1
|
Danylovych HV, Danylovych YV, Pavliuk MR, Kosterin SO. Products of oxidative and non-oxidative metabolism of L-arginine as potential regulators of Ca 2+ transport in mitochondria of uterine smooth muscle. Biochim Biophys Acta Gen Subj 2024; 1868:130652. [PMID: 38857773 DOI: 10.1016/j.bbagen.2024.130652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Mitochondria play a crucial role in maintaining Ca2+ homeostasis in cells. Due to the critical regulatory role of the products of oxidative and non-oxidative metabolism of L-arginine, it is essential to clarify their effect on Ca2+ transport in smooth muscle mitochondria. Experiments were performed on the uterine myocytes of rats and isolated mitochondria. The possibility of NO synthesis by mitochondria was demonstrated by confocal microscopy and spectrofluorimetry methods using the NO-sensitive fluorescent probe DAF-FM and Mitotracker Orange CM-H2TMRos. It was shown that 50 μM L-arginine stimulates the energy-dependent accumulation of Ca2+ in mitochondria using the fluorescent probe Fluo-4 AM. A similar effect occurred when using nitric oxide donors 100 μM SNP, SNAP, and sodium nitrite (SN) directly. The stimulating effect was eliminated in the presence of the NO scavenger C-PTIO. Nitric oxide reduces the electrical potential in mitochondria without causing them to swell. The stimulatory effect of spermine on the accumulation of Ca2+ by mitochondria is attributed to the enhancement of NO synthesis, which was demonstrated with the use of C-PTIO, NO-synthase inhibitors (100 μM NA and L-NAME), as well as by direct monitoring of NO synthesis fluorescent probe DAF-FM. A conclusion was drawn about the potential regulatory effect of the product of the oxidative metabolism of L-arginine - NO on the transport of Ca2+ in the mitochondria of the myometrium, as well as the corresponding effect of the product of non-oxidative metabolism -spermine by increasing the synthesis of NO in these subcellular structures.
Collapse
Affiliation(s)
- Hanna V Danylovych
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Yuriy V Danylovych
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Maksym R Pavliuk
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Sergiy O Kosterin
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Shakib N, Khadem Ansari MH, Karimi P, Rasmi Y. Neuroprotective mechanism of low-dose sodium nitrite in oxygen-glucose deprivation model of cerebral ischemic stroke in PC12 cells. EXCLI JOURNAL 2019; 18:229-242. [PMID: 31217786 PMCID: PMC6558507 DOI: 10.17179/excli2018-1947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to clarify the mechanisms of the protective effects of low-dose sodium nitrite (SN) on oxygen and glucose deprivation (OGD)-induced endoplasmic reticulum (ER) stress in PC12 cells. The PC12 cells were exposed to 4 h of OGD and treated with 100 μmol SN. The expression and activity of ER stress markers, including PKR-like endoplasmic reticulum kinase (PERK), transcription factor 6 (ATF6), CCAAT/enhancer binding protein homologous protein (CHOP), as well as caspase-12 and -3, were detected by immunoblotting assay. Fluorescence staining was used to detect the levels of reactive oxygen species (ROS) and Ca2+ release from the ER. Cell viability was also evaluated by MTT assay. It was found that SN significantly inhibited ROS production and Ca2+ release from the ER in OGD-injured PC12 cells. Moreover, ER stress marker expression and cleaved fragments of caspase-3 and -12 in OGD-injured PC12 cells were decreased after SN treatment. These findings were accompanied by a significant increase in cell viability. It seems that SN exerts a neuroprotective effect at least partially through reduction of ROS-mediated ER stress caused by OGD insult.
Collapse
Affiliation(s)
- Nader Shakib
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Humphries ESA, Kamishima T, Quayle JM, Dart C. Calcium/calmodulin-dependent kinase 2 mediates Epac-induced spontaneous transient outward currents in rat vascular smooth muscle. J Physiol 2017; 595:6147-6164. [PMID: 28731505 PMCID: PMC5599484 DOI: 10.1113/jp274754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS The Ca2+ and redox-sensing enzyme Ca2+ /calmodulin-dependent kinase 2 (CaMKII) is a crucial and well-established signalling molecule in the heart and brain. In vascular smooth muscle, which controls blood flow by contracting and relaxing in response to complex Ca2+ signals and oxidative stress, surprisingly little is known about the role of CaMKII. The vasodilator-induced second messenger cAMP can relax vascular smooth muscle via its effector, exchange protein directly activated by cAMP (Epac), by activating spontaneous transient outward currents (STOCs) that hyperpolarize the cell membrane and reduce voltage-dependent Ca2+ influx. How Epac activates STOCs is unknown. In the present study, we map the pathway by which Epac increases STOC activity in contractile vascular smooth muscle and show that a critical step is the activation of CaMKII. To our knowledge, this is the first report of CaMKII activation triggering cellular activity known to induce vasorelaxation. ABSTRACT Activation of the major cAMP effector, exchange protein directly activated by cAMP (Epac), induces vascular smooth muscle relaxation by increasing the activity of ryanodine (RyR)-sensitive release channels on the peripheral sarcoplasmic reticulum. Resultant Ca2+ sparks activate plasma membrane Ca2+ -activated K+ (BKCa ) channels, evoking spontaneous transient outward currents (STOCs) that hyperpolarize the cell and reduce voltage-dependent Ca2+ entry. In the present study, we investigate the mechanism by which Epac increases STOC activity. We show that the selective Epac activator 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3', 5-cyclic monophosphate-AM (8-pCPT-AM) induces autophosphorylation (activation) of calcium/calmodulin-dependent kinase 2 (CaMKII) and also that inhibition of CaMKII abolishes 8-pCPT-AM-induced increases in STOC activity. Epac-induced CaMKII activation is probably initiated by inositol 1,4,5-trisphosphate (IP3 )-mobilized Ca2+ : 8-pCPT-AM fails to induce CaMKII activation following intracellular Ca2+ store depletion and inhibition of IP3 receptors blocks both 8-pCPT-AM-mediated CaMKII phosphorylation and STOC activity. 8-pCPT-AM does not directly activate BKCa channels, but STOCs cannot be generated by 8-pCPT-AM in the presence of ryanodine. Furthermore, exposure to 8-pCPT-AM significantly slows the initial rate of [Ca2+ ]i rise induced by the RyR activator caffeine without significantly affecting the caffeine-induced Ca2+ transient amplitude, a measure of Ca2+ store content. We conclude that Epac-mediated STOC activity (i) occurs via activation of CaMKII and (ii) is driven by changes in the underlying behaviour of RyR channels. To our knowledge, this is the first report of CaMKII initiating cellular activity linked to vasorelaxation and suggests novel roles for this Ca2+ and redox-sensing enzyme in the regulation of vascular tone and blood flow.
Collapse
MESH Headings
- Action Potentials
- Animals
- Calcium/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- Guanine Nucleotide Exchange Factors/metabolism
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/metabolism
- Rats
- Rats, Wistar
- Vasodilation
Collapse
Affiliation(s)
| | | | - John M. Quayle
- Translational MedicineUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
4
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Evans AM. Nanojunctions of the Sarcoplasmic Reticulum Deliver Site- and Function-Specific Calcium Signaling in Vascular Smooth Muscles. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:1-47. [PMID: 28212795 DOI: 10.1016/bs.apha.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vasoactive agents may induce myocyte contraction, dilation, and the switch from a contractile to a migratory-proliferative phenotype(s), which requires changes in gene expression. These processes are directed, in part, by Ca2+ signals, but how different Ca2+ signals are generated to select each function is enigmatic. We have previously proposed that the strategic positioning of Ca2+ pumps and release channels at membrane-membrane junctions of the sarcoplasmic reticulum (SR) demarcates cytoplasmic nanodomains, within which site- and function-specific Ca2+ signals arise. This chapter will describe how nanojunctions of the SR may: (1) define cytoplasmic nanospaces about the plasma membrane, mitochondria, contractile myofilaments, lysosomes, and the nucleus; (2) provide for functional segregation by restricting passive diffusion and by coordinating active ion transfer within a given nanospace via resident Ca2+ pumps and release channels; (3) select for contraction, relaxation, and/or changes in gene expression; and (4) facilitate the switch in myocyte phenotype through junctional reorganization. This should serve to highlight the need for further exploration of cellular nanojunctions and the mechanisms by which they operate, that will undoubtedly open up new therapeutic horizons.
Collapse
Affiliation(s)
- A M Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
6
|
Borysova L, Burdyga T. Evidence that NO/cGMP/PKG signalling cascade mediates endothelium dependent inhibition of IP₃R mediated Ca²⁺ oscillations in myocytes and pericytes of ureteric microvascular network in situ. Cell Calcium 2015; 58:535-40. [PMID: 26344105 PMCID: PMC4655834 DOI: 10.1016/j.ceca.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/13/2015] [Accepted: 08/25/2015] [Indexed: 11/26/2022]
Abstract
Endothelium-dependent inhibition of Ca2+ oscillations in myocytes and pericytes was reversed by ODQ, an inhibitor of soluble guanylyl cyclase (sGC). Selective PKG inhibitor Rp-8-pCPT-cGMPS, reversed endothelium- dependent termination of agonist-induced Ca2+ oscillations in myocytes and pericytes. Selective PKG activator 8pCPT-cGMP induced inhibition of the agonist-induced Ca2+ oscillations in myocytes and pericytes. Inhibitory effect of SNAP was markedly enhanced by zaprinast. Inhibitory effect of NO/cGMP/PKG cascade is associated with suppressed Ca2+ release via IP3Rs of myocytes and pericytes.
In ureteric microvessels the antagonistic relationship between Ca2+ signalling in endothelium and Ca2+ oscillations in myocytes and pericytes of arterioles and venules involves nitric oxide (NO), but the underlying mechanisms are not well understood. In the present study we investigated the effects of carbachol and NO donor SNAP on Ca2+ signalling and vasomotor responses of arterioles and venules in intact urteric microvascular network in situ using confocal microscopy. Vasomotor responses of arterioles and venules induced by AVP correlated with the occurrence of Ca2+ oscillations in the myocytes and pericytes and were not abolished by the removal of Ca2+ from extracellular fluid. Carbachol-induced rise of intracellular Ca2+ in endothelium was accompanied by the termination of the Ca2+ oscillations in myocytes and pericytes. This carbachol-induced inhibitory effect on Ca2+ oscillations in myocytes and pericytes was reversed by ODQ, an inhibitor of soluble guanylyl cyclase (sGC) and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Ca2+ oscillations in myocytes and pericytes were also effectively blocked by NO donor SNAP. An Inhibitory effect of SNAP was markedly enhanced by zaprinast, a selective inhibitor of cGMP-specific phosphodiesterase-5, and reversed by sGC inhibitor, ODQ and PKG inhibitor, Rp-8-pCPT-cGMPS. The cGMP analogue and selective PKG activator 8pCPT-cGMP also induced inhibition of the AVP-induced Ca2+ oscillations in myocytes and pericytes. SNAP had no effects on Ca2+ oscillations induced by caffeine in distributing arcade arterioles. Consequently, we conclude that NO- mediated inhibition of Ca2+ oscillations in myocytes and pericytes predominantly recruits the cGMP/PKG dependent pathway. The inhibitory effect of NO/cGMP/PKG cascade is associated with suppressed Ca2+ release from the SR of myocytes and pericytes selectively via the inositol triphosphate receptor (IP3R) channels.
Collapse
Affiliation(s)
- Lyudmyla Borysova
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, L8 7SS, UK.
| | - Theodor Burdyga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, L8 7SS, UK
| |
Collapse
|
7
|
Roberts OL, Kamishima T, Barrett-Jolley R, Quayle JM, Dart C. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery. J Physiol 2013; 591:5107-23. [PMID: 23959673 DOI: 10.1113/jphysiol.2013.262006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2-O-Me-cAMP-AM (5 μM, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n = 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K(+) over the same time period (n = 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca(2+)-sensitive, large-conductance K(+) (BK(Ca)) channel opening as iberiotoxin (100 nM) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n = 5; P < 0.05). 8-pCPT-AM increased Ca(2+) spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s(-1) μm(-1) (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s(-1)) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n = 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nM) and to ryanodine (30 μM). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n = 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n = 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n = 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca(2+)-sensitive, small- and intermediate-conductance K(+) (SK(Ca) and IK(Ca)) channels, respectively, and N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase (NOS). In Fluo-4-AM-loaded mesenteric endothelial cells, 8-pCPT-AM induced a sustained increase in global Ca(2+). Our data suggest that Epac hyperpolarizes smooth muscle by (1) increasing localized Ca(2+) release from ryanodine receptors (Ca(2+) sparks) to activate BK(Ca) channels, and (2) endothelial-dependent mechanisms involving the activation of SK(Ca)/IK(Ca) channels and NOS. Epac-mediated smooth muscle hyperpolarization will limit Ca(2+) entry via voltage-sensitive Ca(2+) channels and represents a novel mechanism of arterial relaxation.
Collapse
Affiliation(s)
- Owain Llŷr Roberts
- C. Dart: Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | | | | | | | |
Collapse
|
8
|
Dabertrand F, Nelson MT, Brayden JE. Ryanodine receptors, calcium signaling, and regulation of vascular tone in the cerebral parenchymal microcirculation. Microcirculation 2013; 20:307-16. [PMID: 23216877 PMCID: PMC3612564 DOI: 10.1111/micc.12027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 11/21/2012] [Indexed: 11/27/2022]
Abstract
The cerebral blood supply is delivered by a surface network of pial arteries and arterioles from which arise (parenchymal) arterioles that penetrate into the cortex and terminate in a rich capillary bed. The critical regulation of CBF, locally and globally, requires precise vasomotor regulation of the intracerebral microvasculature. This vascular region is anatomically unique as illustrated by the presence of astrocytic processes that envelope almost the entire basolateral surface of PAs. There are, moreover, notable functional differences between pial arteries and PAs. For example, in pial VSMCs, local calcium release events ("calcium sparks") through ryanodine receptor (RyR) channels in SR membrane activate large conductance, calcium-sensitive potassium channels to modulate vascular diameter. In contrast, VSMCs in PAs express functional RyR and BK channels, but under physiological conditions, these channels do not oppose pressure-induced vasoconstriction. Here, we summarize the roles of ryanodine receptors in the parenchymal microvasculature under physiologic and pathologic conditions, and discuss their importance in the control of CBF.
Collapse
Affiliation(s)
- Fabrice Dabertrand
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA.
| | | | | |
Collapse
|
9
|
|
10
|
Abstract
The calcium ion (Ca(2+)) is the simplest and most versatile intracellular messenger known. The discovery of Ca(2+) sparks and a related family of elementary Ca(2+) signaling events has revealed fundamental principles of the Ca(2+) signaling system. A newly appreciated "digital" subsystem consisting of brief, high Ca(2+) concentration over short distances (nanometers to microns) comingles with an "analog" global Ca(2+) signaling subsystem. Over the past 15 years, much has been learned about the theoretical and practical aspects of spark formation and detection. The quest for the spark mechanisms [the activation, coordination, and termination of Ca(2+) release units (CRUs)] has met unexpected challenges, however, and raised vexing questions about CRU operation in situ. Ample evidence shows that Ca(2+) sparks catalyze many high-threshold Ca(2+) processes involved in cardiac and skeletal muscle excitation-contraction coupling, vascular tone regulation, membrane excitability, and neuronal secretion. Investigation of Ca(2+) sparks in diseases has also begun to provide novel insights into hypertension, cardiac arrhythmias, heart failure, and muscular dystrophy. An emerging view is that spatially and temporally patterned activation of the digital subsystem confers on intracellular Ca(2+) signaling an exquisite architecture in space, time, and intensity, which underpins signaling efficiency, stability, specificity, and diversity. These recent advances in "sparkology" thus promise to unify the simplicity and complexity of Ca(2+) signaling in biology.
Collapse
Affiliation(s)
- Heping Cheng
- Institute of Molecular Medicine, National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, China.
| | | |
Collapse
|
11
|
Wray S, Burdyga T, Noble K. Calcium signalling in smooth muscle. Cell Calcium 2008; 38:397-407. [PMID: 16137762 DOI: 10.1016/j.ceca.2005.06.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/26/2022]
Abstract
Calcium signalling in smooth muscles is complex, but our understanding of it has increased markedly in recent years. Thus, progress has been made in relating global Ca2+ signals to changes in force in smooth muscles and understanding the biochemical and molecular mechanisms involved in Ca2+ sensitization, i.e. altering the relation between Ca2+ and force. Attention is now focussed more on the role of the internal Ca2+ store, the sarcoplasmic reticulum (SR), global Ca2+ signals and control of excitability. Modern imaging techniques have shown the elaborate SR network in smooth muscles, along with the expression of IP3 and ryanodine receptors. The role and cross-talk between these two Ca(2+) release mechanisms, as well as possible compartmentalization of the SR Ca2+ store are discussed. The close proximity between SR and surface membrane has long been known but the details of this special region to Ca2+ signalling and the role of local sub-membrane Ca2+ concentrations and membrane microdomains are only now emerging. The activation of K+ and Cl- channels by local Ca2+ signals, can have profound effects on excitability and hence contraction. We examine the evidence for both Ca2+ sparks and puffs in controlling ion channel activity, as well as a fundamental role for Ca2+ sparks in governing the period of inexcitability in smooth muscle, i.e. the refractory period. Finally, the relation between different Ca2+ signals, e.g. sparks, waves and transients, to smooth muscle activity in health and disease is becoming clearer and will be discussed.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, The University of Liverpool, Liverpool L69 3BX, UK.
| | | | | |
Collapse
|
12
|
|
13
|
Zhao G, Zhao Y, Pan B, Liu J, Huang X, Zhang X, Cao C, Hou N, Wu C, Zhao KS, Cheng H. Hypersensitivity of BK
Ca
to Ca
2+
Sparks Underlies Hyporeactivity of Arterial Smooth Muscle in Shock. Circ Res 2007; 101:493-502. [PMID: 17641230 DOI: 10.1161/circresaha.107.157271] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large conductance Ca
2+
-activated K
+
channels (BK
Ca
) play a critical role in blood pressure regulation by tuning the vascular smooth muscle tone, and hyposensitivity of BK
Ca
to Ca
2+
sparks resulting from its altered β1 subunit stoichiometry underlies vasoconstriction in animal models of hypertension. Here we demonstrate hypersensitivity of BK
Ca
to Ca
2+
sparks that contributes to hypotension and blunted vasoreactivity in acute hemorrhagic shock. In arterial smooth muscle cells under voltage-clamp conditions (0 mV), the amplitude and duration, but not the frequency, of spontaneous transient outward currents of BK
Ca
origin were markedly enhanced in hemorrhagic shock, resulting in a 265% greater hyperpolarizing current. Concomitantly, subsurface Ca
2+
spark frequency was either unaltered (at 0 mV) or decreased in hyperpolarized resting cells. Examining the relationship between spark and spontaneous transient outward current amplitudes revealed a hypersensitive BK
Ca
activity to Ca
2+
spark in hemorrhagic shock, whereas the spark–spontaneous transient outward current coupling fidelity was near unity in both groups. Importantly, we found an acute upregulation of the β1 subunit of the channel, and single-channel recording substantiated BK
Ca
hypersensitivity at micromolar Ca
2+
, which promotes the α and β1 subunit interaction. Treatment of shock animals with the BK
Ca
inhibitors iberiotoxin and charybdotoxin partially restored vascular membrane potential and vasoreactivity to norepinephrine and blood reinfusion. Thus, the results underscore a dynamic regulation of the BK
Ca
–Ca
2+
spark coupling and its therapeutic potential in hemorrhagic shock–associated vascular disorders.
Collapse
Affiliation(s)
- Guiling Zhao
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Curtis TM, Tumelty J, Stewart MT, Arora AR, Lai FA, McGahon MK, Scholfield CN, McGeown JG. Modification of smooth muscle Ca2+-sparks by tetracaine: evidence for sequential RyR activation. Cell Calcium 2007; 43:142-54. [PMID: 17574671 DOI: 10.1016/j.ceca.2007.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 03/19/2007] [Accepted: 04/29/2007] [Indexed: 11/26/2022]
Abstract
Spontaneous Ca(2+)-sparks were imaged using confocal line scans of fluo-4 loaded myocytes in retinal arterioles. Tetracaine produced concentration-dependent decreases in spark frequency, and modified the spatiotemporal characteristics of residual sparks. Tetracaine (10 microM) reduced the rate of rise but prolonged the average rise time so that average spark amplitude was unaltered. The mean half-time of spark decay was also unaffected, suggesting that spark termination, although delayed, remained well synchronized. Sparks spread transversely across the myocytes in these vessels, and the speed of spread within individual sparks was slowed by approximately 60% in 10 microM tetracaine, as expected if the spark was propagated across the cell but the average P(o) for RyRs was reduced. Staining of isolated vessels with BODIPY-ryanodine and di-4-ANEPPS showed that RyRs were located both peripherally, adjacent to the plasma membrane, and in transverse extensions of the SR from one side of the cell to the other. Immuno-labelling of retinal flat mounts demonstrated the presence RyR(2) in arteriole smooth muscle but not RyR(1). We conclude that Ca(2+)-sparks in smooth muscle can result from sequential activation of RyRs distributed over an area of several microm(2), rather than from tightly clustered channels as in striated muscle.
Collapse
Affiliation(s)
- Tim M Curtis
- Centre for Vision Science, School of Biomedical Science, Queen's University of Belfast, Institute of Clinical Science, Royal Victoria Hospital, Belfast, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
McCarron JG, Chalmers S, Bradley KN, MacMillan D, Muir TC. Ca2+ microdomains in smooth muscle. Cell Calcium 2006; 40:461-93. [PMID: 17069885 DOI: 10.1016/j.ceca.2006.08.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 02/03/2023]
Abstract
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.
Collapse
Affiliation(s)
- John G McCarron
- Department of Physiology and Pharmacology, University of Strathclyde, SIPBS, Glasgow, UK.
| | | | | | | | | |
Collapse
|
16
|
Tumelty J, Scholfield N, Stewart M, Curtis T, McGeown G. Ca2+-sparks constitute elementary building blocks for global Ca2+-signals in myocytes of retinal arterioles. Cell Calcium 2006; 41:451-66. [PMID: 17027081 PMCID: PMC2638024 DOI: 10.1016/j.ceca.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/21/2006] [Accepted: 08/26/2006] [Indexed: 11/04/2022]
Abstract
Spontaneous Ca2+-events were imaged in myocytes within intact retinal arterioles (diameter <40 μm) freshly isolated from rat eyes. Ca2+-sparks were often observed to spread across the width of these small cells, and could summate to produce prolonged Ca2+-oscillations and contraction. Application of cyclopiazonic acid (20 μM) transiently increased spark frequency and oscillation amplitude, but inhibited both sparks and oscillations within 60 s. Both ryanodine (100 μM) and tetracaine (100 μM) reduced the frequency of sparks and oscillations, while tetracaine also reduced oscillation amplitude. None of these interventions affected spark amplitude. Nifedipine, which blocks store filling independently of any action on L-type Ca2+-channels in these cells, reduced the frequency and amplitude of both sparks and oscillations. Removal of external [Ca2+] (1 mM EGTA) also reduced the frequency of sparks and oscillations but these reductions were slower in onset than those in the presence of tetracaine or cyclopiazonic acid. Cyclopiazonic acid, nifedipine and low external [Ca2+] all reduced SR loading, as indicated by the amplitude of caffeine evoked Ca2+-transients. This study demonstrates for the first time that spontaneous Ca2+-events in small arterioles of the eye result from activation of ryanodine receptors in the SR and suggests that this activation is not tightly coupled to Ca2+-influx. The data also supports a model in which Ca2+-sparks act as building blocks for more prolonged, global Ca2+-signals.
Collapse
Affiliation(s)
- James Tumelty
- Cell and Metabolic Signalling Group, School of Medicine and Dentistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
- Centre of Vision Sciences, The Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, United Kingdom
| | - Norman Scholfield
- Cell and Metabolic Signalling Group, School of Medicine and Dentistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Michael Stewart
- Cell and Metabolic Signalling Group, School of Medicine and Dentistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Tim Curtis
- Centre of Vision Sciences, The Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, United Kingdom
| | - Graham McGeown
- Cell and Metabolic Signalling Group, School of Medicine and Dentistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
- Corresponding author. Tel.: +44 28 90972090.
| |
Collapse
|
17
|
Pucovský V, Bolton TB. Localisation, function and composition of primary Ca(2+) spark discharge region in isolated smooth muscle cells from guinea-pig mesenteric arteries. Cell Calcium 2005; 39:113-29. [PMID: 16297446 DOI: 10.1016/j.ceca.2005.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 11/29/2022]
Abstract
Smooth muscle cells (SMCs) contain numerous calcium release domains, grouped into regions discharging as a single unit. Laser scanning confocal microscopy, voltage clamp and immunocytochemistry of single SMCs from small mesenteric arteries of guinea-pig were used to study the localisation, function and macromolecular composition of such calcium discharge regions (CDRs). Use of the Ca(2+)-sensitive fluorescent dye fluo-3 or fluo-4 with BODIPY TR-X ryanodine (BTR), a fluorescent derivative of ryanodine, showed spontaneous Ca(2+) sparks originating from regions stained by BTR, located immediately under the plasma membrane, in the arch formed by the sarcoplasmic reticulum surrounding the nucleus. Membrane depolarisation or application of noradrenaline or alpha,beta-methylene ATP, a P2X purinoceptor agonist, elicited Ca(2+) sparks from the same, spontaneous Ca(2+) spark-discharging region. The most active (primary) CDR accounted for nearly 60% of spontaneous transient outward currents at -40 mV and these were of significantly higher amplitude than the ones discharged by secondary CDRs. Immunocytochemical staining for type 1 IP(3) receptors, BK(Ca) channels, P2X(1) purinoceptors or alpha(1) adrenoceptors revealed their juxtaposition with BTR staining at the location typical of the primary CDR. These data suggest the existence of a primary calcium discharge region in SMCs; its position can be predicted from the cell's structure, it acts as a key region for the regulation of membrane potential via Ca(2+) sparks and is a potential link between the external, neurohumoral and the cell's internal, calcium signalling system.
Collapse
MESH Headings
- Animals
- Boron Compounds
- Calcium Channels/metabolism
- Calcium Signaling/physiology
- Fluorescent Dyes
- Guinea Pigs
- In Vitro Techniques
- Inositol 1,4,5-Trisphosphate Receptors
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Male
- Membrane Potentials
- Mesenteric Arteries/cytology
- Mesenteric Arteries/metabolism
- Microscopy, Confocal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X
- Ryanodine/analogs & derivatives
- Ryanodine Receptor Calcium Release Channel/metabolism
Collapse
Affiliation(s)
- Vladimír Pucovský
- Division of Basic Medical Sciences, Ion Channels and Cell Signalling Centre St. George's, University of London, Cranmer Terrace, SW17 0RE London, United Kingdom.
| | | |
Collapse
|
18
|
Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev 2005; 56:439-513. [PMID: 15602008 DOI: 10.1124/pr.56.4.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The sarco/endoplasmic reticulum (SR/ER) is the primary storage and release site of intracellular calcium (Ca2+) in many excitable cells. The SR is a tubular network, which in smooth muscle (SM) cells distributes close to cellular periphery (superficial SR) and in deeper aspects of the cell (deep SR). Recent attention has focused on the regulation of cell function by the superficial SR, which can act as a buffer and also as a regulator of membrane channels and transporters. Ca2+ is released from the SR via two types of ionic channels [ryanodine- and inositol 1,4,5-trisphosphate-gated], whereas accumulation from thecytoplasm occurs exclusively by an energy-dependent sarco-endoplasmic reticulum Ca2+-ATPase pump (SERCA). Within the SR, Ca2+ is bound to various storage proteins. Emerging evidence also suggests that the perinuclear portion of the SR may play an important role in nuclear transcription. In this review, we detail the pharmacology of agents that alter the functions of Ca2+ release channels and of SERCA. We describe their use and selectivity and indicate the concentrations used in investigating various SM preparations. Important aspects of cell regulation and excitation-contractile activity coupling in SM have been uncovered through the use of such activators and inhibitors of processes that determine SR function. Likewise, they were instrumental in the recent finding of an interaction of the SR with other cellular organelles such as mitochondria. Thus, an appreciation of the pharmacology and selectivity of agents that interfere with SR function in SM has greatly assisted in unveiling the multifaceted nature of the SR.
Collapse
Affiliation(s)
- Régent Laporte
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California, USA
| | | | | |
Collapse
|
19
|
Yang J, Clark JW, Bryan RM, Robertson CS. Mathematical modeling of the nitric oxide/cGMP pathway in the vascular smooth muscle cell. Am J Physiol Heart Circ Physiol 2005; 289:H886-97. [PMID: 15833804 DOI: 10.1152/ajpheart.00216.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nitric oxide (NO)/cGMP pathway in the vascular smooth muscle cell (VSMC) is an important cellular signaling system for the regulation of VSMC relaxation. We present a mathematical model to investigate the underlying mechanisms of this pathway. The model describes the flow of NO-driven signal transduction: NO activation of soluble guanylate cyclase (sGC), sGC- and phosphodiesterase-catalyzed cGMP production and degradation, cGMP-mediated regulation of protein targets including the Ca2+-activated K+ (KCa) channel, and the myosin contractile system. Model simulations reproduce major NO/cGMP-induced VSMC relaxation effects, including intracellular Ca2+ concentration reduction and Ca2+ desensitization of myosin phosphorylation and force generation. Using the model, we examine several testable principles. 1) Rapid sGC desensitization is caused by end-product cGMP feedback inhibition; a large fraction of the steady-state sGC population is in an inactivated intermediate state, and cGMP production is limited well below maximum. 2) NO activates the K(Ca) channel with both cGMP-dependent and -independent mechanisms; moderate NO concentration affects the K(Ca) via the cGMP-dependent pathway, whereas higher NO concentration is accommodated by a cGMP-independent mechanism. 3) Chronic NO synthase inhibition may cause underexpressions of K+ channels including inward rectifier and K(Ca) channels. 4) Ca2+ desensitization of the contractile system is distinguished from Ca2+ sensitivity of myosin phosphorylation. The model integrates these interactions among the heterogeneous components of the NO signaling system and can serve as a general modeling framework for studying NO-mediated VSMC relaxation under various physiological and pathological conditions. New data can be readily incorporated into this framework for interpretation and possible modification and improvement of the model.
Collapse
Affiliation(s)
- Jin Yang
- Department of Bioengineering, MS-366, Rice Univ., Houston, TX 77005, USA
| | | | | | | |
Collapse
|
20
|
Mechanisms of calcium signaling in smooth muscle cells explored with fluorescence confocal imaging. NEUROPHYSIOLOGY+ 2004. [DOI: 10.1007/s11062-005-0035-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Bolton TB, Gordienko DV, Povstyan OV, Harhun MI, Pucovsky V. Smooth muscle cells and interstitial cells of blood vessels. Cell Calcium 2004; 35:643-57. [PMID: 15110154 DOI: 10.1016/j.ceca.2004.01.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 01/12/2004] [Indexed: 11/19/2022]
Abstract
A rise in intracellular ionised calcium concentration ([Ca(2+)](i)) at sites adjacent to the contractile proteins is a primary signal for contraction in all types of muscles. Recent progress in the development of imaging techniques with special accent on the fluorescence confocal microscopy and new achievements in the synthesis of organelle- and ion-specific fluorochromes provide an experimental basis for study of the relationship between the structural organisation of the living smooth muscle myocyte and the features of calcium signalling at subcellular level. Applying fluorescent confocal microscopy and tight-seal recording of transmembrane ion currents to freshly isolated vascular myocytes we have demonstrated that: (1) Ca(2+) sparks originate from clustered opening of ryanodine receptors (RyRs) and build up a cell-wide increase in [Ca(2+)](i) upon myocyte excitation; (2) spontaneous Ca(2+) sparks occurred at the highest rate at certain preferred locations, frequent discharge sites (FDS), which are associated with a prominent portion of the sarcoplasmic reticulum (SR) located close to the cell membrane; (3) Ca(2+)-dependent K(+) and Cl(-) channels sense the local changes in [Ca(2+)](i) during a calcium spark and thereby couple changes in [Ca(2+)](i) within a microdomain to changes in the membrane potential, thus affecting excitability of the cell; (4) an intercommunication between RyRs and inositol trisphosphate receptors (IP(3)Rs) is one of the important determinants of intracellular calcium dynamics that, in turn, can modulate the cell membrane potential through differential targeting of calcium dependent membrane ion channels. Furthermore, using immunohystochemical approaches in combination with confocal imaging we identified non-contractile cells closely resembling interstitial cells (ICs) of Cajal (which are considered to be pacemaker cells in the gut) in the wall of portal vein and mesenteric artery. Using electron microscopy, tight-seal recording and fluorescence confocal imaging we obtained information on the morphology of ICs and their possible coupling to smooth muscle cells (SMCs), calcium signalling in ICs and their electrophysiological properties. The functions of these cells are not yet fully understood; in portal vein they may act as pacemakers driving the spontaneous activity of the muscle; in artery they may have other a yet unsuspected functions.
Collapse
Affiliation(s)
- T B Bolton
- Pharmacology and Clinical Pharmacology Basic Medical Sciences, St George's Hospital Medical School, London SW17 0RE, UK
| | | | | | | | | |
Collapse
|
22
|
Wier WG, Morgan KG. Alpha1-adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol 2004; 150:91-139. [PMID: 12884052 DOI: 10.1007/s10254-003-0019-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our goal in this review is to provide a comprehensive, integrated view of the numerous signaling pathways that are activated by alpha(1)-adrenoceptors and control actin-myosin interactions (i.e., crossbridge cycling and force generation) in mammalian arterial smooth muscle. These signaling pathways may be categorized broadly as leading either to thick (myosin) filament regulation or to thin (actin) filament regulation. Thick filament regulation encompasses both "Ca(2+) activation" and "Ca(2+)-sensitization" as it involves both activation of myosin light chain kinase (MLCK) by Ca(2+)-calmodulin and regulation of myosin light chain phosphatase (MLCP) activity. With respect to Ca(2+) activation, adrenergically induced Ca(2+) transients in individual smooth muscle cells of intact arteries are now being shown by high resolution imaging to be sarcoplasmic reticulum-dependent asynchronous propagating Ca(2+) waves. These waves differ from the spatially uniform increases in [Ca(2+)] previously assumed. Similarly, imaging during adrenergic activation has revealed the dynamic translocation, to membranes and other subcellular sites, of protein kinases (e.g., Ca(2+)-activated protein kinases, PKCs) that are involved in regulation of MLCP and thus in "Ca(2+) sensitization" of contraction. Thin filament regulation includes the possible disinhibition of actin-myosin interactions by phosphorylation of CaD, possibly by mitogen-activated protein (MAP) kinases that are also translocated during adrenergic activation. An hypothesis for the mechanisms of adrenergic activation of small arteries is advanced. This involves asynchronous Ca(2+) waves in individual SMC, synchronous Ca(2+) oscillations (at high levels of adrenergic activation), Ca(2+) sparks, "Ca(2+)-sensitization" by PKC and Rho-associated kinase (ROK), and thin filament mechanisms.
Collapse
Affiliation(s)
- W G Wier
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
23
|
Shaw L, O'Neill S, Jones CJP, Austin C, Taggart MJ. Comparison of U46619-, endothelin-1- or phenylephrine-induced changes in cellular Ca2+ profiles and Ca2+ sensitisation of constriction of pressurised rat resistance arteries. Br J Pharmacol 2004; 141:678-88. [PMID: 14744813 PMCID: PMC1574231 DOI: 10.1038/sj.bjp.0705647] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1. In pressurised rat mesenteric small arteries (50 mmHg), we examined the effects of stimulation with U46619, endothelin-1 (ET-1) or phenylephrine (PE) on changes in vessel diameter, global [Ca(2+)](i), individual smooth muscle cell [Ca(2+)](i) and Ca(2+)-sensitisation of contraction. 2. U46619 or ET-1 gave tonic diameter reductions, whereas PE-stimulated vessels gave tonic contractions or initial vasoconstrictions followed by diameter oscillations. Global [Ca(2+)](i) changes were transient for each agonist, with tonic constrictions being accompanied by maintained submaximal global [Ca(2+)](i) levels. 3. U46619, ET-1 or PE tonic constrictions were accompanied by apparently asynchronous [Ca(2+)](i) waves in individual smooth muscle cells of the vessel wall, as examined by confocal fluorescent microscopy. In vessels exhibiting vasomotion to PE, some apparent synchrony of activation of individual cells was evident; however, this was incomplete with many cells responding out of phase with their neighbours. 4. In alpha-toxin-permeabilised preparations, agonist-induced Ca(2+)-sensitisation of constriction at submaximal Ca(2+) (pCa6.7) in the presence of GTP was greater with U46619 or ET than PE. 5. We conclude that, in pressurised mesenteric arteries, (i) a general feature of receptor-coupled constriction is the generation of periodic smooth muscle [Ca(2+)](i) waves; (ii) complete synchrony of Ca(2+) oscillations between smooth muscle cells is not a prerequisite for receptor-coupled vasomotion; (iii) varied Ca(2+)-sensitising actions of agonists may partly determine tonic or phasic vessel responses to different stimuli.
Collapse
Affiliation(s)
- Linda Shaw
- Smooth Muscle Physiology Group, Cardiovascular Research, University of Manchester, Manchester
| | - Stephen O'Neill
- Unit of Cardiac Physiology, Cardiovascular Research, University of Manchester, Manchester
| | - Carolyn J P Jones
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester
| | - Clare Austin
- Smooth Muscle Physiology Group, Cardiovascular Research, University of Manchester, Manchester
| | - Michael J Taggart
- Smooth Muscle Physiology Group, Cardiovascular Research, University of Manchester, Manchester
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester
- Author for correspondence:
| |
Collapse
|
24
|
Pucovský V, Moss RF, Bolton TB. Non-contractile cells with thin processes resembling interstitial cells of Cajal found in the wall of guinea-pig mesenteric arteries. J Physiol 2003; 552:119-33. [PMID: 12897177 PMCID: PMC2343325 DOI: 10.1113/jphysiol.2003.046243] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Arterial interstitial cells of Cajal (ICC)-like cells (AIL cells) with a multipolar, irregular, elongated shape and with numerous thin (often less than 1 microm), sometimes branching, processes with lengths up to approximately 60 microm were isolated enzymatically from 1st to 7th order branches of guinea-pig mesenteric artery. Some of the processes of AIL cells were growing (average speed approximately 0.15 microm min-1) and their growth was blocked by 10 microM latrunculin B, an inhibitor of actin polymerisation. Staining with BODIPY phalloidin, a fluorescent dye selective for F-actin, showed the presence of F-actin in the processes of AIL cells. Voltage clamp of single AIL cells revealed an inward current that was four times more dense than in myocytes and was abolished by 10 microM nicardipine, and an outward current carried exclusively by potassium ions that was reduced by 1 mM 4-aminopyridine and/or 100 nM iberiotoxin but unaffected by 10 nM dendrotoxin-K. Imaging of intracellular ionised calcium with fluo-4 using a laser scanning confocal microscope showed local or global calcium transients lasting several seconds in approximately 28 % of AIL cells. When membrane current was recorded simultaneously, the calcium transients were found to correspond to long-lasting transient outward currents, which occurred at potentials positive to -40 mV. Unlike myocytes, AIL cells did not contract in response to 1 mM caffeine or 5 microM noradrenaline, although they responded with a [Ca2+]i increase. The segments of intact arteries did not stain for c-kit, a marker of ICCs. Single AIL cells stained positive for vimentin, desmin and smooth muscle myosin. The presence of ICC-like cells is demonstrated for the first time in the media of resistance arteries.
Collapse
Affiliation(s)
- Vladimír Pucovský
- Pharmacology and Clinical Pharmacology, Department of Basic Medical Sciences, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, U.K.
| | | | | |
Collapse
|
25
|
Zhang WM, Yip KP, Lin MJ, Shimoda LA, Li WH, Sham JSK. ET-1 activates Ca2+ sparks in PASMC: local Ca2+ signaling between inositol trisphosphate and ryanodine receptors. Am J Physiol Lung Cell Mol Physiol 2003; 285:L680-90. [PMID: 12740215 DOI: 10.1152/ajplung.00067.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca+ sparks originating from ryanodine receptors (RyRs) are known to cause membrane hyperpolarization and vasorelaxation in systemic arterial myocytes. By contrast, we have found that Ca2+ sparks of pulmonary arterial smooth muscle cells (PASMCs) are associated with membrane depolarization and activated by endothelin-1 (ET-1), a potent vasoconstrictor that mediates/modulates acute and chronic hypoxic pulmonary vasoconstriction. In this study, we characterized the effects of ET-1 on the physical properties of Ca2+ sparks and probed the signal transduction mechanism for spark activation in rat intralobar PASMCs. Application of ET-1 at 0.1-10 nM caused concentration-dependent increases in frequency, duration, and amplitude of Ca2+ sparks. The ET-1-induced increase in spark frequency was inhibited by BQ-123, an ETA-receptor antagonist; by U-73122, a PLC inhibitor; and by xestospongin C and 2-aminoethyl diphenylborate, antagonists of inositol trisphosphate (IP3) receptors (IP3Rs). However, it was unrelated to sarcoplasmic reticulum Ca2+ content, activation of L-type Ca2+ channels, PKC, or cADP ribose. Photorelease of caged-IP3 indicated that Ca2+ release from IP3R could cross-activate RyRs to generate Ca2+ sparks. Immunocytochemistry showed that the distributions of IP3Rs and RyRs were similar in PASMCs. Moreover, inhibition of Ca2+ sparks with ryanodine caused a significant rightward shift in the ET-1 concentration-tension relationship in pulmonary arteries. These results suggest that ET-1 activation of Ca2+ sparks is mediated via the ETA receptor-PLC-IP3 pathway and local Ca2+ cross-signaling between IP3Rs and RyRs; in addition, this novel signaling mechanism contributes significantly to the ET-1-induced vasoconstriction in pulmonary arteries.
Collapse
Affiliation(s)
- Wei-Min Zhang
- Div. of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
26
|
Tichenor SD, Malmquist NA, Buxton ILO. Dissociation of cGMP accumulation and relaxation in myometrial smooth muscle: effects of S-nitroso-N-acetylpenicillamine and 3-morpholinosyndonimine. Cell Signal 2003; 15:763-72. [PMID: 12781869 DOI: 10.1016/s0898-6568(03)00006-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In guinea pig, primate and man, nitric oxide (NO)-induced regulation of myometrial smooth muscle contraction is distinct from other smooth muscles because cyclic guanosine 3',5'-cyclic monophosphate (cGMP) accumulation is neither necessary nor sufficient to relax the tissue. To further our understanding of the mechanism of action of NO in myometrium, we employed the NO donors, S-nitroso-N-acetylpenicillamine (SNAP), and 3-morpholinosyndonimine (SIN-1) proposed to relax airway smooth muscle by disparate mechanisms involving elevation in intracellular calcium ([Ca(2+)](i)) or cGMP accumulation, respectively. Treatment of guinea pig myometrial smooth muscle with either NO donor at concentrations thought to produce maximal relaxation of smooth muscles resulted in significant elevations in cGMP that were accompanied by phosphorylation of the cGMP-dependent protein kinase substrate vasodilator-stimulated phosphoprotein (VASP), shown here for the first time to be present and phosphorylated in myometrium. Stimulation of myometrial strips with oxytocin (OT, 1 microM) produced an immediate increase in contractile force that persisted in the continued presence of the agonist. Addition of SNAP (100 microM) in the presence of OT relaxed the tissue completely as might be expected of an NO donor. SIN-1 failed to relax the myometrium at any concentration tested up to 300 microM. In Fura-2 loaded myometrial cells prepared from guinea pig, addition of SNAP (100 microM) in the absence of other agonists caused a significant, reproducible elevation of intracellular calcium while SIN-1 employed under the same conditions did not. Our data further support the notion that NO action in myometrium is distinct from that in other smooth muscles and underscores the possibility that discrete regional changes in [Ca(2+)](i), rather than cGMP, signal NO-induced relaxation of the muscle.
Collapse
Affiliation(s)
- Stephen D Tichenor
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0270, USA
| | | | | |
Collapse
|
27
|
Mingone CJ, Gupte SA, Iesaki T, Wolin MS. Hypoxia enhances a cGMP-independent nitric oxide relaxing mechanism in pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2003; 285:L296-304. [PMID: 12691956 DOI: 10.1152/ajplung.00362.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) donors generally relax vascular preparations through cGMP-mediated mechanisms. Relaxation of endothelium-denuded bovine pulmonary arteries (BPA) and coronary arteries to the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) is almost eliminated by inhibition of soluble guanylate cyclase activation with 10 microM 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), whereas only a modest inhibition of relaxation is observed under hypoxia (PO2 = 8-10 Torr). This effect of hypoxia is independent of the contractile agent used and is also observed with NO gas. ODQ eliminated SNAP-induced increases in cGMP under hypoxia in BPA. cGMP-independent relaxation of BPA to SNAP was not attenuated by inhibition of K+ channels (10 mM tetraethylammonium), myosin light chain phosphatase (0.5 microM microcystin-LR), or adenylate cyclase (4 microM 2',5'-dideoxyadenosine). SNAP relaxed BPA contracted with serotonin under Ca2+-free conditions in the presence of hypoxia and ODQ, and contraction to Ca2+ readdition was also attenuated. The sarcoplasmic reticulum Ca2+-reuptake inhibitor cyclopiazonic acid (0.2 mM) attenuated SNAP-mediated relaxation of BPA in the presence of ODQ. Thus hypoxic conditions appear to promote a cGMP-independent relaxation of BPA to NO by enhancing sarcoplasmic reticulum Ca2+ reuptake.
Collapse
|
28
|
Resta TC. Hypoxic regulation of nitric oxide signaling in vascular smooth muscle. Am J Physiol Lung Cell Mol Physiol 2003; 285:L293-5. [PMID: 12851210 DOI: 10.1152/ajplung.00133.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Burdyga T, Shmygol A, Eisner DA, Wray S. A new technique for simultaneous and in situ measurements of Ca2+ signals in arteriolar smooth muscle and endothelial cells. Cell Calcium 2003; 34:27-33. [PMID: 12767890 DOI: 10.1016/s0143-4160(03)00019-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report here the first local and global Ca(2+) measurements made from in situ terminal arterioles. The advantages of the method are that there is minimal disturbance to the vessels, which retain their relationship to the tissue they are supplying (rat ureter) and the small size of vessel that can be studied. Good loading with the Ca(2+) indicator, Fluo-4 was obtained, and confocal sectioning through the tissue enabled vascular smooth muscle and endothelial cells to be clearly seen, along with red blood cells, nerve endings and the ureteric smooth muscle cells. We find the terminal arterioles to be extremely active, both spontaneously and in response to nor-adrenaline stimulation, with Ca(2+) sparks occurring in the vascular myocytes and Ca(2+) puffs in the endothelial cells. Even under resting conditions, endothelial cells produced oscillations and waves, which could pass from cell to cell, whereas the vascular myocytes only produced waves in response to agonist stimulation, and with no increase in the frequency of Ca(2+) sparks, and no spread from cell to cell. We compare our data to those obtained in dissected intact vessels and single cells. We conclude that this approach is a convenient and useful method for studying inter- and intracellular Ca(2+) signalling events and communication between cell types, particularly in very small vessels.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Aniline Compounds
- Animals
- Arterioles/cytology
- Arterioles/metabolism
- Calcium/analysis
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Histocytochemistry/instrumentation
- Histocytochemistry/methods
- Microscopy, Confocal/instrumentation
- Microscopy, Confocal/methods
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Norepinephrine/pharmacology
- Rats
- Ureter/blood supply
- Ureter/cytology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Xanthenes
Collapse
Affiliation(s)
- T Burdyga
- The Physiological Laboratory, Department of Physiology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | |
Collapse
|
30
|
Gordienko DV, Bolton TB. Crosstalk between ryanodine receptors and IP(3) receptors as a factor shaping spontaneous Ca(2+)-release events in rabbit portal vein myocytes. J Physiol 2002; 542:743-62. [PMID: 12154176 PMCID: PMC2290443 DOI: 10.1113/jphysiol.2001.015966] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2001] [Accepted: 05/01/2002] [Indexed: 11/08/2022] Open
Abstract
In smooth muscle cells freshly isolated from rabbit portal vein, there was only one site discharging the majority of spontaneous Ca(2+)-release events; the activity of this single site was studied using laser scanning confocal imaging after loading the cells with the fluorescent Ca(2+) indicator fluo-4 acetoxymethyl ester. Localised spontaneous Ca(2+)-release events visualised by line-scan imaging revealed two predominant spatiotemporal patterns: (i) small-amplitude, fast events similar to Ca(2+) sparks in cardiomyocytes and (ii) larger and slower events. The sum of two Gaussian profiles was well fitted to the amplitude histogram (peak frequencies at 1.8 and 3.2 F/F(0)) and spatial spread (full width at half-maximal amplitude) histogram (peak frequencies at 2 and 3.8 microm) for the 230 localised Ca(2+)-release events analysed. The existence of two populations of Ca(2+)-release events was also supported by the histograms of the rise times and half-decay times, which revealed modes at 38 and 65 ms, respectively. Shifting the scan line along the z-axis during imaging from a single discharge site suggested that the appearance of two populations of Ca(2+)-release events is not due to out-of-focus imaging. Both small and large events persisted upon 3-5 min exposure to 1-5 microM nicardipine, but were abolished after 10-15 min exposure to 50-100 microM ryanodine, 0.1 microM thapsigargin or 10 microM cyclopiazonic acid. Only small-amplitude, fast events persisted in the presence of inhibitors of inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release, 10 microM xestospongin C or 30 microM 2-aminoethoxy-diphenylborate (2-APB), or in the presence of 2.5 microM U-73122 (a phospholipase C (PLC) inhibitor). Coupling between neighbouring Ca(2+)-release domains giving rise to spontaneous [Ca(2+)](i) waves was abolished in the presence of 2-APB. Examination of the saltatory propagation of the waves suggested that the critical factor that determines propagation between domains is a time-dependent change in the sensitivity of ryanodine receptors and/or IP(3) receptors to Ca(2+), which can give rise to 'loose coupling' between release sites. These results suggest that activation of IP(3) receptors (due to the tonic activity of PLC and ongoing production of IP(3)) recruits neighbouring domains of ryanodine receptors, leading to larger Ca(2+) releases and saltatory propagation of [Ca(2+)](i) waves in portal vein myocytes.
Collapse
Affiliation(s)
- D V Gordienko
- Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | |
Collapse
|