1
|
Okekenwa S, Tsai M, Dooley P, Wang B, Comassio P, Moreira J, Kriefall N, Martin S, Morfini G, Brady S, Song Y. Divergent Molecular Pathways for Toxicity of Selected Mutant C9ORF72-derived Dipeptide Repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.558663. [PMID: 37808871 PMCID: PMC10557653 DOI: 10.1101/2023.09.28.558663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Expansion of a hexanucleotide repeat in a noncoding region of the C9ORF72 gene is responsible for a significant fraction of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) cases, but mechanisms linking mutant gene products to neuronal toxicity remain debatable. Pathogenesis was proposed to involve the production of toxic RNA species and/or accumulation of toxic dipeptide repeats (DPRs) but distinguishing between these mechanisms has been challenging. In this study, we first use complementary model systems for analyzing pathogenesis in adult-onset neurodegenerative diseases to characterize the pathogenicity of DPRs produced by Repeat Associated Non-ATG translation of C9ORF72 in specific cellular compartments: isolated axoplasm and giant synapse from the squid. Results showed selective axonal and presynaptic toxicity of GP-DPRs, independent of associated RNA. These effects involved a MAPK signaling pathway that affects fast axonal transport and synaptic function, a pathogenic mechanism shared with other mutant proteins associated with familial ALS, like SOD1 and FUS. In primary cultured neurons, GP but not other DPRs promote the "dying-back" axonopathy seen in ALS. Interestingly, GR- and PR-DPRs, which had no effect on axonal transport or synaptic transmission, were found to disrupt the nuclear membrane, promoting "dying-forward" neuropathy. All C9-DPR-mediated toxic effects observed in these studies are independent of whether the corresponding mRNAs contained hexanucleotide repeats or alternative codons. Finally, C9ORF72 human tissues confirmed a close association between GP and active P38 in degenerating motor neurons as well as GR-associated nuclear damage in the cortex. Collectively, our studies establish compartment-specific toxic effects of C9-DPRs associated with degeneration, suggesting that two independent pathogenic mechanisms may contribute to disease heterogeneity and/or synergize on disease progression in C9ORF72 patients with ALS and/or FTD symptoms.
Collapse
|
2
|
Clark PJ, Brodnik ZD, España RA. Chemogenetic Signaling in Space and Time: Considerations for Designing Neuroscience Experiments Using DREADDs. Neuroscientist 2024; 30:328-346. [PMID: 36408535 DOI: 10.1177/10738584221134587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The use of designer receptors exclusively activated by designer drugs (DREADDs) has led to significant advances in our understanding of the neural circuits that govern behavior. By allowing selective control over cellular activity and signaling, DREADDs have become an integral tool for defining the pathways and cellular phenotypes that regulate sleep, pain, motor activity, goal-directed behaviors, and a variety of other processes. In this review, we provide a brief overview of DREADDs and discuss notable discoveries in the neurosciences with an emphasis on circuit mechanisms. We then highlight methodological approaches to achieve pathway specific activation of DREADDs. Finally, we discuss spatial and temporal constraints of DREADDs signaling and how these features can be incorporated into experimental designs to precisely dissect circuits of interest.
Collapse
Affiliation(s)
- Philip J Clark
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Zachary D Brodnik
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Samanipour R, Tahmooressi H, Rezaei Nejad H, Hirano M, Shin SR, Hoorfar M. A review on 3D printing functional brain model. BIOMICROFLUIDICS 2022; 16:011501. [PMID: 35145569 PMCID: PMC8816519 DOI: 10.1063/5.0074631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/31/2021] [Indexed: 05/08/2023]
Abstract
Modern neuroscience increasingly relies on 3D models to study neural circuitry, nerve regeneration, and neural disease. Several different biofabrication approaches have been explored to create 3D neural tissue model structures. Among them, 3D bioprinting has shown to have great potential to emerge as a high-throughput/high precision biofabrication strategy that can address the growing need for 3D neural models. Here, we have reviewed the design principles for neural tissue engineering. The main challenge to adapt printing technologies for biofabrication of neural tissue models is the development of neural bioink, i.e., a biomaterial with printability and gelation properties and also suitable for neural tissue culture. This review shines light on a vast range of biomaterials as well as the fundamentals of 3D neural tissue printing. Also, advances in 3D bioprinting technologies are reviewed especially for bioprinted neural models. Finally, the techniques used to evaluate the fabricated 2D and 3D neural models are discussed and compared in terms of feasibility and functionality.
Collapse
Affiliation(s)
| | - Hamed Tahmooressi
- Department of Mechanical Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Hojatollah Rezaei Nejad
- Department of Electrical and Computer Engineering, Tufts University, 161 College Avenue, Medford, Massachusetts 02155, USA
| | | | - Su-Royn Shin
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA
- Authors to whom correspondence should be addressed: and
| | - Mina Hoorfar
- Faculty of Engineering, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
4
|
Synaptic Actions of Amyotrophic Lateral Sclerosis-Associated G85R-SOD1 in the Squid Giant Synapse. eNeuro 2020; 7:ENEURO.0369-19.2020. [PMID: 32188708 PMCID: PMC7177748 DOI: 10.1523/eneuro.0369-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Altered synaptic function is thought to play a role in many neurodegenerative diseases, but little is known about the underlying mechanisms for synaptic dysfunction. The squid giant synapse (SGS) is a classical model for studying synaptic electrophysiology and ultrastructure, as well as molecular mechanisms of neurotransmission. Here, we conduct a multidisciplinary study of synaptic actions of misfolded human G85R-SOD1 causing familial amyotrophic lateral sclerosis (ALS). G85R-SOD1, but not WT-SOD1, inhibited synaptic transmission, altered presynaptic ultrastructure, and reduced both the size of the readily releasable pool (RRP) of synaptic vesicles and mobility from the reserved pool (RP) to the RRP. Unexpectedly, intermittent high-frequency stimulation (iHFS) blocked inhibitory effects of G85R-SOD1 on synaptic transmission, suggesting aberrant Ca2+ signaling may underlie G85R-SOD1 toxicity. Ratiometric Ca2+ imaging showed significantly increased presynaptic Ca2+ induced by G85R-SOD1 that preceded synaptic dysfunction. Chelating Ca2+ using EGTA prevented synaptic inhibition by G85R-SOD1, confirming the role of aberrant Ca2+ in mediating G85R-SOD1 toxicity. These results extended earlier findings in mammalian motor neurons and advanced our understanding by providing possible molecular mechanisms and therapeutic targets for synaptic dysfunctions in ALS as well as a unique model for further studies.
Collapse
|
5
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
6
|
Dittrich M, Homan AE, Meriney SD. Presynaptic mechanisms controlling calcium-triggered transmitter release at the neuromuscular junction. CURRENT OPINION IN PHYSIOLOGY 2018; 4:15-24. [PMID: 30272045 DOI: 10.1016/j.cophys.2018.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Calcium-triggered neurotransmission underlies most communication in the nervous system. Yet, despite the conserved and essential nature of this process, the molecular underpinnings of calcium-triggered neurotransmission have been difficult to study directly and our understanding to this date remains incomplete. Here we frame more recent efforts to understand this process with a historical perspective of the study of neurotransmitter release at the neuromuscular junction. We focus on the role of calcium channel distribution and organization relative to synaptic vesicles, as well as the nature of the calcium sensors that trigger release. Importantly, we provide a framework for understanding how the function of neurotransmitter release sites, or active zones, contributes to the function of the synapse as a whole.
Collapse
Affiliation(s)
| | - Anne E Homan
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260
| | - Stephen D Meriney
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
7
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Mehta S, Zhang J. Dynamic visualization of calcium-dependent signaling in cellular microdomains. Cell Calcium 2015; 58:333-41. [PMID: 25703691 DOI: 10.1016/j.ceca.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/17/2022]
Abstract
Cells rely on the coordinated action of diverse signaling molecules to sense, interpret, and respond to their highly dynamic external environment. To ensure the specific and robust flow of information, signaling molecules are often spatially organized to form distinct signaling compartments, and our understanding of the molecular mechanisms that guide intracellular signaling hinges on the ability to directly probe signaling events within these cellular microdomains. Ca(2+) signaling in particular owes much of its functional versatility to this type of exquisite spatial regulation. As discussed below, a number of methods have been developed to investigate the mechanistic and functional implications of microdomains of Ca(2+) signaling, ranging from the application of Ca(2+) buffers to the direct and targeted visualization of Ca(2+) signaling microdomains using genetically encoded fluorescent reporters.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Spatial wavelet analysis of calcium oscillations in developing neurons. PLoS One 2013; 8:e75986. [PMID: 24155880 PMCID: PMC3796547 DOI: 10.1371/journal.pone.0075986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/19/2013] [Indexed: 01/17/2023] Open
Abstract
Calcium signals play a major role in the control of all key stages of neuronal development, and in particular in the growth and orientation of neuritic processes. These signals are characterized by high spatial compartmentalization, a property which has a strong relevance in the different roles of specific neuronal regions in information coding. In this context it is therefore important to understand the structural and functional basis of this spatial compartmentalization, and in particular whether the behavior at each compartment is merely a consequence of its specific geometry or the result of the spatial segregation of specific calcium influx/efflux mechanisms. Here we have developed a novel approach to separate geometrical from functional differences, regardless on the assumptions on the actual mechanisms involved in the generation of calcium signals. First, spatial indices are derived with a wavelet-theoretic approach which define a measure of the oscillations of cytosolic calcium concentration in specific regions of interests (ROIs) along a cell, in our case developing chick ciliary ganglion neurons. The resulting spatial profile demonstrates clearly that different ROIs along the neuron are characterized by specific patterns of calcium oscillations. Next we have investigated whether this inhomogeneity is due just to geometrical factors, namely the surface to volume ratio in the different subcompartments (e.g. soma vs. growth cone) or it depends on their specific biophysical properties. To this aim correlation functions are computed between the activity indices and the surface/volume ratio along the cell: the data thus obtained are validated by a statistical analysis on a dataset of different cells. This analysis shows that whereas in the soma calcium dynamics is highly correlated to the surface/volume ratio, correlations drop in the growth cone-neurite region, suggesting that in this latter case the key factor is the expression of specific mechanisms controlling calcium influx/efflux.
Collapse
|
10
|
Gardezi SR, Li Q, Stanley EF. Inter-channel scaffolding of presynaptic CaV2.2 via the C terminal PDZ ligand domain. Biol Open 2013; 2:492-8. [PMID: 23789098 PMCID: PMC3654268 DOI: 10.1242/bio.20134267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/13/2013] [Indexed: 01/02/2023] Open
Abstract
Calcium entry through CaV2.2 calcium channels clustered at the active zone (AZ) of the presynaptic nerve terminal gates synaptic vesicle (SV) fusion and the discharge of neurotransmitters, but the mechanism of channel scaffolding remains poorly understood. Recent studies have implicated the binding of a PDZ ligand domain (PDZ-LD) at the tip of the channel C terminal to a partner PDZ domain on RIM1/2, a synaptic vesicle-associated protein. To explore CaV2.2 scaffolding, we created intracellular region fusion proteins and used these to test for binding by ‘fishing’ for native CaV2.2 channels from cell lysates. Fusion proteins mimicking the distal half of the channel C terminal (C3strep) reliably captured CaV2.2 from whole brain crude membrane or purified synaptosome membrane lysates, whereas channel I–II loop or the distal half of the II–III loop proteins were negative. This capture could be replicated in a non-synaptic environment using CaV2.2 expressed in a cell line. The distal tip PDZ-LD, DDWC-COOH, was confirmed as the critical binding site by block of pull-down with mimetic peptides. Pull-down experiments using brain crude membrane lysates confirmed that RIM1/2 can bind to the DDWC PDZ-LD. However, robust CaV2.2 capture was observed from synaptosome membrane or in the cell line expression system with little or no RIM1/2 co-capture. Thus, we conclude that CaV2.2 channels can scaffold to each other via an interaction that involves the PDZ-LD by an inter-channel linkage bridged by an unknown protein.
Collapse
Affiliation(s)
- Sabiha R Gardezi
- Laboratory of Synaptic Transmission, Genetics and Development Division, Toronto Western Research Institute , Toronto, ON M5T 2S8 , Canada
| | | | | |
Collapse
|
11
|
|
12
|
Leal K, Klein M. Direct enhancement of presynaptic calcium influx in presynaptic facilitation at Aplysia sensorimotor synapses. Mol Cell Neurosci 2009; 41:247-57. [PMID: 19344767 DOI: 10.1016/j.mcn.2009.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/01/2009] [Accepted: 03/23/2009] [Indexed: 01/20/2023] Open
Abstract
Regulation of synaptic transmission by modulation of the calcium influx that triggers transmitter release underlies different forms of synaptic plasticity, and thus could contribute to learning. In the mollusk Aplysia, the neuromodulator serotonin (5-HT) increases evoked transmitter release from sensory neurons and thereby contributes to dishabituation and sensitization of defensive reflexes. We combined electrophysiological recording with fluorescence measurements of intracellular calcium in sensory neuron synapses in culture to test whether direct up-modulation by 5-HT of calcium influx triggered by single action potentials contributes to facilitation of transmitter release. We observe increases in a previously undescribed calcium influx that are strongly correlated with increases in the amplitude of the evoked postsynaptic potentials and which cannot be accounted for by action potential prolongation. Our results suggest that direct modulation of a presynaptic calcium conductance that controls neurotransmitter release contributes to the presynaptic facilitation that underlies a simple form of learning.
Collapse
Affiliation(s)
- Karina Leal
- Department of Physiological Science and Brain Research Institute, University of California at Los Angeles, 621 Charles Young Drive South, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
13
|
Calcium Channel Regulation and Presynaptic Plasticity. Neuron 2008; 59:882-901. [PMID: 18817729 DOI: 10.1016/j.neuron.2008.09.005] [Citation(s) in RCA: 466] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 01/15/2023]
|
14
|
Cohen R, Marom M, Atlas D. Depolarization-evoked secretion requires two vicinal transmembrane cysteines of syntaxin 1A. PLoS One 2007; 2:e1273. [PMID: 18060067 PMCID: PMC2094736 DOI: 10.1371/journal.pone.0001273] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 11/14/2007] [Indexed: 11/24/2022] Open
Abstract
Background The interactions of the voltage-gated Ca2+ channel (VGCC) with syntaxin 1A (Sx 1A), Synaptosome-associated protein of 25 kD (SNAP-25), and synaptotagmin, couple electrical excitation to evoked secretion. Two vicinal Cys residues, Cys 271 and Cys 272 in the Sx 1A transmembrane domain, are highly conserved and participate in modulating channel kinetics. Each of the Sx1A Cys mutants, differently modify the kinetics of Cav1.2, and neuronal Cav2.2 calcium channel. Methodology/Principle Findings We examined the effects of various Sx1A Cys mutants and the syntaxin isoforms 2, 3, and 4 each of which lack vicinal Cys residues, on evoked secretion, monitoring capacitance transients in a functional release assay. Membrane capacitance in Xenopus oocytes co-expressing Cav1.2, Sx1A, SNAP-25 and synaptotagmin, which is Bot C- and Bot A-sensitive, was elicited by a double 500 ms depolarizing pulse to 0 mV. The evoked-release was obliterated when a single Cys Sx1A mutant or either one of the Sx isoforms were substituted for Sx 1A, demonstrating the essential role of vicinal Cys residues in the depolarization mediated process. Protein expression and confocal imaging established the level of the mutated proteins in the cell and their targeting to the plasma membrane. Conclusions/Significance We propose a model whereby the two adjacent transmembranal Cys residues of Sx 1A, lash two calcium channels. Consistent with the necessity of a minimal fusion complex termed the excitosome, each Sx1A is in a complex with SNAP-25, Syt1, and the Ca2+ channel. A Hill coefficient >2 imply that at least three excitosome complexes are required for generating a secreting hetero-oligomer protein complex. This working model suggests that a fusion pore that opens during membrane depolarization could be lined by alternating transmembrane segments of Sx1A and VGCC. The functional coupling of distinct amino acids of Sx 1A with VGCC appears to be essential for depolarization-evoked secretion.
Collapse
Affiliation(s)
- Roy Cohen
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Marom
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Khanna R, Li Q, Sun L, Collins TJ, Stanley EF. N type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes. Neuroscience 2006; 140:1201-8. [PMID: 16757118 DOI: 10.1016/j.neuroscience.2006.04.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/21/2006] [Accepted: 04/12/2006] [Indexed: 11/28/2022]
Abstract
Fast neurotransmitter release at presynaptic terminals occurs at specialized transmitter release sites where docked secretory vesicles are triggered to fuse with the membrane by the influx of Ca2+ ions that enter through local N type (CaV2.2) calcium channels. Thus, neurosecretion involves two key processes: the docking of vesicles at the transmitter release site, a process that involves the scaffold protein RIM (Rab3A interacting molecule) and its binding partner Munc-13, and the subsequent gating of vesicle fusion by activation of the Ca2+ channels. It is not known, however, whether the vesicle fusion complex with its attached Ca2+ channels and the vesicle docking complex are parts of a single multifunctional entity. The Ca2+ channel itself and RIM were used as markers for these two elements to address this question. We carried out immunostaining at the giant calyx-type synapse of the chick ciliary ganglion to localize the proteins at a native, undisturbed presynaptic nerve terminal. Quantitative immunostaining (intensity correlation analysis/intensity correlation quotient method) was used to test the relationship between these two proteins at the nerve terminal transmitter release face. The staining intensities for CaV2.2 and RIM covary strongly, consistent with the expectation that they are both components of the transmitter release sites. We then used immunoprecipitation to test if these proteins are also parts of a common molecular complex. However, precipitation of CaV2.2 failed to capture either RIM or Munc-13, a RIM binding partner. These findings indicate that although the vesicle fusion and the vesicle docking mechanisms coexist at the transmitter release face they are not parts of a common stable complex.
Collapse
Affiliation(s)
- R Khanna
- Cellular and Molecular Biology Division, MP14-320 Toronto Western Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario, M5T 2S8 Canada
| | | | | | | | | |
Collapse
|
16
|
Photowala H, Freed R, Alford S. Location and function of vesicle clusters, active zones and Ca2+ channels in the lamprey presynaptic terminal. J Physiol 2005; 569:119-35. [PMID: 16141275 PMCID: PMC1464202 DOI: 10.1113/jphysiol.2005.091314] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/24/2005] [Accepted: 08/30/2005] [Indexed: 11/08/2022] Open
Abstract
Synaptic transmission requires spatial and temporal coordination of a specific sequence of events. The trigger for synaptic vesicle exocytosis is Ca(2)(+) entry into presynaptic terminals, leading to neurotransmitter release at highly specialized sites known as active zones. Ca(2)(+) channel proximity to exocytotic proteins and vesicle clusters at active zones have been inferred from biochemical, histological and ultrastructural data, but direct evidence about functional relationships between these elements in central synapses is absent. We have utilized the lamprey giant reticulospinal synapse to characterize functional colocalization of known synaptic markers in the presynaptic terminal, as well as their reliability during repeated activation. Recycling vesicle clusters, surrounding actin filaments, and physiologically relevant Ca(2)(+) influx all show identical morphological distribution. Ca(2)(+) influx is mediated by clusters of Ca(2)(+) channels that colocalize with the vesicle clusters, defined by imaged sites of vesicle recycling and actin localization. Synaptic transmission is inhibited by block of actin depolymerization, but Ca(2)(+) signalling is unaffected. Functional Ca(2)(+) channels are localized to presynaptic clusters, and Ca(2)(+) transients at these sites account for neurotransmitter release based on their spatial and temporal profiles. Ca(2)(+) transients evoked by single axonal action potentials are mediated solely by voltage-operated Ca(2)(+) channel activation, and slower Ca(2)(+) rises observed throughout the axon result from Ca(2)(+) diffusion from the synaptic regions. We conclude that at lamprey giant reticulospinal synapses, Ca(2)(+) channels and release sites colocalize, creating a close spatial relationship between active zones and Ca(2)(+) entry sites, which is necessary for site-specific, Ca(2)(+)-dependent secretion.
Collapse
Affiliation(s)
- Huzefa Photowala
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | | | | |
Collapse
|
17
|
Wachman ES, Poage RE, Stiles JR, Farkas DL, Meriney SD. Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone. J Neurosci 2004; 24:2877-85. [PMID: 15044526 PMCID: PMC6729837 DOI: 10.1523/jneurosci.1660-03.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nature of presynaptic calcium (Ca(2+)) signals that initiate neurotransmitter release makes these signals difficult to study, in part because of the small size of specialized active zones within most nerve terminals. Using the frog motor nerve terminal, which contains especially large active zones, we show that increases in intracellular Ca(2+) concentration within 1 msec of action potential invasion are attributable to Ca(2+) entry through N-type Ca(2+) channels and are not uniformly distributed throughout active zone regions. Furthermore, changes in the location and magnitude of Ca(2+) signals recorded before and after experimental manipulations (omega-conotoxin GVIA, diaminopyridine, and lowered extracellular Ca(2+)) support the hypothesis that there is a remarkably low probability of a single Ca(2+) channel opening within an active zone after an action potential. The trial-to-trial variability observed in the spatial distribution of presynaptic Ca(2+) entry also supports this conclusion, which differs from the conclusions of previous work in other synapses.
Collapse
Affiliation(s)
- Elliot S Wachman
- Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
18
|
Yan Q, Sun W, McNew JA, Vida TA, Bean AJ. Ca2+ and N-Ethylmaleimide-sensitive Factor Differentially Regulate Disassembly of SNARE Complexes on Early Endosomes. J Biol Chem 2004; 279:18270-6. [PMID: 14769786 DOI: 10.1074/jbc.m400093200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endosome-associated protein Hrs inhibits the homotypic fusion of early endosomes. A helical region of Hrs containing a Q-SNARE motif mediates this effect as well as its endosomal membrane association via SNAP-25, an endosomal receptor for Hrs. Hrs inhibits formation of an early endosomal SNARE complex by displacing VAMP-2 from the complex, suggesting a mechanism by which Hrs inhibits early endosome fusion. We examined the regulation of endosomal SNARE complexes to probe how Hrs may function as a negative regulator. We show that although NSF dissociates the VAMP-2.SNAP-25.syntaxin 13 complex, it has no effect on the Hrs-containing complex. Whereas Ca(2+) dissociates the Hrs-containing complex but not the VAMP-2-containing SNARE complex. This is the first demonstration of differential regulation of R/Q-SNARE and all Q-SNARE-containing SNARE complexes. Ca(2+) also reverses the Hrs-induced inhibition of early endosome fusion in a tetanus toxin-sensitive manner and removes Hrs from early endosomal membranes. Moreover, Hrs inhibition of endosome fusion and its endosomal localization are sensitive to bafilomycin, implying a role for luminal Ca(2+). Thus, Hrs may bind a SNARE protein on early endosomal membranes negatively regulating trans-SNARE pairing and endosomal fusion. The release of Ca(2+) from the endosome lumen dissociates Hrs, allowing a VAMP-2-containing complex to form enabling fusion.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Calcium influx and the resulting increase in intracellular calcium concentration [Ca2+]i can induce enhanced sensitivity to temperature increases in nociceptive neurons. Using the patch-clamp technique and simultaneous calcium microfluorimetry we show that experimental elevation of [Ca2+]i using the calcium ionophore ionomycin resulted in a significant potentiation of heat-activated currents. This was not the case when rises in [Ca2+]i were elicited by depolarization of the cell membrane by current injection via the patch pipette. Our data provide first, however, indirect evidence that in sensory neurons calcium ions may be guided into different intracellular microdomains depending on the type of ion channel or pore through which they enter the cell. We conclude that the compartmentalization of sensory neurons for calcium ions may be decisive on further signalling cascades accounting, for example, for neuronal plasticity.
Collapse
Affiliation(s)
- M Kress
- Institute of Physiology and Experimental Pathophysiology, Erlangen, Germany.
| | | |
Collapse
|
20
|
Pellistri F, Cupello A, Esposito A, Marchetti C, Robello M. Two-photon imaging of calcium accumulation in rat cerebellar granule cells. Neuroreport 2004; 15:83-7. [PMID: 15106836 DOI: 10.1097/00001756-200401190-00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Topical accumulation of calcium ions in neurites and cell bodies of rat cerebellar granule cells was studied by two-photon microscopy in neurons loaded with the Ca-sensitive fluorescent indicator Oregon Green 488 Bapta. High potassium caused a rapid surge of internal calcium ([Ca2+]i) in the cell body, followed by a plateau. In neurites, [Ca2+]i reached a peak and then decreased back to the control level. In contrast, in neurons stimulated by NMDA, [Ca2+]i reached a steady level and remained constant as long as the agonist was present in the bath, either in the cell bodies or in neurites. In the latter, the response to NMDA treatment was smaller and heterogeneous, and [Ca2+]i increased in certain segments of the neurite, but not in others.
Collapse
Affiliation(s)
- Francesca Pellistri
- INFM, Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | | | | | | | | |
Collapse
|
21
|
Koizumi S, Rosa P, Willars GB, Challiss RAJ, Taverna E, Francolini M, Bootman MD, Lipp P, Inoue K, Roder J, Jeromin A. Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J Biol Chem 2002; 277:30315-24. [PMID: 12034721 DOI: 10.1074/jbc.m201132200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) or the originally identified homologue frequenin belongs to a superfamily of EF-hand calcium binding proteins. Although NCS-1 is thought to enhance synaptic efficacy or exocytosis mainly by activating ion channel function, the detailed molecular basis for the enhancement is still a matter of debate. Here, mechanisms underlying the NCS-1-evoked enhancement of exocytosis were investigated using PC12 cells overexpressing NCS-1. NCS-1 was found to have a broad distribution in the cells being partially distributed in the cytosol and associated to vesicles and tubular-like structures. Biochemical and immunohistochemical studies indicated that NCS-1 partially colocalized with the light synaptic vesicle marker synaptophysin. When stimulated with UTP or bradykinin, agonists to phospholipase C-linked receptors, NCS-1 enhanced the agonist-mediated elementary and global Ca2+ signaling and increased the levels of downstream signals of phosphatidylinositol 4-kinase. NCS-1 enhanced the UTP-evoked exocytosis but not the depolarization-evoked Ca2+ responses or exocytosis, suggesting that the enhancement by NCS-1 should involve phospholipase C-linked receptor-mediated signals rather than the Ca2+ channels or exocytotic machinery per se. Taken together, NCS-1 enhances phosphoinositide turnover, resulting in enhancement of Ca2+ signaling and exocytosis. This is a novel regulatory mechanism of exocytosis that might involve the activation of phosphatidylinositol 4-kinase.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Section of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Feng ZP, Grigoriev N, Munno D, Lukowiak K, MacVicar BA, Goldberg JI, Syed NI. Development of Ca2+ hotspots between Lymnaea neurons during synaptogenesis. J Physiol 2002; 539:53-65. [PMID: 11850501 PMCID: PMC2290139 DOI: 10.1113/jphysiol.2001.013125] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Calcium (Ca2+) channel clustering at specific presynaptic sites is a hallmark of mature synapses. However, the spatial distribution patterns of Ca2+ channels at newly formed synapses have not yet been demonstrated. Similarly, it is unclear whether Ca2+ 'hotspots' often observed at the presynaptic sites are indeed target cell contact specific and represent a specialized mechanism by which Ca2+ channels are targeted to select synaptic sites. Utilizing both soma-soma paired (synapsed) and single neurons from the mollusk Lymnaea, we have tested the hypothesis that differential gradients of voltage-dependent Ca2+ signals develop in presynaptic neuron at its contact point with the postsynaptic neuron; and that these Ca2+ hotspots are target cell contact specific. Fura-2 imaging, or two-photon laser scanning microscopy of Calcium Green, was coupled with electrophysiological techniques to demonstrate that voltage-induced Ca2+ gradients (hotspots) develop in the presynaptic cell at its contact point with the postsynaptic neuron, but not in unpaired single cells. The incidence of Ca2+ hotspots coincided with the appearance of synaptic transmission between the paired cells, and these gradients were target cell contact specific. In contrast, the voltage-induced Ca2+ signal in unpaired neurons was uniformly distributed throughout the somata; a similar pattern of Ca2+ gradient was observed in the presynaptic neuron when it was soma-soma paired with a non-synaptic partner cell. Moreover, voltage clamp recording techniques, in conjunction with a fast, optical differential perfusion system, were used to demonstrate that the total whole-cell Ca2+ (or Ba2+) current density in single and paired cells was not significantly different. However, the amplitude of Ba2+ current was significantly higher in the presynaptic cell at its contact side with the postsynaptic neurons, compared with non-contacted regions. In summary, this study demonstrates that voltage-induced Ca2+ hotspots develop in the presynaptic cell, concomitant with the appearance of synaptic transmission between the soma-soma paired cells. The appearance of Ca2+ gradients in presynaptic neurons is target cell contact specific and is probably due to a spatial redistribution of existing channels during synaptogenesis.
Collapse
Affiliation(s)
- Zhong-Ping Feng
- Respiratory and Neuroscience Research Groups, Faculty of Medicine, University of Calgary, 3330-Hospital Drive, NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
A heterogeneous distribution of ion channels on the cell surface is a prerequisite for several cellular functions. Thus, there has been considerable interest in methods allowing the mapping of ion channel distributions. Here we report on a novel ratiometric imaging technique appropriate to measure spatially resolved ion flux signals by using ion sensitive dyes. However, given that certain relevant cell properties like the surface to volume ratio may exhibit significant spatial heterogeneities, the local influx signal cannot be interpreted as a measure of the local open channel concentration or flux density. To overcome this problem, we suggest an internal normalization procedure, which, in analogy to, but clearly distinct from, well-established ratioing techniques, eliminates effects which would otherwise obscure the desired result. Ratioing is performed on flux signals from a given cell, triggered by two different, subsequent stimuli. If the two stimuli address different ion channels, the flux density distribution caused by two channel types can be determined relative to each other. In cases where one of the stimuli triggers a spatially homogeneous flux signal, ratioing yields an ion flux density map for a given channel type. Thus distribution patterns of ion channels active during a given stimulus may be derived.
Collapse
Affiliation(s)
- S Munck
- Bioimaging Zentrum der Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | | |
Collapse
|
24
|
Tokumaru H, Umayahara K, Pellegrini LL, Ishizuka T, Saisu H, Betz H, Augustine GJ, Abe T. SNARE complex oligomerization by synaphin/complexin is essential for synaptic vesicle exocytosis. Cell 2001; 104:421-32. [PMID: 11239399 DOI: 10.1016/s0092-8674(01)00229-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synaphin/complexin is a cytosolic protein that preferentially binds to syntaxin within the SNARE complex. We find that synaphin promotes SNAREs to form precomplexes that oligomerize into higher order structures. A peptide from the central, syntaxin binding domain of synaphin competitively inhibits these two proteins from interacting and prevents SNARE complexes from oligomerizing. Injection of this peptide into squid giant presynaptic terminals inhibited neurotransmitter release at a late prefusion step of synaptic vesicle exocytosis. We propose that oligomerization of SNARE complexes into a higher order structure creates a SNARE scaffold for efficient, regulated fusion of synaptic vesicles.
Collapse
Affiliation(s)
- H Tokumaru
- Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Highly localized Ca(2+) accumulation revealed by multiphoton microscopy in an identified motoneuron and its modulation by dopamine. J Neurosci 2000. [PMID: 10729332 DOI: 10.1523/jneurosci.20-07-02523.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium is essential for synaptic transmission and the control of the intrinsic firing properties of neurons; this makes Ca(2+) channels a prime target for neuromodulators. A combination of multiphoton microscopy and voltage-clamp recording was used to determine the localization of voltage-dependent Ca(2+) accumulation in the two pyloric dilator (PD) neurons of the pyloric network in the spiny lobster, Panulirus interruptus, and its modulation by dopamine. We monitored [Ca(2+)](i) in fine distal branches in the neuropil >350 microm below the surface of the ganglion during controlled voltage steps in voltage clamp. Ca(2+) accumulation originated mostly from small, fairly rare, spatially restricted varicosities on distal neuritic arborizations. Ca(2+) diffused from these point sources into adjacent regions. Varicosities with similar morphology in the PD neuron have been shown previously to be sites of synaptic contacts. We have demonstrated in earlier studies that dopamine inhibits activity and greatly reduces synaptic transmission from the PD neuron. In approximately 60% of the varicosities, the voltage-activated Ca(2+) accumulation was reduced by exogenous dopamine (DA) (10(-4) M). DA decreased the peak amplitude of Ca(2+) accumulation but had no effect on the rise and decay time. We conclude that DA reduces chemical synaptic transmission from the PD neurons at least in part by decreasing Ca(2+) entry at neurotransmitter release sites.
Collapse
|
26
|
Kloppenburg P, Zipfel WR, Webb WW, Harris-Warrick RM. Highly localized Ca(2+) accumulation revealed by multiphoton microscopy in an identified motoneuron and its modulation by dopamine. J Neurosci 2000; 20:2523-33. [PMID: 10729332 PMCID: PMC6772235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Calcium is essential for synaptic transmission and the control of the intrinsic firing properties of neurons; this makes Ca(2+) channels a prime target for neuromodulators. A combination of multiphoton microscopy and voltage-clamp recording was used to determine the localization of voltage-dependent Ca(2+) accumulation in the two pyloric dilator (PD) neurons of the pyloric network in the spiny lobster, Panulirus interruptus, and its modulation by dopamine. We monitored [Ca(2+)](i) in fine distal branches in the neuropil >350 microm below the surface of the ganglion during controlled voltage steps in voltage clamp. Ca(2+) accumulation originated mostly from small, fairly rare, spatially restricted varicosities on distal neuritic arborizations. Ca(2+) diffused from these point sources into adjacent regions. Varicosities with similar morphology in the PD neuron have been shown previously to be sites of synaptic contacts. We have demonstrated in earlier studies that dopamine inhibits activity and greatly reduces synaptic transmission from the PD neuron. In approximately 60% of the varicosities, the voltage-activated Ca(2+) accumulation was reduced by exogenous dopamine (DA) (10(-4) M). DA decreased the peak amplitude of Ca(2+) accumulation but had no effect on the rise and decay time. We conclude that DA reduces chemical synaptic transmission from the PD neurons at least in part by decreasing Ca(2+) entry at neurotransmitter release sites.
Collapse
Affiliation(s)
- P Kloppenburg
- Department of Neurobiology and Behavior, Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
27
|
Abney JR, Meliza CD, Cutler B, Kingma M, Lochner JE, Scalettar BA. Real-time imaging of the dynamics of secretory granules in growth cones. Biophys J 1999; 77:2887-95. [PMID: 10545386 PMCID: PMC1300560 DOI: 10.1016/s0006-3495(99)77120-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Secretory granules containing a hybrid protein consisting of the regulated secretory protein tissue plasminogen activator and an enhanced form of green fluorescent protein were tracked at high spatial resolution in growth cones of differentiated PC12 cells. Tracking shows that granules, unlike synaptic vesicles, generally are mobile in growth cones. Quantitative analysis of trajectories generated by granules revealed two dominant modes of motion: diffusive and directed. Diffusive motion was observed primarily in central and peripheral parts of growth cones, where most granules diffused two to four orders of magnitude more slowly than comparably sized spheres in dilute solution. Directed motion was observed primarily in proximal parts of growth cones, where a subset of granules underwent rapid, directed motion at average speeds comparable to those observed for granules in neurites. This high-resolution view of the dynamics of secretory granules in growth cones provides insight into granule organization and release at nerve terminals. In particular, the mobility of granules suggests that granules, unlike synaptic vesicles, are not tethered stably to cytoskeletal structures in nerve terminals. Moreover, the slow diffusive nature of this mobility suggests that secretory responses involving centrally distributed granules in growth cones will occur slowly, on a time scale of minutes or longer.
Collapse
Affiliation(s)
- J R Abney
- Department of Physics, Lewis and Clark College, Portland, Oregon 97219, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Fast neurotransmitter release is driven by high calcium (10-100 microM) near open channels (Ca(local)), followed by a much smaller (<1 microM), longer-lasting residual calcium (Ca(res)). The most prominent component of release, phasic release, lasts several milliseconds and is thought to be triggered by Ca(local). A transient tail of release then continues over the next 20 msec at 1-10% of peak rates. This transient component of release, which we refer to as TR, is poorly understood, and there is conflicting evidence regarding the role of Ca(local) and Ca(res) in its generation. We used optical methods to monitor Ca(res) and whole-cell voltage-clamp recordings to study TR at synapses between granule cells and stellate cells in rat cerebellar slices. After stimulation the probability of release is elevated greatly, peaking at 500 microseconds and then slowly declining to prestimulus levels after tens of milliseconds. After speeding the decay of Ca(res) levels with EGTA, release is confined to a 3 msec interval, and TR is eliminated. Thus, we find that Ca(res) accounts for a transient tail of release on the millisecond time scale that helps to shape the average synaptic current and accounts for at least 20% of the synaptic charge in the 20 msec interval after stimulation. Ca(res)-dependent TR is likely to contribute significantly to fast synaptic transmission under physiological conditions, particularly during high-frequency bursts that elevate Ca(res).
Collapse
|
29
|
Chen C, Regehr WG. Contributions of residual calcium to fast synaptic transmission. J Neurosci 1999; 19:6257-66. [PMID: 10414955 PMCID: PMC6782810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
Fast neurotransmitter release is driven by high calcium (10-100 microM) near open channels (Ca(local)), followed by a much smaller (<1 microM), longer-lasting residual calcium (Ca(res)). The most prominent component of release, phasic release, lasts several milliseconds and is thought to be triggered by Ca(local). A transient tail of release then continues over the next 20 msec at 1-10% of peak rates. This transient component of release, which we refer to as TR, is poorly understood, and there is conflicting evidence regarding the role of Ca(local) and Ca(res) in its generation. We used optical methods to monitor Ca(res) and whole-cell voltage-clamp recordings to study TR at synapses between granule cells and stellate cells in rat cerebellar slices. After stimulation the probability of release is elevated greatly, peaking at 500 microseconds and then slowly declining to prestimulus levels after tens of milliseconds. After speeding the decay of Ca(res) levels with EGTA, release is confined to a 3 msec interval, and TR is eliminated. Thus, we find that Ca(res) accounts for a transient tail of release on the millisecond time scale that helps to shape the average synaptic current and accounts for at least 20% of the synaptic charge in the 20 msec interval after stimulation. Ca(res)-dependent TR is likely to contribute significantly to fast synaptic transmission under physiological conditions, particularly during high-frequency bursts that elevate Ca(res).
Collapse
Affiliation(s)
- C Chen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
30
|
Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 1999; 79:1019-88. [PMID: 10390521 DOI: 10.1152/physrev.1999.79.3.1019] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary function of the presynaptic nerve terminal is to release transmitter quanta and thus activate the postsynaptic target cell. In almost every step leading to the release of transmitter quanta, there is a substantial involvement of ion channels. In this review, the multitude of ion channels in the presynaptic terminal are surveyed. There are at least 12 different major categories of ion channels representing several tens of different ion channel types; the number of different ion channel molecules at presynaptic nerve terminals is many hundreds. We describe the different ion channel molecules at the surface membrane and inside the nerve terminal in the context of their possible role in the process of transmitter release. Frequently, a number of different ion channel molecules, with the same basic function, are present at the same nerve terminal. This is especially evident in the cases of calcium channels and potassium channels. This abundance of ion channels allows for a physiological and pharmacological fine tuning of the process of transmitter release and thus of synaptic transmission.
Collapse
Affiliation(s)
- A Meir
- Department of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kirischuk S, Veselovsky N, Grantyn R. Relationship between presynaptic calcium transients and postsynaptic currents at single gamma-aminobutyric acid (GABA)ergic boutons. Proc Natl Acad Sci U S A 1999; 96:7520-5. [PMID: 10377447 PMCID: PMC22118 DOI: 10.1073/pnas.96.13.7520] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Postsynaptic responses to stereotyped activation of single axons are known to fluctuate, but the origin of synaptic variability in the vertebrate central nervous system is still unclear. To test the hypothesis that fluctuations of inhibitory postsynaptic currents reflect variations in presynaptic Ca2+ concentration, we examined single GABAergic axodendritic contacts in low-density cultures. Collicular neurons from rat embryos were loaded with the Ca2+ indicator Oregon Green 488 BAPTA-1. Presynaptic axon terminals were visualized by staining with the styryl dye RH414. Under the condition of action potential block, RH414-labeled boutons were activated selectively by current pulses applied through a fine-tipped glass pipette. Short (1- to 3-ms) depolarization of isolated boutons resulted in stimulus-locked changes of presynaptic Ca2+ concentration ([Ca2+]pre) and in evoked inhibitory postsynaptic currents (eIPSCs). Varying the strength of the stimulating currents produced a wide amplitude range of both presynaptic fluorescence transients (up to 220% of the resting value) and postsynaptic conductance changes (up to 2-3 nS). It was found that average eIPSCs displayed an approximately third-power dependency on [Ca2+]pre. Transmitter release retained its probabilistic character throughout the range of observed [Ca2+]pre values. In any tested single bouton, maximal eIPSCs occurred in association with the largest [Ca2+]pre transients, but failures were present at any [Ca2+]pre. The increase of maximal eIPSC amplitudes in connection with higher [Ca2+]pre supports the hypothesis that GABAergic boutons have the capacity to regulate synaptic strength by changing the number of simultaneously released vesicles.
Collapse
Affiliation(s)
- S Kirischuk
- Arbeitsgruppe Entwicklungsphysiologie, Institut für Physiologie, Medizinische Fakultät (Charité) der Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | | | | |
Collapse
|
32
|
Kasai H, Takahashi N. Multiple kinetic components and the Ca2+ requirements of exocytosis. Philos Trans R Soc Lond B Biol Sci 1999; 354:331-5. [PMID: 10212481 PMCID: PMC1692487 DOI: 10.1098/rstb.1999.0384] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The use of caged-Ca2+ compounds to stimulate Ca(2+)-dependent exocytosis has substantially increased our understanding of this complex process. By this approach, the existence of multiple kinetic components of exocytosis has been established. These components may correspond to a series of sequential steps that lead to a single fusion-ready state (sequential mechanism) or, alternatively, to heterogeneity in secretory vesicles or in fusion-ready states (parallel mechanism). It is suggested that both of these mechanisms can underlie exocytosis of a single type of vesicle (mixed sequential-parallel mechanism). Studies with caged-Ca2+ compounds have also indicated that the Ca2+ requirement for exocytosis is substantially greater than that suggested by conventional methodologies. This discrepancy is mainly attributable to the underestimation, by imaging studies with high-affinity Ca2+ indicators (due to dye saturation), of the local increases in cytosolic Ca2+ concentration that trigger the exocytosis of individual vesicles. The effects of local saturation of such indicators are explored by means of a simple theory.
Collapse
Affiliation(s)
- H Kasai
- Department of Physiology, Faculty of Medicine, University of Tokyo, Japan.
| | | |
Collapse
|
33
|
Abstract
Before action potential-evoked Ca2+ transients, basal presynaptic Ca2+ concentration may profoundly affect the amplitude of subsequent neurotransmitter release. Reticulospinal axons of the lamprey spinal cord receive glutamatergic synaptic input. We have investigated the effect of this input on presynaptic Ca2+ concentrations and evoked release of neurotransmitter. Paired recordings were made between reticulospinal axons and the neurons that make axo-axonic synapses onto those axons. Both excitatory and inhibitory paired-cell responses were recorded in the axons. Excitatory synaptic inputs were blocked by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) and by the NMDA receptor antagonist 2-amino-5-phosphonopentanoate (AP-5; 50 microM). Application of NMDA evoked an increase in presynaptic Ca2+ in reticulospinal axons. Extracellular stimulation evoked Ca2+ transients in axons when applied either directly over the axon or lateral to the axons. Transients evoked by the two types of stimulation differed in magnitude and sensitivity to AP-5. Simultaneous microelectrode recordings from the axons during Ca2+ imaging revealed that stimulation of synaptic inputs directed to the axons evoked Ca2+ entry. By the use of paired-cell recordings between reticulospinal axons and their postsynaptic targets, NMDA receptor activation was shown to enhance evoked release of transmitter from the axons that received axoaxonic inputs. When the synaptic input to the axon was stimulated before eliciting an action potential in the axon, transmitter release from the axon was enhanced. We conclude that NMDA receptor-mediated input to reticulospinal axons increases basal Ca2+ within the axons and that this Ca2+ is sufficient to enhance release from the axons.
Collapse
|
34
|
Edwards JA, Cline HT. Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. J Neurophysiol 1999; 81:895-907. [PMID: 10036287 DOI: 10.1152/jn.1999.81.2.895] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visual activity is thought to be a critical factor in controlling the development of central retinal projections. Neuronal activity increases cytosolic calcium, which was hypothesized to regulate process outgrowth in neurons. We performed an in vivo imaging study in the retinotectal system of albino Xenopus laevis tadpoles with the fluorescent calcium indicator calcium green 1 dextran (CaGD) to test the role of calcium in regulating axon arbor development. We find that visual stimulus to the retina increased CaGD fluorescence intensity in retinal ganglion cell (RGC) axon arbors within the optic tectum and that branch additions to retinotectal axon arbors correlated with a local rise in calcium in the parent branch. We find three types of responses to visual stimulus, which roughly correlate with the ON, OFF, and SUSTAINED response types of RGC reported by physiological criteria. Imaging in bandscan mode indicated that patterns of calcium transients were nonuniform throughout the axons. We tested whether the increase in calcium in the retinotectal axons required synaptic activity in the retina; intraocular application of tetrodotoxin (10 microM) or nifedipine (1 and 10 microM) blocked the stimulus-induced increase in RGC axonal fluorescence. A second series of pharmacological investigations was designed to determine the mechanism of the calcium elevation in the axon terminals within the optic tectum. Injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM) (20 mM) into the tectal ventricle reduced axonal calcium levels, supporting the idea that visual stimulation increases axonal calcium. Injection of BAPTA (20 mM) into the tectal ventricle to chelate extracellular calcium also attenuated the calcium response to visual stimulation, indicating that calcium enters the axon from the extracellular medium. Caffeine (10 mM) caused a large increase in axonal calcium, indicating that intracellular stores contribute to the calcium signal. Presynaptic nicotinic acetylcholine receptors (nAChRs) may play a role in axon arbor development and the formation of the topographic retinotectal projection. Injection of nicotine (10 microM) into the tectal ventricle significantly elevated RGC axonal calcium levels, whereas application of the nAChR antagonist alphaBTX (100 nM) reduced the stimulus-evoked rise in RGC calcium fluorescence. These data suggest that light stimulus to the retina increases calcium in the axon terminal arbors through a mechanism that includes influx through nAChRs and amplification by calcium-induced calcium release from intracellular calcium stores. Such a mechanism may contribute to developmental plasticity of the retinotectal system by influencing both axon arbor elaboration and the strength of synaptic transmission.
Collapse
Affiliation(s)
- J A Edwards
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
35
|
Cochilla AJ, Alford S. NMDA receptor-mediated control of presynaptic calcium and neurotransmitter release. J Neurosci 1999; 19:193-205. [PMID: 9870950 PMCID: PMC6782374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Before action potential-evoked Ca2+ transients, basal presynaptic Ca2+ concentration may profoundly affect the amplitude of subsequent neurotransmitter release. Reticulospinal axons of the lamprey spinal cord receive glutamatergic synaptic input. We have investigated the effect of this input on presynaptic Ca2+ concentrations and evoked release of neurotransmitter. Paired recordings were made between reticulospinal axons and the neurons that make axo-axonic synapses onto those axons. Both excitatory and inhibitory paired-cell responses were recorded in the axons. Excitatory synaptic inputs were blocked by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) and by the NMDA receptor antagonist 2-amino-5-phosphonopentanoate (AP-5; 50 microM). Application of NMDA evoked an increase in presynaptic Ca2+ in reticulospinal axons. Extracellular stimulation evoked Ca2+ transients in axons when applied either directly over the axon or lateral to the axons. Transients evoked by the two types of stimulation differed in magnitude and sensitivity to AP-5. Simultaneous microelectrode recordings from the axons during Ca2+ imaging revealed that stimulation of synaptic inputs directed to the axons evoked Ca2+ entry. By the use of paired-cell recordings between reticulospinal axons and their postsynaptic targets, NMDA receptor activation was shown to enhance evoked release of transmitter from the axons that received axoaxonic inputs. When the synaptic input to the axon was stimulated before eliciting an action potential in the axon, transmitter release from the axon was enhanced. We conclude that NMDA receptor-mediated input to reticulospinal axons increases basal Ca2+ within the axons and that this Ca2+ is sufficient to enhance release from the axons.
Collapse
Affiliation(s)
- A J Cochilla
- Department of Physiology and Northwestern University Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
36
|
Hyrc KL, Bownik JM, Goldberg MP. Neuronal free calcium measurement using BTC/AM, a low affinity calcium indicator. Cell Calcium 1998; 24:165-75. [PMID: 9883271 DOI: 10.1016/s0143-4160(98)90126-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BTC is a low affinity calcium indicator (Kd approximately 7-26 microM) featuring many desirable properties for cellular calcium imaging, including long excitation wavelengths (400/485 nm), low sensitivity to Mg2+, and accuracy of ratiometric measurement [Iatridou H., Foukaraki E., Kuhn M.A., Marcus E.M., Haugland R.P., Katerinopoulos H.E. The development of a new family of intracellular calcium probes. Cell Calcium 1994; 15: 190-198]. To assess the usefulness of this indicator in cultured neurons, we examined properties of BTC and its acetoxymethyl ester, BTC/AM. BTC/AM had substantial calcium-independent fluorescence at all excitation wavelengths. BTC/AM was readily loaded into neurons and was rapidly hydrolysed. There was little dye compartmentalization, as assessed by digitonin lysis, Co2+ quenching of BTC fluorescence and by confocal microscopy. Despite adequate loading, BTC gradually became unresponsive to [Ca2+]i when cultures were examined under routine imaging conditions. This effect was a function of the cumulative fluorescence illumination and could be minimized by attenuating light intensity or duration. Ratio imaging after exposure of neuronal cultures to 1-50 microM ionomycin revealed distinct sensitivity ranges for BTC and Fura-2. BTC reported graded neuronal [Ca2+]i responses to glutamate receptor stimulation with N-methyl-D-aspartate in the range 10-50 microM, whereas Fura-2 did not distinguish between these stimuli. Under appropriate loading and illumination conditions, bath-loaded BTC/AM may be well suited for measurement of moderate to high calcium concentrations in cultured neurons.
Collapse
Affiliation(s)
- K L Hyrc
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | |
Collapse
|
37
|
Karunanithi S, Georgiou J, Charlton MP, Atwood HL. Imaging of calcium in Drosophila larval motor nerve terminals. J Neurophysiol 1997; 78:3465-7. [PMID: 9405562 DOI: 10.1152/jn.1997.78.6.3465] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Calcium measurements in the presynaptic terminal are essential in the investigation of mechanisms underlying neurotransmitter release. To enhance the genetic analysis of secretory mechanisms, we have developed Ca2+ imaging techniques for Drosophila larval motor nerve terminals. We studied Ca2+ signals in "big" (type Ib) and "small" (type Is) boutons that innervate ventral longitudinal muscles 6 and 7 in each abdominal segment of Canton-S (CS)-strain 3rd instar larvae. The indicator fluo-3 in conjunction with confocal microscopy was used to detect stimulus-dependent changes in [Ca2+]i. The Ca2+ signals were reliable and reproducible, and the resting fluorescence remained constant throughout the experiments. The Ca2+ signals increased with stimulus frequency from 5 to 20 Hz for both bouton types. No significant differences in the Ca2+ signals were seen between the two bouton types at 5 and 20 Hz, but there was a difference at 10 Hz. The decay of the Ca2+ signal was more prolonged after 20-Hz stimulation than after 5 and 10 Hz. At the single-synapse level, the secretory efficacy of Is synapses is greater than that of Ib synapses, but our data show that factors other than differences in Ca2+ entry may govern the strength of synaptic transmission.
Collapse
Affiliation(s)
- S Karunanithi
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
38
|
Abstract
Properties of squid giant fiber lobe (GFL) Ca2+ channel deactivation (closing) were studied using whole-cell voltage clamp. Tail currents displayed biexponential decay, and fast and slow components of these tails exhibited similar external Ca(2+)- and voltage-dependence. Both components also shared similar inactivation properties. Increasing duration pulses to strongly depolarizing potentials caused a substantial slowing of the rate of deactivation for the fast component, and also led to an apparent conversion of fast tail currents to slow without an increase in total tail amplitude. A five-state kinetic model that computed the closing of channels differentially populating two open states could simulate the kinetic characteristics of GFL Ca2+ pulse and tail currents over a wide voltage range. The kinetics of the proposed state transition was very similar to the time course of relief of omega-Agatoxin IVA Ca2+ channel block with long pulses. A similar model predicted that the relief of block could occur via faster toxin dissociation from the second open state. Thus, GFL Ca2+ channels possess a unique form of voltage-dependent gating modification, in which maintained prior depolarization leads to a significant delay to channel closure at negative potentials. At the nerve terminal, amplified Ca2+ signals generated by such a mechanism might alter synaptic responses to repetitive stimulation.
Collapse
Affiliation(s)
- M B McFarlane
- Department of Molecular and Cellular Physiology, Hopkins Marine Station of Stanford University, Pacific Grove 93950, USA
| |
Collapse
|
39
|
Booij LH. Neuromuscular transmission and its pharmacological blockade. Part 1: Neuromuscular transmission and general aspects of its blockade. PHARMACY WORLD & SCIENCE : PWS 1997; 19:1-12. [PMID: 9089749 DOI: 10.1023/a:1008694726564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Blockade of neuromuscular transmission is an important feature during anaesthesia and intensive care treatment of patients. The neuromuscular junction exists in a prejunctional part where acetylcholine is synthesized, stored and released in quanta via a complicated vesicular system. In this system a number of proteins is involved. Acetylcholine diffuses across the junctional cleft and binds to acetylcholinereceptors at the postjunctional part, and is thereafter metabolized by acetylcholinesterase in the junctional cleft. Binding of acetylcholine to its postjunctional receptor evokes muscle contraction. Normally a large margin of safety exists in the neuromuscular transmission. In various situations, apart from up-and-down regulation of acetylcholine receptors, adjustment of acetylcholine release can occur. Pharmacological interference can interrupt the neuromuscular transmission and causes muscle relaxation. For this reason both depolarizing and non-depolarizing muscle relaxants are clinically used. The characteristics of an ideal clinical muscle relaxant are defined. In the description of the pharmacology of the relaxants the importance of pharmacodynamic and pharmacokinetic parameters are defined. Stereoisomerism plays a role with the relaxants. Toxins and venoms also interfere with neuromuscular transmission, through both pre- and postjunctional mechanisms.
Collapse
Affiliation(s)
- L H Booij
- Department of Anaesthesiology, Catholic University Nijmegen, The Netherlands
| |
Collapse
|
40
|
Sinha SR, Wu LG, Saggau P. Presynaptic calcium dynamics and transmitter release evoked by single action potentials at mammalian central synapses. Biophys J 1997; 72:637-51. [PMID: 9017193 PMCID: PMC1185591 DOI: 10.1016/s0006-3495(97)78702-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The relationship between presynaptic calcium transients ([Ca2+]t) and transmitter release evoked by a single stimulus was both investigated experimentally and modeled at a mammalian central synapse, the CA3 to CA1 pyramidal cell synapse in guinea pig hippocampal slices. In the present study, we compared the low-affinity calcium indicator furaptra with the higher-affinity indicator fura-2. The 10-90% rise time of the furaptra transient was 2.4 ms compared to 7.8 ms with fura-2; the half-decay time (tau 1/2) was 30 ms for furaptra, compared to 238 ms for fura-2. The half-width of the calcium influx was 1.8 ms with furaptra, which provides an upper limit to the duration of the calcium current (ICa) evoked by an action potential. Modeling the decay time course of the furaptra transients led to the conclusion that the predominant endogenous calcium buffer in these terminals must have relatively slow kinetics (kon < 10(5)/M.s), although the presence of small amounts of fast buffers cannot be excluded. The relationship between the [Ca2+]t measured with furaptra and the postsynaptic response was the same as previously observed with fura-2: the postsynaptic response was proportional to about the fourth power (m approximately 4) of the amplitude of either [Ca2+]t or calcium influx. Thus, although fura-2 may be locally saturated by the high local [Ca2+] responsible for transmitter release, the volume-averaged fura-2 signal accurately reflects changes in this local concentration. The result that both indicators gave similar values for the power m constrains the amplitude of calcium influx in our model: Ica < 1 pA for 1 ms.
Collapse
Affiliation(s)
- S R Sinha
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
41
|
Abstract
Short-term facilitation is a widely observed form of synaptic enhancement that is not well understood. Although presynaptic calcium has long been implicated in this process, its role is unclear, particularly at synapses in the mammalian brain. We tested the role of presynaptic residual free calcium ([Ca]res) in facilitation of synapses between granule cells and Purkinje cells in rat cerebellar slices. Paired-pulse facilitation of synaptic currents resulted in an approximately 2.5-fold enhancement that decayed with a time constant of approximately 200 msec, as assessed by voltage-clamp recordings. Measurements of [Ca]res using fluorescent calcium-sensitive indicators revealed that [Ca]res decayed more rapidly than did facilitation. Manipulation of [Ca]res dynamics by introducing EGTA into presynaptic terminals sped the decays of [Ca]res and facilitation in a dose-dependent manner. When [Ca]res was reduced to a brief impulse lasting several milliseconds, facilitation was still present, although reduced in amplitude and duration. Facilitation decayed with an intrinsic time constant of approximately 40 msec. These results suggest that facilitation at this synapse is produced by a calcium-driven process with a high affinity and a slow effective off-rate. A combination of [Ca]res dynamics and the properties of a calcium-driven reaction determine the time course and amplitude of facilitation.
Collapse
|
42
|
Spigelman I, Tymianski M, Wallace CM, Carlen PL, Velumian AA. Modulation of hippocampal synaptic transmission by low concentrations of cell-permeant Ca2+ chelators: effects of Ca2+ affinity, chelator structure and binding kinetics. Neuroscience 1996; 75:559-72. [PMID: 8931019 DOI: 10.1016/0306-4522(96)00283-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium chelators are commonly used for fluorescence and electrophysiological studies of neuronal Ca2+ signalling. Recently, they have also been used as neuroprotectants. Since they buffer calcium ions, these agents also modify the same signals which are being studied. These properties may be used to modulate Ca2+ signals such as those involved in synaptic transmission, and may explain their neuroprotective mechanism. To define factors which govern the modulation of synaptic transmission by Ca2+ chelators, we examined their actions on synaptic responses evoked in CA1 neurons of rat hippocampal slices. We used a spectrum of cell-permeant Ca2+ chelators having different structures, Ca(2+)-binding kinetics and Ca2+ affinities, as well as an impermeant, intracellularly perfused chelator salt. Application of the cell-permeant 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetate acetoxymethyl ester (50 microM) markedly attenuated evoked synaptic responses. This application produced an intracellular chelator accumulation of 79-125 microM, as estimated using 14C-labelled chelator. The actions of a Ca2+ chelator on synaptic responses were dependent on the chelator's Ca2+ affinity, Ca(2+)-binding rate and Ca2+ selectivity, because 1,2-bis(2-amino-5-nitrophenoxy)ethane-N,N,N',N'-tetra-acetate acetoxymethyl ester (a low Ca2+ affinity analogue), ethyleneglycolbis(beta-aminoethyl ether)-N,N,N',N'-tetra-acetate acetoxymethyl ester (a slow buffer with similar Ca2+ affinity to 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetate) and the selective Zn2+ chelator, tetrakis(2-pyridylmethyl)ethylenediamine, were ineffective. The intrinsic cell membrane properties, including the post-spike train afterhyperpolarization, were not significantly affected by any of the Ca2+ chelators used in this study. Intracellular perfusion of 100-200 microM 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetate salt through patch pipettes into postsynaptic cells did not affect synaptic potentials, suggesting a presynaptic action of cell-permeant Ca2+ chelators on transmitter release. Other cell-permeant, fast Ca(2+)-binding chelators reduced synaptic responses according to their Ca2+ affinities, and not their chemical structure: those chelators with Kd values < or = 25 microM attenuated synaptic responses, whereas chelators of lesser affinity did not. These data support the ideas that [Ca2+]i rises to high (micromolar) levels during transmitter release, and that Ca2+ chelators may be used to attenuate excitotoxicity by attenuating excitatory neurotransmission without affecting Ca2+ signalling in the submicromolar [Ca2+]i range.
Collapse
|
43
|
Atluri PP, Regehr WG. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci 1996; 16:5661-71. [PMID: 8795622 PMCID: PMC6578977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Short-term facilitation is a widely observed form of synaptic enhancement that is not well understood. Although presynaptic calcium has long been implicated in this process, its role is unclear, particularly at synapses in the mammalian brain. We tested the role of presynaptic residual free calcium ([Ca]res) in facilitation of synapses between granule cells and Purkinje cells in rat cerebellar slices. Paired-pulse facilitation of synaptic currents resulted in an approximately 2.5-fold enhancement that decayed with a time constant of approximately 200 msec, as assessed by voltage-clamp recordings. Measurements of [Ca]res using fluorescent calcium-sensitive indicators revealed that [Ca]res decayed more rapidly than did facilitation. Manipulation of [Ca]res dynamics by introducing EGTA into presynaptic terminals sped the decays of [Ca]res and facilitation in a dose-dependent manner. When [Ca]res was reduced to a brief impulse lasting several milliseconds, facilitation was still present, although reduced in amplitude and duration. Facilitation decayed with an intrinsic time constant of approximately 40 msec. These results suggest that facilitation at this synapse is produced by a calcium-driven process with a high affinity and a slow effective off-rate. A combination of [Ca]res dynamics and the properties of a calcium-driven reaction determine the time course and amplitude of facilitation.
Collapse
Affiliation(s)
- P P Atluri
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
44
|
Abstract
Rapid increases in Ca2+ concentration, produced by photolysis of caged Ca2+, triggered exocytosis in squid nerve terminals. This exocytosis was transient in nature, decaying with a time constant of approximately 30 ms. The decay could not be explained by a decline in presynaptic Ca2+ concentration, depletion of synaptic vesicles, or desensitization of postsynaptic receptors. Experiments in which Ca2+ was increased either in a series of steps or continuously at different rates suggested that the decay is caused by adaptation of the exocytotic Ca2+ receptor to higher levels of Ca2+. This adjustable sensitivity to Ca2+ represents a novel property of the triggering mechanism that can be used to evaluate molecular models of exocytosis. Adaptation can limit the amount of transmitter released by a nerve terminal and permit the speed of a presynaptic Ca2+ rise to serve as a critical determinant of synaptic efficacy.
Collapse
Affiliation(s)
- S F Hsu
- Department of Physiology, University of Wisconsin Medical School, Madison 53706, USA
| | | | | |
Collapse
|
45
|
Kits KS, Mansvelder HD. Voltage gated calcium channels in molluscs: classification, Ca2+ dependent inactivation, modulation and functional roles. INVERTEBRATE NEUROSCIENCE : IN 1996; 2:9-34. [PMID: 9372153 DOI: 10.1007/bf02336657] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Molluscan neurons and muscle cells express transient (T-type like) and sustained LVA calcium channels, as well as transient and sustained HVA channels. In addition weakly voltage sensitive calcium channels are observed. In a number of cases toxin or dihydropyridine sensitivity justifies classification of the HVA currents in L, N or P-type categories. In many cases, however, pharmacological characterization is still preliminary. Characterization of novel toxins from molluscivorous Conus snails may facilitate classification of molluscan calcium channels. Molluscan preparations have been very useful to study calcium dependent inactivation of calcium channels. Proposed mechanisms explain calcium dependent inactivation through direct interaction of Ca2+ with the channel, through dephosphorylation by calcium dependent phosphatases or through calcium dependent disruption of connections with the cytoskeleton. Transmitter modulation operating through various second messenger mediated pathways is well documented. In general, phosphorylation through PKA, cGMP dependent PK or PKC facilitates the calcium channels, while putative direct G-protein action inhibits the channels. Ca2+ and cGMP may inhibit the channels through activation of phosphodiesterases or phosphatases. Detailed evidence has been provided on the role of sustained LVA channels in pacemaking and the generation of firing patterns, and on the role of HVA channels in the dynamic changes in action potentials during spiking, the regulation of the release of transmitters and hormones, and the regulation of growth cone behavior and neurite outgrowth. The accessibility of molluscan preparations (e.g. the squid giant synapse for excitation release studies, Helisoma B5 neuron for neurite and synapse formation) and the large body of knowledge on electrophysiological properties and functional connections of identified molluscan neurons (e.g. sensory neurons, R15, egg laying hormone producing cells, etc.) creates valuable opportunities to increase the insight into the functional roles of calcium channels.
Collapse
Affiliation(s)
- K S Kits
- Research Institute Neurosciences, Faculty of Biology, Vrije Universiteit, Amsterdam, Netherlands
| | | |
Collapse
|
46
|
Dolezal V, Huang HY, Schobert A, Hertting G. 3,4-Diaminopyridine masks the inhibition of noradrenaline release from chick sympathetic neurons via presynaptic alpha 2-adrenoceptors: insights into the role of N- and L-type calcium channels. Brain Res 1996; 721:101-10. [PMID: 8793089 DOI: 10.1016/0006-8993(96)00169-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the participation of the N-type (omega-conotoxin GVIA-sensitive) and L-type (nifedipine-sensitive) calcium channels in the alpha 2-adrenoceptor mediated autoinhibition of the release of [3H]noradrenaline from chick sympathetic neurons in culture. Blockade of 3,4-diaminopyridine-sensitive potassium channels resulted in tetrodotoxin-sensitive and calcium-dependent increase of the release of [3H]noradrenaline evoked by electrical stimulation. Nifedipine attenuated the evoked release under control conditions by 20%, but in the presence of 3,4-diaminopyridine by 51%, while omega-conotoxin decreased the release under control conditions by 87% and in the presence of 3,4-diaminopyridine by only 43%. The L-type calcium channel activator Bay k 8644 increased the evoked release of the transmitter both in the absence and in the presence of 3,4-diaminopyridine. Under control conditions, the alpha 2-adrenoceptor agonist UK 14304 decreased the evoked release by 57% and the alpha 2-adrenoceptor antagonist rauwolscine increased it by 14%. Nifedipine did not prevent this modulation. In the presence of 3,4-diaminopyridine, UK 14304 lost its effect on the release of noradrenaline, but its inhibitory action was restored when nifedipine, but not omega-conotoxin, was added. Changes in the increase of intracellular calcium concentration ([Ca2+]i) evoked by electrical stimulation, measured in the cell processes by microfluorimetry, paralleled the changes in the release of [3H]noradrenaline. Under control conditions, nifedipine attenuated the rise of intracellular calcium by only 16%, while omega-conotoxin did so by 66%. 3,4-Diaminopyridine enhanced the evoked rise of [Ca2+]i; in its presence the rise of intracellular calcium was about equally reduced by nifedipine and omega-conotoxin (by 46 and 36%, respectively). These effects were additive. UK 14304 diminished the peak concentration of [Ca2+]i elicited by the standard electrical stimulation by 31% and rauwolscine antagonised this effect. UK 14304 did not measurably inhibit the stimulation-evoked rise of intraterminal [Ca2+]i in the presence of 3,4-diaminopyridine but it produced an inhibition by 26% if nifedipine had been applied together with 3,4-diaminopyridine. Our observations show that, under control conditions, the stimulated release of [3H]noradrenaline is mainly associated with the opening of N-type channels, while in the presence of 3,4-diaminopyridine the contribution of L-type channels becomes more important. The alpha 2-adrenoceptor stimulation by UK 14304 inhibits the release of [3H]noradrenaline but, in the presence of 3,4-diaminopyridine, the inhibition of release can only be observed if the massive influx through L-type calcium channels is prevented. These data suggest that presynaptic alpha 2-adrenoceptors of chick sympathetic neurons preferentially influence the N-type calcium channels.
Collapse
Affiliation(s)
- V Dolezal
- Institute of Physiology, Academy of Sciences of Czech Republic, Prague 4, Czech Republic
| | | | | | | |
Collapse
|
47
|
McFarlane MB, Gilly WF. Spatial localization of calcium channels in giant fiber lobe neurons of the squid (Loligo opalescens). Proc Natl Acad Sci U S A 1996; 93:5067-71. [PMID: 8643530 PMCID: PMC39407 DOI: 10.1073/pnas.93.10.5067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Whole-cell voltage clamp was used to investigate the properties and spatial distribution of fast-deactivating (FD) Ca channels in squid giant fiber lobe (GFL) neurons. Squid FD Ca channels are reversibly blocked by the spider toxin omega-Agatoxin IVA with an IC50 of 240-420 nM with no effect on the kinetics of Ca channel gating. Channels with very similar properties are expressed in both somatic and axonal domains of cultured GFL neurons, but FD Ca channel conductance density is higher in axonal bulbs than in cell bodies at all times in culture. Channels presumably synthesized during culture are preferentially expressed in the growing bulbs, but bulbar Ca conductance density remains constant while Na conductance density increases, suggesting that processes determining the densities of Ca and Na channels in this extrasomatic domain are largely independent. These observations suggest that growing axonal bulbs in cultured GFL neurons are not composed entirely of "axonal" membranes because FD Ca channels are absent from the giant axon in situ but, rather, suggest a potential role for FD Ca channels in mediating neurotransmitter release at the motor terminals of the giant axon.
Collapse
Affiliation(s)
- M B McFarlane
- Department of Molecular & Cellular Physiology, Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | | |
Collapse
|
48
|
Mackenzie PJ, Umemiya M, Murphy TH. Ca2+ imaging of CNS axons in culture indicates reliable coupling between single action potentials and distal functional release sites. Neuron 1996; 16:783-95. [PMID: 8607996 DOI: 10.1016/s0896-6273(00)80098-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A combination of Ca2+ imaging and current clamp recording in cultured cortical neurons was used to evaluate the reliability of coupling between the action potential and rises in Ca2+ at distal release sites as a possible source of variability in CNS synaptic transmission. Local domains of enhanced Ca2+ influx were observed at varicosities on axon collaterals. Functional assay of vesicle turnover using FM1-43 and parallel electron microscopy confirmed that these varicosities were release sites. Single action potentials reliably ( > 95% of the time) resulted in a presynaptic Ca2+ transient at all presumed release sites including those on distal collaterals. Variability in the amplitude of presynaptic Ca2+ transients at individual boutons was estimated to be on average less than 20%. We conclude that the coupling of somatic action potentials to distal release sites is generally a reliable process, although nonlinearity in the relationship between Ca2+ influx and neurotransmitter release may amplify the effects of relatively small fluctuations in Ca2+ influx.
Collapse
Affiliation(s)
- P J Mackenzie
- Kinsmen Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
49
|
Synaptic diversity and differentiation: Crustacean neuromuscular junctions. INVERTEBRATE NEUROSCIENCE 1996. [DOI: 10.1007/bf02211909] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Abstract
The concentration of free calcium ions in the cytosol has been shown to influence many components of growth cone behaviour, including the extension of filopodia and veils, the addition of new membrane to the plasmalemma, the retraction and disappearance of filopodia, and gross collapse and retraction of the growth cone. A spatially localized modulation of these processes by very local calcium changes has been proposed to underlie the steering of growth cones by gradients of neurotransmitters, voltage and cell adhesion molecules. Such local control can be studied in mouse neuroblastoma cells, where depolarization causes calcium to rise in a limited number of spatially restricted hotspots, triggering a localized advance. We have studied the simple, club-shaped growth cones that are characteristically found on advancing neurites. Depolarization caused calcium to increase most at the distal, leading tip. Agents that disrupt calcium-induced calcium release do not affect growth cone calcium dynamics, ruling out a local release of calcium at the tip as a cause of the gradient. Using cell-attached patch recording, we find that L-type calcium channels are present at a higher density at the distal tip than in the proximal growth cone. Our results show that the calcium gradients seen in depolarized growth cones are a direct consequence of a gradient of calcium channel density.
Collapse
Affiliation(s)
- F Zimprich
- Department of Physiology, University College London, UK
| | | |
Collapse
|