1
|
Wang CM, Hu MC, Huang MS. Possible piracetam-induced Raynaud's phenomenon in a male patient. TAIWANESE JOURNAL OF PSYCHIATRY 2020. [DOI: 10.4103/tpsy.tpsy_22_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Rosenblum WI. Endothelium-dependent responses in the microcirculation observed in vivo. Acta Physiol (Oxf) 2018; 224:e13111. [PMID: 29873936 DOI: 10.1111/apha.13111] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Endothelium-dependent responses were first demonstrated 40 years ago in the aorta. Since then, extensive research has been conducted in vitro using conductance vessels and materials derived from them. However, the microcirculation controls blood flow to vital organs and has been the focus of in vivo studies of endothelium-dependent dilation beginning immediately after the first in vitro report. Initial in vivo studies employed a light/dye technique for selectively damaging the endothelium to unequivocally prove, in vivo, the existence of endothelium-dependent dilation and in the microvasculature. Endothelium-dependent constriction was similarly proven. Endothelium-dependent agonists include acetylcholine (ACh), bradykinin, arachidonic acid, calcium ionophore A-23187, calcitonin gene-related peptide (CGRP), serotonin, histamine and endothelin-1. Normal and disease states have been studied. Endothelial nitric oxide synthase, cyclooxygenase and cytochrome P450 have been shown to generate the mediators of the responses. Some of the key enzyme systems generate reactive oxygen species (ROS) like superoxide which may prevent EDR. However, one ROS, namely H2 O2 , is one of a number of hyperpolarizing factors that cause dilation initiated by endothelium. Depending upon microvascular bed, a single agonist may use different pathways to elicit an endothelium-dependent response. Interpretation of studies using inhibitors of eNOS is complicated by the fact that these inhibitors may also inhibit ATP-sensitive potassium channels. Other in vivo observations of brain arterioles failed to establish nitric oxide as the mediator of responses elicited by CGRP or by ACh and suggest that a nitrosothiol may be a better fit for the latter.
Collapse
Affiliation(s)
- W. I. Rosenblum
- Department of Pathology; Icahn School of Medicine at Mt Sinai NYC; New York NY USA
| |
Collapse
|
3
|
Hira VV, Aderetti DA, van Noorden CJ. Glioma Stem Cell Niches in Human Glioblastoma Are Periarteriolar. J Histochem Cytochem 2018; 66:349-358. [PMID: 29328867 PMCID: PMC5958355 DOI: 10.1369/0022155417752676] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Survival of primary brain tumor (glioblastoma) patients is seriously hampered by glioma stem cells (GSCs) that are distinct therapy-resistant self-replicating pluripotent cancer cells. GSCs reside in GSC niches, which are specific protective microenvironments in glioblastoma tumors. We have recently found that GSC niches are hypoxic periarteriolar, whereas in most studies, GSC niches are identified as hypoxic perivascular. The aim of this review is to critically evaluate the literature on perivascular GSC niches to establish whether these are periarteriolar, pericapillary, perivenular, and/or perilymphatic. We found six publications showing images of human glioblastoma tissue containing perivascular GSC niches without any specification of the vessel type. However, it is frequently assumed that these vessels are capillaries which are exchange vessels, whereas arterioles and venules are transport vessels. Closer inspection of the figures of these publications showed vessels that were not capillaries. Whether these vessels were arterioles or venules was difficult to determine in one case, but in the other cases, these were clearly arterioles and their perivascular niches were similar to the periarteriolar niches we have found. Therefore, we conclude that in human glioblastoma tumors, GSC niches are hypoxic periarteriolar and are structurally and functionally look-alikes of hematopoietic stem cell niches in the bone marrow.
Collapse
Affiliation(s)
- Vashendriya V.V. Hira
- Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana A. Aderetti
- Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J.F. van Noorden
- Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Zhu B, Cao H, Sun L, Li B, Guo L, Duan J, Zhu H, Zhang Q. Metabolomics-based mechanisms exploration of Huang-Lian Jie-Du decoction on cerebral ischemia via UPLC-Q-TOF/MS analysis on rat serum. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:147-156. [PMID: 29360497 DOI: 10.1016/j.jep.2018.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian Jie-Du decoction (HLJDD), a traditional formula of Chinese medicine constituted with Rhizoma Coptidis, RadixScutellariae, CortexPhellodendri amurensis and Fructus Gardeniae, exhibits unambiguous therapeutic effect on cerebral ischemia via multi-targets action. Further investigation, however, is still required to explore the relationship between those mechanisms and targets through system approaches. MATERIALS AND METHODS Rats of cerebral ischemia were completed by middle cerebral artery occlusion (MCAO) with reperfusion. Following evaluation of pharmacological actions of HLJDD on MCAO rats, the plasma samples from rats of control, MCAO and HLJDD-treated MCAO groups were prepared strictly and subjected to ultra-performance liquid chromatography quadrupole time of flight mass spectrometry for metabolites analysis. The raw mass data were imported to MassLynx software for peak detection and alignment, and further introduced to EZinfo 2.0 software for orthogonal projection to latent structures analysis, principal component analysis and partial least-squares-discriminant analysis. The metabolic pathways assay of those potential biomarkers were performed with MetaboAnalyst through the online database, HMDB, Metlin, KEGG and SMPD. Those intriguing metabolic pathways were further investigated via biochemical assay. RESULTS HLJDD ameliorated the MCAO-induce cerebral damage and blocked the severe inflammation response. There were nineteen different biomarkers identified among control, MCAO and HLJDD-treated MCAO groups. Ten metabolic pathways were proposed from these significant metabolites. Incorporation with the biochemical assay of cerebral tissue, modulation of metabolic stress, regulation glutamate/GABA-glutamine cycle and enhancement of cholinergic neurons function were explored that involved in the actions of HLJDD on cerebral ischemia. CONCLUSION HLJDD achieves therapeutic action on cerebral ischemia via coordinating the basic pathophysiological network of metabolic stress, glutamate metabolism, and acetylcholine levels and function.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Animals
- Behavior, Animal/drug effects
- Biomarkers/blood
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Chromatography, Liquid
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Energy Metabolism/drug effects
- Glutamic Acid/metabolism
- Infarction, Middle Cerebral Artery/blood
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/psychology
- Inflammation Mediators/blood
- Least-Squares Analysis
- Male
- Metabolomics/methods
- Multivariate Analysis
- Neuroprotective Agents/pharmacology
- Principal Component Analysis
- Rats, Sprague-Dawley
- Spectrometry, Mass, Electrospray Ionization
- Stress, Physiological/drug effects
- Time Factors
Collapse
Affiliation(s)
- Baojie Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huiting Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Limin Sun
- School of Traditional Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| | - Bo Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liwei Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qichun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|
6
|
Li B, Yang ZB, Lei SS, Su J, Jin ZW, Chen SH, Lv GY. Combined Antihypertensive Effect of Paeoniflorin Enriched Extract and Metoprolol in Spontaneously Hypertensive Rats. Pharmacogn Mag 2018; 14:44-52. [PMID: 29576700 PMCID: PMC5858241 DOI: 10.4103/pm.pm_483_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background: Hypertension is a great global health challenge and it mostly requires drug combination therapy with the various advantages. Metoprolol (MP) and paeoniflorin are both commonly used for the treatment of hypertension. However, whether they exert synergistic effects on antihypertension or not remains unclear, especially on vascular endothelial function. Objective: The purpose of the study is to investigate the advantages of the combined antihypertensive effects of paeoniflorin enriched extract from Radix Paeoniae Alba (RE) and MP in spontaneously hypertensive rats (SHR). Materials and Methods: SHR divided into six groups (n = 8 each group), animals in each group were administrated orally with distilled water, MP (6 and 20 mg/kg), RE (30 and 90 mg/kg), and MP (6 mg/kg) combined with RE (30 mg/kg) (MP + RE), respectively, daily for 6 weeks. Blood pressure (BP) and microcirculation were assessed. The organ bath experiment and hematoxylin and eosin staining were, respectively, performed for the functional and pathological vascular function analysis. Immunohistochemistry was applied to detect endothelial nitric oxide synthase (eNOS) expression in aorta, heart, and kidney. Further, high-performance liquid chromatography was employed to quantitatively determine paeoniflorin in RE and MP + RE sample solvent, as well as in plasma of Sprague-Dawley rats (SD) after single-dose administration of them. Results: The results showed that MP + RE significantly reduced BP, increased microcirculation, improved vascular function and pathological changes, and upregulated eNOS expression. MP was also found to increase the blood concentration of paeoniflorin in SD. Conclusion: The combination of RE and MP could be used for the treatment of hypertension and could improve microcirculation, upregulate eNOS expression, and mitigate endothelial dysfunction in SHR. SUMMARY Paeoniflorin enriched extract from Radix Paeoniae Alba and metoprolol exert synergistic antihypertensive effects.
Abbreviations used: RE: Paeoniflorin enriched extract from Radix Paeoniae Alba, MP: Metoprolol, MP + RE: MP combined with RE, NC: Normal control, MC: Model control, SHR: Spontaneously hypertensive rats, SD: Sprague-Dawley rats, H and E: Hematoxylin and eosin, BP: Blood pressure, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, MBP: Mean arterial blood pressure, NA: Norepinephrine, ACh: Acetylcholine, SNP: Nitroprusside, NO: Nitric oxide, eNOS: Endothelial nitric oxide synthase, RPA: Radices Paeoniae Alba, IHC: Immunohistochemistry, Cmax: Peak concentration, Tmax: The time to reach Cmax, t½: Half-life, AUC0-t: Area under the curve of 0-t time; MRT0-t: Mean residence of 0-t time; CL: Clearance rate.
Collapse
Affiliation(s)
- Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, P. R China
| | - Zheng-Biao Yang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, P. R China
| | - Shan-Sha Lei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, P. R China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, P. R China
| | - Ze-Wu Jin
- College of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, P. R China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, P. R China.,College of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, P. R China
| | - Gui-Yuan Lv
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, P. R China
| |
Collapse
|
7
|
Treuer AV, Gonzalez DR. Nitric oxide synthases, S-nitrosylation and cardiovascular health: from molecular mechanisms to therapeutic opportunities (review). Mol Med Rep 2014; 11:1555-65. [PMID: 25405382 PMCID: PMC4270315 DOI: 10.3892/mmr.2014.2968] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
The understanding of nitric oxide (NO) signaling has grown substantially since the identification of endothelial derived relaxing factor (EDRF). NO has emerged as a ubiquitous signaling molecule involved in diverse physiological and pathological processes. Perhaps the most significant function, independent of EDRF, is that of NO signaling mediated locally in signaling modules rather than relying upon diffusion. In this context, NO modulates protein function via direct post-translational modification of cysteine residues. This review explores NO signaling and related reactive nitrogen species involved in the regulation of the cardiovascular system. A critical concept in the understanding of NO signaling is that of the nitroso-redox balance. Reactive nitrogen species bioactivity is fundamentally linked to the production of reactive oxygen species. This interaction occurs at the chemical, enzymatic and signaling effector levels. Furthermore, the nitroso-redox equilibrium is in a delicate balance, involving the cross-talk between NO and oxygen-derived species signaling systems, including NADPH oxidases and xanthine oxidase.
Collapse
Affiliation(s)
- Adriana V Treuer
- Laboratory of Organic Synthesis, Institute of Chemistry of Natural Resources, University of Talca, Talca 3460000, Chile
| | - Daniel R Gonzalez
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile
| |
Collapse
|
8
|
Jiang Q, Zhou Z, Wang L, Yang C, Wang J, Wu T, Song L. Mutual modulation between norepinephrine and nitric oxide in haemocytes during the mollusc immune response. Sci Rep 2014; 4:6963. [PMID: 25376551 PMCID: PMC4223682 DOI: 10.1038/srep06963] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/22/2014] [Indexed: 11/27/2022] Open
Abstract
Nitric oxide (NO) is one of the most important immune molecules in innate immunity of invertebrates, and it can be regulated by norepinephrine in ascidian haemocytes. In the present study, the mutual modulation and underlying mechanism between norepinephrine and NO were explored in haemocytes of the scallop Chlamys farreri. After lipopolysaccharide stimulation, NO production increased to a significant level at 24 h, and norepinephrine concentration rose to remarkable levels at 3 h and 12~48 h. A significant decrease of NO production was observed in the haemocytes concomitantly stimulated with lipopolysaccharide and α-adrenoceptor agonist, while a dramatic increase of NO production was observed in the haemocytes incubated with lipopolysaccharide and β-adrenoceptor agonist. Meanwhile, the concentration of cyclic adenosine monophosphate (cAMP) decreased significantly in the haemocytes treated by lipopolysaccharide and α/β-adrenoceptor agonist, while the content of Ca(2+) was elevated in those triggered by lipopolysaccharide and β-adrenoceptor agonist. When the haemocytes was incubated with NO donor, norepinephrine concentration was significantly enhanced during 1~24 h. Collectively, these results suggested that norepinephrine exerted varied effects on NO production at different immune stages via a novel α/β-adrenoceptor-cAMP/Ca(2+) regulatory pattern, and NO might have a feedback effect on the synthesis of norepinephrine in the scallop haemocytes.
Collapse
Affiliation(s)
- Qiufen Jiang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chuanyan Yang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jingjing Wang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Wu
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Andrade FA, Restini CBA, Grando MD, Ramalho LNZ, Bendhack LM. Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway. PLoS One 2014; 9:e95446. [PMID: 24787693 PMCID: PMC4006788 DOI: 10.1371/journal.pone.0095446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/27/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS C-type natriuretic peptide (CNP) and nitric oxide (NO) are endothelium-derived factors that play important roles in the regulation of vascular tone and arterial blood pressure. We hypothesized that NO produced by the endothelial NO-synthase (NOS-3) contributes to the relaxation induced by CNP in isolated rat aorta via activation of endothelial NPR-C receptor. Therefore, the aim of this study was to investigate the putative contribution of NO through NPR-C activation in the CNP induced relaxation in isolated conductance artery. MAIN METHODS Concentration-effect curves for CNP were constructed in aortic rings isolated from rats. Confocal microscopy was used to analyze the cytosolic calcium mobilization induced by CNP. The phosphorylation of the residue Ser1177 of NOS was analyzed by Western blot and the expression and localization of NPR-C receptors was analyzed by immunohistochemistry. KEY FINDINGS CNP was less potent in inducing relaxation in denuded endothelium aortic rings than in intact ones. L-NAME attenuated the potency of CNP and similar results were obtained in the presence of hydroxocobalamin, an intracellular NO0 scavenger. CNP did not change the phosphorylation of Ser1177, the activation site of NOS-3, when compared with control. The addition of CNP produced an increase in [Ca2+]c in endothelial cells and a decrease in [Ca2+]c in vascular smooth muscle cells. The NPR-C-receptors are expressed in endothelial and adventitial rat aortas. SIGNIFICANCE These results suggest that CNP-induced relaxation in intact aorta isolated from rats involves NO production due to [Ca2+]c increase in endothelial cells possibly through NPR-C activation expressed in these cells. The present study provides a breakthrough in the understanding of the close relationship between the vascular actions of nitric oxide and CNP.
Collapse
Affiliation(s)
- Fernanda A. Andrade
- Department of Pharmacology, School of Medicine of Ribeirão Preto - University of São Paulo, São Paulo, Brasil
| | | | - Marcella D. Grando
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, São Paulo, Brasil
| | - Leandra N. Z. Ramalho
- Department of Cellular and Molecular Pathology, School of Medicine of Ribeirão Preto - University of São Paulo, São Paulo, Brasil
| | - Lusiane M. Bendhack
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, São Paulo, Brasil
| |
Collapse
|
10
|
Figueroa XF, González DR, Puebla M, Acevedo JP, Rojas-Libano D, Durán WN, Boric MP. Coordinated endothelial nitric oxide synthase activation by translocation and phosphorylation determines flow-induced nitric oxide production in resistance vessels. J Vasc Res 2013; 50:498-511. [PMID: 24217770 PMCID: PMC3910107 DOI: 10.1159/000355301] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol. METHODS In isolated, perfused rat arterial mesenteric beds, we evaluated the effect of changes in flow rate (2-10 ml/min) on nitric oxide (NO) production, eNOS phosphorylation at serine 1177, eNOS subcellular distribution and co-immunoprecipitation with Cav-1, in the presence or absence of extracellular Ca(2+). RESULTS Increases in flow induced a biphasic rise in NO production: a rapid transient phase (3-5-min) that peaked during the first 15 s, followed by a sustained phase, which lasted until the end of stimulation. Concomitantly, flow caused a rapid translocation of eNOS from the microsomal compartment to the cytosol and Golgi, paralleled by an increase in eNOS phosphorylation and a reduction in eNOS-Cav-1 association. Transient NO production, eNOS translocation and dissociation from Cav-1 depended on extracellular Ca(2+), while sustained NO production was abolished by the PI3K-Akt blocker wortmannin. CONCLUSIONS In intact resistance vessels, changes in flow induce NO production by transient Ca(2+)-dependent eNOS translocation from membrane to intracellular compartments and sustained Ca(2+)-independent PI3K-Akt-mediated phosphorylation.
Collapse
Affiliation(s)
- Xavier F. Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P. Acevedo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Rojas-Libano
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Walter N. Durán
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, N.J., USA
| | - Mauricio P. Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Durán WN, Beuve AV, Sánchez FA. Nitric oxide, S-nitrosation, and endothelial permeability. IUBMB Life 2013; 65:819-26. [PMID: 24078390 DOI: 10.1002/iub.1204] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/22/2013] [Indexed: 11/06/2022]
Abstract
S-Nitrosation is rapidly emerging as a regulatory mechanism in vascular biology, with particular importance in the onset of hyperpermeability induced by pro-inflammatory agents. This review focuses on the role of endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) in regulating S-Nitrosation of adherens junction proteins. We discuss evidence for translocation of eNOS, via caveolae, to the cytosol and analyze the significance of eNOS location for S-Nitrosation and onset of endothelial hyperpermeability to macromolecules.
Collapse
Affiliation(s)
- Walter N Durán
- Department of Pharmacology and Physiology, New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ, 07101-1709, U.S.A
| | | | | |
Collapse
|
12
|
Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers. Front Oncol 2013; 3:211. [PMID: 23967403 PMCID: PMC3744053 DOI: 10.3389/fonc.2013.00211] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/01/2013] [Indexed: 01/22/2023] Open
Abstract
The endothelial barrier strictly maintains vascular and tissue homeostasis, and therefore modulates many physiological processes such as angiogenesis, immune responses, and dynamic exchanges throughout organs. Consequently, alteration of this finely tuned function may have devastating consequences for the organism. This is particularly obvious in cancers, where a disorganized and leaky blood vessel network irrigates solid tumors. In this context, vascular permeability drives tumor-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration, and tumor cell extravasation. This can directly restrain the efficacy of conventional therapies by limiting intravenous drug delivery. Indeed, for more effective anti-angiogenic therapies, it is now accepted that not only should excessive angiogenesis be alleviated, but also that the tumor vasculature needs to be normalized. Recovery of normal state vasculature requires diminishing hyperpermeability, increasing pericyte coverage, and restoring the basement membrane, to subsequently reduce hypoxia, and interstitial fluid pressure. In this review, we will introduce how vascular permeability accompanies tumor progression and, as a collateral damage, impacts on efficient drug delivery. The molecular mechanisms involved in tumor-driven vascular permeability will next be detailed, with a particular focus on the main factors produced by tumor cells, especially the emblematic vascular endothelial growth factor. Finally, new perspectives in cancer therapy will be presented, centered on the use of anti-permeability factors and normalization agents.
Collapse
Affiliation(s)
- Sandy Azzi
- CNRS, UMR8104 , Paris , France ; INSERM, U1016 , Paris , France ; Sorbonne Paris Cite, Universite Paris Descartes , Paris , France
| | | | | |
Collapse
|
13
|
Jiang Q, Zhou Z, Wang L, Shi X, Wang J, Yue F, Yi Q, Yang C, Song L. The immunomodulation of inducible nitric oxide in scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2013; 34:100-108. [PMID: 23073205 DOI: 10.1016/j.fsi.2012.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/15/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
Nitric oxide (NO) is an important signalling molecule which plays an indispensable role in immunity of all vertebrates and invertebrates. In the present study, the immunomodulation of inducible NO in scallop Chlamys farreri was examined by monitoring the alterations of haemocyte behaviours and related immune molecules in response to the stimulations of LPS and/or with S-Methylisothiourea Sulphate (SMT), an inhibitor of inducible NO synthase (NOS). The total activity of NOS and NO concentration in the haemolymph of scallop C. farreri increased significantly at 3, 6 and 12 h after LPS stimulation respectively, whereas their increases were fully repressed when scallops were treated in the collaborating of LPS and SMT. Meanwhile, some cellular and humoral immune parameters were determined after the stimulation of LPS and SMT to investigate the role of inducible NO in innate immunity of scallop. After LPS stimulation, the highest levels of haemocytes apoptosis and phagocytosis were observed at 24 h (38.5 ± 2.5%, P < 0.01) and 12 h (38.6 ± 0.2%, P < 0.01), respectively, and the reactive oxygen species (ROS) level (5.88 ± 0.90%, P < 0.01) of haemocytes and anti-bacterial activity of haemolymph (10.0 ± 2.2%, P < 0.01) all elevated dramatically at 12 h. Although the activity of lysozyme and phenoloxidase (PO) in haemolymph both declined at 48 h (93.0 ± 6.3 U mgprot(-1), 0.40 ± 0.06 U mgprot(-1), P < 0.01), superoxide dismutase (SOD) activity and GSH concentration both increased to the highest level at 24 h post treatment (99.2 ± 8.1 U mgprot(-1), 93.0 ± 6.3 nmol mgprot(-1), P < 0.01). After the collaborating treatment of LPS and SMT, the apoptosis index increased much higher from 48 h, while the increase of haemocytes phagocytosis, ROS level and haemolymph anti-bacteria activities were suppressed completely at 12 h. The declines of lysozyme and PO activity in haemolymph were reversed at 48 h, and the rise of SOD activity and GSH concentration started earlier from 3 h. These results indicated clearly that NO could participate in the scallop immunity and play a crucial role in the modulation of immune response including haemocytes apoptosis and phagocytosis, anti-bacterial activity and redox homeostasis in the haemolymph of scallop.
Collapse
Affiliation(s)
- Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Marín N, Zamorano P, Carrasco R, Mujica P, González FG, Quezada C, Meininger CJ, Boric MP, Durán WN, Sánchez FA. S-Nitrosation of β-catenin and p120 catenin: a novel regulatory mechanism in endothelial hyperpermeability. Circ Res 2012; 111:553-63. [PMID: 22777005 DOI: 10.1161/circresaha.112.274548] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Endothelial adherens junction proteins constitute an important element in the control of microvascular permeability. Platelet-activating factor (PAF) increases permeability to macromolecules via translocation of endothelial nitric oxide synthase (eNOS) to cytosol and stimulation of eNOS-derived nitric oxide signaling cascade. The mechanisms by which nitric oxide signaling regulates permeability at adherens junctions are still incompletely understood. OBJECTIVE We explored the hypothesis that PAF stimulates hyperpermeability via S-nitrosation (SNO) of adherens junction proteins. METHODS AND RESULTS We measured PAF-stimulated SNO of β-catenin and p120-catenin (p120) in 3 cell lines: ECV-eNOSGFP, EAhy926 (derived from human umbilical vein), and postcapillary venular endothelial cells (derived from bovine heart endothelium) and in the mouse cremaster muscle in vivo. SNO correlated with diminished abundance of β-catenin and p120 at the adherens junction and with hyperpermeability. Tumor necrosis factor-α increased nitric oxide production and caused similar increase in SNO as PAF. To ascertain the importance of eNOS subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced SNO of β-catenin and p120 and significantly diminished association between these proteins in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Inhibitors of nitric oxide production and of SNO blocked PAF-induced SNO and hyperpermeability, whereas inhibition of the cGMP pathway had no effect. Mass spectrometry analysis of purified p120 identified cysteine 579 as the main S-nitrosated residue in the region that putatively interacts with vascular endothelial-cadherin. CONCLUSIONS Our results demonstrate that agonist-induced SNO contributes to junctional membrane protein changes that enhance endothelial permeability.
Collapse
Affiliation(s)
- Natalie Marín
- Instituto de Inmunología, Universidad Austral de Chile, Los Laureles s/n, 511-0566, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Neurogenic and Endothelial Nitric Oxide Regulates Blood Circulation in Lingual and Other Oral Tissues. J Cardiovasc Pharmacol 2012; 60:100-8. [DOI: 10.1097/fjc.0b013e318252452a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Abstract
Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.
Collapse
|
17
|
Liu S, Premont RT, Rockey DC. G-protein-coupled receptor kinase interactor-1 (GIT1) is a new endothelial nitric-oxide synthase (eNOS) interactor with functional effects on vascular homeostasis. J Biol Chem 2012; 287:12309-20. [PMID: 22294688 DOI: 10.1074/jbc.m111.320465] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelial cell nitric-oxide (NO) synthase (eNOS), the enzyme responsible for synthesis of NO in the vasculature, undergoes extensive post-translational modifications that modulate its activity. Here we have identified a novel eNOS interactor, G-protein-coupled receptor (GPCR) kinase interactor-1 (GIT1), which plays an unexpected role in GPCR stimulated NO signaling. GIT1 interacted with eNOS in the endothelial cell cytoplasm, and this robust association was associated with stimulatory eNOS phosphorylation (Ser(1177)), enzyme activation, and NO synthesis. GIT1 knockdown had the opposite effect. Additionally, GIT1 expression was reduced in sinusoidal endothelial cells after liver injury, consistent with previously described endothelial dysfunction in this disease. Re-expression of GIT1 after liver injury rescued the endothelial phenotype. These data emphasize the role of GPCR signaling partners in eNOS function and have fundamental implications for vascular disorders involving dysregulated eNOS.
Collapse
Affiliation(s)
- Songling Liu
- University of Texas Southwestern Medical Center, Division of Digestive and Liver Diseases, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
18
|
Bauer EM, Qin Y, Miller TW, Bandle RW, Csanyi G, Pagano PJ, Bauer PM, Schnermann J, Roberts DD, Isenberg JS. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovasc Res 2010; 88:471-81. [PMID: 20610415 DOI: 10.1093/cvr/cvq218] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Thrombospondin-1 (TSP1), via its necessary receptor CD47, inhibits nitric oxide (NO)-stimulated soluble guanylate cyclase activation in vascular smooth muscle cells, and TSP1-null mice have increased shear-dependent blood flow compared with wild-type mice. Yet, the endothelial basement membrane should in theory function as a barrier to diffusion of soluble TSP1 into the arterial smooth muscle cell layer. These findings suggested that endothelial-dependent differences in blood flow in TSP1-null mice may be the result of direct modulation of endothelial NO synthase (eNOS) activation by circulating TSP1. Here we tested the hypothesis that TSP1 inhibits eNOS activation and endothelial-dependent arterial relaxation. METHODS AND RESULTS Acetylcholine (ACh)-stimulated activation of eNOS and agonist-driven calcium transients in endothelial cells were inhibited by TSP1. TSP1 also inhibited eNOS phosphorylation at serine(1177). TSP1 treatment of the endothelium of wild-type and TSP1-null but not CD47-null arteries inhibited ACh-stimulated relaxation. TSP1-null vessels demonstrated greater endothelial-dependent vasorelaxation compared with the wild type. Conversely, TSP1-null arteries demonstrated less vasoconstriction to phenylephrine compared with the wild type, which was corrected upon inhibition of eNOS. In TSP1-null mice, intravenous TSP1 blocked ACh-stimulated decreases in blood pressure, and both intravenous TSP1 and a CD47 agonist antibody acutely elevated blood pressure in mice. CONCLUSION TSP1, via CD47, inhibits eNOS activation and endothelial-dependent arterial relaxation and limits ACh-driven decreases in blood pressure. Conversely, intravenous TSP1 and a CD47 antibody increase blood pressure. These findings suggest that circulating TSP1, by limiting endogenous NO production, functions as a pressor agent supporting blood pressure.
Collapse
Affiliation(s)
- Eileen M Bauer
- Vascular Medicine Institute of University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Elçioğlu KH, Kabasakal L, Cetinel S, Conturk G, Sezen SF, Ayanoğlu-Dülger G. Changes in caveolin-1 expression and vasoreactivity in the aorta and corpus cavernosum of fructose and streptozotocin-induced diabetic rats. Eur J Pharmacol 2010; 642:113-20. [PMID: 20553910 DOI: 10.1016/j.ejphar.2010.05.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/29/2010] [Accepted: 05/25/2010] [Indexed: 02/07/2023]
Abstract
Hyperglycemia is a common defining feature in the development of endothelial dysfunction which plays a key role in the pathogenesis of both type 1 and type 2 diabetes. Caveolin-1 is the main structural component of caveolae which might be involved in the pathophysiology of macrovascular complications of diabetes. In this study we aimed to observe the effect of caveolin-1 on functional responses of aorta and corpus cavernosum in the streptozotocin and fructose-induced diabetes groups. Type 1 diabetes was induced by intraperitoneal administration of streptozotocin (60 mg/kg),. Type 2 diabetes by adding fructose in the rat's drinking water (10% (w/v)) for 8 weeks. For insulin treatment; rats were treated with insulin (6 U/kg) for 8 weeks. In Type I and Type II diabetic groups the contractile responses of corpus cavernosum strips to phenylephrine (EC(50):1.82 x 10(-5)M;1.47 x 10(-5)M, respectively)and relaxation responses to acetylcholine (EC(50):7.5 x 10(-5)M;4.48 x 10(-5)M, respectively)were significantly impaired. Contractile responses of aorticstrips to phenylephrine in diabetic groups were markedly decreased (EC(50):3.7.10(-7)M;2.61.10(-7)M respectively) and dose-dependent relaxation responses to acetylcholine were also attenuated (EC(50):3.23.10(-6)M; 2.0.10(-6)M respectively). Treatment with insulin improved the functional responses in the aorta and corpus cavernosum. Protein expression of caveolin-1 was increased in the aorta and corpus cavernosum of the diabetic groups, but this increase seen in the streptozotocin group was more significant than the fructose group. Our findings indicate that an attenuation of the functional responses in both diabetes groups were probably associated with an enhanced expression of caveolin-1, and therefore a decrease in the eNOS activity with a concomitant decrease in NO synthesis.
Collapse
Affiliation(s)
- Kübra H Elçioğlu
- Department of Pharmacology, School of Pharmacy, Marmara University, Tibbiye St. 49 Haydarpaşa, Istanbul 34688, Turkey.
| | | | | | | | | | | |
Collapse
|
20
|
Durán WN, Breslin JW, Sánchez FA. The NO cascade, eNOS location, and microvascular permeability. Cardiovasc Res 2010; 87:254-61. [PMID: 20462865 DOI: 10.1093/cvr/cvq139] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The nitric oxide (NO) cascade and endothelial NO synthase (eNOS) are best known for their role in endothelium-mediated relaxation of vascular smooth muscle. Activation of eNOS by certain inflammatory stimuli and enhanced NO release have also been shown to promote increased microvascular permeability. However, it is not entirely clear why activation of eNOS by certain vasodilatory agents, like acetylcholine, does not affect microvascular permeability, whereas activation of eNOS by other inflammatory agents that increase permeability, like platelet-activating factor, does not cause vasodilation. In this review, we discuss the evidence demonstrating the role of eNOS in the elevation of microvascular permeability. We also examine the relative importance of eNOS phosphorylation and localization in its function to promote elevated microvascular permeability as well as emerging topics with regard to eNOS and microvascular permeability regulation.
Collapse
Affiliation(s)
- Walter N Durán
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA.
| | | | | |
Collapse
|
21
|
Decreased number of caveolae in endothelial cells impairs the relaxation induced by acetylcholine in hypertensive rat aortas. Eur J Pharmacol 2009; 627:251-7. [PMID: 19903465 DOI: 10.1016/j.ejphar.2009.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/15/2009] [Accepted: 11/03/2009] [Indexed: 11/22/2022]
Abstract
The present study was designed to investigate the contribution of endothelial cell caveolae to vascular relaxation in aortas from a normotensive (2K) and renal hypertensive (2K-1C) rat. For that purpose, concentration-effect curves to acetylcholine were constructed in 2K and 2K-1C intact endothelium aortic rings, in the absence or in the presence of the caveolae disassembler methyl-beta-ciclodextrin. The potency (pD(2)) and the maximum relaxant effect to acetylcholine were greater in 2K than in 2K-1C aortas. Methyl-beta-ciclodextrin reduced the pD(2) in 2K and the maximum relaxant effect in both 2K and 2K-1C. The quantification of the caveolae number by electronic microscopy has shown a larger number of caveolae in 2K than in 2K-1C endothelial cells, which was reduced by methyl-beta-ciclodextrin in both 2K and 2K-1C. The production of NO stimulated with acetylcholine was greater in 2K than in 2K-1C endothelial cells, and this effect was impaired by methyl-beta-ciclodextrin in both 2K and 2K-1C. The cytosolic Ca(2+) concentration ([Ca(2+)]c) was simultaneously measured in endothelial and smooth muscle cells stimulated with acetylcholine by confocal image of aortic slices. Acetylcholine produced a greater [Ca(2+)]c increase in 2K than in 2K-1C endothelial cells, which response was inhibited by methyl-beta-ciclodextrin only in 2K cells. In smooth muscle cells the reduction of [Ca(2+)]c was higher in 2K than in 2K-1C. This effect was inhibited by methyl-beta-ciclodextrin only in 2K cells. Taken together, our results suggest that the decreased number of caveolae in the endothelial cells from 2K-1C rat aortas is involved in the impaired effect of acetylcholine on [Ca(2+)]c and NO.
Collapse
|
22
|
Oliveira APS, Lunardi CN, Rodrigues GJ, Bendhack LM. Relaxation induced by calcium ionophore is impaired in carotid arteries from 2K-1C rats due to failed effect of nitric oxide on the smooth muscle cells. Vascul Pharmacol 2009; 50:153-9. [PMID: 19100862 DOI: 10.1016/j.vph.2008.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 10/21/2022]
Abstract
Vascular endothelium generates nitric oxide (NO) in large vessels and induces relaxation of vascular smooth muscle cells (VSMC). The aim of this study was to evaluate the contribution of NO produced in the endothelial cells (EC) to the relaxation induced by the Ca2+ ionophore A23187 and whether this relaxation is impaired in renal hypertensive (2K-1C) rat arteries. Concentration-effect curves for A23187 were constructed in intact endothelium isolated carotid rings from 2K-1C and normotensive (2K) in the absence or in the presence of the extracellular NO scavenger haemoglobin or inhibitors of NO-synthase (NOS, L-NOARG), guanylyl-cyclase (GC, ODQ). In carotid rings loaded with Fluo-3AM, both EC and VSMC were simultaneously imaged by a confocal microscope and [Ca2+]c was derived from fluorescence intensities (IF). The maximal relaxation (ME) induced by A23187 was lower in 2K-1C than in 2K arteries. A23187-induced relaxation was abolished by haemoglobin and L-NOARG in both groups. ODQ reduced the ME to A23187 in 2K and abolished its relaxation in 2K-1C. A23187 increased [Ca2+]c in a similar way in 2K and 2K-1C EC, and decreased [Ca2+]c in VSMC, which effect was higher in 2K than in 2K-1C arteries. L-NOARG inhibited the effect of A23187 in VSMC from 2K and abolished it in 2K-1C rats. On the other hand, L-NOARG did not modify the effect of A23187 in EC from 2K and 2K-1C rats. The basal content of cGMP was higher in 2K than in 2K-1C arterial rings that was similarly increased by A23187. In conclusion, the Ca2+ ionophore A23187 increases Ca2+, activates NOS and NO production in the EC activating GC in VSMC and [Ca2+]c decrease. All these effects are higher in 2K, which contribute to the impaired relaxation to A23187 in 2K-1C rat arteries.
Collapse
Affiliation(s)
- Ana P S Oliveira
- Laboratório de Farmacología, Faculdade de Ciências Farmaocêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 RibeirBo Preto, SP Brazil
| | | | | | | |
Collapse
|
23
|
Abstract
Nitric oxide (NO) exerts ubiquitous signaling via posttranslational modification of cysteine residues, a reaction termed S-nitrosylation. Important substrates of S-nitrosylation that influence cardiac function include receptors, enzymes, ion channels, transcription factors, and structural proteins. Cardiac ion channels subserving excitation-contraction coupling are potentially regulated by S-nitrosylation. Specificity is achieved in part by spatial colocalization of ion channels with nitric oxide synthases (NOSs), enzymatic sources of NO in biologic systems, and by coupling of NOS activity to localized calcium/second messenger concentrations. Ion channels regulate cardiac excitability and contractility in millisecond timescales, raising the possibility that NO-related species modulate heart function on a beat-to-beat basis. This review focuses on recent advances in understanding of NO regulation of the cardiac action potential and of the calcium release channel ryanodine receptor, which is crucial for the generation of force. S-Nitrosylation signaling is disrupted in pathological states in which the redox state of the cell is dysregulated, including ischemia, heart failure, and atrial fibrillation.
Collapse
Affiliation(s)
- Daniel R. Gonzalez
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Adriana Treuer
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Qi-An Sun
- Department of Medicine, Divisions of Pulmonary and Cardiovascular Medicine, and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| | - Jonathan S. Stamler
- Department of Medicine, Divisions of Pulmonary and Cardiovascular Medicine, and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
24
|
Becher EF, Toblli JE, Castronuovo C, Nolazco C, Rosenfeld C, Grosman H, Vazquez E, Mazza ON. Expression of caveolin-1 in penile cavernosal tissue in a denervated animal model after treatment with sildenafil citrate. J Sex Med 2009; 6:1587-1593. [PMID: 19473465 DOI: 10.1111/j.1743-6109.2009.01239.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Radical pelvic surgery is a major cause of erectile dysfunction due to iatrogenic cavernous nerve damage. Endothelial nitric oxide synthase, which generates nitric oxide (NO) in the cavernosal tissues, localizes to specialized plasma membrane invaginations known as caveolae. Growing evidence suggests that caveolae are major components of signal trafficking and that stimuli that affect the concentration of the main structural protein of caveolae, caveolin-1 influence NO signaling. AIM To evaluate caveolin-1 expression as a marker of cavernous tissue damage and determine the impact of early sildenafil administration on caveolin-1 expression in animal models of partial and total surgical penile denervation. METHODS Thirty-six rats were divided into six groups (N = 6 per group) that received bilateral or unilateral penile denervation or sham surgery, with and without sildenafil 10 mg daily for 7 weeks. MAIN OUTCOME MEASURES Sections were taken from the proximal middle portion of the penis of all animals. Cavernous tissue was delineated by the tunica albuginea, then the extent of immunostaining for the following parameters was quantitated to determine (i) cavernous smooth muscle layer in the cavernous space expressed as the percentage of alpha-smooth muscle actin (alpha-SMA) positive immunostaining per area and (ii) caveolin-1 expressed as a percentage of area. RESULTS A marked decrease in both caveolin-1 and alpha-SMA expression in cavernous smooth muscle tissue and in the endothelium of rats was noted after a bilateral and unilateral neurotomy. Specimens from animals receiving sildenafil exhibited higher mean immunostaining values for both proteins in cavernous tissue. The differences were statistically significant compared with groups receiving the same surgical treatment without sildenafil. CONCLUSION Caveolin-1 and alpha-SMA expression in cavernous tissue is significantly reduced by pelvic nerve injury, and the loss is related to the extent of the neural damage. Early administration of sildenafil elicits caveolin-1 expression, which appears to preserve cavernous tissue.
Collapse
Affiliation(s)
- Edgardo F Becher
- Division of Urology, Hospital de Clínicas "José de San Martín," University of Buenos Aires, Buenos Aires, Argentina;.
| | - Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | - Cynthia Castronuovo
- Division of Urology, Hospital de Clínicas "José de San Martín," University of Buenos Aires, Buenos Aires, Argentina
| | - Carlos Nolazco
- Division of Urology, Hospital de Clínicas "José de San Martín," University of Buenos Aires, Buenos Aires, Argentina
| | - Claudio Rosenfeld
- Division of Urology, Hospital de Clínicas "José de San Martín," University of Buenos Aires, Buenos Aires, Argentina
| | - Halina Grosman
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Elba Vazquez
- Department of Biologic Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina-CONICET
| | - Osvaldo N Mazza
- Division of Urology, Hospital de Clínicas "José de San Martín," University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Kim DD, Kanetaka T, Durán RG, Sánhez FA, Bohlen HG, Durá WN. Independent regulation of periarteriolar and perivenular nitric oxide mechanisms in the in vivo hamster cheek pouch microvasculature. Microcirculation 2009; 16:323-30. [PMID: 19235626 DOI: 10.1080/10739680902734876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We tested the hypothesis that differential stimulation of nitric oxide (NO) production can be induced in pre- and postcapillary segments of the microcirculation in the hamster cheek pouch. MATERIALS AND METHODS We applied acetylcholine (ACh) or platelet-activating factor (PAF) topically and measured perivascular NO concentration ([NO]) with NO-sensitive microelectrodes in arterioles and venules of the hamster cheek pouch. We also measured NO in cultured coronary endothelial cells (CVEC) after ACh or PAF. RESULTS ACh increased periarteriolar [NO] significantly in a dose-dependent manner. ACh at 1 microM increased [NO] from 438.1+/-43.4 nM at baseline to 647.9+/-66.3 nM, while 10 microM of ACh increased [NO] from baseline to 1,035.0+/-59.2 nM (P<0.05). Neither 1 nor 10 microM of ACh changed perivenular [NO] in the hamster cheek pouch. PAF, at 100 nM, increased perivenular [NO] from 326.6+/-50.8 to 622.8+/-41.5 nM. Importantly, 100 nM of PAF did not increase periarteriolar [NO]. PAF increased [NO] from 3.6+/-2.1 to 455.5+/-19.9 in CVEC, while ACh had no effect. CONCLUSIONS We conclude that NO production can be stimulated in a differential manner in pre- and postcapillary segments in the hamster cheek pouch. ACh selectively stimulates the production of NO only in arterioles, while PAF stimulates the production of NO only in venules.
Collapse
Affiliation(s)
- David D Kim
- Program in Vascular Biology, Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07101-1709 USA
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Constitutive nitric oxide synthase activation is a significant route for nitroglycerin-mediated vasodilation. Proc Natl Acad Sci U S A 2008; 105:8569-74. [PMID: 18562300 DOI: 10.1073/pnas.0708615105] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The physiological effects of nitroglycerin as a potent vasodilator have long been documented. However, the molecular mechanisms by which nitroglycerin exerts its biological functions are still a matter of intense debate. Enzymatic pathways converting nitroglycerin to vasoactive compounds have been identified, but none of them seems to fully account for the reported clinical observations. Here, we demonstrate that nitroglycerin triggers constitutive nitric oxide synthase (NOS) activation, which is a major source of NO responsible for low-dose (1-10 nM) nitroglycerin-induced vasorelaxation. Our studies in cell cultures, isolated vessels, and whole animals identified endothelial NOS activation as a fundamental requirement for nitroglycerin action at pharmacologically relevant concentrations in WT animals.
Collapse
|
28
|
|
29
|
González DR, Fernández IC, Ordenes PP, Treuer AV, Eller G, Boric MP. Differential role of S-nitrosylation and the NO-cGMP-PKG pathway in cardiac contractility. Nitric Oxide 2007; 18:157-67. [PMID: 18023373 DOI: 10.1016/j.niox.2007.09.086] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 09/05/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
Abstract
The role of nitric oxide (NO) in cardiac contractility is complex and controversial. Several NO donors have been reported to cause positive or negative inotropism. NO can bind to guanylate cyclase, increasing cGMP production and activating PKG. NO may also directly S-nitrosylate cysteine residues of specific proteins. We used the isolated rat heart preparation to test the hypothesis that the differential inotropic effects depend on the degree of NO production and the signaling recruited. SNAP (S-nitroso-N-acetylpenicillamine), a NO donor, increased contractility at 0.1, 1 and 10 microM. This effect was independent of phospholamban phosphorylation, was not affected by PKA inhibition with H-89 (N-[2((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide), but it was abolished by the radical scavenger Tempol (4-hydroxy-[2,2,4,4]-tetramethyl-piperidine-1-oxyl). However, at 100 microM SNAP reduced contractility, effect reversed to positive inotropism by guanylyl cyclase blockade with ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), and abolished by PKG inhibition with KT5823, but not affected by Tempol. SNAP increased tissue cGMP at 100 microM, but not at lower concentrations. Consistently, a cGMP analog also reduced cardiac contractility. Finally, SNAP at 1 microM increased the level of S-nitrosylation of various cardiac proteins, including the ryanodine receptor. This study demonstrates the biphasic role for NO in cardiac contractility in a given preparation; furthermore, the differential effect is clearly ascribed to the signaling pathways involved. We conclude that although NO is highly diffusible, its output determines the fate of the messenger: low NO concentrations activate redox processes (S-nitrosylation), increasing contractility; while the cGMP-PKG pathway is activated at high NO concentrations, reducing contractility.
Collapse
Affiliation(s)
- Daniel R González
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, PO Box 114D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
30
|
Oess S, Icking A, Fulton D, Govers R, Müller-Esterl W. Subcellular targeting and trafficking of nitric oxide synthases. Biochem J 2006; 396:401-9. [PMID: 16722822 PMCID: PMC1482820 DOI: 10.1042/bj20060321] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unlike most other endogenous messengers that are deposited in vesicles, processed on demand and/or secreted in a regulated fashion, NO (nitric oxide) is a highly active molecule that readily diffuses through cell membranes and thus cannot be stored inside the producing cell. Rather, its signalling capacity must be controlled at the levels of biosynthesis and local availability. The importance of temporal and spatial control of NO production is highlighted by the finding that differential localization of NO synthases in cardiomyocytes translates into distinct effects of NO in the heart. Thus NO synthases belong to the most tightly controlled enzymes, being regulated at transcriptional and translational levels, through co- and post-translational modifications, by substrate availability and not least via specific sorting to subcellular compartments, where they are in close proximity to their target proteins. Considerable efforts have been made to elucidate the molecular mechanisms that underlie the intracellular targeting and trafficking of NO synthases, to ultimately understand the cellular pathways controlling the formation and function of this powerful signalling molecule. In the present review, we discuss the mechanisms and triggers for subcellular routing and dynamic redistribution of NO synthases and the ensuing consequences for NO production and action.
Collapse
Affiliation(s)
- Stefanie Oess
- *Institute of Biochemistry II, University of Frankfurt Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Ann Icking
- *Institute of Biochemistry II, University of Frankfurt Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - David Fulton
- †Vascular Biology Center and Pharmacology, Medical College of Georgia, 1459 Laney Walker Boulevard, Augusta, GA 30912-2500, U.S.A
| | - Roland Govers
- ‡INSERM U568, Faculté de Médecine, 28, avenue de Valombrose, 06107 Nice, France
| | - Werner Müller-Esterl
- *Institute of Biochemistry II, University of Frankfurt Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
31
|
Sánchez FA, Savalia NB, Durán RG, Lal BK, Boric MP, Durán WN. Functional significance of differential eNOS translocation. Am J Physiol Heart Circ Physiol 2006; 291:H1058-64. [PMID: 16679407 PMCID: PMC1629085 DOI: 10.1152/ajpheart.00370.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability. The key differential signaling mechanisms for discriminating between vasodilation and hyperpermeability are unknown. We tested the hypothesis that differential translocation may serve as a regulatory mechanism of eNOS to determine specific vascular responses. We used ECV-304 cells permanently transfected with eNOS-green fluorescent protein (ECVeNOS-GFP) and demonstrated that the agonists activate eNOS and reproduce their characteristic endothelial permeability effects in these cells. We evaluated eNOS localization by lipid raft analysis and immunofluorescence microscopy. After PAF and ACh, eNOS moves away from caveolae. eNOS distributes both in the plasma membrane and Golgi in control cells. ACh (10(-5) M, 10(-4) M) translocated eNOS preferentially to the trans-Golgi network (TGN) and PAF (10(-7) M) preferentially to the cytosol. We suggest that PAF-induced eNOS translocation preferentially to cytosol reflects a differential signaling mechanism related to changes in permeability, whereas ACh-induced eNOS translocation to the TGN is related to vasodilation.
Collapse
Affiliation(s)
- Fabiola A Sánchez
- Program in Vascular Biology, Department of Pharmacology, UMDNJ-New Jersey Medical School, 185 South Orange Ave., MSB H-638, PO Box 1709, Newark, NJ 07101-1709, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Mognetti B, Di Carlo F, Berta GN. Animal models in oral cancer research. Oral Oncol 2006; 42:448-60. [PMID: 16266822 DOI: 10.1016/j.oraloncology.2005.07.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 07/29/2005] [Indexed: 12/11/2022]
Abstract
Biologically and clinically relevant animal models are essential in investigation of the progression of diseases and the elaboration of diagnostic or therapeutic protocols. The several rodent models used for in vivo evaluation for oral cancer employ chemical, transplantation and genetic (knockout and transgenic) induction methods. These models are described together with their advantages and disadvantages. Their optimization and application in future research may improve the early detection and treatment of oral cancer.
Collapse
Affiliation(s)
- B Mognetti
- Pharmacology Unit, Department of Biological and Clinical Science, University of Turin, Ospedale San Luigi, Orbassano (TO), Italy
| | | | | |
Collapse
|
33
|
Aramoto H, Breslin JW, Pappas PJ, Hobson RW, Durán WN. Vascular endothelial growth factor stimulates differential signaling pathways in in vivo microcirculation. Am J Physiol Heart Circ Physiol 2004; 287:H1590-8. [PMID: 15155260 DOI: 10.1152/ajpheart.00767.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vascular endothelial growth factor (VEGF) induces mild vasodilation and strong increases in microvascular permeability. Using intravital microscopy and digital integrated optical intensity image analysis, we tested, in the hamster cheek pouch microcirculation, the hypothesis that differential signaling pathways in arterioles and venules represent an in vivo regulatory mechanism in the control of vascular diameter and permeability. The experimental design involved blocking specific signaling molecules and simultaneously assessing VEGF-induced changes in arteriolar diameter and microvascular transport of FITC-Dextran 150. Inhibition of Akt [indirectly via phosphatidylinositol 3-kinase with LY-294002 or wortmannin] or PKC (with bisindolylmaleimide) reduced VEGF-induced hyperpermeability. However, phosphatidylinositol 3-kinase/Akt inhibition enhanced the early phase and attenuated the late phase of VEGF-induced vasodilation, whereas blocking PKC had no effect. Inhibition of extracellular signal-regulated kinase (ERK)-1/2 (with PD-98059 or AG-126) also reduced VEGF-induced hyperpermeability but did not block VEGF-induced vasodilation. Blockade of endothelial nitric oxide synthase (with N(omega)-monomethyl-l-arginine) inhibited VEGF-induced changes in both permeability and diameter. Furthermore, immunofluorescence studies with human umbilical vein endothelial cells revealed that bisindolylmaleimide, PD-98059, and l-NMMA attenuate VEGF-induced reorganization of vascular endothelial cadherin. Our data demonstrate that 1) endothelial nitric oxide synthase is a common convergence pathway for VEGF-induced changes in arteriolar diameter and microvascular permeability; 2) PKC and ERK-1/2 do not play a major role in VEGF-induced vasodilation in the hamster cheek pouch microcirculation; and 3) Akt, PKC, and ERK-1/2 are elements of the signaling cascade that regulates VEGF-stimulated microvascular hyperpermeability. Our data provide evidence for differential signaling as a regulatory step in VEGF-stimulated microvascular dynamics.
Collapse
Affiliation(s)
- Haruo Aramoto
- Dept. of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 S. Orange Avenue, MSB H-633, PO Box 1709, Newark, NJ 07101-1709, USA
| | | | | | | | | |
Collapse
|