1
|
Tsirkin VI, Nozdrachev AD, Korotaeva YV. An endogenous sensitizer of β adrenergic receptors and its analogs attenuate the inhibition of β adrenergic receptors by propranolol and atenolol in the rat myocardium. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2014; 456:169-72. [PMID: 24985507 DOI: 10.1134/s001249661403017x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Indexed: 11/23/2022]
Affiliation(s)
- V I Tsirkin
- Kazan State Medical University, Kazan, Republic of Tatarstan, Russia,
| | | | | |
Collapse
|
2
|
Nishimaru K, Tanaka Y, Tanaka H, Shigenobu K. Pharmacological evidence for involvement of phospholipase D, protein kinase C, and sodium-calcium exchanger in alpha-adrenoceptor-mediated negative inotropy in adult mouse ventricle. J Pharmacol Sci 2003; 92:196-202. [PMID: 12890884 DOI: 10.1254/jphs.92.196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The intracellular signalling pathway for alpha-adrenoceptor-mediated negative inotropy was studied pharmacologically in isolated adult mouse ventricle. The negative inotropy was inhibited by GF-109203X, a nonselective protein kinase C inhibitor. Phorbol 12-myristate 13-acetate also produced sustained negative inotropy, which was inhibited by KB-R7943, a Na(+)/Ca(2+) exchanger inhibitor. The alpha-adrenoceptor-mediated negative inotropy was augmented by RHC-80267, a diacylglycerol lipase inhibitor, but was inhibited either by C(2)-ceramide, a phospholipase D inhibitor, and high concentration of propranolol (50 micro M), which inhibits phosphatidate phosphohydrolase. The inotropy was not affected by U-73122, a phospholipase C inhibitor. Lavendustin-A, a tyrosine kinase inhibitor, also inhibited the negative inotropy. These findings suggest that alpha-adrenoceptor-mediated negative inotropy in adult mouse ventricle is mediated by activation of tyrosine kinase, the phospholipase D-phosphatidate phosphohydrolase pathway, and protein kinase C.
Collapse
Affiliation(s)
- Kazuhide Nishimaru
- Department of Pharmacology, Toho University School of Pharmaceutical Sciences, Chiba, Japan
| | | | | | | |
Collapse
|
3
|
McCloskey DT, Rokosh DG, O'Connell TD, Keung EC, Simpson PC, Baker AJ. Alpha(1)-adrenoceptor subtypes mediate negative inotropy in myocardium from alpha(1A/C)-knockout and wild type mice. J Mol Cell Cardiol 2002; 34:1007-17. [PMID: 12234770 DOI: 10.1006/jmcc.2002.2049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac alpha(1)-adrenoceptors (AR) have two predominant subtypes (alpha(1A)-AR and alpha(1B)-AR) however, their roles in regulating contraction are unclear. We determined the effects of stimulating alpha(1A)-AR (using the subtype-selective agonist A61603) and alpha(1B)-AR (using a gene knockout mouse lacking alpha(1A)-AR) separately, and together (using phenylephrine) on Ca(2+) transients, intracellular pH, and contraction of mouse cardiac trabeculae. Stimulation of alpha(1)-AR subtypes separately or together caused a triphasic contractile response. After a transient ( approximately 3%) force rise (phase 1), force declined markedly (phase 2), then partially recovered (phase 3). In phase 2, the force decline (% of initial) with combined alpha(1A)-AR plus alpha(1B)-AR stimulation (50+/-3%) was more than with separate subtype stimulation (P<0.01), suggesting alpha(1A)-AR and alpha(1B)-AR mediate additive effects during phase 2. Force decline in phase 2 paralleled decreases of Ca(2+) transients that were reduced more with combined vs. separate subtype stimulation. During phase 3 the final force reduction was similar with stimulation of alpha(1A)-AR (20+/-5%), or alpha(1B)-AR (20+/-3%), or both (26+/-4%) suggesting alpha(1A)-AR and alpha(1B)-AR mediate non-additive effects during phase 3. In contrast, Ca(2+) transients recovered fully in phase 3 suggesting reduced force in phase 3 involved decreased myofilament Ca(2+)-sensitivity. Decreased Ca(2+)-sensitivity was not mediated by changes of intracellular pH since this was not affected by alpha(1)-AR stimulation. In contrast to mouse trabeculae, rat trabeculae demonstrated a positive inotropic response to alpha(1)-AR stimulation. In conclusion, for mouse myocardium in vitro both alpha(1)-adrenoceptor subtypes mediate negative inotropy involving decreased Ca(2+) transients and a decreased Ca(2+) sensitivity that does not involve altered intracellular pH.
Collapse
Affiliation(s)
- Diana T McCloskey
- Department of Medicine, Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94121, USA
| | | | | | | | | | | |
Collapse
|
4
|
Heubach JF, Rau T, Eschenhagen T, Ravens U, Kaumann AJ. Physiological antagonism between ventricular beta 1-adrenoceptors and alpha 1-adrenoceptors but no evidence for beta 2- and beta 3-adrenoceptor function in murine heart. Br J Pharmacol 2002; 136:217-29. [PMID: 12010770 PMCID: PMC1573340 DOI: 10.1038/sj.bjp.0704700] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2001] [Revised: 02/13/2002] [Accepted: 02/27/2002] [Indexed: 11/08/2022] Open
Abstract
1. Murine left atrium lacks inotropic beta(2)-adrenoceptor function. We investigated whether beta(2)-adrenoceptors are involved in the cardiostimulant effects of (-)-adrenaline on spontaneously beating right atria and paced right ventricular myocardium of C57BL6 mice. We also studied a negative inotropic effect of (-)-adrenaline. 2. Sinoatrial tachycardia, evoked by (-)-adrenaline was resistant to blockade by beta(2)-selective ICI 118,551 (50 nM) but antagonized by beta(1)-selective CGP 20712A (300 nM). This pattern was unaffected by pretreatment with pertussis toxin (PTX, 600 microg kg(-1) i.p. 24 h) which reversed carbachol-evoked bradycardia to tachycardia. 3. Increases of ventricular force by (-)-adrenaline and (-)-noradrenaline were not blocked by ICI 118,551 but antagonized by CGP 20712A. 4. Under blockade of beta-adrenoceptors, (-)-adrenaline and (-)-noradrenaline depressed ventricular force (-logIC(50)M=7.7 and 6.9). The cardiodepressant effects of (-)-adrenaline were antagonized by phentolamine (1 microM) and prazosin (1 microM) but not by (-)-bupranolol (1 microM). Prazosin potentiated the positive inotropic effects of (-)-adrenaline (in the absence of beta-blockers) from -logEC(50)M=6.2 - 6.8. 5. PTX-treatment reduced carbachol-evoked depression of ventricular force in the presence of high catecholamine concentrations. Inhibition of ventricular function of G(i) protein was verified by 82% reduction of in vitro ADP-ribosylation. PTX-treatment tended to increase the positive inotropic potency of (-)-adrenaline under all conditions investigated, including the presence of ICI 118,551. 6. (-)-Adrenaline causes murine cardiostimulation through beta(1)-adrenoceptors but not through beta(2)-adrenoceptors. The negative inotropic effects of (-)-adrenaline are mediated through ventricular alpha(1)-adrenoceptors but not through beta(3)-adrenoceptors. Both G(i) protein and alpha(1)-adrenoceptors restrain (-)-adrenaline-evoked increases in right ventricular force mediated through beta(1)-adrenoceptors.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Agonists
- Adrenergic alpha-1 Receptor Antagonists
- Adrenergic beta-1 Receptor Agonists
- Adrenergic beta-1 Receptor Antagonists
- Adrenergic beta-2 Receptor Agonists
- Adrenergic beta-2 Receptor Antagonists
- Adrenergic beta-3 Receptor Agonists
- Adrenergic beta-3 Receptor Antagonists
- Animals
- Dose-Response Relationship, Drug
- Heart Ventricles/drug effects
- In Vitro Techniques
- Male
- Mice
- Mice, Inbred C57BL
- Myocardial Contraction/drug effects
- Myocardial Contraction/physiology
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Adrenergic, beta-3/physiology
- Sinoatrial Node/drug effects
- Sinoatrial Node/physiology
- Ventricular Function
Collapse
Affiliation(s)
- Jürgen F Heubach
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät Carl Gustav Carus der TU Dresden, D-01307 Dresden, Germany
| | - Thomas Rau
- Institut für Experimentelle und Klinische Pharmakologie, Friedrich-Alexander Universität Erlangen, Germany
| | - Thomas Eschenhagen
- Institut für Experimentelle und Klinische Pharmakologie, Friedrich-Alexander Universität Erlangen, Germany
| | - Ursula Ravens
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät Carl Gustav Carus der TU Dresden, D-01307 Dresden, Germany
| | - Alberto J Kaumann
- Department of Physiology, University of Cambridge, Cambridge CB2 3EG, U.K
| |
Collapse
|
5
|
Nishimaru K, Kobayashi M, Matsuda T, Tanaka Y, Tanaka H, Shigenobu K. alpha-Adrenoceptor stimulation-mediated negative inotropism and enhanced Na(+)/Ca(2+) exchange in mouse ventricle. Am J Physiol Heart Circ Physiol 2001; 280:H132-41. [PMID: 11123227 DOI: 10.1152/ajpheart.2001.280.1.h132] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms underlying the negative inotropic response to alpha-adrenoceptor stimulation in adult mouse ventricular myocardium were studied. In isolated ventricular tissue, phenylephrine (PE), in the presence of propranolol, decreased contractile force by approximately 40% of basal value. The negative inotropic response was similarly observed under low extracellular Ca(2+) concentration ([Ca(2+)](o)) conditions but was significantly smaller under high-[Ca(2+)](o) conditions and was not observed under low-[Na(+)](o) conditions. The negative inotropic response was not affected by nicardipine, ryanodine, ouabain, or dimethylamiloride (DMA), inhibitors of L-type Ca(2+) channel, Ca(2+) release channel, Na(+)-K(+) pump, or Na(+)/H(+) exchanger, respectively. KB-R7943, an inhibitor of Na(+)/Ca(2+) exchanger, suppressed the negative inotropic response mediated by PE. PE reduced the magnitude of postrest contractions. PE caused a decrease in duration of the late plateau phase of action potential and a slight increase in resting membrane potential; time courses of these effects were similar to that of the negative inotropic effect. In whole cell voltage-clamped myocytes, PE increased the L-type Ca(2+) and Na(+)/Ca(2+) exchanger currents but had no effect on the inwardly rectifying K(+), transient outward K(+), or Na(+)-K(+)-pump currents. These results suggest that the sustained negative inotropic response to alpha-adrenoceptor stimulation of adult mouse ventricular myocardium is mediated by enhancement of Ca(2+) efflux through the Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- K Nishimaru
- Department of Pharmacology, Toho University School of Pharmaceutical Sciences, Chiba 274-8510, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Jo SH, Cho CH, Chae SW, Lee CO. Role of protein kinase C in alpha(1)-adrenergic regulation of a(Na)(i) in guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 2000; 279:H1661-8. [PMID: 11009453 DOI: 10.1152/ajpheart.2000.279.4.h1661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the role of protein kinase C (PKC) in alpha(1)-adrenergic regulation of intracellular Na(+) activity (a(Na)(i)) in single guinea pig ventricular myocytes. a(Na)(i) and membrane potentials were measured with the Na(+)-sensitive indicator sodium-binding benzofuran isophthalate and conventional microelectrodes, respectively, at room temperature (24-26 degrees C) while myocytes were stimulated at a rate of 0.25-0.3 Hz. The PKC activator 4beta-phorbol 12-myristate 13-acetate (PMA) decreased a(Na)(i) in a concentration-dependent manner. PMA (100 nM) produced a maximal decrease in a(Na)(i) of 1.5 mM from 6.5 +/- 0.4 to 5.0 +/- 0.4 mM (means +/- SE, n = 12, P < 0.01). The PMA concentration required for a half-maximal decrease in a(Na)(i) was 0.46 +/- 0.13 nM (n = 3, P < 0.01). An inactive phorbol, 4alpha-phorbol 12-myristate 13-acetate, did not decrease a(Na)(i). The decrease caused by PMA could be blocked by the PKC inhibitors staurosporine and bisindolylmaleimide I (GF-109203X). Stimulation of the alpha(1)-adrenoceptor with 50 microM phenylephrine decreased a(Na)(i) from 6.1 +/- 0.3 to 4.6 +/- 0.3 mM (n = 11, P < 0.01). The decrease in a(Na)(i) produced by phenylephrine was blocked by pretreatment with staurosporine, GF-109203X, or PMA. The decrease in a(Na)(i) produced by PMA was not prevented by pretreatment with tetrodotoxin but was blocked by pretreatment with strophanthidin or high extracellular K(+) concentration. The results suggest that alpha(1)-adrenergic receptor activation results in a decrease in a(Na)(i) via PKC-induced stimulation of the Na(+)-K(+) pump in cardiac myocytes.
Collapse
Affiliation(s)
- S H Jo
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | |
Collapse
|
7
|
Chen W, Su M. Role of protein kinase C in mediating alpha-1-adrenoceptor-induced negative inotropic response in rat ventricles. J Biomed Sci 2000; 7:380-9. [PMID: 10971136 DOI: 10.1007/bf02255813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The aim of this study was to determine the effect of protein kinase C (PKC) activation on intracellular Ca(2+) transient and its relation to alpha(1)-adrenoceptor (alpha(1)-AR)-stimulated negative inotropic response in rat ventricles. The electromechanical responses to phenylephrine (PE) in rat ventricular muscles were concomitantly examined using the conventional microelectrode method. The responses of intracellular Ca(2+) transient and cell contractions to PE in the absence of certain pharmacological interventions were ascertained in fura-2-loaded myocytes. The influence of PE on L-type Ca(2+) current (I(Ca,L)) was also examined using a voltage clamp in a whole-cell configuration. PE did not alter the action potential parameters during the negative inotropic phase. The negative inotropic effect (NIE) was inhibited by prazosin, chloroethylclonidine (CEC) and staurosporine, but was insensitive to pertussis toxin. Desensitization of PKC after prolonged pretreatment of rat ventricles with PDBu also abolished the NIE of PE. Caffeine modulated the NIE, but thapsigargin did not. The evoked intracellular Ca(2+) transient and cell contraction were initially decreased by PE, while I(Ca,L) was not altered. Prazosin and staurosporine significantly inhibited the responses. Our data indicated that alpha(1)AR-mediated NIE in rat ventricular muscles was due to the decrease of intracellular Ca(2+) transients by the modulation of PKC on Ca(2+)-releasing channels signaling through a CEC-sensitive alpha(1)AR subtype.
Collapse
Affiliation(s)
- W Chen
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
8
|
Izumi M, Miyamoto S, Hori M, Ozaki H, Karaki H. Negative inotropic effect of endothelin-1 in the mouse right ventricle. Eur J Pharmacol 2000; 396:109-17. [PMID: 10822063 DOI: 10.1016/s0014-2999(00)00218-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Effects of endothelin-1 on the contraction and cytosolic Ca(2+) concentrations (¿Ca(2+)(i)) of the mouse right ventricle were investigated. Endothelin-1 (1-300 nM) elicited a negative inotropic effect in a concentration-dependent manner. The endothelin-1-induced negative inotropy was antagonized by a selective endothelin ET(A) receptor antagonist, BQ-123 (cyclo ¿Asp-Pro-Val-Leu-Trp-; 3, 10 microM). Endothelin-1 reduced the peak amplitudes of both the ¿Ca(2+)(i) transient and contraction without changing inward Ca(2+) current. The relationship between peak amplitude of ¿Ca(2+)(i) and peak force generated by changing the extracellular Ca(2+) concentration (¿Ca(2+)(o)) was not affected by endothelin-1. In addition, the trajectory of the ¿Ca(2+)(i)-contraction phase plane diagram obtained at 2 mM ¿Ca(2+)(o) in the absence of endothelin-1 was superimposable on that obtained at 4 mM ¿Ca(2+)(o) in the presence of endothelin-1 (300 nM). Endothelin-1 (300 nM) translocated protein kinase C from cytosol to membrane, suggesting activation of protein kinase C. Further, a selective protein kinase C inhibitor, bisindolylmaleimide I (10 microM), inhibited the endothelin-1-induced negative inotropy. These results suggest that endothelin-1 elicits negative inotropy by reducing the amplitude of the ¿Ca(2+)(i) transient without changing inward Ca(2+) current through the activation of the endothelin ET(A) receptor followed by protein kinase C activation in the mouse right ventricle.
Collapse
Affiliation(s)
- M Izumi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
9
|
Egert S, Nguyen N, Schwaiger M. Contribution of alpha-adrenergic and beta-adrenergic stimulation to ischemia-induced glucose transporter (GLUT) 4 and GLUT1 translocation in the isolated perfused rat heart. Circ Res 1999; 84:1407-15. [PMID: 10381893 DOI: 10.1161/01.res.84.12.1407] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intracellular signaling mechanism of the ischemia-stimulated glucose transporter (GLUT) translocation in the heart is not yet characterized. It has been suggested that catecholamines released during ischemia may be involved in this pathway. The purpose of this study was to evaluate the contribution of alpha-adrenoceptors and beta-adrenoceptors to ischemia-mediated GLUT4 and GLUT1 translocation in the isolated, Langendorff-perfused rat heart. Additionally, GLUT translocation was studied in response to catecholamine stimulation with phenylephrine (Phy) and isoproterenol (Iso). The results were compared with myocardial uptake of glucose analogue [18F]fluorodeoxyglucose (FDG). Subcellular analysis of GLUT4 and GLUT1 protein on plasma membrane vesicles (PM) and intracellular membrane vesicles (IM) using membrane preparation and immunoblotting revealed that alpha- and beta-receptor agonists stimulated GLUT4 translocation from IM to PM (2.5-fold for Phy and 2.1-fold for Iso, P<0.05 versus control), which was completely inhibited by phentolamine (Phe) and propranolol (Pro), respectively. Plasmalemmal GLUT1 moderately rose after Iso exposure, and this was prevented by Pro. In contrast, ischemia-stimulated GLUT4 translocation (2.2-fold, P<0.05 versus control) was only inhibited by alpha-adrenergic antagonist Phe but not by beta-adrenergic antagonist Pro. Similarly, Phe but not Pro inhibited ischemia-stimulated GLUT1 translocation. GLUT data were confirmed by FDG uptake monitored using bismuth germanate detectors. The catecholamine-stimulated FDG uptake (6.9-fold for Phy and 8.9-fold for Iso) was significantly inhibited by Phe and Pro; however, only Phe but not Pro significantly reduced the ischemia-induced 2.5-fold increase in FDG uptake (P<0.05 versus ischemia). This study suggests that alpha-adrenoceptor stimulation may play a role in the ischemia-mediated increase in glucose transporter trafficking leading to the stimulation of FDG uptake in the isolated, perfused rat heart, whereas beta-adrenergic activation does not participate in this signaling pathway.
Collapse
Affiliation(s)
- S Egert
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Germany.
| | | | | |
Collapse
|