1
|
Brennan S, Chen S, Makwana S, Esposito S, McGuinness LR, Alnaimi AIM, Sims MW, Patel M, Aziz Q, Ojake L, Roberts JA, Sharma P, Lodwick D, Tinker A, Barrett-Jolley R, Dart C, Rainbow RD. Identification and characterisation of functional K ir6.1-containing ATP-sensitive potassium channels in the cardiac ventricular sarcolemmal membrane. Br J Pharmacol 2024; 181:3380-3400. [PMID: 38763521 DOI: 10.1111/bph.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND AND PURPOSE The canonical Kir6.2/SUR2A ventricular KATP channel is highly ATP-sensitive and remains closed under normal physiological conditions. These channels activate only when prolonged metabolic compromise causes significant ATP depletion and then shortens the action potential to reduce contractile activity. Pharmacological activation of KATP channels is cardioprotective, but physiologically, it is difficult to understand how these channels protect the heart if they only open under extreme metabolic stress. The presence of a second KATP channel population could help explain this. Here, we characterise the biophysical and pharmacological behaviours of a constitutively active Kir6.1-containing KATP channel in ventricular cardiomyocytes. EXPERIMENTAL APPROACH Patch-clamp recordings from rat ventricular myocytes in combination with well-defined pharmacological modulators was used to characterise these newly identified K+ channels. Action potential recording, calcium (Fluo-4) fluorescence measurements and video edge detection of contractile function were used to assess functional consequences of channel modulation. KEY RESULTS Our data show a ventricular K+ conductance whose biophysical characteristics and response to pharmacological modulation were consistent with Kir6.1-containing channels. These Kir6.1-containing channels lack the ATP-sensitivity of the canonical channels and are constitutively active. CONCLUSION AND IMPLICATIONS We conclude there are two functionally distinct populations of ventricular KATP channels: constitutively active Kir6.1-containing channels that play an important role in fine-tuning the action potential and Kir6.2/SUR2A channels that activate with prolonged ischaemia to impart late-stage protection against catastrophic ATP depletion. Further research is required to determine whether Kir6.1 is an overlooked target in Comprehensive in vitro Proarrhythmia Assay (CiPA) cardiac safety screens.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Shen Chen
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Samir Makwana
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Simona Esposito
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Lauren R McGuinness
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Abrar I M Alnaimi
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- Department of Cardiac Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Manish Patel
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Qadeer Aziz
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Leona Ojake
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - James A Roberts
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - David Lodwick
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Andrew Tinker
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, UK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, University of Liverpool, Liverpool, UK
| | - Richard D Rainbow
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Brennan S, Alnaimi AIM, McGuinness LR, Abdelaziz MIM, McKenzie RA, Draycott S, Whitmore J, Sharma P, Rainbow RD. Slowly activating voltage-gated potassium current potentiation by ML277 is a novel cardioprotective intervention. PNAS NEXUS 2023; 2:pgad156. [PMID: 37234204 PMCID: PMC10208113 DOI: 10.1093/pnasnexus/pgad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
Cardiovascular disease is thought to account for nearly a third of deaths worldwide, with ischemic heart disease, including acute coronary syndromes such as myocardial infarction, accounting for 1.7 million deaths per year. There is a clear need for interventions to impart cardioprotection against ischemia. Here, we show that the slowly activating voltage-gated potassium current (IKs) potentiator ML277 imparts cardioprotection against ischemia in cellular and whole-heart models by modulating the action potential duration. In three different metabolic inhibition and reperfusion models, an increased contractile recovery and cell survival was observed with ML277, indicative of protection. Finally, ML277 reduced infarct size in an ex vivo Langendorff coronary ligation model, including if only applied on reperfusion. In conclusion, potentiation of the IKs with ML277 imparted a cardioprotection that was equivalent to the protection reported previously by ischemic preconditioning. These data suggest that IKs potentiation may be therapeutically useful in acute coronary syndromes.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Abrar I M Alnaimi
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Lauren R McGuinness
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Muhammad I M Abdelaziz
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Robert A McKenzie
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, LE1 7RH, L7 8TX, UK
| | - Sophie Draycott
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, LE1 7RH, L7 8TX, UK
| | - Jacob Whitmore
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Richard D Rainbow
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| |
Collapse
|
3
|
Kir6.2-D323 and SUR2A-Q1336: an intersubunit interaction pairing for allosteric information transfer in the KATP channel complex. Biochem J 2020; 477:671-689. [PMID: 31957808 PMCID: PMC7015859 DOI: 10.1042/bcj20190753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
ATP-sensitive potassium (KATP) channels are widely expressed and play key roles in many tissues by coupling metabolic state to membrane excitability. The SUR subunits confer drug and enhanced nucleotide sensitivity to the pore-forming Kir6 subunit, and so information transfer between the subunits must occur. In our previous study, we identified an electrostatic interaction between Kir6 and SUR2 subunits that was key for allosteric information transfer between the regulatory and pore-forming subunit. In this study, we demonstrate a second putative interaction between Kir6.2-D323 and SUR2A-Q1336 using patch clamp electrophysiological recording, where charge swap mutation of the residues on either side of the potential interaction compromise normal channel function. The Kir6.2-D323K mutation gave rise to a constitutively active, glibenclamide and ATP-insensitive KATP complex, further confirming the importance of information transfer between the Kir6 and SUR2 subunits. Sensitivity to modulators was restored when Kir6.2-D323K was co-expressed with a reciprocal charge swap mutant, SUR-Q1336E. Importantly, equivalent interactions have been identified in both Kir6.1 and Kir6.2 suggesting this is a second important interaction between Kir6 and the proximal C terminus of SUR.
Collapse
|
4
|
Brennan S, Chen S, Makwana S, Martin CA, Sims MW, Alonazi ASA, Willets JM, Squire IB, Rainbow RD. A novel form of glycolytic metabolism-dependent cardioprotection revealed by PKCα and β inhibition. J Physiol 2019; 597:4481-4501. [PMID: 31241168 DOI: 10.1113/jp278332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/24/2019] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS Acute hyperglycaemia at the time of a heart attack worsens the outcome for the patient. Acute hyperglycaemia is not limited to diabetic patients and can be due to a stress response in non-diabetics. This study suggests that the damaging cardiac effects of hyperglycaemia can be reversed by selective PKC inhibition. If PKCα/β isoforms are inhibited, then high glucose itself becomes protective against ischaemic damage. Selective PKC inhibition may therefore be a useful therapeutic tool to limit the damage that can occur during a heart attack by stress-induced hyperglycaemia. ABSTRACT Hyperglycaemia has a powerful association with adverse prognosis for patients with acute coronary syndromes (ACS). Previous work shows that high glucose prevents ischaemic preconditioning and causes electrical and mechanical disruption via protein kinase C α/β (PKCα/β) activation. The present study aimed to: (i) determine whether the adverse clinical association of hyperglycaemia in ACS can be replicated in preclinical cellular models of ACS and (ii) determine the importance of PKCα/β activation to the deleterious effect of glucose. Freshly isolated rat, guinea pig or rabbit cardiomyocytes were exposed to simulated ischaemia after incubation in the presence of normal (5 mm) or high (20 mm) glucose in the absence or presence of small molecule or tat-peptide-linked PKCαβ inhibitors. In each of the four conditions, the following hallmarks of cardioprotection were recorded using electrophysiology or fluorescence imaging: cardiomyocyte contraction and survival, action potential stability and time to failure, intracellular calcium and ATP, mitochondrial depolarization, ischaemia-sensitive leak current, and time to Kir 6.2 opening. High glucose alone resulted in decreased cardiomyocyte contraction and survival; however, it also imparted cardioprotection in the presence of PKCα/β inhibitors. This cardioprotective phenotype displayed improvements in all of the measured parameters and decreased myocardium damage during whole heart coronary ligation experiments. High glucose is deleterious to cellular and whole-heart models of simulated ischaemia, in keeping with the clinical association of hyperglycaemia with an adverse outcome in ACS. PKCαβ inhibition revealed high glucose to show a cardioprotective phenotype in this setting. The results of the present study suggest the potential for the therapeutic application of PKCαβ inhibition in ACS associated with hyperglycaemia.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Shen Chen
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Samir Makwana
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Christopher A Martin
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Asma S A Alonazi
- Department of Molecular and Cellular Biology, University of Leicester, Leicester, UK
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Jonathan M Willets
- Department of Molecular and Cellular Biology, University of Leicester, Leicester, UK
| | - Iain B Squire
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
- Leicester NIHR Biomedical Research Centre, Glenfield General Hospital, Leicester, UK
| | - Richard D Rainbow
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Ischemia Reperfusion Injury Produces, and Ischemic Preconditioning Prevents, Rat Cardiac Fibroblast Differentiation: Role of K ATP Channels. J Cardiovasc Dev Dis 2019; 6:jcdd6020022. [PMID: 31167469 PMCID: PMC6617075 DOI: 10.3390/jcdd6020022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023] Open
Abstract
Ischemic preconditioning (IPC) and activation of ATP-sensitive potassium channels (KATP) protect cardiac myocytes from ischemia reperfusion (IR) injury. We investigated the influence of IR injury, IPC and KATP in isolated rat cardiac fibroblasts. Hearts were removed under isoflurane anesthesia. IR was simulated in vitro by application and removal of paraffin oil over pelleted cells. Ischemia (30, 60 and 120 min) followed by 60 min reperfusion resulted in significant differentiation of fibroblasts into myofibroblasts in culture (mean % fibroblasts ± SEM in IR vs. time control: 12 ± 1% vs. 63 ± 2%, 30 min ischemia; 15 ± 3% vs. 71 ± 4%, 60 min ischemia; 8 ± 1% vs. 55 ± 2%, 120 min ischemia). IPC (15 min ischemia, 30 min reperfusion) significantly attenuated IR-induced fibroblast differentiation (52 ± 3%) compared to 60 min IR. IPC was mimicked by opening KATP with pinacidil (50 μM; 43 ± 6%) and by selectively opening mitochondrial KATP (mKATP) with diazoxide (100 μM; 53 ± 3%). Furthermore, IPC was attenuated by inhibiting KATP with glibenclamide (10 μM; 23 ± 5%) and by selectively blocking mKATP with 5-hydroxydecanoate (100 μM; 22 ± 9%). These results suggest that (a) IR injury evoked cardiac fibroblast to myofibroblast differentiation, (b) IPC attenuated IR-induced fibroblast differentiation, (c) KATP were involved in IPC and (d) this protection involved selective activation of mKATP.
Collapse
|
6
|
Zhang X, Zhang X, Xiong Y, Xu C, Liu X, Lin J, Mu G, Xu S, Liu W. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis. Int J Mol Med 2016; 38:758-66. [PMID: 27430376 PMCID: PMC4990318 DOI: 10.3892/ijmm.2016.2664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 06/21/2016] [Indexed: 02/01/2023] Open
Abstract
The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Xiaohua Zhang
- Cardiac Signaling Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yiqun Xiong
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Chaoying Xu
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Xinliang Liu
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Jian Lin
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Guiping Mu
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Shaogang Xu
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Wenhe Liu
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
7
|
Sulfonylurea receptors regulate the channel pore in ATP-sensitive potassium channels via an intersubunit salt bridge. Biochem J 2015; 464:343-54. [PMID: 25236767 DOI: 10.1042/bj20140273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ATP-sensitive potassium channels play key roles in many tissues by coupling metabolic status to membrane potential. In contrast with other potassium channels, the pore-forming Kir6 subunits must co-assemble in hetero-octameric complexes with ATP-binding cassette (ABC) family sulfonylurea receptor (SUR) subunits to facilitate cell surface expression. Binding of nucleotides and drugs to SUR regulates channel gating but how these responses are communicated within the complex has remained elusive to date. We have now identified an electrostatic interaction, forming part of a functional interface between the cytoplasmic nucleotide-binding domain-2 of SUR2 subunits and the distal C-terminus of Kir6 polypeptides that determines channel response to nucleotide, potassium channel opener and antagonist. Mutation of participating residues disrupted physical interaction and regulation of expressed channels, properties that were restored in paired charge-swap mutants. Equivalent interactions were identified in Kir6.1- and Kir6.2-containing channels suggesting a conserved mechanism of allosteric regulation.
Collapse
|
8
|
Brennan S, Jackson R, Patel M, Sims MW, Hudman D, Norman RI, Lodwick D, Rainbow RD. Early opening of sarcolemmal ATP-sensitive potassium channels is not a key step in PKC-mediated cardioprotection. J Mol Cell Cardiol 2014; 79:42-53. [PMID: 25450614 DOI: 10.1016/j.yjmcc.2014.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/29/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022]
Abstract
ATP-sensitive potassium (KATP) channels are abundantly expressed in the myocardium. Although a definitive role for the channel remains elusive they have been implicated in the phenomenon of cardioprotection, but the precise mechanism is unclear. We set out to test the hypothesis that the channel protects by opening early during ischemia to shorten action potential duration and reduce electrical excitability thus sparing intracellular ATP. This could reduce reperfusion injury by improving calcium homeostasis. Using a combination of contractile function analysis, calcium fluorescence imaging and patch clamp electrophysiology in cardiomyocytes isolated from adult male Wistar rats, we demonstrated that the opening of sarcolemmal KATP channels was markedly delayed after cardioprotective treatments: ischemic preconditioning, adenosine and PMA. This was due to the preservation of intracellular ATP for longer during simulated ischemia therefore maintaining sarcolemmal KATP channels in the closed state for longer. As the simulated ischemia progressed, KATP channels opened to cause contractile, calcium transient and action potential failure; however there was no indication of any channel activity early during simulated ischemia to impart an energy sparing hyperpolarization or action potential shortening. We present compelling evidence to demonstrate that an early opening of sarcolemmal KATP channels during simulated ischemia is not part of the protective mechanism imparted by ischemic preconditioning or other PKC-dependent cardioprotective stimuli. On the contrary, channel opening was actually delayed. We conclude that sarcolemmal KATP channel opening is a consequence of ATP depletion, not a primary mechanism of ATP preservation in these cells.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK
| | - Robert Jackson
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK
| | - Manish Patel
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK
| | - Diane Hudman
- Department of Medical and Social Care Education, Maurice Shock Medical Sciences Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Robert I Norman
- Department of Medical and Social Care Education, Maurice Shock Medical Sciences Building, University of Leicester, Leicester, LE1 9HN, UK
| | - David Lodwick
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK
| | - Richard D Rainbow
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK.
| |
Collapse
|
9
|
Combined calcium fluorescence recording with ionic currents in contractile cells. Methods Mol Biol 2012; 937:149-60. [PMID: 23007584 DOI: 10.1007/978-1-62703-086-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Measurement of calcium (Ca(2+)) fluorescence in conjunction with ionic currents is of particular importance in contractile cells, such as cardiac ventricular myocytes and vascular smooth muscle. The interplay between membrane potential and intracellular calcium ([Ca(2+)](i)) is fundamental to the regulation of contractile function and cell signalling. Here the loading of cells either with an esterified fluorescence indicator prior to patch clamp recording, or dye loading via the patch pipette with "free" indicator, is described to allow simultaneous measurement of fluorescence and electrical signals.
Collapse
|
10
|
Sellitto AD, Al-Dadah AS, Schuessler RB, Nichols CG, Lawton JS. An open sarcolemmal adenosine triphosphate-sensitive potassium channel is necessary for detrimental myocyte swelling secondary to stress. Circulation 2011; 124:S70-4. [PMID: 21911821 DOI: 10.1161/circulationaha.110.012039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stress (exposure to hyperkalemic cardioplegia, metabolic inhibition, or osmotic) results in significant myocyte swelling and reduced contractility. In contrast to wild-type mice, these detrimental consequences are not observed in mice lacking the Kir6.2 subunit of the sarcolemmal ATP-sensitive potassium (sK(ATP)) channel after exposure to hyperkalemic cardioplegia. The hypothesis for this study was that an open sK(ATP) channel (Kir6.2 and SUR2A subunits) is necessary for detrimental myocyte swelling to occur in response to stress. METHODS AND RESULTS To investigate the role of the sK(ATP) channel in stress-induced myocyte swelling, high-dose pharmacological sK(ATP) channel blockade and genetic deletion (knockout of Kir6.2 subunit) were used. Myocytes were exposed sequentially to Tyrode control (20 minutes), test (stress) solution (20 minutes), and Tyrode control (20 minutes). To evaluate pharmacological channel blockade, myocytes were exposed to hyperkalemic cardioplegia (stress) with and without a K(ATP) channel blocker. To evaluate the effects of genetic deletion, wild-type and sK(ATP) knockout [Kir6.2(-/-)] myocytes were exposed to metabolic inhibition (stress). Myocyte volume was recorded using image-grabbing software. Detrimental myocyte swelling was prevented by high-dose sK(ATP) channel blockade (glibenclamide or HMR 1098) but not mitochondrial K(ATP) channel blockade (5-hydroxydecanoate) during exposure to hyperkalemic cardioplegia. Genetic deletion of the sK(ATP) channel prevented significant myocyte swelling in response to metabolic inhibition. CONCLUSIONS K(ATP) channel openers prevent detrimental myocyte swelling and reduce contractility in response to stress through an unknown mechanism. Paradoxically, the present data support a role for sK(ATP) channel activation in myocyte volume derangement in response to stress.
Collapse
Affiliation(s)
- Angela D Sellitto
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
11
|
Juggi JS, Hoteit LJ, Babiker FA, Joseph S, Mustafa AS. Protective role of normothermic, hyperthermic and estrogen preconditioning and pretreatment on tumour necrosis factor-alpha-induced damage. Exp Clin Cardiol 2011; 16:e5-e10. [PMID: 21747660 PMCID: PMC3126688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Tumour necrosis factor-alpha (TNF-α) has been reported to play an important role in ischemia reperfusion injury and ischemic preconditioning (IPC). However, its role is not completely understood. Recently, normothermic IPC (NIPC), hyperthermic IPC (HIPC), preconditioning (PC) with 17-beta estradiol (estrogen, E2) and E2 pretreatment were proven to be effective in reducing ischemia reperfusion injury. OBJECTIVES To investigate the detrimental effects of TNF-α on the heart, and the protective effects of NIPC, HIPC, E2 PC and pretreatment on TNF-α-induced injury. METHODS A Langendorff-perfused rat heart model was used for the present study. Hearts isolated from male rats were studied under eight different conditions (n=5 each): negative control; control treated with TNF-α without any further treatment; NIPC (preconditioned at 37°C); HIPC (preconditioned at 42°C); E2 PC; E2 pretreatment; normal, untreated hearts plus E2; or pretreated hearts perfused for 60 min with TNF-α and an E2-containing buffer. RESULTS TNF-α treatment resulted in deterioration of heart function. HIPC offered better protection by significantly increasing left ventricular developed pressure (Pmax) and coronary flow (P<0.01), and by decreasing left ventricular end-diastolic pressure (P<0.01). NIPC or pretreatment of the hearts with E2 normalized left ventricular end-diastolic pressure, coronary flow and coronary vascular resistance (P<0.001); however, it did not normalize Pmax. The combination of E2 and HIPC did not show any synergetic protection; however, the addition of HIPC normalized Pmax (P<0.001). CONCLUSIONS TNF-α treatment resulted in deterioration of heart hemodynamics, which were reversed by HIPC, E2 PC and pretreatment. The combination of these treatments did not add to the previously observed protection compared with when they were used individually.
Collapse
Affiliation(s)
| | | | | | | | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
12
|
Sellitto AD, Maffit SK, Al-Dadah AS, Zhang H, Schuessler RB, Nichols CG, Lawton JS. Diazoxide maintenance of myocyte volume and contractility during stress: evidence for a non-sarcolemmal K(ATP) channel location. J Thorac Cardiovasc Surg 2010; 140:1153-9. [PMID: 20804990 DOI: 10.1016/j.jtcvs.2010.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Animal and human myocytes demonstrate significant swelling and reduced contractility during exposure to stress (metabolic inhibition, hyposmotic stress, or hyperkalemic cardioplegia), and these detrimental consequences may be inhibited by the addition of diazoxide (adenosine triphosphate-sensitive potassium channel opener) via an unknown mechanism. Both SUR1 and SUR2A subunits have been localized to the heart, and mouse sarcolemmal adenosine triphosphate-sensitive potassium channels are composed of SUR2A/Kir6.2 subunits in the ventricle and SUR1/Kir6.2 subunits in the atria. This study was performed to localize the mechanism of diazoxide by direct probing of sarcolemmal adenosine triphosphate-sensitive potassium channel current and by genetic deletion of channel subunits. METHODS Sarcolemmal adenosine triphosphate-sensitive potassium channel current was recorded in isolated wild-type ventricular mouse myocytes during exposure to Tyrode's solution, Tyrode's + 100 μmol/L diazoxide, hyperkalemic cardioplegia, cardioplegia + diazoxide, cardioplegia + 100 μmol/L pinacidil, or metabolic inhibition using whole-cell voltage clamp (N = 7-12 cells per group). Ventricular myocyte volume was measured from SUR1(-/-) and wild-type mice during exposure to control solution, hyperkalemic cardioplegia, or cardioplegia + 100 μmol/L diazoxide (N = 7-10 cells per group). RESULTS Diazoxide did not increase sarcolemmal adenosine triphosphate-sensitive potassium current in wild-type myocytes, although they demonstrated significant swelling during exposure to cardioplegia that was prevented by diazoxide. SUR1(-/-) myocytes also demonstrated significant swelling during exposure to cardioplegia, but this was not altered by diazoxide. CONCLUSIONS Diazoxide does not open the ventricular sarcolemmal adenosine triphosphate-sensitive potassium channel but provides volume homeostasis via an SUR1-dependent pathway in mouse ventricular myocytes, supporting a mechanism of action distinct from sarcolemmal adenosine triphosphate-sensitive potassium channel activation.
Collapse
Affiliation(s)
- Angela D Sellitto
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Cardiac sarcolemmal K(ATP) channels: Latest twists in a questing tale! J Mol Cell Cardiol 2009; 48:71-5. [PMID: 19607836 DOI: 10.1016/j.yjmcc.2009.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/23/2009] [Accepted: 07/06/2009] [Indexed: 11/24/2022]
Abstract
Reconstitution of K(ATP) channel activity from coexpression of members of the pore-forming inward rectifier gene family (Kir6.1, KCNJ8, and Kir6.2 KCNJ11) with sulfonylurea receptors (SUR1, ABCC8, and SUR2, ABCC9) of the ABCC protein sub-family, has led to the elucidation of many details of channel gating and pore properties, as well as the essential roles of Kir6.2 and SUR2 subunits in generating cardiac ventricular K(ATP). However, despite this extensive body of knowledge, there remain significant holes in our understanding of the physiological role of the cardiac K(ATP) channel, and surprising new findings keep emerging. Recent findings from genetically modified animals include the apparent insensitivity of cardiac sarcolemmal channels to nucleotide levels, and unenvisioned complexities of the subunit make-up of the cardiac channels. This topical review focuses on these new findings and considers their implications.
Collapse
|
14
|
Dupuis JP, Revilloud J, Moreau CJ, Vivaudou M. Three C-terminal residues from the sulphonylurea receptor contribute to the functional coupling between the K(ATP) channel subunits SUR2A and Kir6.2. J Physiol 2008; 586:3075-85. [PMID: 18450778 DOI: 10.1113/jphysiol.2008.152744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cardiac ATP-sensitive potassium (K(ATP)) channels are metabolic sensors formed by the association of the inward rectifier potassium channel Kir6.2 and the sulphonylurea receptor SUR2A. SUR2A adjusts channel gating as a function of intracellular ATP and ADP and is the target of pharmaceutical openers and blockers which, respectively, up- and down-regulate Kir6.2. In an effort to understand how effector binding to SUR2A translates into Kir6.2 gating modulation, we examined the role of a 65-residue SUR2A fragment linking transmembrane domain TMD2 and nucleotide-binding domain NBD2 that has been shown to interact with Kir6.2. This fragment of SUR2A was replaced by the equivalent residues of its close homologue, the multidrug resistance protein MRP1. The chimeric construct was expressed in Xenopus oocytes and characterized using the patch-clamp technique. We found that activation by MgADP and synthetic openers was greatly attenuated although apparent affinities were unchanged. Further chimeragenetic and mutagenetic studies showed that mutation of three residues, E1305, I1310 and L1313 (rat numbering), was sufficient to confer this defective phenotype. The same mutations had no effects on channel block by the sulphonylurea glibenclamide or by ATP, suggesting a role for these residues in activatory--but not inhibitory--transduction processes. These results indicate that, within the K(ATP) channel complex, the proximal C-terminal of SUR2A is a critical link between ligand binding to SUR2A and Kir6.2 up-regulation.
Collapse
Affiliation(s)
- Julien P Dupuis
- Institut de Biologie Structurale, UMR5075 CEA-CNRS-University J. Fourier, 41, rue Jules Horowitz, 38027 Grenoble, France
| | | | | | | |
Collapse
|
15
|
KR-31762, a novel KATP channel opener, exerts cardioprotective effects by opening SarcKATP channels in rat models of ischemia/reperfusion-induced heart injury. Arch Pharm Res 2008; 31:482-9. [DOI: 10.1007/s12272-001-1182-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Indexed: 11/25/2022]
|
16
|
Rodrigo GC, Samani NJ. Ischemic preconditioning of the whole heart confers protection on subsequently isolated ventricular myocytes. Am J Physiol Heart Circ Physiol 2008; 294:H524-31. [DOI: 10.1152/ajpheart.00980.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current cellular models of ischemic preconditioning (IPC) rely on inducing preconditioning in vitro and may not accurately represent complex pathways triggered by IPC in the intact heart. Here, we show that it is possible to precondition the intact heart and to subsequently isolate individual ventricular myocytes that retain the protection triggered by IPC. Myocytes isolated from Langendorff-perfused hearts preconditioned with three cycles of ischemia-reperfusion were exposed to metabolic inhibition and reenergization. Injury was assessed from induction of hypercontracture and loss of Ca2+ homeostasis and contractile function. IPC induced an immediate window of protection in isolated myocytes, with 64.3 ± 7.6% of IPC myocytes recovering Ca2+ homeostasis compared with 16.9 ± 2.4% of control myocytes ( P < 0.01). Similarly, 64.1 ± 5.9% of IPC myocytes recovered contractile function compared with 15.3 ± 2.2% of control myocytes ( P < 0.01). Protection was prevented by the presence of 0.5 mM 5-hydroxydecanoate during the preconditioning stimulus. This early protection disappeared after 6 h, but a second window of protection developed 24 h after preconditioning, with 54.9 ± 4.7% of preconditioned myocytes recovering Ca2+ homeostasis compared with 12.6 ± 2.9% of control myocytes ( P < 0.01). These data show that “true” IPC of the heart confers both windows of protection in the isolated myocytes, with a similar temporal relationship to in vivo preconditioning of the whole heart. The model should allow future studies in isolated cells of the protective mechanisms induced by true ischemia.
Collapse
|
17
|
Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 2007; 59:418-58. [PMID: 18048761 DOI: 10.1124/pr.107.06002] [Citation(s) in RCA: 527] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Therapeutic strategies to protect the ischemic myocardium have been studied extensively. Reperfusion is the definitive treatment for acute coronary syndromes, especially acute myocardial infarction; however, reperfusion has the potential to exacerbate lethal tissue injury, a process termed "reperfusion injury." Ischemia/reperfusion injury may lead to myocardial infarction, cardiac arrhythmias, and contractile dysfunction. Ischemic preconditioning of myocardium is a well described adaptive response in which brief exposure to ischemia/reperfusion before sustained ischemia markedly enhances the ability of the heart to withstand a subsequent ischemic insult. Additionally, the application of brief repetitive episodes of ischemia/reperfusion at the immediate onset of reperfusion, which has been termed "postconditioning," reduces the extent of reperfusion injury. Ischemic pre- and postconditioning share some but not all parts of the proposed signal transduction cascade, including the activation of survival protein kinase pathways. Most experimental studies on cardioprotection have been undertaken in animal models, in which ischemia/reperfusion is imposed in the absence of other disease processes. However, ischemic heart disease in humans is a complex disorder caused by or associated with known cardiovascular risk factors including hypertension, hyperlipidemia, diabetes, insulin resistance, atherosclerosis, and heart failure; additionally, aging is an important modifying condition. In these diseases and aging, the pathological processes are associated with fundamental molecular alterations that can potentially affect the development of ischemia/reperfusion injury per se and responses to cardioprotective interventions. Among many other possible mechanisms, for example, in hyperlipidemia and diabetes, the pathological increase in reactive oxygen and nitrogen species and the use of the ATP-sensitive potassium channel inhibitor insulin secretagogue antidiabetic drugs and, in aging, the reduced expression of connexin-43 and signal transducer and activator of transcription 3 may disrupt major cytoprotective signaling pathways thereby significantly interfering with the cardioprotective effect of pre- and postconditioning. The aim of this review is to show the potential for developing cardioprotective drugs on the basis of endogenous cardioprotection by pre- and postconditioning (i.e., drug applied as trigger or to activate signaling pathways associated with endogenous cardioprotection) and to review the evidence that comorbidities and aging accompanying coronary disease modify responses to ischemia/reperfusion and the cardioprotection conferred by preconditioning and postconditioning. We emphasize the critical need for more detailed and mechanistic preclinical studies that examine car-dioprotection specifically in relation to complicating disease states. These are now essential to maximize the likelihood of successful development of rational approaches to therapeutic protection for the majority of patients with ischemic heart disease who are aged and/or have modifying comorbid conditions.
Collapse
Affiliation(s)
- Peter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary.
| | | | | |
Collapse
|
18
|
Al-Dadah AS, Voeller RK, Schuessler RB, Damiano RJ, Lawton JS. Maintenance of myocyte volume homeostasis during stress by diazoxide is cardioprotective. Ann Thorac Surg 2007; 84:857-62. [PMID: 17720390 DOI: 10.1016/j.athoracsur.2007.04.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously demonstrated that myocyte swelling and reduced contractility secondary to hyperkalemic cardioplegia and hyposmotic stress are attenuated by the addition of diazoxide, an adenosine triphosphate-sensitive potassium channel (K(ATP)) opener. The goal of this study was to investigate the effect of diazoxide on myocyte swelling and reduced contractility after metabolic inhibition and to attempt to summarize the potential mechanisms involved. METHODS Isolated rabbit myocytes were perfused with Tyrode's control solution for 20 minutes, followed by test solution for 20 minutes. Test solutions included (1) Tyrode's control, (2) a metabolic inhibition solution containing sodium cyanide and 2-deoxyglucose, (3) metabolic inhibition plus diazoxide, (4) metabolic inhibition plus diazoxide plus HMR1098 (a sarcolemmal K(ATP)-channel blocker), or (5) metabolic inhibition plus diazoxide plus 5-hydroxydeconoate (a mitochondrial K(ATP)-channel blocker). Myocytes were then reexposed to Tyrode's solution for 20 minutes. Volume measurements were taken every 5 minutes. Contractility was recorded using edge-detection software at baseline and at 10 and 20 minutes of reexposure to Tyrode's solution. RESULTS Simulated ischemia (metabolic inhibition) caused significant myocyte swelling and associated reduced contractility. The addition of diazoxide abolished myocyte swelling and attenuated the associated reduced contractility. Observations with diazoxide were unchanged by the addition of HMR 1098 or 5-hydroxydeconoate. CONCLUSIONS Diazoxide, with or without either K(ATP)-channel blocker, attenuated the significant myocyte swelling and reduced contractility secondary to metabolic inhibition. These data suggest a role for diazoxide, independent of the K(ATP) channel, in myocyte volume homeostasis. In addition, the prevention of myocyte swelling resulted in improved contractility, consistent with previous data and the hypothesis that myocyte swelling may participate in the phenomenon of myocardial stunning.
Collapse
Affiliation(s)
- Ashraf S Al-Dadah
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
19
|
Stadnicka A, Marinovic J, Ljubkovic M, Bienengraeber MW, Bosnjak ZJ. Volatile anesthetic-induced cardiac preconditioning. J Anesth 2007; 21:212-9. [PMID: 17458651 DOI: 10.1007/s00540-006-0486-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 11/19/2006] [Indexed: 10/23/2022]
Abstract
Pharmacological preconditioning with volatile anesthetics, or anesthetic-induced preconditioning (APC), is a phenomenon whereby a brief exposure to volatile anesthetic agents protects the heart from the potentially fatal consequences of a subsequent prolonged period of myocardial ischemia and reperfusion. Although not completely elucidated, the cellular and molecular mechanisms of APC appear to mimic those of ischemic preconditioning, the most powerful endogenous cardioprotective mechanism. This article reviews recently accumulated evidence underscoring the importance of mitochondria, reactive oxygen species, and K(ATP) channels in cardioprotective signaling by volatile anesthetics. Moreover, the article addresses current concepts and controversies regarding the specific roles of the mitochondrial and the sarcolemmal K(ATP) channels in APC.
Collapse
Affiliation(s)
- Anna Stadnicka
- Department of Anesthesiology, Medical College of Wisconsin, MEB-M4280, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
20
|
Tammaro P, Proks P, Ashcroft FM. Functional effects of naturally occurring KCNJ11 mutations causing neonatal diabetes on cloned cardiac KATP channels. J Physiol 2005; 571:3-14. [PMID: 16339180 PMCID: PMC1805653 DOI: 10.1113/jphysiol.2005.099168] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP-sensitive K+ (K(ATP)) channels are hetero-octamers of inwardly rectifying K+ channel (Kir6.2) and sulphonylurea receptor subunits (SUR1 in pancreatic beta-cells, SUR2A in heart). Heterozygous gain-of-function mutations in Kir6.2 cause neonatal diabetes, which may be accompanied by epilepsy and developmental delay. However, despite the importance of K(ATP) channels in the heart, patients have no obvious cardiac problems. We examined the effects of adenine nucleotides on K(ATP) channels containing wild-type or mutant (Q52R, R201H) Kir6.2 plus either SUR1 or SUR2A. In the absence of Mg2+, both mutations reduced ATP inhibition of SUR1- and SUR2A-containing channels to similar extents, but when Mg2+ was present ATP blocked mutant channels containing SUR1 much less than SUR2A channels. Mg-nucleotide activation of SUR1, but not SUR2A, channels was markedly increased by the R201H mutation. Both mutations also increased resting whole-cell K(ATP) currents through heterozygous SUR1-containing channels to a greater extent than for heterozygous SUR2A-containing channels. The greater ATP inhibition of mutant Kir6.2/SUR2A than of Kir6.2/SUR1 can explain why gain-of-function Kir6.2 mutations manifest effects in brain and beta-cells but not in the heart.
Collapse
Affiliation(s)
- Paolo Tammaro
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | |
Collapse
|
21
|
Wang Y, Haider HK, Ahmad N, Ashraf M. Mechanisms by which KATP channel openers produce acute and delayed cardioprotection. Vascul Pharmacol 2005; 42:253-64. [PMID: 15922258 DOI: 10.1016/j.vph.2005.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mitochondria are being increasingly studied for their critical role in cell survival. Multiple diverse signaling pathways have been shown to converge on the K+-sensitive ATP channels as the effectors of cytoprotection against necrosis and apoptosis. The role of potassium channel openers in regulation and transformation of cell membrane excitability, action potential and electrolyte transfer has been extensively studied. Cardiac mitoK(ATP) channels are the key effectors in cardioprotection during ischemic preconditioning, as yet with an undefined mechanism. They have been hypothesized to couple myocardial metabolism with membrane electrical activity and provide an excellent target for drug therapy. A number of K(ATP) channel openers have been characterized for their beneficial effects on the myocardium against ischemic injury. This review updates recent progress in understanding the physiological role of K(ATP) channels in cardiac protection induced by preconditioning and highlights relevant questions and controversies in the light of published data.
Collapse
Affiliation(s)
- Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | | | | | | |
Collapse
|