1
|
McKenna MJ, Renaud JM, Ørtenblad N, Overgaard K. A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na +,K +-ATPase, Na + and K + ions, and on plasma K + concentration-historical developments. Eur J Appl Physiol 2024; 124:681-751. [PMID: 38206444 PMCID: PMC10879387 DOI: 10.1007/s00421-023-05335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024]
Abstract
This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.
Collapse
Affiliation(s)
- Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia.
- College of Physical Education, Southwest University, Chongqing, China.
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China.
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, ON, Canada
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Sostaric S, Petersen AC, Goodman CA, Gong X, Aw TJ, Brown MJ, Garnham A, Steward CH, Murphy KT, Carey KA, Leppik J, Fraser SF, Cameron-Smith D, Krum H, Snow RJ, McKenna MJ. Oral digoxin effects on exercise performance, K + regulation and skeletal muscle Na + ,K + -ATPase in healthy humans. J Physiol 2022; 600:3749-3774. [PMID: 35837833 PMCID: PMC9541254 DOI: 10.1113/jp283017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Abstract We investigated whether digoxin lowered muscle Na+,K+‐ATPase (NKA), impaired muscle performance and exacerbated exercise K+ disturbances. Ten healthy adults ingested digoxin (0.25 mg; DIG) or placebo (CON) for 14 days and performed quadriceps strength and fatiguability, finger flexion (FF, 105%peak‐workrate, 3 × 1 min, fourth bout to fatigue) and leg cycling (LC, 10 min at 33% VO2peak and 67% VO2peak, 90% VO2peak to fatigue) trials using a double‐blind, crossover, randomised, counter‐balanced design. Arterial (a) and antecubital venous (v) blood was sampled (FF, LC) and muscle biopsied (LC, rest, 67% VO2peak, fatigue, 3 h after exercise). In DIG, in resting muscle, [3H]‐ouabain binding site content (OB‐Fab) was unchanged; however, bound‐digoxin removal with Digibind revealed total ouabain binding (OB+Fab) increased (8.2%, P = 0.047), indicating 7.6% NKA–digoxin occupancy. Quadriceps muscle strength declined in DIG (−4.3%, P = 0.010) but fatiguability was unchanged. During LC, in DIG (main effects), time to fatigue and [K+]a were unchanged, whilst [K+]v was lower (P = 0.042) and [K+]a‐v greater (P = 0.004) than in CON; with exercise (main effects), muscle OB‐Fab was increased at 67% VO2peak (per wet‐weight, P = 0.005; per protein P = 0.001) and at fatigue (per protein, P = 0.003), whilst [K+]a, [K+]v and [K+]a‐v were each increased at fatigue (P = 0.001). During FF, in DIG (main effects), time to fatigue, [K+]a, [K+]v and [K+]a‐v were unchanged; with exercise (main effects), plasma [K+]a, [K+]v, [K+]a‐v and muscle K+ efflux were all increased at fatigue (P = 0.001). Thus, muscle strength declined, but functional muscle NKA content was preserved during DIG, despite elevated plasma digoxin and muscle NKA–digoxin occupancy, with K+ disturbances and fatiguability unchanged.
![]() Key points The Na+,K+‐ATPase (NKA) is vital in regulating skeletal muscle extracellular potassium concentration ([K+]), excitability and plasma [K+] and thereby also in modulating fatigue during intense contractions.
NKA is inhibited by digoxin, which in cardiac patients lowers muscle functional NKA content ([3H]‐ouabain binding) and exacerbates K+ disturbances during exercise. In healthy adults, we found that digoxin at clinical levels surprisingly did not reduce functional muscle NKA content, whilst digoxin removal by Digibind antibody revealed an ∼8% increased muscle total NKA content. Accordingly, digoxin did not exacerbate arterial plasma [K+] disturbances or worsen fatigue during intense exercise, although quadriceps muscle strength was reduced. Thus, digoxin treatment in healthy participants elevated serum digoxin, but muscle functional NKA content was preserved, whilst K+ disturbances and fatigue with intense exercise were unchanged. This resilience to digoxin NKA inhibition is consistent with the importance of NKA in preserving K+ regulation and muscle function.
Collapse
Affiliation(s)
- Simon Sostaric
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Aaron C Petersen
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Craig A Goodman
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Xiaofei Gong
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Tai-Juan Aw
- Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Australia
| | - Malcolm J Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Collene H Steward
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kate T Murphy
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Kate A Carey
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - James Leppik
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Steve F Fraser
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - David Cameron-Smith
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Henry Krum
- Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Australia
| | - Rodney J Snow
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
3
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Finkel RS, Finanger E, Vandenborne K, Sweeney HL, Tennekoon G, Shieh PB, Willcocks R, Walter G, Rooney WD, Forbes SC, Triplett WT, Yum SW, Mancini M, MacDougall J, Fretzen A, Bista P, Nichols A, Donovan JM. Disease-modifying effects of edasalonexent, an NF-κB inhibitor, in young boys with Duchenne muscular dystrophy: Results of the MoveDMD phase 2 and open label extension trial. Neuromuscul Disord 2021; 31:385-396. [PMID: 33678513 DOI: 10.1016/j.nmd.2021.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.
Collapse
Affiliation(s)
- Richard S Finkel
- St. Jude Children's Research Hospital, Memphis, TN and Nemours Children's Hospital, Orlando, FL, United States.
| | - Erika Finanger
- Oregon Health & Science University, Portland, OR, United States
| | | | - H Lee Sweeney
- University of Florida Health, Gainesville, FL, United States
| | - Gihan Tennekoon
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Perry B Shieh
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Glenn Walter
- University of Florida Health, Gainesville, FL, United States
| | | | - Sean C Forbes
- University of Florida Health, Gainesville, FL, United States
| | | | - Sabrina W Yum
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Mancini
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | | | | - Pradeep Bista
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | - Andrew Nichols
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | |
Collapse
|
5
|
Mohr M, Nielsen TS, Weihe P, Thomsen JA, Aquino G, Krustrup P, Nordsborg NB. Muscle ion transporters and antioxidative proteins have different adaptive potential in arm than in leg skeletal muscle with exercise training. Physiol Rep 2017; 5:5/19/e13470. [PMID: 29038365 PMCID: PMC5641943 DOI: 10.14814/phy2.13470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 11/24/2022] Open
Abstract
It was evaluated whether upper‐body compared to lower‐body musculature exhibits a different phenotype in relation to capacity for handling reactive oxygen species (ROS), H+, La−, Na+, K+ and also whether it differs in adaptive potential to exercise training. Eighty‐three sedentary premenopausal women aged 45 ± 6 years (mean ± SD) were randomized into a high‐intensity intermittent swimming group (HIS, n = 21), a moderate‐intensity swimming group (MOS, n = 21), a soccer group (SOC, n = 21), or a control group (CON, n = 20). Intervention groups completed three weekly training sessions for 15 weeks, and pre‐ and postintervention biopsies were obtained from deltoideus and vastus lateralis muscle. Before training, monocarboxylate transporter 4 (MCT4), Na+/K+ pump α2, and superoxide dismutase 2 (SOD2) expressions were lower (P < 0.05) in m. deltoideus than in m. vastus lateralis, whereas deltoid had higher (P < 0.05) Na+/H+ exchanger 1 (NHE1) expression. As a result of training, Na+/K+ pump α2 isoform expression was elevated only in deltoideus muscle, while upregulation (P < 0.05) of the α1 and β1 subunits, phospholemman (FXYD1), NHE1, and superoxide dismutase 1 expression occurred exclusively in vastus lateralis muscle. The increased (P < 0.05) expression of MCT4 and SOD2 in deltoid muscle after HIS and vastus lateralis muscle after SOC were similar. In conclusion, arm musculature displays lower basal ROS, La−, K+ handling capability but higher Na+‐dependent H+ extrusion capacity than leg musculature. Training‐induced changes in the ion‐transporting and antioxidant proteins clearly differed between muscle groups.
Collapse
Affiliation(s)
- Magni Mohr
- Centre of Health Sciences, Faculty of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands.,Center for Health and Human Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Schmidt Nielsen
- Department of Nutrition, Exercise and Sports, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Pál Weihe
- Centre of Health Sciences, Faculty of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands.,Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
| | - Jákup A Thomsen
- Centre of Health Sciences, Faculty of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Giovanna Aquino
- Department of Movement Sciences and Wellness (DiSMEB), University "Parthenope", Naples, Italy.,CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, SDU Sport and Health Sciences Cluster (SHSC) University of Southern Denmark, Odense, Denmark.,Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Nikolai B Nordsborg
- Department of Nutrition, Exercise and Sports, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Parissis D, Syntila SA, Ioannidis P. Corticosteroids in neurological disorders: The dark side. J Clin Neurosci 2017. [DOI: 10.1016/j.jocn.2017.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Collomp K, Arlettaz A, Buisson C, Lecoq AM, Mongongu C. Glucocorticoid administration in athletes: Performance, metabolism and detection. Steroids 2016; 115:193-202. [PMID: 27643452 DOI: 10.1016/j.steroids.2016.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
Abstract
It is generally acknowledged in the sporting world that glucocorticoid (GC) use enhances physical performance. This pharmacological class is therefore banned by the World Anti-Doping Agency (WADA) in in-competition samples after systemic but not local (defined as any route other than oral, intravenous, intramuscular or rectal) administration, which thus allows athletes to use GCs for therapeutic purposes. According to the 2016 WADA list, the urine reporting level for all GCs is set at 30ng/ml to distinguish between the authorized and banned routes of administration. The actual data on the ergogenic effects of GC intake are nevertheless fairly recent, with the first study showing improved physical performance with systemic GC administration dating back only to 2007. Moreover, the studies over the last decade coupling ergogenic and metabolic investigations in humans during and after GC intake have shown discrepant results. Similarly, urine discrimination between banned and authorized GC use remains complex, but it seems likely to be improved thanks to new analytical studies and the inclusion of the authorized GC uses (local routes of administration and out-of-competition samples) in the WADA monitoring program. In this review, we first summarize the current knowledge on the ergogenic and metabolic GC effects in humans during various types of exercise. We then present the antidoping legislation and methods of analysis currently used to detect GC abuse and conclude with some practical considerations and perspectives.
Collapse
Affiliation(s)
- Katia Collomp
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France; CIAMS, Université Orléans, 45067 Orléans, France; Département des Analyses, Agence Française de Lutte contre le Dopage, 92290 Chatenay-Malabry, France.
| | - Alexandre Arlettaz
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France; CIAMS, Université Orléans, 45067 Orléans, France
| | - Corinne Buisson
- Département des Analyses, Agence Française de Lutte contre le Dopage, 92290 Chatenay-Malabry, France
| | - Anne-Marie Lecoq
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France; CIAMS, Université Orléans, 45067 Orléans, France
| | - Cynthia Mongongu
- Département des Analyses, Agence Française de Lutte contre le Dopage, 92290 Chatenay-Malabry, France
| |
Collapse
|
8
|
Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 2016; 311:E1-E31. [PMID: 27166285 DOI: 10.1152/ajpendo.00539.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Hostrup M, Jessen S, Onslev J, Clausen T, Porsbjerg C. Two-week inhalation of budesonide increases muscle Na,K ATPase content but not endurance in response to terbutaline in men. Scand J Med Sci Sports 2016; 27:684-691. [PMID: 27060857 DOI: 10.1111/sms.12677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2016] [Indexed: 11/26/2022]
Abstract
While chronic systemic administration of glucocorticoids increases muscle Na+ ,K+ ATPase content, such effect is unexplored after therapeutic inhalation. We investigated the effect of therapeutic inhalation of the glucocorticoid budesonide on Na+ ,K+ ATPase content of skeletal muscle in men. Ten healthy trained subjects, aged 23 ± 4 years (mean ± 95% CI), participated in the study. Before and after 2 weeks of daily inhalation of budesonide (1.6 mg/day), a biopsy was taken from the vastus lateralis muscle for measurement of Na+ ,K+ ATPase content and blood samples were drawn for determination of plasma budesonide, cortisol, and K+ . Subjects' performance during cycling to fatigue at 90% of incremental peak power output (iPPO) was measured in response to 4 mg inhaled terbutaline to maximally stimulate Na+ ,K+ ATPase activity. Plasma concentrations of budesonide rose to 5.0 ± 1.6 nM with the intervention, whereas no changes were observed in plasma cortisol. Muscle Na+ ,K+ ATPase content increased (P ≤ 0.01) by 46 ± 34 pmol/(g wet wt) (17% increase) with the intervention. Cycling performance at 90% of iPPO did not change (P = 0.21) with the intervention (203 vs 214 s) in response to terbutaline. The present observations show that therapeutic inhalation of glucocorticoids increases muscle Na+ ,K+ ATPase content, but does not enhance high-intensity cycling endurance in response to terbutaline.
Collapse
Affiliation(s)
- M Hostrup
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark.,Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark.,IOC Sports Medicine Copenhagen, Copenhagen, Denmark
| | - S Jessen
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - J Onslev
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - T Clausen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - C Porsbjerg
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| |
Collapse
|
10
|
Morrison-Nozik A, Anand P, Zhu H, Duan Q, Sabeh M, Prosdocimo DA, Lemieux ME, Nordsborg N, Russell AP, MacRae CA, Gerber AN, Jain MK, Haldar SM. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program. Proc Natl Acad Sci U S A 2015; 112:E6780-9. [PMID: 26598680 PMCID: PMC4679037 DOI: 10.1073/pnas.1512968112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.
Collapse
Affiliation(s)
- Alexander Morrison-Nozik
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Priti Anand
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Gladstone Institutes, San Francisco, CA 94158
| | - Han Zhu
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Qiming Duan
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Gladstone Institutes, San Francisco, CA 94158
| | - Mohamad Sabeh
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH 44106
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | - Nikolai Nordsborg
- Department of Nutrition, Exercise and Sports Sciences, University of Copenhagen, DK-200 Copenhagen, Denmark
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Science, Deakin University, Burwood, VIC 3125, Australia
| | - Calum A MacRae
- Cardiovascular Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Anthony N Gerber
- Department of Pulmonary Medicine, National Jewish Health and University of Colorado Denver School of Medicine, Denver, CO 80206
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH 44106
| | - Saptarsi M Haldar
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Gladstone Institutes, San Francisco, CA 94158; Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH 44106; Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| |
Collapse
|
11
|
Clausen T. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance. ACTA ACUST UNITED AC 2014; 142:327-45. [PMID: 24081980 PMCID: PMC3787770 DOI: 10.1085/jgp.201310980] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During excitation, muscle cells gain Na+ and lose K+, leading to a rise in extracellular K+ ([K+]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na+,K+-ATPase (also known as the Na+,K+ pump) is often essential for adequate clearance of extracellular K+. As a result of their electrogenic action, Na+,K+ pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na+,K+-pump function and the capacity of the Na+,K+ pumps to fill these needs require quantification of the total content of Na+,K+ pumps in skeletal muscle. Inhibition of Na+,K+-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na+,K+-pump transport rate or increasing the content of Na+,K+ pumps enhances muscle excitability and contractility. Measurements of [3H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na+,K+ pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na+,K+-ATPase may show inconsistent results. Measurements of Na+ and K+ fluxes in intact isolated muscles show that, after Na+ loading or intense excitation, all the Na+,K+ pumps are functional, allowing calculation of the maximum Na+,K+-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na+,K+ pumps are regulated by exercise, inactivity, K+ deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na+,K+-ATPase have detected a relative increase in their number in response to exercise and the glucocorticoid dexamethasone but have not involved their quantification in molar units. Determination of ATPase activity in homogenates and plasma membranes obtained from muscle has shown ouabain-suppressible stimulatory effects of Na+ and K+.
Collapse
Affiliation(s)
- Torben Clausen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Goodman CA, Bennie JA, Leikis MJ, McKenna MJ. Unaccustomed eccentric contractions impair plasma K+ regulation in the absence of changes in muscle Na+,K+-ATPase content. PLoS One 2014; 9:e101039. [PMID: 24959836 PMCID: PMC4069193 DOI: 10.1371/journal.pone.0101039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/02/2014] [Indexed: 12/31/2022] Open
Abstract
The Na+,K+-ATPase (NKA) plays a fundamental role in the regulation of skeletal muscle membrane Na+ and K+ gradients, excitability and fatigue during repeated intense contractions. Many studies have investigated the effects of acute concentric exercise on K+ regulation and skeletal muscle NKA, but almost nothing is known about the effects of repeated eccentric contractions. We therefore investigated the effects of unaccustomed maximal eccentric knee extensor contractions on K+ regulation during exercise, peak knee extensor muscle torque, and vastus lateralis muscle NKA content and 3-O-MFPase activity. Torque measurements, muscle biopsies, and venous blood samples were taken before, during and up to 7 days following the contractions in six healthy adults. Eccentric contractions reduced peak isometric muscle torque immediately post-exercise by 26±11% and serum creatine kinase concentration peaked 24 h post-exercise at 339±90 IU/L. During eccentric contractions, plasma [K+] rose during Set 1 and remained elevated at ∼4.9 mM during sets 4–10; this was despite a decline in work output by Set 4, which fell by 18.9% at set 10. The rise in plasma [K+].work−1 ratio was elevated over Set 2 from Set 4– Set 10. Eccentric contractions had no effect on muscle NKA content or maximal in-vitro 3-O-MFPase activity immediately post- or up to 7 d post-exercise. The sustained elevation in plasma [K+] despite a decrease in work performed by the knee extensor muscles suggests an impairment in K+ regulation during maximal eccentric contractions, possibly due to increased plasma membrane permeability or to excitation-contraction uncoupling.
Collapse
Affiliation(s)
- Craig A. Goodman
- Institute of Sport, Exercise and Active Living (ISEAL), Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jason A. Bennie
- Institute of Sport, Exercise and Active Living (ISEAL), Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
| | - Murray J. Leikis
- Institute of Sport, Exercise and Active Living (ISEAL), Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
- Department of Nephrology, Royal Melbourne Hospital, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J. McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
13
|
Eftimov F, Liesdek MH, Verhamme C, van Schaik IN. Deterioration after corticosteroids in CIDP may be associated with pure focal demyelination pattern. BMC Neurol 2014; 14:72. [PMID: 24708554 PMCID: PMC3977669 DOI: 10.1186/1471-2377-14-72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 01/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the PREDICT study, a randomised controlled trial comparing dexamethasone with prednisolone in patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), almost a quarter of patients deteriorated soon after starting treatment. The primary objective of this post-hoc analysis was to test the hypothesis that a focal demyelination pattern is associated with early deterioration after corticosteroid treatment and to explore whether various clinical characteristics are associated with deterioration after corticosteroid treatment. METHODS Clinical outcome was categorised into early deterioration and non-early deterioration. A neurophysiologist blinded for treatment outcome scored electrophysiological data into following categories: pure focal versus non-focal distribution of demyelination and no/minor versus moderate/severe sensory involvement. Additionally, we compared electrophysiological and clinical baseline parameters, with emphasis on previously reported possible associations. RESULTS Early deterioration was found in 7 out of 33 patients (21%). Ten patients had pure focal distribution of demyelination, of whom 5 had early deterioration; 23 patients had non-focal distribution, of whom 2 had early deterioration (p = 0.02). Higher mean median nerve sensory nerve conduction velocity (SNCV) was found in patients with early deterioration compared to patients with non-early deterioration (52.6 and respectively 40.8 m/s, p = 0.02). CONCLUSION Pure focal distribution of demyelination and lesser sensory electrophysiological abnormalities may be associated with early deterioration in CIDP patients treated with corticosteroids.
Collapse
Affiliation(s)
- Filip Eftimov
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, DD, 1100, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Jalali Tehrani H, Parivar K, Ai J, Kajbafzadeh A, Rahbarghazi R, Hashemi M, Sadeghizadeh M. Effect of dexamethasone, insulin and EGF on the myogenic potential on human endometrial stem cell. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2014; 13:659-64. [PMID: 25237362 PMCID: PMC4157042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents have a broad range of effects in myoblast differentiation in-vitro. We used immunohystochemistry analysis and RT -PCR to evaluate the presence of skeletal muscle - specific proteins some of which are expressed in the early stage of differentiation including myoD and Desmin which expressed at later stages of differentiation. In conclusion eMSC can differentiate in culture media which contains above mentioned factors and use for therapeutic purpose in muscular degenerative disease.
Collapse
Affiliation(s)
- Hora Jalali Tehrani
- Depatment of Biology, Science and Research Branch Islamic Azad University Tehran Iran.
| | - Kazem Parivar
- Depatment of Biology, Science and Research Branch Islamic Azad University Tehran Iran.
| | - Jafar Ai
- Department of Tissue Engineering, Faculty of Advance Technology, University of Medical Sciences, Tehran, Iran.
| | - Abdolmohammad Kajbafzadeh
- Paediatric Urology Research Center, Department of Urology, Children's Hospital Medical Center, Tehran University of Medical Sciences,Tehran, Iran.
| | - Reza Rahbarghazi
- Umbilical Cord Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehrdad Hashemi
- Department of Medical Genetics. Tehran Medical Sciences Branch .Islamic Azad University Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
Glucocorticoids improve high-intensity exercise performance in humans. Eur J Appl Physiol 2013; 114:419-24. [DOI: 10.1007/s00421-013-2784-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/26/2013] [Indexed: 11/25/2022]
|
16
|
Rasmussen MK, Juel C, Nordsborg NB. Exercise-induced regulation of muscular Na+-K+ pump, FXYD1, and NHE1 mRNA and protein expression: importance of training status, intensity, and muscle type. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1209-20. [PMID: 21325644 DOI: 10.1152/ajpregu.00635.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is investigated if exercise-induced mRNA changes cause similar protein expression changes of Na(+)-K(+) pump isoforms (α(1), α(2), β(1), β(2)), FXYD1, and Na(+)/K(+) exchanger (NHE1) in rat skeletal muscle. Expression was evaluated (n = 8 per group) in soleus and extensor digutorum longus after 1 day, 3 days, and 3 wk (5 sessions/wk) of either sprint (4 × 3-min sprint + 1-min rest) or endurance (20 min) running. Two hours after exercise on day 1, no change in protein expression was apparent in either training group or muscle, whereas sprint exercise increased the mRNA of soleus α(2) (4.9 ± 0.8-fold; P < 0.05), β(2) (13.2 ± 4.4-fold; P < 0.001), and NHE1 (12.0 ± 3.1-fold; P < 0.01). Two hours after sprint exercise, protein expression normalized to control samples was higher on day 3 than day 1 for soleus α(1) (41 ± 18% increase vs. 15 ± 8% reduction; P < 0.05), α(2) (64 ± 35% increase vs. 37 ± 12% reduction; P < 0.05), β(1) (17 ± 21% increase vs. 14 ± 29% reduction; P < 0.05), and FXYD1 (35 ± 16% increase vs. 13 ± 10% reduction; P < 0.05). In contrast, on day 3, soleus α(1) (0.1 ± 0.1-fold; P < 0.001), α(2) (0.2 ± 0.1-fold; P < 0.001), β(1) (0.4 ± 0.1-fold; P < 0.05), and β(2)-mRNA (2.9 ± 1.7-fold; P < 0.001) expression was lower than after exercise on day 1. After 3 wk of training, no change in protein expression relative to control existed. In conclusion, increased expression of Na(+)-K(+) pump subunits, FXYD1 and NHE1 after 3 days exercise training does not appear to be an effect of increased constitutive mRNA levels. Importantly, sprint exercise can reduce mRNA expression concomitant with increased protein expression.
Collapse
Affiliation(s)
- Martin Krøyer Rasmussen
- Dept. of Exercise and Sport Sciences, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | | | | |
Collapse
|
17
|
van den Burg MMM, Eizema K, de Graaf-Roelfsema E, van Breda E, Wijnberg ID, van der Kolk JH, Everts ME. Effects of acute exercise and long-term exercise on total Na+,K+-ATPase content and Na+,K+-ATPase isoform expression profile in equine muscle. Am J Vet Res 2009; 70:895-901. [DOI: 10.2460/ajvr.70.7.895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Petersen AC, Leikis MJ, McMahon LP, Kent AB, McKenna MJ. Effects of endurance training on extrarenal potassium regulation and exercise performance in patients on haemodialysis. Nephrol Dial Transplant 2009; 24:2882-8. [DOI: 10.1093/ndt/gfp157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Dissociation between force and maximal Na+, K+-ATPase activity in rat fast-twitch skeletal muscle with fatiguing in vitro stimulation. Eur J Appl Physiol 2008; 105:575-83. [DOI: 10.1007/s00421-008-0937-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2008] [Indexed: 02/01/2023]
|
20
|
Miura P, Andrews M, Holcik M, Jasmin BJ. IRES-mediated translation of utrophin A is enhanced by glucocorticoid treatment in skeletal muscle cells. PLoS One 2008; 3:e2309. [PMID: 18545658 PMCID: PMC2396518 DOI: 10.1371/journal.pone.0002309] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/25/2008] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids are currently the only drug treatment recognized to benefit Duchenne muscular dystrophy (DMD) patients. The nature of the mechanisms underlying the beneficial effects remains incompletely understood but may involve an increase in the expression of utrophin. Here, we show that treatment of myotubes with 6α−methylprednisolone-21 sodium succinate (PDN) results in enhanced expression of utrophin A without concomitant increases in mRNA levels thereby suggesting that translational regulation contributes to the increase. In agreement with this, we show that PDN treatment of cells transfected with monocistronic reporter constructs harbouring the utrophin A 5′UTR, causes an increase in reporter protein expression while leaving levels of reporter mRNAs unchanged. Using bicistronic reporter assays, we further demonstrate that PDN enhances activity of an Internal Ribosome Entry Site (IRES) located within the utrophin A 5′UTR. Analysis of polysomes demonstrate that PDN causes an overall reduction in polysome-associated mRNAs indicating that global translation rates are depressed under these conditions. Importantly, PDN causes an increase in the polysome association of endogenous utrophin A mRNAs and reporter mRNAs harbouring the utrophin A 5′UTR. Additional experiments identified a distinct region within the utrophin A 5′UTR that contains the inducible IRES activity. Together, these studies demonstrate that a translational regulatory mechanism involving increased IRES activation mediates, at least partially, the enhanced expression of utrophin A in muscle cells treated with glucocorticoids. Targeting the utrophin A IRES may thus offer an important and novel therapeutic avenue for developing drugs appropriate for DMD patients.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Meghan Andrews
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, Ottawa, Onatario, Canada
- * E-mail:
| |
Collapse
|
21
|
Nordsborg N, Ovesen J, Thomassen M, Zangenberg M, Jøns C, Iaia FM, Nielsen JJ, Bangsbo J. Effect of dexamethasone on skeletal muscle Na+,K+ pump subunit specific expression and K+ homeostasis during exercise in humans. J Physiol 2008; 586:1447-59. [PMID: 18174214 DOI: 10.1113/jphysiol.2007.143073] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effect of dexamethasone on Na(+),K(+) pump subunit expression and muscle exchange of K(+) during exercise in humans was investigated. Nine healthy male subjects completed a randomized double blind placebo controlled protocol, with ingestion of dexamethasone (Dex: 2 x 2 mg per day) or placebo (Pla) for 5 days. Na(+),K(+) pump catalytic alpha1 and alpha2 subunit expression was approximately 17% higher (P < 0.05) and the structural beta1 and beta2 subunit expression was approximately 6-8% higher (P < 0.05) after Dex compared with Pla. During one-legged knee-extension for 10 min at low intensity (LI; 18.6 +/- 1.0 W), two moderate intensity (51.7 +/- 2.4 W) exercise bouts (MI(1): 5 min; 2 min recovery; MI(2): exhaustive) and two high-intensity (71.7 +/- 2.5 W) exercise bouts (HI(1): 1 min 40 s; 2 min recovery; HI(2): exhaustive), femoral venous K(+) was lower (P < 0.05) in Dex compared with Pla. Thigh K(+) release was lower (P < 0.05) in Dex compared with Pla in LI and MI, but not in HI. Time to exhaustion in MI(2) tended to improve (393 +/- 50 s versus 294 +/- 41 s; P = 0.07) in Dex compared with Pla, whereas no difference was detected in HI(2) (106 +/- 10 s versus 108 +/- 9 s). The results indicate that an increased Na(+),K(+) pump expression per se is of importance for thigh K(+) reuptake at the onset of low and moderate intensity exercise, but less important during high intensity exercise.
Collapse
Affiliation(s)
- Nikolai Nordsborg
- University of Copenhagen, Department of Exercise and Sport Sciences, Section for Human Physiology, Universitetsparken 13, 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2007; 14:74-89. [PMID: 17940424 DOI: 10.1097/med.0b013e32802e6d87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Ullrich S, Zhang Y, Avram D, Ranta F, Kuhl D, Häring HU, Lang F. Dexamethasone increases Na+/K+ ATPase activity in insulin secreting cells through SGK1. Biochem Biophys Res Commun 2007; 352:662-7. [PMID: 17157265 DOI: 10.1016/j.bbrc.2006.11.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/13/2006] [Indexed: 11/25/2022]
Abstract
Glucocorticoids blunt insulin release, an effect partially due to activation of Kv channels. Similar to those channels Na+/K+ ATPase activity repolarizes the plasma membrane. The present study explored whether glucocorticoids increase the Na+/K+ ATPase activity in pancreatic beta-cells. The glucocorticoid dexamethasone (100 nmol/l for 1 day) significantly increased Na+/K+ ATPase alpha1/beta1-subunit transcript levels and ouabain-sensitive outward current reflecting Na+/K+ ATPase activity in INS-1 cells, effects blunted by glucocorticoid-receptor-blocker RU487 (1 micromol/l). Dexamethasone (100 nmol/l) increased K+ current in beta-cells from wild type mice but not from knockout mice lacking functional serum and glucocorticoid inducible kinase SGK1. Thus, glucocorticoids indeed up-regulate Na+/K+ ATPase activity, an effect requiring SGK1.
Collapse
Affiliation(s)
- Susanne Ullrich
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Weiss M. Mechanistic modeling of digoxin distribution kinetics incorporating slow tissue binding. Eur J Pharm Sci 2006; 30:256-63. [PMID: 17194579 DOI: 10.1016/j.ejps.2006.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/15/2006] [Indexed: 11/17/2022]
Abstract
This study aims to develop a mechanistic pharmacokinetic model that accounts for the kinetics of tissue binding in order to evaluate the effect of slow binding of digoxin to skeletal muscular Na(+)/K(+)-ATPase in humans. The approach is based on a minimal circulatory model with a systemic transit time density function that accounts for vascular mixing, transcapillary permeation and extravascular binding of the drug. The model parameters were estimated using previously published disposition data of digoxin in healthy volunteers and physiological distribution volumes taken from the literature. A time constant of the binding process of 34min was estimated indicating that receptor binding and not permeation clearance is the rate-limiting step of the distribution process. Model simulations suggest that up- or downregulation of sodium pumps, typically observed under physiological or pathophysiological conditions, could be detected with this method. The model allows a quantitative prediction of the effect of changes in skeletal muscular sodium pump activity on plasma levels of digoxin.
Collapse
Affiliation(s)
- Michael Weiss
- Section of Pharmacokinetics, Department of Pharmacology, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany.
| |
Collapse
|
25
|
Schotanus BA, Meij BP, Vos IHC, Kooistra HS, Everts ME. Na(+), K(+)-ATPase content in skeletal muscle of dogs with pituitary-dependent hyperadrenocorticism. Domest Anim Endocrinol 2006; 30:320-32. [PMID: 16202554 DOI: 10.1016/j.domaniend.2005.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/25/2005] [Accepted: 08/25/2005] [Indexed: 11/17/2022]
Abstract
Several hormones regulate Na(+), K(+)-ATPase content in the muscle cell membrane, which is essential for maintaining muscle cell excitability. Chronic glucocorticoid excess is associated with muscle weakness and reduced endurance. We hypothesized that chronic glucocorticoid excess affects Na(+), K(+)-ATPase content in canine skeletal muscle, and contributes to reduced endurance and muscle weakness associated with pituitary-dependent hyperadrenocorticism (PDH) in dogs. Therefore, Na(+), K(+)-ATPase content in skeletal muscle was evaluated before and after hypophysectomy and hormone replacement (cortisone and l-thyroxin) in dogs with PDH (n=13), and in healthy controls (n=6). In addition, baseline and exercise-induced changes in plasma electrolyte concentrations and acid-base balance were evaluated before and after hypophysectomy in dogs with PDH. Na(+), K(+)-ATPase content of gluteal muscle in dogs with PDH was significantly lower than in control dogs (201+/-13pmol/g versus 260+/-8pmol/g wet weight; P<0.01). Similar differences were found in palatine muscle. After hypophysectomy and on hormone replacement, Na(+), K(+)-ATPase was increased (234+/-7pmol/g wet weight). Both plasma pH and base excess in dogs with PDH (7.44+/-0.01; 1.7+/-0.6mmol/l, respectively) were significantly higher (P<0.05) than after hypophysectomy and hormone replacement (7.41+/-0.01; -0.2+/-0.4mmol/l, respectively). Exercise induced respiratory alkalosis, but did not result in hyperkalemia in dogs with PDH. In conclusion, chronic glucocorticoid excess in dogs with PDH is associated with decreased Na(+), K(+)-ATPase content in skeletal muscle. This may contribute to reduce endurance in canine PDH, although dogs with PDH did not exhibit exercise-induced hyperkalemia. Na(+), K(+)-ATPase content normalized to values statistically not different from healthy controls after hypophysectomy and hormone replacement.
Collapse
Affiliation(s)
- B A Schotanus
- Department of Pathobiology, Division of Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.158, 3508 TD Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|