related intracellular Ca2+ storage sites in guinea-pig tracheal smooth muscle cells. Eur J Pharmacol 1995; 282:219-28. [PMID: 7498280 DOI: 10.1016/0014-2999(95)00339-m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Characteristics of caffeine-induced inward current (Icaf) and spontaneous transient inward current were examined in single smooth muscle cells isolated from guinea-pig trachea. When a pipette solution contained mainly CsCl, an application of 10 mM caffeine elicited transient Icaf at a holding potential of -60 mV. Spontaneous transient inward currents were recorded in about 15% of cells examined and were abolished by caffeine. Both were Cl- current activated by an increase in intracellular Ca2+ concentration (ICl-Ca). When 10 mM caffeine was puff-applied twice with various intervals, the amplitude of the second Icaf depended upon the period of the interval. The relationship between the amplitude and the interval represents the recovery time course of Icaf, which was significantly slowed by 30 microM cyclopiazonic acid. The Icaf was not significantly affected by addition of Cd2+. Removal of external Ca2+ did not affect the first Icaf but markedly reduced the second one, regardless of the presence of Cd2+. In conclusion, Icaf is evoked by activation of ICl-Ca via Ca2+ release. The recovery time course of Icaf indicates the refilling of Ca2+ storage sites by the cyclopiazonic acid-sensitive Ca2+ pump. The refilling at -60 mV depends strongly upon Ca2+ influx through the Cd(2+)-insensitive pathway. Spontaneous transient inward currents may be also due to ICl-Ca activated by spontaneous Ca2+ release from local storage sites.
Collapse
Affiliation(s)
- S Henmi
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | |
Collapse
|
30
|
Albarwani S, Robertson BE, Nye PC, Kozlowski RZ. Biophysical properties of Ca(2+)- and Mg-ATP-activated K+ channels in pulmonary arterial smooth muscle cells isolated from the rat. Pflugers Arch 1994; 428:446-54. [PMID: 7838666 DOI: 10.1007/bf00374564] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel class of Ca(2+)-activated K+ channel, also activated by Mg-ATP, exists in the main pulmonary artery of the rat. In view of the sensitivity of these "KCa,ATP" channels to such charged intermediates it is possible that they may be involved in regulating cellular responses to hypoxia. However, their electrophysiological profile is at present unknown. We have therefore characterised the sensitivity of KCa,ATP channels to voltage, intracellular Ca2+ ([Ca2+]i) and Mg-ATP. They have a conductance of 245 pS in symmetrical K+ and are approximately 20 times more selective for K+ ions than Na+ ions, with a K+ permeability (PK) of 4.6 x 10(-13) cm s-1.Ca2+ ions applied to the intracellular membrane surface of KCa,ATP channels causes a marked enhancement of their activity. This activation is probably the result of simultaneous binding of at least two Ca2+ ions, determined using Hill analysis, to the channel or some closely associated protein. This results in a shift of the voltage activation threshold to more hyperpolarized membrane potentials. The activation of KCa,ATP channels by Mg-ATP has an EC50 of approximately 50 microM. Although the EC50 is unaffected by [Ca2+]i, channel activation by Mg-ATP is enhanced by increasing [Ca2+]i. One possible interpretation of these data is that Mg-ATP increases the sensitivity of KCa,ATP channels to Ca2+. It is therefore possible that under hypoxic conditions, where lower levels of Mg-ATP may be encountered, the sensitivity of KCa,ATP channels to Ca2+ and therefore voltage is reduced.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Albarwani
- University Laboratory of Physiology, Oxford, UK
| | | | | | | |
Collapse
|
31
|
Arnaudeau S, Leprêtre N, Mironneau J. Chloride and monovalent ion-selective cation currents activated by oxytocin in pregnant rat myometrial cells. Am J Obstet Gynecol 1994; 171:491-501. [PMID: 7520214 DOI: 10.1016/0002-9378(94)90288-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The purpose of our study was to characterize the membrane mechanisms responsible for oxytocin-induced depolarization in single cells from pregnant rat myometrium. STUDY DESIGN Membrane currents were recorded with the whole-cell mode of the standard patch-clamp technique. Intracellular calcium concentration was monitored with the fluorescence from Fura 2 added to the pipette solution. RESULTS We found that oxytocin predominantly activates potassium, chloride, and cation conductances. Chloride and cation currents were evoked by an increase in the intracellular calcium concentration dependent on calcium release from the heparin-sensitive intracellular stores. Chloride and cation current showed different calcium dependences so that they could be activated separately. CONCLUSION Stimulation of oxytocin receptors induces opening of calcium-activated chloride and cation channels, leading to depolarization of the myometrial cells. This depolarization opens, in turn, voltage-dependent calcium channels.
Collapse
Affiliation(s)
- S Arnaudeau
- Laboratoire de Physiologie Cellulaire et Pharmacologie Moléculaire, Centre National de la Recherche Scientifique, Unite de Recherche Associée 1489, Université de Bordeaux II, France
| | | | | |
Collapse
|
32
|
Helliwell RM, Wang Q, Hogg RC, Large WA. Synergistic action of histamine and adenosine triphosphate on the response to noradrenaline in rabbit pulmonary artery smooth muscle cells. Pflugers Arch 1994; 426:433-9. [PMID: 8015892 DOI: 10.1007/bf00388307] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interaction between histamine, adenosine triphosphate (ATP) and noradrenaline was studied with the perforated-patch technique in single cells isolated from the rabbit pulmonary artery. In these cells all of the agents activated caffeine-sensitive currents. In potassium-free conditions at a holding potential of -50 mV bath applied histamine, in concentrations that did not produce a response, greatly enhanced the magnitude of inward currents evoked by ionophoretic application of noradrenaline. These inward currents were calcium-activated chloride currents, ICl(Ca). In potassium-containing solutions at a holding potential of 0 mV, bath applied histamine potentiated the outward currents (calcium-activated potassium currents (IK(Ca)) induced by noradrenaline. This synergistic action was rapid in onset, sustained during the continued presence of histamine and reversible. Bath application of noradrenaline inhibited the response to ionophoretically applied noradrenaline but not the caffeine-induced currents. ATP also stimulated ICl(Ca) and IK(Ca) through a mechanism dependent on the caffeine-sensitive intracellular calcium store and also potentiated the currents activated by noradrenaline. It is concluded that one explanation for the phenomenon of potentiation in smooth muscle is convergence of several distinct pharmacological receptors to a common cellular mechanism.
Collapse
Affiliation(s)
- R M Helliwell
- Department of Pharmacology and Clinical Pharmacology, St. George's Hospital Medical School, London, UK
| | | | | | | |
Collapse
|
33
|
Hogg RC, Wang Q, Helliwell RM, Large WA. Properties of spontaneous inward currents in rabbit pulmonary artery smooth muscle cells. Pflugers Arch 1993; 425:233-40. [PMID: 7508596 DOI: 10.1007/bf00374172] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Spontaneous inward and outward currents were studied with perforated patch recording in freshly dispersed rabbit pulmonary artery smooth muscle cells. With physiological potassium concentrations, spontaneous outward and inward currents were recorded at negative membrane potentials. Ion substitution experiments revealed that the outward and inward currents were respectively potassium and chloride conductance increases. Both conductances were abolished by bath application of caffeine (2-10 mM), which releases calcium from internal stores. The rise time and half-decay time of spontaneous potassium currents were both about 25 ms. The spontaneous chloride current has a rise time of 30 ms and decayed exponentially with a time constant (tau) of 70 ms at -50 mV. The tau value was increased by depolarization and increased e-fold for a change of 99 mV in membrane potential. In every cell examined when the spontaneous currents occurred as biphasic events, typically between -20 mV and -40 mV, outward currents preceded inward currents in over 90% of these events whereas the inward current always preceded the outward current in caffeine- and noradrenaline-evoked responses. An explanation for these data is that there may be localization of some chloride channels with respect to the caffeine-sensitive calcium store.
Collapse
Affiliation(s)
- R C Hogg
- Department of Pharmacology and Clinical Pharmacology, St. George's Hospital Medical School, London, UK
| | | | | | | |
Collapse
|