1
|
Liu Y, Li C, Freites JA, Tobias DJ, Voth GA. Quantitative insights into the mechanism of proton conduction and selectivity for the human voltage-gated proton channel Hv1. Proc Natl Acad Sci U S A 2024; 121:e2407479121. [PMID: 39259593 PMCID: PMC11420211 DOI: 10.1073/pnas.2407479121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Human voltage-gated proton (hHv1) channels are crucial for regulating essential biological processes such as immune cell respiratory burst, sperm capacitation, and cancer cell migration. Despite the significant concentration difference between protons and other ions in physiological conditions, hHv1 demonstrates remarkable proton selectivity. Our calculations of single-proton, cation, and anion permeation free energy profiles quantitatively demonstrate that the proton selectivity of the wild-type channel originates from its strong proton affinity via the titration of the key residues D112 and D174, although the channel imposes similar kinetic blocking effects for protons compared to other ions. A two-proton knock-on model is proposed to mathematically explain the electrophysiological measurements of the pH-dependent proton conductance in the conductive state. Moreover, it is shown that the anion selectivity of the D112N mutant channel is tied to impaired proton transport and substantial anion leakage.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| | | | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Shen Y, Luo Y, Liao P, Zuo Y, Jiang R. Role of the Voltage-Gated Proton Channel Hv1 in Nervous Systems. Neurosci Bull 2023; 39:1157-1172. [PMID: 37029856 PMCID: PMC10313628 DOI: 10.1007/s12264-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/20/2023] [Indexed: 04/09/2023] Open
Abstract
Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others. Here, we summarize the molecular properties, distribution, and physiological functions of Hv1 in the peripheral and central nervous systems. We describe the recently discovered functions of Hv1 in various neurological diseases, including brain or spinal cord injury, ischemic stroke, demyelinating diseases, and pain. We also summarize the current advances in the discovery and application of Hv1-targeted small molecules in neurological diseases. Finally, we discuss the current limitations of our understanding of Hv1 and suggest future research directions.
Collapse
Affiliation(s)
- Yu Shen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yuncheng Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
3
|
Chaves G, Jardin C, Derst C, Musset B. Voltage-Gated Proton Channels in the Tree of Life. Biomolecules 2023; 13:1035. [PMID: 37509071 PMCID: PMC10377628 DOI: 10.3390/biom13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
With a single gene encoding HV1 channel, proton channel diversity is particularly low in mammals compared to other members of the superfamily of voltage-gated ion channels. Nonetheless, mammalian HV1 channels are expressed in many different tissues and cell types where they exert various functions. In the first part of this review, we regard novel aspects of the functional expression of HV1 channels in mammals by differentially comparing their involvement in (1) close conjunction with the NADPH oxidase complex responsible for the respiratory burst of phagocytes, and (2) in respiratory burst independent functions such as pH homeostasis or acid extrusion. In the second part, we dissect expression of HV channels within the eukaryotic tree of life, revealing the immense diversity of the channel in other phylae, such as mollusks or dinoflagellates, where several genes encoding HV channels can be found within a single species. In the last part, a comprehensive overview of the biophysical properties of a set of twenty different HV channels characterized electrophysiologically, from Mammalia to unicellular protists, is given.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, The Salzburg Location, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Cozzolino M, Gyöngyösi A, Korpos E, Gogolak P, Naseem MU, Kállai J, Lanyi A, Panyi G. The Voltage-Gated Hv1 H+ Channel Is Expressed in Tumor-Infiltrating Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:ijms24076216. [PMID: 37047188 PMCID: PMC10094655 DOI: 10.3390/ijms24076216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key determinants of the immunosuppressive microenvironment in tumors. As ion channels play key roles in the physiology/pathophysiology of immune cells, we aimed at studying the ion channel repertoire in tumor-derived polymorphonuclear (PMN-MDSC) and monocytic (Mo-MDSC) MDSCs. Subcutaneous tumors in mice were induced by the Lewis lung carcinoma cell line (LLC). The presence of PMN-MDSC (CD11b+/Ly6G+) and Mo-MDSCs (CD11b+/Ly6C+) in the tumor tissue was confirmed using immunofluorescence microscopy and cells were identified as CD11b+/Ly6G+ PMN-MDSCs and CD11b+/Ly6C+/F4/80−/MHCII− Mo-MDSCs using flow cytometry and sorting. The majority of the myeloid cells infiltrating the LLC tumors were PMN-MDSC (~60%) as compared to ~10% being Mo-MDSCs. We showed that PMN- and Mo-MDSCs express the Hv1 H+ channel both at the mRNA and at the protein level and that the biophysical and pharmacological properties of the whole-cell currents recapitulate the hallmarks of Hv1 currents: ~40 mV shift in the activation threshold of the current per unit change in the extracellular pH, high H+ selectivity, and sensitivity to the Hv1 inhibitor ClGBI. As MDSCs exert immunosuppression mainly by producing reactive oxygen species which is coupled to Hv1-mediated H+ currents, Hv1 might be an attractive target for inhibition of MDSCs in tumors.
Collapse
Affiliation(s)
- Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.C.); (E.K.); (M.U.N.)
| | - Adrienn Gyöngyösi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (P.G.); (J.K.); (A.L.)
| | - Eva Korpos
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.C.); (E.K.); (M.U.N.)
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Peter Gogolak
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (P.G.); (J.K.); (A.L.)
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.C.); (E.K.); (M.U.N.)
| | - Judit Kállai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (P.G.); (J.K.); (A.L.)
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Arpad Lanyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (P.G.); (J.K.); (A.L.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.C.); (E.K.); (M.U.N.)
- Correspondence: ; Tel.: +36-52-352201
| |
Collapse
|
5
|
Alvear-Arias JJ, Pena-Pichicoi A, Carrillo C, Fernandez M, Gonzalez T, Garate JA, Gonzalez C. Role of voltage-gated proton channel (Hv1) in cancer biology. Front Pharmacol 2023; 14:1175702. [PMID: 37153807 PMCID: PMC10157179 DOI: 10.3389/fphar.2023.1175702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
The acid-base characteristics of tumor cells and the other elements that compose the tumor microenvironment have been topics of scientific interest in oncological research. There is much evidence confirming that pH conditions are maintained by changes in the patterns of expression of certain proton transporters. In the past decade, the voltage-gated proton channel (Hv1) has been added to this list and is increasingly being recognized as a target with onco-therapeutic potential. The Hv1 channel is key to proton extrusion for maintaining a balanced cytosolic pH. This protein-channel is expressed in a myriad of tissues and cell lineages whose functions vary from producing bioluminescence in dinoflagellates to alkalizing spermatozoa cytoplasm for reproduction, and regulating the respiratory burst for immune system response. It is no wonder that in acidic environments such as the tumor microenvironment, an exacerbated expression and function of this channel has been reported. Indeed, multiple studies have revealed a strong relationship between pH balance, cancer development, and the overexpression of the Hv1 channel, being proposed as a marker for malignancy in cancer. In this review, we present data that supports the idea that the Hv1 channel plays a significant role in cancer by maintaining pH conditions that favor the development of malignancy features in solid tumor models. With the antecedents presented in this bibliographic report, we want to strengthen the idea that the Hv1 proton channel is an excellent therapeutic strategy to counter the development of solid tumors.
Collapse
Affiliation(s)
- Juan J. Alvear-Arias
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Antonio Pena-Pichicoi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian Carrillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernandez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Tania Gonzalez
- National Center for Minimally Invasive Surgery, La Habana, Cuba
| | - Jose A. Garate
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Carlos Gonzalez,
| |
Collapse
|
6
|
Saltarella I, Altamura C, Lamanuzzi A, Apollonio B, Vacca A, Frassanito MA, Desaphy JF. Ion Channels in Multiple Myeloma: Pathogenic Role and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137302. [PMID: 35806308 PMCID: PMC9266328 DOI: 10.3390/ijms23137302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Ion channels are pore-forming proteins that allow ions to flow across plasma membranes and intracellular organelles in both excitable and non-excitable cells. They are involved in the regulation of several biological processes (i.e., proliferation, cell volume and shape, differentiation, migration, and apoptosis). Recently, the aberrant expression of ion channels has emerged as an important step of malignant transformation, tumor progression, and drug resistance, leading to the idea of “onco-channelopathy”. Here, we review the contribution of ion channels and transporters in multiple myeloma (MM), a hematological neoplasia characterized by the expansion of tumor plasma cells (MM cells) in the bone marrow (BM). Deregulation of ion channels sustains MM progression by modulating intracellular pathways that promote MM cells’ survival, proliferation, and drug resistance. Finally, we focus on the promising role of ion channels as therapeutic targets for the treatment of MM patients in a combination strategy with currently used anti-MM drugs to improve their cytotoxic activity and reduce adverse effects.
Collapse
Affiliation(s)
- Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Benedetta Apollonio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| |
Collapse
|
7
|
Coe D, Poobalasingam T, Fu H, Bonacina F, Wang G, Morales V, Moregola A, Mitro N, Cheung KC, Ward EJ, Nadkarni S, Aksentijevic D, Bianchi K, Norata GD, Capasso M, Marelli-Berg FM. Loss of hydrogen voltage-gated channel-1 expression reveals heterogeneous metabolic adaptation to intracellular acidification by T-cells. JCI Insight 2022; 7:147814. [PMID: 35472029 PMCID: PMC9220931 DOI: 10.1172/jci.insight.147814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Hvcn1 is a voltage-gated proton channel, which reduces cytosol acidification and facilitates the production of reactive oxygen species (ROS). The increased expression of this channel in some cancers, has led to proposing Hvcn1 antagonists as potential therapeutics.While its role in most leukocytes has been studied in-depth, the function of Hvcn1 in T-cells remains poorly defined. We show that HVCN1 plays a non-redundant role in protecting naïve T-cells from intracellular acidification during priming. Despite sharing overall functional impairment in vivo and in vitro, Hvcn1-deficient CD4+ and CD8+ T-cells display profound differences during the transition from naïve to primed T-cells, including in the preservation of TCR signaling, cellular division and death. These selective features result, at least in part, from a substantially different metabolic response to intracellular acidification associated with priming. While Hvcn1-deficient naïve CD4+ T-cells reprogram to rescue the glycolytic pathway, naïve CD8+ T-cells, which express high levels of this channel in the mitochondria, respond by metabolically compensating mitochondrial dysfunction, at least in part via AMPK activation.These observations imply heterogeneity between adaptation of naïve CD4+ and CD8+ T-cells to intracellular acidification during activation.
Collapse
Affiliation(s)
- David Coe
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | | | - Hongmei Fu
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Guosu Wang
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Valle Morales
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Annalisa Moregola
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Eleanor J Ward
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Suchita Nadkarni
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Dunja Aksentijevic
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | | | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
8
|
Gating Mechanism of the Voltage-Gated Proton Channel Studied by Molecular Dynamics Simulations. Molecules 2022; 27:molecules27072277. [PMID: 35408673 PMCID: PMC9000549 DOI: 10.3390/molecules27072277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
The voltage-gated proton channel Hv1 has important roles in proton extrusion, pH homeostasis, sperm motility, and cancer progression. The Hv1 channel has also been found to be highly expressed in cell lines and tissue samples from patients with breast cancer. A high-resolution closed-state structure has been reported for the mouse Hv1 chimera channel (mHv1cc), solved by X-ray crystallography, but the open-state structure of Hv1 has not been solved. Since Hv1 is a promising drug target, various groups have proposed open conformations by molecular modeling and simulation studies. However, the gating mechanism and the open-state conformation under the membrane potential are still debate. Here, we present a molecular dynamics study considering membrane potential and pH conditions. The closed-state structure of mHv1cc was used to run molecular dynamics (MD) simulations with respect to electric field and pH conditions in order to investigate the mechanism of proton transfer. We observed a continuous hydrogen bond chain of water molecules called a water-wire to be formed through the channel pore in the channel opening, triggered by downward displacement of the S2 helix and upward movement of the S4 helix relative to other helices. Due to the movement of the S2 and S4 helices, the internal salt bridge network was rearranged, and the hydrophobic gating layers were destroyed. In line with previous experimental and simulation observations, our simulation results led us to propose a new gating mechanism for the Hv1 proton channel, and may provide valuable information for novel drug discovery.
Collapse
|
9
|
Ma J, Gao X, Li Y, DeCoursey TE, Shull GE, Wang HS. The HVCN1 voltage-gated proton channel contributes to pH regulation in canine ventricular myocytes. J Physiol 2022; 600:2089-2103. [PMID: 35244217 PMCID: PMC9058222 DOI: 10.1113/jp282126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
KEY POINTS Intracellular pH (pHi ) regulation is crucial for cardiac function, as acidification depresses contractility and causes arrhythmias. H+ ions are generated in cardiomyocytes from metabolic processes and particularly from CO2 hydration, which has been shown to facilitate CO2 -venting from mitochondria. Currently, the NHE1 Na+ /H+ exchanger is viewed as the dominant H+ -extrusion mechanism in cardiac muscle. We show that the HVCN1 voltage-gated proton channel is present and functional in canine ventricular myocytes, and that HVCN1 and NHE1 both contribute to pHi regulation. HVCN1 provides an energetically-efficient mechanism of H+ -extrusion that would not cause Na+ -loading, which can cause pathology, and that could contribute to transport-mediated CO2 disposal. These results provide a major advance in our understanding of pHi regulation in cardiac muscle. ABSTRACT Regulation of intracellular pH (pHi ) in cardiomyocytes is crucial for cardiac function; however, currently known mechanisms for direct or indirect extrusion of acid from cardiomyocytes seem insufficient for energetically-efficient extrusion of the massive H+ loads generated under in vivo conditions. In cardiomyocytes, voltage-sensitive H+ channel activity mediated by the HVCN1 proton channel would be a highly efficient means of disposing of H+ , while avoiding Na+ -loading, as occurs during direct acid extrusion via Na+ /H+ exchange or indirect acid extrusion via Na+ -HCO3 - cotransport. PCR and immunoblotting demonstrated expression of HVCN1 mRNA and protein in canine heart. Patch clamp analysis of canine ventricular myocytes revealed a voltage-gated H+ current that was highly H+ -selective. The current was blocked by external Zn2+ and the HVCN1 blocker 5-chloro-2-guanidinobenzimidazole (ClGBI). Both the gating and Zn2+ blockade of the current were strongly influenced by the pH gradient across the membrane. All characteristics of the observed current were consistent with the known hallmarks of HVCN1-mediated H+ current. Inhibition of HVCN1 and the NHE1 Na+ /H+ exchanger, singly and in combination, showed that either mechanism is largely sufficient to maintain pHi in beating cardiomyocytes, but that inhibition of both activities causes rapid acidification. These results show that HVCN1 is expressed in canine ventricular myocytes and provides a major H+ -extrusion activity, with a capacity similar to that of NHE1. In the beating heart in vivo, this activity would allow Na+ -independent extrusion of H+ during each action potential and, when functionally coupled with anion transport mechanisms, could facilitate transport-mediated CO2 disposal. Abstract figure legend The HVCN1 proton channel is expressed in canine ventricular myocytes and contributes to H+ extrusion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Xiaoqian Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Yutian Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois, 60612, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| |
Collapse
|
10
|
Perelman SS, James DBA, Boguslawski KM, Nelson CW, Ilmain JK, Zwack EE, Prescott RA, Mohamed A, Tam K, Chan R, Narechania A, Pawline MB, Vozhilla N, Moustafa AM, Kim SY, Dittmann M, Ekiert DC, Bhabha G, Shopsin B, Planet PJ, Koralov SB, Torres VJ. Genetic variation of staphylococcal LukAB toxin determines receptor tropism. Nat Microbiol 2021; 6:731-745. [PMID: 33875847 PMCID: PMC8597016 DOI: 10.1038/s41564-021-00890-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/11/2021] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus has evolved into diverse lineages, known as clonal complexes (CCs), which exhibit differences in the coding sequences of core virulence factors. Whether these alterations affect functionality is poorly understood. Here, we studied the highly polymorphic pore-forming toxin LukAB. We discovered that the LukAB toxin variants produced by S. aureus CC30 and CC45 kill human phagocytes regardless of whether CD11b, the previously established LukAB receptor, is present, and instead target the human hydrogen voltage-gated channel 1 (HVCN1). Biochemical studies identified the domain within human HVCN1 that drives LukAB species specificity, enabling the generation of humanized HVCN1 mice with enhanced susceptibility to CC30 LukAB and to bloodstream infection caused by CC30 S. aureus strains. Together, this work advances our understanding of an important S. aureus toxin and underscores the importance of considering genetic variation in characterizing virulence factors and understanding the tug of war between pathogens and the host.
Collapse
Affiliation(s)
- Sofya S Perelman
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - David B A James
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristina M Boguslawski
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Chase W Nelson
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Juliana K Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Erin E Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel A Prescott
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adil Mohamed
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kayan Tam
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Apurva Narechania
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Miranda B Pawline
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Nikollaq Vozhilla
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ahmed M Moustafa
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sang Y Kim
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Office of Collaborative Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Damian C Ekiert
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Paul J Planet
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
He J, Ritzel RM, Wu J. Functions and Mechanisms of the Voltage-Gated Proton Channel Hv1 in Brain and Spinal Cord Injury. Front Cell Neurosci 2021; 15:662971. [PMID: 33897377 PMCID: PMC8063047 DOI: 10.3389/fncel.2021.662971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
The voltage-gated proton channel Hv1 is a newly discovered ion channel that is highly conserved among species. It is known that Hv1 is not only expressed in peripheral immune cells but also one of the major ion channels expressed in tissue-resident microglia of the central nervous systems (CNS). One key role for Hv1 is its interaction with NADPH oxidase 2 (NOX2) to regulate reactive oxygen species (ROS) and cytosolic pH. Emerging data suggest that excessive ROS production increases and requires proton currents through Hv1 in the injured CNS, and manipulations that ablate Hv1 expression or induce loss of function may provide neuroprotection in CNS injury models including stroke, traumatic brain injury, and spinal cord injury. Recent data demonstrating microglial Hv1-mediated signaling in the pathophysiology of the CNS injury further supports the idea that Hv1 channel may function as a key mechanism in posttraumatic neuroinflammation and neurodegeneration. In this review, we summarize the main findings of Hv1, including its expression pattern, cellular mechanism, role in aging, and animal models of CNS injury and disease pathology. We also discuss the potential of Hv1 as a therapeutic target for CNS injury.
Collapse
Affiliation(s)
- Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
12
|
Murugan M, Zheng J, Wu G, Mogilevsky R, Zheng X, Hu P, Wu J, Wu LJ. The voltage-gated proton channel Hv1 contributes to neuronal injury and motor deficits in a mouse model of spinal cord injury. Mol Brain 2020; 13:143. [PMID: 33081841 PMCID: PMC7574559 DOI: 10.1186/s13041-020-00682-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
Traumatic injury to the spinal cord initiates a series of pathological cellular processes that exacerbate tissue damage at and beyond the original site of injury. This secondary damage includes oxidative stress and inflammatory cascades that can lead to further neuronal loss and motor deficits. Microglial activation is an essential component of these secondary signaling cascades. The voltage-gated proton channel, Hv1, functionally expressed in microglia has been implicated in microglia polarization and oxidative stress in ischemic stroke. Here, we investigate whether Hv1 mediates microglial/macrophage activation and aggravates secondary damage following spinal cord injury (SCI). Following contusion SCI, wild-type (WT) mice showed significant tissue damage, white matter damage and impaired motor recovery. However, mice lacking Hv1 (Hv1−/−) showed significant white matter sparing and improved motor recovery. The improved motor recovery in Hv1−/− mice was associated with decreased interleukin-1β, reactive oxygen/ nitrogen species production and reduced neuronal loss. Further, deficiency of Hv1 directly influenced microglia activation as noted by decrease in microglia numbers, soma size and reduced outward rectifier K+ current density in Hv1−/− mice compared to WT mice at 7 d following SCI. Our results therefore implicate that Hv1 may be a promising potential therapeutic target to alleviate secondary damage following SCI caused by microglia/macrophage activation.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Gongxiong Wu
- One Harvard Street Institute of Health, Brookline, MA, 02446, USA
| | - Rochelle Mogilevsky
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xin Zheng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Peiwen Hu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Junfang Wu
- Department of Anesthesiology, University of Maryland, Baltimore, MD, 21201, USA.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA. .,Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA. .,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA. .,Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
Smith RY, Morgan D, Sharma L, Cherny VV, Tidswell N, Molo MW, DeCoursey TE. Voltage-gated proton channels exist in the plasma membrane of human oocytes. Hum Reprod 2020; 34:1974-1983. [PMID: 31633762 DOI: 10.1093/humrep/dez178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Do human oocytes express voltage-gated proton channels? SUMMARY ANSWER Human oocytes exhibit voltage-gated proton currents. WHAT IS KNOWN ALREADY Voltage-gated proton currents have been reported in human sperm, where they contribute to capacitation and motility. No such studies of human oocytes exist. STUDY DESIGN, SIZE, DURATION Voltage-clamp studies were undertaken using entire oocytes and vesicles derived from oocytes and in excised patches of membrane from oocytes. PARTICIPANTS/MATERIALS, SETTING, METHODS Frozen, thawed human metaphase II oocytes were obtained from material donated to the gamete repository at the Rush Center for Advanced Reproductive Care. Prior to patch clamping, oocytes were warmed and equilibrated. Formation of an electrically tight seal requires exposing bare oolemma. Sections of the zona pellucida (ZP) were removed using a laser, followed by repeated pipetting, to further separate the oocyte from the ZP. Patch-clamp studies were performed using the whole-cell configuration on oocytes or vesicles derived from oocytes, and using inside-out patches of membrane, under conditions optimized to detect voltage-gated proton currents. MAIN RESULTS AND THE ROLE OF CHANCE Proton currents are present at significant levels in human oocytes where they exhibit properties similar to those reported in other human cells, as well as those in heterologous expression systems transfected with the HVCN1 gene that codes for the voltage-gated proton channel. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Human oocytes are large cells, which limits our ability to control the intracellular solution. Subtle effects of cryopreservation by vitrification and subsequent warming on properties of HVCN1, the HVCN1 gene product, cannot be ruled out. WIDER IMPLICATIONS OF THE FINDINGS Possible functions for voltage-gated proton channels in human oocytes may now be contemplated. STUDY FUNDING/COMPETING INTEREST(S) NIH R35GM126902 (TED), Bears Care (DM). No competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- R Ya Smith
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - D Morgan
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| | - L Sharma
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - V V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| | - N Tidswell
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - M W Molo
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - T E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| |
Collapse
|
14
|
The voltage-gated proton channel hHv1 is functionally expressed in human chorion-derived mesenchymal stem cells. Sci Rep 2020; 10:7100. [PMID: 32346069 PMCID: PMC7188850 DOI: 10.1038/s41598-020-63517-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Abstract
The voltage-gated proton channel Hv1 is widely expressed, among others, in immune and cancer cells, it provides an efficient cytosolic H+extrusion mechanism and regulates vital functions such as oxidative burst, migration and proliferation. Here we demonstrate the presence of human Hv1 (hHv1) in the placenta/chorion-derived mesenchymal stem cells (cMSCs) using RT-PCR. The voltage- and pH-dependent gating of the current is similar to that of hHv1 expressed in cell lines and that the current is blocked by 5-chloro-2-guanidinobenzimidazole (ClGBI) and activated by arachidonic acid (AA). Inhibition of hHv1 by ClGBI significantly decreases mineral matrix production of cMSCs induced by conditions mimicking physiological or pathological (inorganic phosphate, Pi) induction of osteogenesis. Wound healing assay and single cell motility analysis show that ClGBI significantly inhibits the migration of cMSCs. Thus, seminal functions of cMSCs are modulated by hHv1 which makes this channel as an attractive target for controlling advantages/disadvantages of MSCs therapy.
Collapse
|
15
|
Mahtani T, Treanor B. Beyond the CRAC: Diversification of ion signaling in B cells. Immunol Rev 2020; 291:104-122. [PMID: 31402507 PMCID: PMC6851625 DOI: 10.1111/imr.12770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Although calcium signaling and the important role of calcium release–activated calcium channels is well recognized in the context of immune cell signaling, there is a vast diversity of ion channels and transporters that regulate the entry of ions beyond calcium, including magnesium, zinc, potassium, sodium, and chloride. These ions play a critical role in numerous metabolic and cellular processes. The importance of ions in human health and disease is illustrated by the identification of primary immunodeficiencies in patients with mutations in genes encoding ion channels and transporters, as well as the immunological defects observed in individuals with nutritional ion deficiencies. Despite progress in identifying the important role of ions in immune cell development and activation, we are still in the early stages of exploring the diversity of ion channels and transporters and mechanistically understanding the role of these ions in immune cell biology. Here, we review the biology of ion signaling in B cells and the identification of critical ion channels and transporters in B‐cell development, activation, and differentiation into effector cells. Elucidating the role of ion channels and transporters in immune cell signaling is critical for expanding the repertoire of potential therapeutics for the treatment of immune disorders. Moreover, increased understanding of the role of ions in immune cell function will enhance our understanding of the potentially serious consequences of ion deficiencies in human health and disease.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bebhinn Treanor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Ratanayotha A, Kawai T, Okamura Y. Real-time functional analysis of Hv1 channel in neutrophils: a new approach from zebrafish model. Am J Physiol Regul Integr Comp Physiol 2019; 316:R819-R831. [PMID: 30943046 DOI: 10.1152/ajpregu.00326.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Voltage-gated proton channel (Hv1) has been studied in various immune cells, including neutrophils. However, most studies have taken an in vitro approach using isolated cells or primary cultured cells of mammals; therefore, limited evidence is available on the function of Hv1 in a physiological context. In this study, we have developed the in vivo system that enables real-time functional analysis of Hv1 using zebrafish embryos (Danio rerio). Hvcn1-deficiency (hvcn1-/-) in zebrafish completely abolished voltage-gated proton current, which is typically observed in wild-type neutrophils. Importantly, hvcn1-deficiency significantly reduced reactive oxygen species production and calcium response of zebrafish neutrophils, comparable to the results observed in mammalian models. These findings verify zebrafish Hv1 (DrHv1) as the primary contributor for native Hv1-derived proton current in neutrophils and suggest the conserved function of Hv1 in the immune cells across vertebrate animals. Taking advantage of Hv1 zebrafish model, we compared real-time behaviors of neutrophils between wild-type and hvcn1-/- zebrafish in response to tissue injury and acute bacterial infection. Notably, we observed a significant increase in the number of phagosomes in hvcn1-/- neutrophils, raising a possible link between Hv1 and phagosomal maturation. Furthermore, survival analysis of zebrafish larvae potentially supports a protective role of Hv1 in the innate immune response against systemic bacterial infection. This study represents the influence of Hv1 on neutrophil behaviors and highlights the benefits of in vivo approach toward the understanding of Hv1 in a physiological context.
Collapse
Affiliation(s)
- Adisorn Ratanayotha
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| |
Collapse
|
17
|
Thomas S, Cherny VV, Morgan D, Artinian LR, Rehder V, Smith SME, DeCoursey TE. Exotic properties of a voltage-gated proton channel from the snail Helisoma trivolvis. J Gen Physiol 2018; 150:835-850. [PMID: 29743301 PMCID: PMC5987876 DOI: 10.1085/jgp.201711967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/27/2018] [Indexed: 12/24/2022] Open
Abstract
Voltage-gated proton channels, HV1, were first reported in Helix aspersa snail neurons. These H+ channels open very rapidly, two to three orders of magnitude faster than mammalian HV1. Here we identify an HV1 gene in the snail Helisoma trivolvis and verify protein level expression by Western blotting of H. trivolvis brain lysate. Expressed in mammalian cells, HtHV1 currents in most respects resemble those described in other snails, including rapid activation, 476 times faster than hHV1 (human) at pHo 7, between 50 and 90 mV. In contrast to most HV1, activation of HtHV1 is exponential, suggesting first-order kinetics. However, the large gating charge of ∼5.5 e0 suggests that HtHV1 functions as a dimer, evidently with highly cooperative gating. HtHV1 opening is exquisitely sensitive to pHo, whereas closing is nearly independent of pHo Zn2+ and Cd2+ inhibit HtHV1 currents in the micromolar range, slowing activation, shifting the proton conductance-voltage (gH-V) relationship to more positive potentials, and lowering the maximum conductance. This is consistent with HtHV1 possessing three of the four amino acids that coordinate Zn2+ in mammalian HV1. All known HV1 exhibit ΔpH-dependent gating that results in a 40-mV shift of the gH-V relationship for a unit change in either pHo or pHi This property is crucial for all the functions of HV1 in many species and numerous human cells. The HtHV1 channel exhibits normal or supernormal pHo dependence, but weak pHi dependence. Under favorable conditions, this might result in the HtHV1 channel conducting inward currents and perhaps mediating a proton action potential. The anomalous ΔpH-dependent gating of HtHV1 channels suggests a structural basis for this important property, which is further explored in this issue (Cherny et al. 2018. J. Gen. Physiol. https://doi.org/10.1085/jgp.201711968).
Collapse
Affiliation(s)
- Sarah Thomas
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | | | - Deri Morgan
- Department of Physiology & Biophysics, Rush University, Chicago, IL
| | | | - Vincent Rehder
- Department of Biology, Georgia State University, Atlanta, GA
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | | |
Collapse
|
18
|
Ratanayotha A, Kawai T, Higashijima SI, Okamura Y. Molecular and functional characterization of the voltage-gated proton channel in zebrafish neutrophils. Physiol Rep 2018; 5:5/15/e13345. [PMID: 28774948 PMCID: PMC5555884 DOI: 10.14814/phy2.13345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022] Open
Abstract
Voltage‐gated proton channels (Hv1/VSOP) are expressed in various cells types, including phagocytes, and are involved in diverse physiological processes. Although hvcn1, the gene encoding Hv1, has been identified across a wide range of species, most of the knowledge about its physiological function and expression profile is limited to mammals. In this study, we investigated the basic properties of DrHv1, the Hv1 ortholog in zebrafish (Danio rerio) which is an excellent animal model owing to the transparency, as well as its functional expression in native cells. Electrophysiological analysis using a heterologous expression system confirmed the properties of a voltage‐gated proton channel are conserved in DrHv1 with differences in threshold and activation kinetics as compared to mouse (Mus musculus) Hv1 (mHv1). RT‐PCR analysis revealed that hvcn1 is expressed in zebrafish neutrophils, as is the case in mammals. Subsequent electrophysiological analysis confirmed the functional expression of DrHv1 in zebrafish neutrophils, which suggests Hv1 function in phagocytes is conserved among vertebrates. We also found that DrHv1 is comparatively resistant to extracellular Zn2+, which is a potent inhibitor of mammalian Hv1, and this phenomenon appears to reflect variation in the Zn2+‐coordinating residue (histidine) within the extracellular linker region in mammalian Hv1. Notably, the serum Zn2+ concentration is much higher in zebrafish than in mouse, raising the possibility that Zn2+ sensitivity was acquired in accordance with a change in the serum Zn2+ concentration. This study highlights the biological variation and importance of Hv1 in different animal species.
Collapse
Affiliation(s)
- Adisorn Ratanayotha
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shin-Ichi Higashijima
- Laboratory of Behavioral Neurobiology, Department of Biodesign Research, Okazaki Institute for Integrative Bioscience, Okazaki, Aichi, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
19
|
Cherny VV, Morgan D, Thomas S, Smith SME, DeCoursey TE. Histidine 168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hH V1. J Gen Physiol 2018; 150:851-862. [PMID: 29743300 PMCID: PMC5987877 DOI: 10.1085/jgp.201711968] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/27/2018] [Indexed: 01/28/2023] Open
Abstract
Voltage-gated proton channels open appropriately in myriad physiological situations because their gating is powerfully modulated by both pHo and pHi. Cherny et al. serendipitously identify a histidine at the inner end of the S3 helix that is required for the response to pHi. We recently identified a voltage-gated proton channel gene in the snail Helisoma trivolvis, HtHV1, and determined its electrophysiological properties. Consistent with early studies of proton currents in snail neurons, HtHV1 opens rapidly, but it unexpectedly exhibits uniquely defective sensitivity to intracellular pH (pHi). The H+ conductance (gH)-V relationship in the voltage-gated proton channel (HV1) from other species shifts 40 mV when either pHi or pHo (extracellular pH) is changed by 1 unit. This property, called ΔpH-dependent gating, is crucial to the functions of HV1 in many species and in numerous human tissues. The HtHV1 channel exhibits normal pHo dependence but anomalously weak pHi dependence. In this study, we show that a single point mutation in human hHV1—changing His168 to Gln168, the corresponding residue in HtHV1—compromises the pHi dependence of gating in the human channel so that it recapitulates the HtHV1 response. This location was previously identified as a contributor to the rapid gating kinetics of HV1 in Strongylocentrotus purpuratus. His168 mutation in human HV1 accelerates activation but accounts for only a fraction of the species difference. H168Q, H168S, or H168T mutants exhibit normal pHo dependence, but changing pHi shifts the gH-V relationship on average by <20 mV/unit. Thus, His168 is critical to pHi sensing in hHV1. His168, located at the inner end of the pore on the S3 transmembrane helix, is the first residue identified in HV1 that significantly impairs pH sensing when mutated. Because pHo dependence remains intact, the selective erosion of pHi dependence supports the idea that there are distinct internal and external pH sensors. Although His168 may itself be a pHi sensor, the converse mutation, Q229H, does not normalize the pHi sensitivity of the HtHV1 channel. We hypothesize that the imidazole group of His168 interacts with nearby Phe165 or other parts of hHV1 to transduce pHi into shifts of voltage-dependent gating.
Collapse
Affiliation(s)
| | - Deri Morgan
- Department of Physiology & Biophysics, Rush University, Chicago, IL
| | - Sarah Thomas
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | | |
Collapse
|
20
|
The function of TRP channels in neutrophil granulocytes. Pflugers Arch 2018; 470:1017-1033. [PMID: 29717355 DOI: 10.1007/s00424-018-2146-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
Neutrophil granulocytes are exposed to widely varying microenvironmental conditions when pursuing their physiological or pathophysiological functions such as fighting invading bacteria or infiltrating cancer tissue. Examples for harsh environmental challenges include among others mechanical shear stress during the recruitment from the vasculature or the hypoxic and acidotic conditions within the tumor microenvironment. Chemokine gradients, reactive oxygen species, pressure, matrix elasticity, and temperature can be added to the list of potential challenges. Transient receptor potential (TRP) channels serve as cellular sensors since they respond to many of the abovementioned environmental stimuli. The present review investigates the role of TRP channels in neutrophil granulocytes and their role in regulating and adapting neutrophil function to microenvironmental cues. Following a brief description of neutrophil functions, we provide an overview of the electrophysiological characterization of neutrophilic ion channels. We then summarize the function of individual TRP channels in neutrophil granulocytes with a focus on TRPC6 and TRPM2 channels. We close the review by discussing the impact of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) on neutrophil granulocytes. Since neutrophil infiltration into PDAC tissue contributes to disease progression, we propose neutrophilic TRP channel blockade as a potential therapeutic option.
Collapse
|
21
|
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, H V1. J R Soc Interface 2018; 15:20180108. [PMID: 29643227 PMCID: PMC5938591 DOI: 10.1098/rsif.2018.0108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Asuaje A, Martín P, Enrique N, Zegarra LAD, Smaldini P, Docena G, Milesi V. Diphenhydramine inhibits voltage-gated proton channels (Hv1) and induces acidification in leukemic Jurkat T cells- New insights into the pro-apoptotic effects of antihistaminic drugs. Channels (Austin) 2018; 12:58-64. [PMID: 28514187 PMCID: PMC5972794 DOI: 10.1080/19336950.2017.1331799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022] Open
Abstract
An established characteristic of neoplastic cells is their metabolic reprogramming, known as the Warburg effect, with greater reliance on energetically less efficient pathways (such as glycolysis and pentose phosphate shunt) compared with oxidative phosphorylation. This results in an overproduction of acidic species that must be extruded to maintain intracellular homeostasis. We recently described that blocking the proton currents in leukemic cells mediated by Hv1 ion channels triggers a marked intracellular acidification and apoptosis induction. Moreover, histamine H1-receptor antagonists were found to induce apoptosis in tumoral cells but the mechanism is still unclear. By using Jurkat T cells, we now show how diphenhydramine inhibits Hv1 mediated currents, inducing a drop in intracellular pH and cellular viability. This provides evidence of a new target structure responsible of the known pro-apoptotic action of antihistaminic drugs.
Collapse
Affiliation(s)
- Agustín Asuaje
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET—Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET—Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET—Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Leandro Agustín Díaz Zegarra
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET—Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Paola Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET—Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET—Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Verónica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET—Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
23
|
DeCoursey TE. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase. Immunol Rev 2017; 273:194-218. [PMID: 27558336 DOI: 10.1111/imr.12437] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage-gated proton channels (HV 1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV 1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987-1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV 1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV 1, and HV 1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV 1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase - an industrial strength producer of reactive oxygen species (ROS) - to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL, USA
| |
Collapse
|
24
|
Asuaje A, Smaldini P, Martín P, Enrique N, Orlowski A, Aiello EA, Gonzalez León C, Docena G, Milesi V. The inhibition of voltage-gated H + channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis. Pflugers Arch 2016; 469:251-261. [PMID: 28013412 DOI: 10.1007/s00424-016-1928-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/26/2022]
Abstract
Cellular energetic deregulation is widely known to produce an overproduction of acidic species in cancer cells. This acid overload must be counterbalanced with a high rate of H+ extrusion to maintain cell viability. In this sense, many H+ transporters have been reported to be crucial for cell survival and proposed as antineoplastic target. By the way, voltage-gated proton channels (Hv1) mediate highly selective H+ outward currents, capable to compensate acid burden in brief periods of time. This structure is canonically described acting as NADPH oxidase counterbalance in reactive oxygen species production. In this work, we show, for the first time in a oncohematologic cell line, that inhibition of Hv1 channels by Zn2+ and the more selective blocker 2-(6-chloro-1H-benzimidazol-2-yl)guanidine (ClGBI) progressively decreases intracellular pH in resting conditions. This acidification is evident minutes after blockade and progresses under prolonged exposure (2, 17, and 48 h), and we firstly demonstrate that this is followed by cell death through apoptosis (annexin V binding). Altogether, these results contribute strong evidence that this channel might be a new therapeutic target in cancer.
Collapse
Affiliation(s)
- Agustín Asuaje
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Paola Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares (CIC, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares (CIC, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Carlos Gonzalez León
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile, Pasaje Harrington 287, Playa Ancha, Valparaíso, Chile
| | - Guillermo Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Verónica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| |
Collapse
|
25
|
Fernández A, Pupo A, Mena-Ulecia K, Gonzalez C. Pharmacological Modulation of Proton Channel Hv1 in Cancer Therapy: Future Perspectives. Mol Pharmacol 2016; 90:385-402. [PMID: 27260771 DOI: 10.1124/mol.116.103804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022] Open
Abstract
The pharmacological modulation of the immunosuppressive tumor microenvironment has emerged as a relevant component for cancer therapy. Several approaches aiming to deplete innate and adaptive suppressive populations, to circumvent the impairment in antigen presentation, and to ultimately increase the frequency of activated tumor-specific T cells are currently being explored. In this review, we address the potentiality of targeting the voltage-gated proton channel, Hv1, as a novel strategy to modulate the tumor microenvironment. The function of Hv1 in immune cells such as macrophages, neutrophils, dendritic cells, and T cells has been associated with the maintenance of NADPH oxidase activity and the generation of reactive oxygen species, which are required for the host defense against pathogens. We discuss evidence suggesting that the Hv1 proton channel could also be important for the function of these cells within the tumor microenvironment. Furthermore, as summarized here, tumor cells express Hv1 as a primary mechanism to extrude the increased amount of protons generated metabolically, thus maintaining physiologic values for the intracellular pH. Therefore, because this channel might be relevant for both tumor cells and immune cells supporting tumor growth, the pharmacological inhibition of Hv1 could be an innovative approach for cancer therapy. With that focus, we analyzed the available compounds that inhibit Hv1, highlighted the need to develop better drugs suitable for patients, and commented on the future perspectives of targeting Hv1 in the context of cancer therapy.
Collapse
Affiliation(s)
- Audry Fernández
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Amaury Pupo
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Karel Mena-Ulecia
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Carlos Gonzalez
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| |
Collapse
|
26
|
Morera FJ, Saravia J, Pontigo JP, Vargas-Chacoff L, Contreras GF, Pupo A, Lorenzo Y, Castillo K, Tilegenova C, Cuello LG, Gonzalez C. Voltage-dependent BK and Hv1 channels expressed in non-excitable tissues: New therapeutics opportunities as targets in human diseases. Pharmacol Res 2015; 101:56-64. [PMID: 26305431 DOI: 10.1016/j.phrs.2015.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022]
Abstract
Voltage-gated ion channels are the molecular determinants of cellular excitability. This group of ion channels is one of the most important pharmacological targets in excitable tissues such as nervous system, cardiac and skeletal muscle. Moreover, voltage-gated ion channels are expressed in non-excitable cells, where they mediate key cellular functions through intracellular biochemical mechanisms rather than rapid electrical signaling. This review aims at illustrating the pharmacological impact of these ion channels, highlighting in particular the structural details and physiological functions of two of them - the high conductance voltage- and Ca(2+)-gated K(+) (BK) channels and voltage-gated proton (Hv1) channels- in non-excitable cells. BK channels have been implicated in a variety of physiological processes ranging from regulation of smooth muscle tone to modulation of hormone and neurotransmitter release. Interestingly, BK channels are also involved in modulating K(+) transport in the mammalian kidney and colon epithelium with a potential role in the hyperkalemic phenotype observed in patients with familial hyperkalemic hypertension type 2, and in the pathophysiology of hypertension. In addition, BK channels are responsible for resting and stimulated Ca(2+)-activated K(+) secretion in the distal colon. Hv1 channels have been detected in many cell types, including macrophages, blood cells, lung epithelia, skeletal muscle and microglia. These channels have a central role in the phagocytic system. In macrophages, Hv1 channels participate in the generation of reactive oxygen species in the respiratory burst during the process of phagocytosis.
Collapse
Affiliation(s)
- Francisco J Morera
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - Julia Saravia
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Pablo Pontigo
- Institute of Marine Sciences and Limnology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Institute of Marine Sciences and Limnology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Gustavo F Contreras
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Amaury Pupo
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Yenisleidy Lorenzo
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Karen Castillo
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Cholpon Tilegenova
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubcock, TX, USA
| | - Luis G Cuello
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubcock, TX, USA.
| | - Carlos Gonzalez
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
27
|
Castillo K, Pupo A, Baez-Nieto D, Contreras GF, Morera FJ, Neely A, Latorre R, Gonzalez C. Voltage-gated proton (H(v)1) channels, a singular voltage sensing domain. FEBS Lett 2015; 589:3471-8. [PMID: 26296320 DOI: 10.1016/j.febslet.2015.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/28/2022]
Abstract
The main role of voltage-gated proton channels (Hv1) is to extrude protons from the intracellular milieu when, mediated by different cellular processes, the H(+) concentration increases. Hv1 are exquisitely selective for protons and their structure is homologous to the voltage sensing domain (VSD) of other voltage-gated ion channels like sodium, potassium, and calcium channels. In clear contrast to the classical voltage-dependent channels, Hv1 lacks a pore domain and thus permeation necessarily occurs through the voltage sensing domain. Hv1 channels are activated by depolarizing voltages, and increases in internal proton concentration. It has been proposed that local conformational changes of the transmembrane segment S4, driven by depolarization, trigger the molecular rearrangements that open Hv1. However, it is still unclear how the electromechanical coupling is achieved between the VSD and the potential pore, allowing the proton flux from the intracellular to the extracellular side. Here we provide a revised view of voltage activation in Hv1 channels, offering a comparative scenario with other voltage sensing channels domains.
Collapse
Affiliation(s)
- Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - David Baez-Nieto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Gustavo F Contreras
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Francisco J Morera
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360103, Chile.
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360103, Chile.
| |
Collapse
|
28
|
Seredenina T, Demaurex N, Krause KH. Voltage-Gated Proton Channels as Novel Drug Targets: From NADPH Oxidase Regulation to Sperm Biology. Antioxid Redox Signal 2015; 23:490-513. [PMID: 24483328 PMCID: PMC4543398 DOI: 10.1089/ars.2013.5806] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Voltage-gated proton channels are increasingly implicated in cellular proton homeostasis. Proton currents were originally identified in snail neurons less than 40 years ago, and subsequently shown to play an important auxiliary role in the functioning of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Molecular identification of voltage-gated proton channels was achieved less than 10 years ago. Interestingly, so far, only one gene coding for voltage-gated proton channels has been identified, namely hydrogen voltage-gated channel 1 (HVCN1), which codes for the HV1 proton channel protein. Over the last years, the first picture of putative physiological functions of HV1 has been emerging. RECENT ADVANCES The best-studied role remains charge and pH compensation during the respiratory burst of the phagocyte NADPH oxidase (NOX). Strong evidence for a role of HV1 is also emerging in sperm biology, but the relationship with the sperm NOX5 remains unclear. Probably in many instances, HV1 functions independently of NOX: for example in snail neurons, basophils, osteoclasts, and cancer cells. CRITICAL ISSUES Generally, ion channels are good drug targets; however, this feature has so far not been exploited for HV1, and hitherto no inhibitors compatible with clinical use exist. However, there are emerging indications for HV1 inhibitors, ranging from diseases with a strong activation of the phagocyte NOX (e.g., stroke) to infertility, osteoporosis, and cancer. FUTURE DIRECTIONS Clinically useful HV1-active drugs should be developed and might become interesting drugs of the future.
Collapse
Affiliation(s)
- Tamara Seredenina
- 1 Department of Pathology and Immunology, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland
| | - Nicolas Demaurex
- 2 Department of Cellular Physiology and Metabolism, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland
| | - Karl-Heinz Krause
- 1 Department of Pathology and Immunology, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland .,3 Department of Genetic and Laboratory Medicine, Geneva University Hospitals , Centre Médical Universitaire, Geneva, Switzerland
| |
Collapse
|
29
|
Hv1 proton channel opening is preceded by a voltage-independent transition. Biophys J 2015; 107:1564-72. [PMID: 25296308 DOI: 10.1016/j.bpj.2014.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 01/31/2023] Open
Abstract
The voltage sensing domain (VSD) of the voltage-gated proton channel Hv1 mediates a H(+)-selective conductance that is coordinately controlled by the membrane potential (V) and the transmembrane pH gradient (ΔpH). Allosteric control of Hv1 channel opening by ΔpH (V-ΔpH coupling) is manifested by a characteristic shift of approximately 40 mV per ΔpH unit in the activation. To further understand the mechanism for V-ΔpH coupling in Hv1, H(+) current kinetics of activation and deactivation in excised membrane patches were analyzed as a function of the membrane potential and the pH in the intracellular side of the membrane (pHI). In this study, it is shown for the first time to our knowledge that the opening of Hv1 is preceded by a voltage-independent transition. A similar process has been proposed to constitute the step involving coupling between the voltage-sensing and pore domains in tetrameric voltage-gated channels. However, for Hv1, the VSD functions as both the voltage sensor and the conduction pathway, suggesting that the voltage independent transition is intrinsic to the voltage-sensing domain. Therefore, this article proposes that the underlying mechanism for the activation of Hv1 involves a process similar to VSD relaxation, a process previously described for voltage-gated channels and voltage-controlled enzymes. Finally, deactivation seemingly occurs as a strictly voltage dependent process, implying that the kinetic event leading to opening of the proton conductance are different than those involved in the closing. Thus, from this work it is proposed that Hv1 activity displays hysteresis.
Collapse
|
30
|
Abstract
The main properties of the voltage-gated proton channel (HV1) are described in this review, along with what is known about how the channel protein structure accomplishes its functions. Just as protons are unique among ions, proton channels are unique among ion channels. Their four transmembrane helices sense voltage and the pH gradient and conduct protons exclusively. Selectivity is achieved by the unique ability of H3O(+) to protonate an Asp-Arg salt bridge. Pathognomonic sensitivity of gating to the pH gradient ensures HV1 channel opening only when acid extrusion will result, which is crucial to most of its biological functions. An exception occurs in dinoflagellates in which influx of H(+) through HV1 triggers the bioluminescent flash. Pharmacological interventions that promise to ameliorate cancer, asthma, brain damage in ischemic stroke, Alzheimer's disease, autoimmune diseases, and numerous other conditions await future progress.
Collapse
Affiliation(s)
- Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison, Chicago IL, 60612 USA
| |
Collapse
|
31
|
Capasso M. Regulation of immune responses by proton channels. Immunology 2014; 143:131-7. [PMID: 24890927 DOI: 10.1111/imm.12326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 12/27/2022] Open
Abstract
The identification of the HVCN1 gene, encoding the only mammalian voltage-gated proton channel, prompted a number of studies on how proton channels affect cellular functions. As their expression is mainly restricted to immune cells, it is not surprising that proton channels regulate different aspects of immune responses. In this review, I will examine the current knowledge of voltage-gated proton channels in both innate and adaptive responses and assess the remaining outstanding questions.
Collapse
Affiliation(s)
- Melania Capasso
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
32
|
DeCoursey TE, Hosler J. Philosophy of voltage-gated proton channels. J R Soc Interface 2014; 11:20130799. [PMID: 24352668 PMCID: PMC3899857 DOI: 10.1098/rsif.2013.0799] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/22/2013] [Indexed: 02/02/2023] Open
Abstract
In this review, voltage-gated proton channels are considered from a mainly teleological perspective. Why do proton channels exist? What good are they? Why did they go to such lengths to develop several unique hallmark properties such as extreme selectivity and ΔpH-dependent gating? Why is their current so minuscule? How do they manage to be so selective? What is the basis for our belief that they conduct H(+) and not OH(-)? Why do they exist in many species as dimers when the monomeric form seems to work quite well? It is hoped that pondering these questions will provide an introduction to these channels and a way to logically organize their peculiar properties as well as to understand how they are able to carry out some of their better-established biological functions.
Collapse
Affiliation(s)
- Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| | - Jonathan Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
33
|
Abstract
Microglia are brain resident immune cells and their functions are implicated in both the normal and diseased brain. Microglia express a plethora of ion channels, including K(+) channels, Na(+) channels, TRP channels, Cl(-) channels, and proton channels. These ion channels play critical roles in microglial proliferation, migration, and production/release of cytokines, chemokines, and neurotoxic or neurotrophic substances. Among microglial ion channels, the voltage-gated proton channel HV1 is a recently cloned ion channel that rapidly removes protons from depolarized cytoplasm and is highly expressed in the immune system. However, the function of microglial HV1 in the brain is poorly understood. Recent studies showed that HV1 is selectively expressed in microglia but not neurons in the brain. At the cellular level, microglial HV1 regulates intracellular pH and aids in NADPH oxidase-dependent generation of reactive oxygen species. In a mouse model of middle cerebral artery occlusion, microglial HV1 contributes to neuronal cell death and ischemic brain damage. This review discusses the discovery, properties, regulation, and pathophysiology of microglial HV1 proton channel in the brain.
Collapse
Affiliation(s)
- Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
34
|
Microglial voltage-gated proton channel Hv1 in ischemic stroke. Transl Stroke Res 2013; 5:99-108. [PMID: 24323712 DOI: 10.1007/s12975-013-0289-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022]
Abstract
Microglia, resident immune cells in the brain, contribute both to the damage and resolution of ischemic stroke. However, the mechanisms of microglia's detrimental or beneficial role in the disease are poorly understood. The voltage-gated proton channel, Hv1, rapidly removes protons from depolarized cytoplasm, and is highly expressed in the immune system. In the brain, Hv1 is selectively and functionally expressed in microglia but not neurons. Although the physiological function of microglial Hv1 is still not clear, Hv1 is one of major ion channels expressed in resting microglia. Under pathological conditions, microglial Hv1 is required for NADPH oxidase (NOX)-dependent generation of reactive oxygen species (ROS) by providing charge compensation for exported electrons and relieving intracellular acidosis. In a mouse model of cerebral middle artery occlusion, Hv1 knockout mice are protected from ischemic damage, showing reduced NOX-dependent ROS production, microglial activation and neuronal cell death. Therefore, microglial Hv1 aids in NOX-dependent ROS generation, which subsequently induces neuronal cell death and a significant fraction of brain damage after ischemic stroke. These studies illuminate a critical role of microglial Hv1 in ischemic brain injury, providing a rationale for Hv1 as a potential therapeutic target for the treatment of ischemic stroke. The current understanding of Hv1 in ischemic injury through NOX-dependent ROS production may serve as a common model to reveal the deleterious role of microglia in neurological diseases other than ischemic stroke, such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, and neuropathic pain.
Collapse
|
35
|
Capasso M. Proton channels in non-phagocytic cells of the immune system. ACTA ACUST UNITED AC 2013; 2:65-73. [PMID: 23710424 DOI: 10.1002/wmts.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proton channels are expressed in all cells of the immune system to various degrees. While their function in phagocytic cells, immune cells that engulf bacteria and cell debris for clearance, has been the object of extensive research, the function of proton channels in non-phagocytic cells has remained more elusive until recently. Further studies have been helped by the discovery of the gene coding for the mammalian proton channel, HVCN1, which has prompted a new wave of research in this area. Recent findings show how proton channels regulate cell function in non-phagocytic cells of the immune system such as basophils and lymphocytes.
Collapse
Affiliation(s)
- Melania Capasso
- Barts Cancer Institute, Centre for Cancer & Inflammation, ohn Vane Science Centre, Charterhouse Square, London, United Kingdom
| |
Collapse
|
36
|
Abstract
H(v) channels (voltage-gated proton channels) are expressed in blood cells, microglia and some types of epithelial cells. In neutrophils H(v) channels regulate the production of reactive oxygen species through regulation of membrane potential and intracellular pH. H(v) channels have also been suggested to play a role in sperm physiology in the human. However, the functions of the Hv channel at the whole-body level are not fully understood. In the present paper we show that Hvcn1 (voltage-gated hydrogen channel 1)-knockout mice show splenomegaly, autoantibodies and nephritis, that are reminiscent of human autoimmune diseases phenotypes. The number of activated T-cells was larger in Hvcn1-deficient mice than in the wild-type mice. Upon viral infection this was remarkably enhanced in Hvcn1-deficient mice. The production of superoxide anion in T-cells upon stimulation with PMA was significantly attenuated in the Hvcn1-deficient mice. These results suggest that H(v) channels regulate T-cell homoeostasis in vivo.
Collapse
|
37
|
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev 2013; 93:599-652. [PMID: 23589829 PMCID: PMC3677779 DOI: 10.1152/physrev.00011.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Dept. of Molecular Biophysics and Physiology, Rush University Medical Center HOS-036, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
38
|
Meech R. A contribution to the history of the proton channel. WILEY INTERDISCIPLINARY REVIEWS. MEMBRANE TRANSPORT AND SIGNALING 2012; 1:533-557. [PMID: 23365805 PMCID: PMC3556693 DOI: 10.1002/wmts.59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The low numbers of hydrogen ions in physiological solutions encouraged the assumption that H(+) currents flowing through conductive pathways would be so small as to be unmeasurable even if theoretically possible. Evidence for an H(+)-based action potential in the luminescent dinoflagellate Noctiluca and for an H(+)-conducting channel created by the secretions of the bacterium Bacillus brevis, did little to alter this perception. The clear demonstration of H(+) conduction in molluscan neurons might have provided the breakthrough but the new pathway was without an easily demonstrable function, and escaped general attention. Indeed the extreme measures that must be taken to successfully isolate H(+) currents meant that it was some years before proton channels were identified in mammalian cells. However, with the general availability of patch-clamp techniques and evidence for an important role in mammalian neutrophils, the stage was set for a series of structure/function studies with the potential to make the proton channel the best understood channel of all. In addition, widespread genomic searches have established that proton channels play important roles in processes ranging from fertilization of the human ovum to the progression of breast cancer. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Collapse
Affiliation(s)
- Robert Meech
- School of Physiology & Pharmacology, University of Bristol, Medical Sciences Building, University WalkBristol BS8 1TD, UK
| |
Collapse
|
39
|
Abstract
Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely, the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance approximately 10(3) times smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn(2+) (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B-lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H(+) for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
40
|
Chokshi R, Matsushita M, Kozak JA. Sensitivity of TRPM7 channels to Mg2+ characterized in cell-free patches of Jurkat T lymphocytes. Am J Physiol Cell Physiol 2012; 302:C1642-51. [PMID: 22460708 DOI: 10.1152/ajpcell.00037.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) channels were originally identified electrophysiologically when depletion of cytosolic Mg(2+) resulted in the gradual development of an outwardly rectifying cation current. Conversely, inclusion of millimolar Mg(2+) in internal solutions prevented activation of these channels in whole cell patch clamp. We recently demonstrated that the Jurkat T-cell whole cell TRPM7 channels are inhibited by internal Mg(2+) in a biphasic manner, displaying high [IC(50(1)) ≈ 10 μM] and low [IC(50(2)) ≈ 165 μM] affinity inhibitor sites. In that study, we had characterized the dependence of the maximum cell current density on intracellular Mg(2+) concentration. To characterize Mg(2+) inhibition in Jurkat T cells in more detail and compare it to whole cell results, we recorded single TRPM7 channels in cell-free membrane patches and investigated the dependence of their activity on Mg(2+) added on the cytoplasmic side. We systematically varied free Mg(2+) from 265 nM to 407 μM and evaluated the extent of channel inhibition in inside-out patch for 58 patches. We found that the TRPM7 channel shows two conductance levels of 39.0 pS (γ(1)) and 18.6 pS (γ(2)) and that both are reversibly inhibited by internal Mg(2+). The 39.0-pS conductance is the dominant state of the channel, observed most frequently in this recording configuration. The dose-response relation in inside-out patches shows a steeper Mg(2+) dependence than in whole cell, yielding IC(50(1)) of 25.1 μM and IC(50(2)) of 91.2 μM.. Single-channel analysis shows that the primary effect of Mg(2+) in multichannel patches is a reversible reduction of the number of conducting channels (N(o)). Additionally, at high Mg(2+) concentrations, we observed a saturating 20% reduction in unitary conductance (γ(1)). Thus Mg(2+) inhibition in whole cell can be explained by a drop in individual participating channels and a modest reduction in conductance. We also found that TRPM7 channels in some patches were not sensitive to this ion at submaximal Mg(2+) concentrations. Interestingly, Mg(2+) inhibition showed the property of use dependence: with repeated applications, Mg(2+) effect became gradually more potent, which suggests that Mg(2+) sensitivity of the channel is a dynamic characteristic that depends on other membrane factors.
Collapse
Affiliation(s)
- Rikki Chokshi
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
41
|
Abstract
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
Collapse
|
42
|
Gallas S, Sinno MH, Boukhettala N, Coëffier M, Dourmap N, Gourcerol G, Ducrotté P, Déchelotte P, Leroi AM, Fetissov SO. Gastric electrical stimulation increases ghrelin production and inhibits catecholaminergic brainstem neurons in rats. Eur J Neurosci 2010; 33:276-84. [PMID: 21059113 DOI: 10.1111/j.1460-9568.2010.07474.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gastric electrical stimulation (GES) is a new therapeutic option for functional dyspepsia and gastroparesis. In addition to ameliorating nausea and vomiting, GES results in improved appetite which is not always associated with accelerated gastric emptying. To explore the central and peripheral factors underlying GES-associated improvement of appetite we developed a GES model in anaesthetized Wistar rats. During laparotomy, two electrodes were implanted into the stomach and high-frequency low-energy GES (14 Hz, 5 mA) was applied. The effects of 1 h GES were compared with sham stimulation. After GES, c-Fos expression was increased in the mucosal and submucosal layers of the stimulated area (174%). In the stomach, GES increased ghrelin mRNA (178%) and doubled the number of ghrelin-positive cells, resulting in elevated plasma levels of ghrelin (2.3 ± 0.2 vs. 1.6 ± 0.2 ng/mL). In the arcuate nucleus of the hypothalamus, GES increased c-Fos (277%) and agouti-related protein (AgRP) mRNA expression (135%). GES reduced the number of c-Fos-positive cells throughout the nucleus of the solitary tract (between 93 and 75% from rostral to caudal levels) including catecholaminergic neurons (81% at caudal level). Gastric emptying, plasma glucose and heart rate variability were not affected by GES. This study shows that GES may improve appetite via stimulation of main orexigenic pathways, including ghrelin production in the stomach and AgRP in the hypothalamus, as well as by reducing the activity of catecholaminergic brainstem neurons.
Collapse
Affiliation(s)
- Syrine Gallas
- Digestive System & Nutrition Laboratory (ADEN EA4311), Institute of Medical Research and Innovation, Rouen University & Hospital, IFR23, Rouen 76183, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Capasso M, DeCoursey TE, Dyer MJS. pH regulation and beyond: unanticipated functions for the voltage-gated proton channel, HVCN1. Trends Cell Biol 2010; 21:20-8. [PMID: 20961760 DOI: 10.1016/j.tcb.2010.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/02/2010] [Accepted: 09/13/2010] [Indexed: 12/22/2022]
Abstract
Electrophysiological studies have implicated voltage-gated proton channels in several specific cellular contexts. In neutrophils, they mediate charge compensation that is associated with the oxidative burst of phagocytosis. Molecular characterization of the hydrogen voltage-gated channel 1 (HVCN1) has enabled identification of unanticipated and diverse functions: HVCN1 not only modulates signaling from the B-cell receptor following B-cell activation and histamine release from basophils, but also mediates pH-dependent activation of spermatozoa, as well as acid secretion by tracheal epithelium. The importance of HVCN1 in pH regulation during phagocytosis was established by surprising evidence that indicated its first-responder role. In this review, we discuss recent findings from a functional perspective, and the potential of HVCN1 as a therapeutic target for autoimmune and other diseases.
Collapse
Affiliation(s)
- Melania Capasso
- Centre for Cancer & Inflammation, Institute of Cancer, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom.
| | | | | |
Collapse
|
44
|
Demaurex N, El Chemaly A. Physiological roles of voltage-gated proton channels in leukocytes. J Physiol 2010; 588:4659-65. [PMID: 20693294 DOI: 10.1113/jphysiol.2010.194225] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels are designed to extrude large quantities of cytosolic acid in response to depolarising voltages. The discovery of the Hvcn1 gene and the generation of mice lacking the channel molecule have confirmed several postulated functions of proton channels in leukocytes. In neutrophils and macrophages, proton channels are required for high-level production of superoxide anions by the phagocytic NADPH oxidase, a bactericidal enzyme essential for host defence against infections. In B lymphocytes, proton channels are required for low-level production of superoxide that boosts the production of antibodies. Proton channels sustain the activity of immune cells in several ways. By extruding excess cytosolic acid, proton channels prevent deleterious acidification of the cytosol and at the same time deliver protons required for chemical conversion of the superoxide secreted by membrane oxidases. By moving positive charges across membranes, proton channels limit the depolarisation of the plasma membrane, promoting the electrogenic activity of NADPH oxidases and the entry of calcium ions into cells. Acid extrusion by proton channels is not restricted to leukocytes but also mediates the intracellular alkalinisation required for the activation of spermatozoids. Proton channels are therefore multitalented channels that control male fertility as well as our innate and adaptive immunity.
Collapse
Affiliation(s)
- Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
45
|
Capasso M, Bhamrah MK, Henley T, Boyd RS, Langlais C, Cain K, Dinsdale D, Pulford K, Khan M, Musset B, Cherny VV, Morgan D, Gascoyne RD, Vigorito E, DeCoursey TE, MacLennan ICM, Dyer MJS. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat Immunol 2010; 11:265-72. [PMID: 20139987 PMCID: PMC3030552 DOI: 10.1038/ni.1843] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/12/2010] [Indexed: 11/09/2022]
Abstract
Voltage-gated proton currents regulate generation of reactive oxygen species (ROS) in phagocytic cells. In B cells, stimulation of the B cell antigen receptor (BCR) results in the production of ROS that participate in B cell activation, but the involvement of proton channels is unknown. We report here that the voltage-gated proton channel HVCN1 associated with the BCR complex and was internalized together with the BCR after activation. BCR-induced generation of ROS was lower in HVCN1-deficient B cells, which resulted in attenuated BCR signaling via impaired BCR-dependent oxidation of the tyrosine phosphatase SHP-1. This resulted in less activation of the kinases Syk and Akt, impaired mitochondrial respiration and glycolysis and diminished antibody responses in vivo. Our findings identify unanticipated functions for proton channels in B cells and demonstrate the importance of ROS in BCR signaling and downstream metabolism.
Collapse
Affiliation(s)
- Melania Capasso
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
DeCoursey TE. Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes. Physiology (Bethesda) 2010; 25:27-40. [PMID: 20134026 PMCID: PMC3023998 DOI: 10.1152/physiol.00039.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The voltage-gated proton channel bears surprising resemblance to the voltage-sensing domain (S1-S4) of other voltage-gated ion channels but is a dimer with two conduction pathways. The proton channel seems designed for efficient proton extrusion from cells. In phagocytes, it facilitates the production of reactive oxygen species by NADPH oxidase.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
47
|
Nielsen CH. Biomimetic membranes for sensor and separation applications. Anal Bioanal Chem 2009; 395:697-718. [DOI: 10.1007/s00216-009-2960-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 01/04/2023]
|
48
|
Voltage-gated proton channel is expressed on phagosomes. Biochem Biophys Res Commun 2009; 382:274-9. [DOI: 10.1016/j.bbrc.2009.03.036] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/04/2009] [Indexed: 01/11/2023]
|
49
|
Musset B, Cherny VV, Morgan D, DeCoursey TE. The intimate and mysterious relationship between proton channels and NADPH oxidase. FEBS Lett 2009; 583:7-12. [PMID: 19084015 PMCID: PMC2630394 DOI: 10.1016/j.febslet.2008.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Voltage gated proton channels and NADPH oxidase function cooperatively in phagocytes during the respiratory burst, when reactive oxygen species are produced to kill microbial invaders. Although these molecules are distinct entities, with no proven physical interaction, their presence and activity in many cells appears to be coordinated. We describe these interactions and discuss several types of mechanisms that might explain them.
Collapse
Affiliation(s)
- Boris Musset
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
This review is an attempt to identify and place in context some of the many questions about voltage-gated proton channels that remain unsolved. As the gene was identified only 2 years ago, the situation is very different than in fields where the gene has been known for decades. For the proton channel, most of the obvious and less obvious structure-function questions are still wide open. Remarkably, the proton channel protein strongly resembles the voltage-sensing domain of many voltage-gated ion channels, and thus offers a novel approach to study gating mechanisms. Another surprise is that the proton channel appears to function as a dimer, with two separate conduction pathways. A number of significant biological questions remain in dispute, unanswered, or in some cases, not yet asked. This latter deficit is ascribable to the intrinsic difficulty in evaluating the importance of one component in a complex system, and in addition, to the lack, until recently, of a means of performing an unambiguous lesion experiment, that is, of selectively eliminating the molecule in question. We still lack a potent, selective pharmacological inhibitor, but the identification of the gene has allowed the development of powerful new tools including proton channel antibodies, siRNA and knockout mice.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, IL 60612, USA.
| |
Collapse
|