1
|
Johnson SC, Annamdevula NS, Leavesley SJ, Francis CM, Rich TC. Hyperspectral imaging and dynamic region of interest tracking approaches to quantify localized cAMP signals. Biochem Soc Trans 2024; 52:191-203. [PMID: 38334148 PMCID: PMC11115359 DOI: 10.1042/bst20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger known to orchestrate a myriad of cellular functions over a wide range of timescales. In the last 20 years, a variety of single-cell sensors have been developed to measure second messenger signals including cAMP, Ca2+, and the balance of kinase and phosphatase activities. These sensors utilize changes in fluorescence emission of an individual fluorophore or Förster resonance energy transfer (FRET) to detect changes in second messenger concentration. cAMP and kinase activity reporter probes have provided powerful tools for the study of localized signals. Studies relying on these and related probes have the potential to further revolutionize our understanding of G protein-coupled receptor signaling systems. Unfortunately, investigators have not been able to take full advantage of the potential of these probes due to the limited signal-to-noise ratio of the probes and the limited ability of standard epifluorescence and confocal microscope systems to simultaneously measure the distributions of multiple signals (e.g. cAMP, Ca2+, and changes in kinase activities) in real time. In this review, we focus on recently implemented strategies to overcome these limitations: hyperspectral imaging and adaptive thresholding approaches to track dynamic regions of interest (ROI). This combination of approaches increases signal-to-noise ratio and contrast, and allows identification of localized signals throughout cells. These in turn lead to the identification and quantification of intracellular signals with higher effective resolution. Hyperspectral imaging and dynamic ROI tracking approaches offer investigators additional tools with which to visualize and quantify multiplexed intracellular signaling systems.
Collapse
Affiliation(s)
- Santina C Johnson
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Naga S Annamdevula
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Department of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Silas J Leavesley
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL, U.S.A
| | - C Michael Francis
- Department of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Thomas C Rich
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| |
Collapse
|
2
|
Sanchez-Alonso JL, Fedele L, Copier JS, Lucarelli C, Mansfield C, Judina A, Houser SR, Brand T, Gorelik J. Functional LTCC-β 2AR Complex Needs Caveolin-3 and Is Disrupted in Heart Failure. Circ Res 2023; 133:120-137. [PMID: 37313722 PMCID: PMC10321517 DOI: 10.1161/circresaha.123.322508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Beta-2 adrenergic receptors (β2ARs) but not beta-2 adrenergic receptors (β1ARs) form a functional complex with L-type Ca2+ channels (LTCCs) on the cardiomyocyte membrane. However, how microdomain localization in the plasma membrane affects the function of these complexes is unknown. We aim to study the coupling between LTCC and β adrenergic receptors in different cardiomyocyte microdomains, the distinct involvement of PKA and CAMKII (Ca2+/calmodulin-dependent protein kinase II) and explore how this functional complex is disrupted in heart failure. METHODS Global signaling between LTCCs and β adrenergic receptors was assessed with whole-cell current recordings and western blot analysis. Super-resolution scanning patch-clamp was used to explore the local coupling between single LTCCs and β1AR or β2AR in different membrane microdomains in control and failing cardiomyocytes. RESULTS LTCC open probability (Po) showed an increase from 0.054±0.003 to 0.092±0.008 when β2AR was locally stimulated in the proximity of the channel (<350 nm) in the transverse tubule microdomain. In failing cardiomyocytes, from both rodents and humans, this transverse tubule coupling between LTCC and β2AR was lost. Interestingly, local stimulation of β1AR did not elicit any change in the Po of LTCCs, indicating a lack of proximal functional interaction between the two, but we confirmed a general activation of LTCC via β1AR. By using blockers of PKA and CaMKII and a Caveolin-3-knockout mouse model, we conclude that the β2AR-LTCC regulation requires the presence of caveolin-3 and the activation of the CaMKII pathway. By contrast, at a cellular "global" level PKA plays a major role downstream β1AR and results in an increase in LTCC current. CONCLUSIONS Regulation of the LTCC activity by proximity coupling mechanisms occurs only via β2AR, but not β1AR. This may explain how β2ARs tune the response of LTCCs to adrenergic stimulation in healthy conditions. This coupling is lost in heart failure; restoring it could improve the adrenergic response of failing cardiomyocytes.
Collapse
Affiliation(s)
- Jose L. Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Laura Fedele
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Jaël S. Copier
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Carla Lucarelli
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Aleksandra Judina
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Steven R. Houser
- Department of Physiology, Cardiovascular Research Center, Lewis Katz Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| |
Collapse
|
3
|
Bugiardini E, Nunes AM, Oliveira‐Santos A, Dagda M, Fontelonga TM, Barraza‐Flores P, Pittman AM, Morrow JM, Parton M, Houlden H, Elliott PM, Syrris P, Maas RP, Akhtar MM, Küsters B, Raaphorst J, Schouten M, Kamsteeg E, van Engelen B, Hanna MG, Phadke R, Lopes LR, Matthews E, Burkin DJ. Integrin α7 Mutations Are Associated With Adult-Onset Cardiac Dysfunction in Humans and Mice. J Am Heart Assoc 2022; 11:e026494. [PMID: 36444867 PMCID: PMC9851448 DOI: 10.1161/jaha.122.026494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Background Integrin α7β1 is a major laminin receptor in skeletal and cardiac muscle. In skeletal muscle, integrin α7β1 plays an important role during muscle development and has been described as an important modifier of skeletal muscle diseases. The integrin α7β1 is also highly expressed in the heart, but its precise role in cardiac function is unknown. Mutations in the integrin α7 gene (ITGA7) have been reported in children with congenital myopathy. Methods and Results In this study, we described skeletal and cardiac muscle pathology in Itga7-/- mice and 5 patients from 2 unrelated families with ITGA7 mutations. Proband in family 1 presented a homozygous c.806_818del [p.S269fs] variant, and proband in family 2 was identified with 2 intron variants in the ITGA7 gene. The complete absence of the integrin α7 protein in muscle supports the ITGA7 mutations are pathogenic. We performed electrocardiography, echocardiography, or cardiac magnetic resonance imaging, and histological biopsy analyses in patients with ITGA7 deficiency and Itga7-/- mice. The patients exhibited cardiac dysrhythmia and dysfunction from the third decade of life and late-onset respiratory insufficiency, but with relatively mild limb muscle involvement. Mice demonstrated corresponding abnormalities in cardiac conduction and contraction as well as diaphragm muscle fibrosis. Conclusions Our data suggest that loss of integrin α7 causes a novel form of adult-onset cardiac dysfunction indicating a critical role for the integrin α7β1 in normal cardiac function and highlights the need for long-term cardiac monitoring in patients with ITGA7-related congenital myopathy.
Collapse
Affiliation(s)
- Enrico Bugiardini
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Andreia M. Nunes
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Ariany Oliveira‐Santos
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Marisela Dagda
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Tatiana M. Fontelonga
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Pamela Barraza‐Flores
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Alan M. Pittman
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
- St George’sUniversity of LondonLondonUnited Kingdom
| | - Jasper M. Morrow
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Matthew Parton
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Henry Houlden
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Perry M. Elliott
- Barts Heart Centre, Barts Health NHS TrustLondonUnited Kingdom
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Petros Syrris
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Roderick P. Maas
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Mohammed M. Akhtar
- Barts Heart Centre, Barts Health NHS TrustLondonUnited Kingdom
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Benno Küsters
- Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Joost Raaphorst
- Department of Neurology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Meyke Schouten
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Erik‐Jan Kamsteeg
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Michael G. Hanna
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Rahul Phadke
- Division of NeuropathologyUCL Institute of NeurologyLondonUnited Kingdom
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular DiseasesUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Luis R. Lopes
- Barts Heart Centre, Barts Health NHS TrustLondonUnited Kingdom
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Emma Matthews
- The Atkinson Morley Neuromuscular Centre and Regional Neurosciences CentreSt George’s University Hospitals NHS Foundation TrustLondonUnited Kingdom
- Molecular and Clinical Sciences Research Institute, St George’s University of LondonLondonUnited Kingdom
| | - Dean J. Burkin
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| |
Collapse
|
4
|
Bhadra A, Scruggs AK, Leavesley SJ, Annamdevula N, George AH, Britain AL, Francis CM, Knighten JM, Rich TC, Bauer NN. Extracellular vesicle-induced cyclic AMP signaling. Cell Signal 2022; 95:110348. [PMID: 35504529 PMCID: PMC10676271 DOI: 10.1016/j.cellsig.2022.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
Second messenger signaling is required for cellular processes. We previously reported that extracellular vesicles (EVs) from stimulated cultured endothelial cells contain the biochemical second messenger, cAMP. In the current study, we sought to determine whether cAMP-enriched EVs induce second messenger signaling pathways in naïve recipient cells. Our results indicate that cAMP-enriched EVs increase cAMP content sufficient to stimulate PKA activity. The implications of our work are that EVs represent a novel intercellular mechanism for second messenger, specifically cAMP, signaling.
Collapse
Affiliation(s)
- Aritra Bhadra
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - April K Scruggs
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Naga Annamdevula
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - April H George
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Andrea L Britain
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Christopher M Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jennifer M Knighten
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Thomas C Rich
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America
| | - Natalie N Bauer
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America.
| |
Collapse
|
5
|
Puri NM, Romano GR, Lin TY, Mai QN, Irannejad R. The organic cation Transporter 2 regulates dopamine D1 receptor signaling at the Golgi apparatus. eLife 2022; 11:75468. [PMID: 35467530 PMCID: PMC9098220 DOI: 10.7554/elife.75468] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine is a key catecholamine in the brain and kidney, where it is involved in a number of physiological functions such as locomotion, cognition, emotion, endocrine regulation, and renal function. As a membrane-impermeant hormone and neurotransmitter, dopamine is thought to signal by binding and activating dopamine receptors, members of the G protein coupled receptor (GPCR) family, only on the plasma membrane. Here, using novel nanobody-based biosensors, we demonstrate for the first time that the dopamine D1 receptor (D1DR), the primary mediator of dopaminergic signaling in the brain and kidney, not only functions on the plasma membrane but becomes activated at the Golgi apparatus in the presence of its ligand. We present evidence that activation of the Golgi pool of D1DR is dependent on organic cation transporter 2 (OCT2), a dopamine transporter, providing an explanation for how the membrane-impermeant dopamine accesses subcellular pools of D1DR. We further demonstrate that dopamine activates Golgi-D1DR in murine striatal medium spiny neurons, and this activity depends on OCT2 function. We also introduce a new approach to selectively interrogate compartmentalized D1DR signaling by inhibiting Gαs coupling using a nanobody-based chemical recruitment system. Using this strategy, we show that Golgi-localized D1DRs regulate cAMP production and mediate local protein kinase A activation. Together, our data suggest that spatially compartmentalized signaling hubs are previously unappreciated regulatory aspects of D1DR signaling. Our data provide further evidence for the role of transporters in regulating subcellular GPCR activity.
Collapse
Affiliation(s)
- Natasha M Puri
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Giovanna R Romano
- Biochemistry Department, Weill Cornell Medicine, New York, United States
| | - Ting-Yu Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Quynh N Mai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
6
|
Johnson S, Pleshinger DJ, Jalkh J, Ijaz Z, Annamdevula N, Britain AL, Francis CM, Deshpande D, Leavesley SJ, Rich TC. Measurement of agonist-induced Ca 2+ signals in human airway smooth muscle cells using excitation scan-based hyperspectral imaging and image analysis approaches. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11964:119640J. [PMID: 35755606 PMCID: PMC9215168 DOI: 10.1117/12.2608276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Ca2+ and cAMP are ubiquitous second messengers known to differentially regulate a variety of cellular functions over a wide range of timescales. Studies from a variety of groups support the hypothesis that these signals can be localized to discrete locations within cells, and that this subcellular localization is a critical component of signaling specificity. However, to date, it has been difficult to track second messenger signals at multiple locations. To overcome this limitation, we utilized excitation scan-based hyperspectral imaging approaches to track second messenger signals as well as labeled cellular structures and/or proteins in the same cell. We have previously reported that hyperspectral imaging techniques improve the signal-to-noise ratios of both fluorescence measurements, and are thus well suited for the measurement of localized Ca2+ signals. We investigated the spatial spread and intensities of agonist-induced Ca2+ signals in primary human airway smooth muscle cells (HASMCs) using the Ca2+ indicator Cal520. We measured responses triggered by three agonists, carbachol, histamine, and chloroquine. We utilized custom software coded in MATLAB and Python to assess agonist induced changes in Ca2+ levels. Software algorithms removed the background and applied correction coefficients to spectral data prior to linear unmixing, spatial and temporal filtering, adaptive thresholding, and automated region of interest (ROI) detection. All three agonists triggered transient Ca2+ responses that were spatially and temporally complex. We are currently analyzing differences in both ROI area and intensity distributions triggered by these agonists. This work was supported by NIH awards P01HL066299, K25HL136869, and R01HL137030 and NSF award MRI1725937.
Collapse
Affiliation(s)
| | - D J Pleshinger
- Pharmacology, University of South Alabama, Mobile, AL 36688
| | - Josephine Jalkh
- Biomedical Sciences, University of South Alabama, Mobile, AL 36688
| | - Zara Ijaz
- Pharmacology, University of South Alabama, Mobile, AL 36688
| | | | | | - C Michael Francis
- Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688
| | - Deepak Deshpande
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Silas J Leavesley
- Pharmacology, University of South Alabama, Mobile, AL 36688
- Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688
| | - Thomas C Rich
- Pharmacology, University of South Alabama, Mobile, AL 36688
| |
Collapse
|
7
|
Agarwal SR, Sherpa RT, Moshal KS, Harvey RD. Compartmentalized cAMP signaling in cardiac ventricular myocytes. Cell Signal 2022; 89:110172. [PMID: 34687901 PMCID: PMC8602782 DOI: 10.1016/j.cellsig.2021.110172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023]
Abstract
Activation of different receptors that act by generating the common second messenger cyclic adenosine monophosphate (cAMP) can elicit distinct functional responses in cardiac myocytes. Selectively sequestering cAMP activity to discrete intracellular microdomains is considered essential for generating receptor-specific responses. The processes that control this aspect of compartmentalized cAMP signaling, however, are not completely clear. Over the years, technological innovations have provided critical breakthroughs in advancing our understanding of the mechanisms underlying cAMP compartmentation. Some of the factors identified include localized production of cAMP by differential distribution of receptors, localized breakdown of this second messenger by targeted distribution of phosphodiesterase enzymes, and limited diffusion of cAMP by protein kinase A (PKA)-dependent buffering or physically restricted barriers. The aim of this review is to provide a discussion of our current knowledge and highlight some of the gaps that still exist in the field of cAMP compartmentation in cardiac myocytes.
Collapse
|
8
|
Harvey RD, Clancy CE. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding. J Physiol 2021; 599:4527-4544. [PMID: 34510451 DOI: 10.1113/jp280801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The small diffusible second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is found in virtually every cell in our bodies, where it mediates responses to a variety of different G protein coupled receptors (GPCRs). In the heart, cAMP plays a critical role in regulating many different aspects of cardiac myocyte function, including gene transcription, cell metabolism, and excitation-contraction coupling. Yet, not all GPCRs that stimulate cAMP production elicit the same responses. Subcellular compartmentation of cAMP is essential to explain how different receptors can utilize the same diffusible second messenger to elicit unique functional responses. However, the mechanisms contributing to this behaviour and its significance in producing physiological and pathological responses are incompletely understood. Mathematical modelling has played an essential role in gaining insight into these questions. This review discusses what we currently know about cAMP compartmentation in cardiac myocytes and questions that are yet to be answered.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, NV, 89557, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Sherpa RT, Fiore C, Moshal KS, Wadsworth A, Rudokas MW, Agarwal SR, Harvey RD. Mitochondrial A-kinase anchoring proteins in cardiac ventricular myocytes. Physiol Rep 2021; 9:e15015. [PMID: 34514737 PMCID: PMC8436057 DOI: 10.14814/phy2.15015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Compartmentation of cAMP signaling is a critical factor for maintaining the integrity of receptor-specific responses in cardiac myocytes. This phenomenon relies on various factors limiting cAMP diffusion. Our previous work in adult rat ventricular myocytes (ARVMs) indicates that PKA regulatory subunits anchored to the outer membrane of mitochondria play a key role in buffering the movement of cytosolic cAMP. PKA can be targeted to discrete subcellular locations through the interaction of both type I and type II regulatory subunits with A-kinase anchoring proteins (AKAPs). The purpose of this study is to identify which AKAPs and PKA regulatory subunit isoforms are associated with mitochondria in ARVMs. Quantitative PCR data demonstrate that mRNA for dual specific AKAP1 and 2 (D-AKAP1 & D-AKAP2), acyl-CoA-binding domain-containing 3 (ACBD3), optic atrophy 1 (OPA1) are most abundant, while Rab32, WAVE-1, and sphingosine kinase type 1 interacting protein (SPHKAP) were barely detectable. Biochemical and immunocytochemical analysis suggests that D-AKAP1, D-AKAP2, and ACBD3 are the predominant mitochondrial AKAPs exposed to the cytosolic compartment in these cells. Furthermore, we show that both type I and type II regulatory subunits of PKA are associated with mitochondria. Taken together, these data suggest that D-AKAP1, D-AKAP2, and ACBD3 may be responsible for tethering both type I and type II PKA regulatory subunits to the outer mitochondrial membrane in ARVMs. In addition to regulating PKA-dependent mitochondrial function, these AKAPs may play an important role by buffering the movement of cAMP necessary for compartmentation.
Collapse
Affiliation(s)
| | - Chase Fiore
- Department of PharmacologyUniversity of NevadaRenoNevadaUSA
| | | | - Adam Wadsworth
- Department of PharmacologyUniversity of NevadaRenoNevadaUSA
| | | | | | | |
Collapse
|
10
|
Rudokas MW, Post JP, Sataray-Rodriguez A, Sherpa RT, Moshal KS, Agarwal SR, Harvey RD. Compartmentation of β 2 -adrenoceptor stimulated cAMP responses by phosphodiesterase types 2 and 3 in cardiac ventricular myocytes. Br J Pharmacol 2021; 178:1574-1587. [PMID: 33475150 DOI: 10.1111/bph.15382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE In cardiac myocytes, cyclic AMP (cAMP) produced by both β1 - and β2 -adrenoceptors increases L-type Ca2+ channel activity and myocyte contraction. However, only cAMP produced by β1 -adrenoceptors enhances myocyte relaxation through phospholamban-dependent regulation of the sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2). Here we have tested the hypothesis that stimulation of β2 -adrenoceptors produces a cAMP signal that is unable to reach SERCA2 and determine what role, if any, phosphodiesterase (PDE) activity plays in this compartmentation. EXPERIMENTAL APPROACH The cAMP responses produced by β1 -and β2 -adrenoceptor stimulation were studied in adult rat ventricular myocytes using two different fluorescence resonance energy transfer (FRET)-based biosensors, the Epac2-camps, which is expressed uniformly throughout the cytoplasm of the entire cell and the Epac2-αKAP, which is targeted to the SERCA2 signalling complex. KEY RESULTS Selective activation of β1 - or β2 -adrenoceptors produced cAMP responses detected by Epac2-camps. However, only stimulation of β1 -adrenoceptors produced a cAMP response detected by Epac2-αKAP. Yet, stimulation of β2 -adrenoceptors was able to produce a cAMP signal detected by Epac2-αKAP in the presence of selective inhibitors of PDE2 or PDE3, but not PDE4. CONCLUSION AND IMPLICATIONS These results support the conclusion that cAMP produced by β2 -adrenoceptor stimulation was not able to reach subcellular locations where the SERCA2 pump is located. Furthermore, this compartmentalized response is due at least in part to PDE2 and PDE3 activity. This discovery could lead to novel PDE-based therapeutic treatments aimed at correcting cardiac relaxation defects associated with certain forms of heart failure.
Collapse
Affiliation(s)
| | - John P Post
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| | | | - Rinzhin T Sherpa
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| | - Karni S Moshal
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| | | | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
11
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
12
|
Bers DM, Xiang YK, Zaccolo M. Whole-Cell cAMP and PKA Activity are Epiphenomena, Nanodomain Signaling Matters. Physiology (Bethesda) 2020; 34:240-249. [PMID: 31165682 DOI: 10.1152/physiol.00002.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Novel targeted fluorescent biosensors provide key insights into very local nanodomains of cAMP and PKA activity, and how they respond differently to β-adrenergic activation in cardiac myocytes. This unique spatiotemporal detail in living cells is not available with biochemical measurements of total cellular cAMP and PKA, and provides unique physiological insights.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California , Davis, California
| | - Yang K Xiang
- Department of Pharmacology, University of California , Davis, California
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford , United Kingdom
| |
Collapse
|
13
|
Nader M. The SLMAP/Striatin complex: An emerging regulator of normal and abnormal cardiac excitation-contraction coupling. Eur J Pharmacol 2019; 858:172491. [PMID: 31233748 DOI: 10.1016/j.ejphar.2019.172491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/01/2022]
Abstract
The excitation-contraction (E-C) module involves a harmonized correspondence between the sarcolemma and the sarcoplasmic reticulum. This is provided by membrane proteins, which primarily shape the caveolae, the T-tubule/Sarcoplasmic reticulum (TT/SR) junction, and the intercalated discs (ICDs). Distortion of either one of these structures impairs myocardial contraction, and subsequently translates into cardiac failure. Thus, detailed studies on the molecular cues of the E-C module are becoming increasingly necessary to pharmacologically eradicate cardiac failure Herein we reviewed the organization of caveolae, TT/SR junctions, and the ICDs in the heart, with special attention to the Sarcolemma Membrane Associated Protein (SLMAP) and striatin (STRN) in cardiac membranes biology and cardiomyocyte contraction. We emphasized on their in vivo and in vitro signaling in cardiac function/dysfunction. SLMAP is a cardiac membrane protein that plays an important role in E-C coupling and the adrenergic response of the heart. Similarly, STRN is a dynamic protein that is also involved in cardiac E-C coupling and ICD-related cardiomyopathies. Both SLMAP and STRN are linked to cardiac conditions, including heart failure, and their role in cardiomyocyte function was elucidated in our laboratory. They interact together in a protein complex that holds therapeutic potentials for cardiac dysfunction. This review is the first of its kind to conceptualize the role of the SLMAP/STRN complex in cardiac function and failure. It provides in depth information on the signaling of these two proteins and projects their interaction as a novel therapeutic target for cardiac failure.
Collapse
Affiliation(s)
- Moni Nader
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, 11533, P.O. Box 50927, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Agarwal SR, Fiore C, Miyashiro K, Ostrom RS, Harvey RD. Effect of Adenylyl Cyclase Type 6 on Localized Production of cAMP by β-2 Adrenoceptors in Human Airway Smooth-Muscle Cells. J Pharmacol Exp Ther 2019; 370:104-110. [PMID: 31068382 DOI: 10.1124/jpet.119.256594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
β 2-Adrenoceptors (β 2ARs) are concentrated in caveolar lipid raft domains of the plasma membrane in airway smooth-muscle (ASM) cells, along with adenylyl cyclase type 6 (AC6). This is believed to contribute to how these receptors can selectively regulate certain types of cAMP-dependent responses in these cells. The goal of the present study was to test the hypothesis that β 2AR production of cAMP is localized to specific subcellular compartments using fluorescence resonance energy transfer-based cAMP biosensors targeted to different microdomains in human ASM cells. Epac2-MyrPalm and Epac2-CAAX biosensors were used to measure responses associated with lipid raft and nonraft regions of the plasma membrane, respectively. Activation of β 2ARs with isoproterenol produced cAMP responses that are most readily detected in lipid raft domains. Furthermore, overexpression of AC6 somewhat paradoxically inhibited β 2AR production of cAMP in lipid raft domains without affecting β 2AR responses detected in other subcellular locations or cAMP responses to EP2 prostaglandin receptor activation, which were confined primarily to nonraft domains of the plasma membrane. The inhibitory effect of overexpressing AC6 was blocked by inhibition of phosphodiesterase type 4 (PDE4) activity with rolipram, inhibition of protein kinase A (PKA) activity with H89, and inhibition of A kinase anchoring protein (AKAP) interactions with the peptide inhibitor Ht31. These results support the idea that overexpression of AC6 leads to enhanced feedback activation of PDE4 via phosphorylation by PKA that is part of an AKAP-dependent signaling complex. This provides insight into the molecular basis for localized regulation of cAMP signaling in human ASM cells.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Chase Fiore
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Kathryn Miyashiro
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Rennolds S Ostrom
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| |
Collapse
|
15
|
Lang D, Glukhov AV. Functional Microdomains in Heart's Pacemaker: A Step Beyond Classical Electrophysiology and Remodeling. Front Physiol 2018; 9:1686. [PMID: 30538641 PMCID: PMC6277479 DOI: 10.3389/fphys.2018.01686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Spontaneous beating of the sinoatrial node (SAN), the primary pacemaker of the heart, is initiated, sustained, and regulated by a complex system that integrates ion channels and transporters on the cell membrane surface (often referred to as "membrane clock") with subcellular calcium handling machinery (by parity of reasoning referred to as an intracellular "Ca2+ clock"). Stable, rhythmic beating of the SAN is ensured by a rigorous synchronization between these two clocks highlighted in the coupled-clock system concept of SAN timekeeping. The emerging results demonstrate that such synchronization of the complex pacemaking machinery at the cellular level depends on tightly regulated spatiotemporal signals which are restricted to precise sub-cellular microdomains and associated with discrete clusters of different ion channels, transporters, and regulatory receptors. It has recently become evident that within the microdomains, various proteins form an interacting network and work together as a part of a macromolecular signaling complex. These protein-protein interactions are tightly controlled and regulated by a variety of neurohormonal signaling pathways and the diversity of cellular responses achieved with a limited pool of second messengers is made possible through the organization of essential signal components in particular microdomains. In this review, we highlight the emerging understanding of the functionality of distinct subcellular microdomains in SAN myocytes and their functional role in the accumulation and neurohormonal regulation of proteins involved in cardiac pacemaking. We also demonstrate how changes in scaffolding proteins may lead to microdomain-targeted remodeling and regulation of pacemaker proteins contributing to SAN dysfunction.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexey V Glukhov
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
16
|
Annamdevula NS, Sweat R, Griswold JR, Trinh K, Hoffman C, West S, Deal J, Britain AL, Jalink K, Rich TC, Leavesley SJ. Spectral imaging of FRET-based sensors reveals sustained cAMP gradients in three spatial dimensions. Cytometry A 2018; 93:1029-1038. [PMID: 30176184 DOI: 10.1002/cyto.a.23572] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022]
Abstract
Cyclic AMP is a ubiquitous second messenger that orchestrates a variety of cellular functions over different timescales. The mechanisms underlying specificity within this signaling pathway are still not well understood. Several lines of evidence suggest the existence of spatial cAMP gradients within cells, and that compartmentalization underlies specificity within the cAMP signaling pathway. However, to date, no studies have visualized cAMP gradients in three spatial dimensions (3D: x, y, z).This is in part due to the limitations of FRET-based cAMP sensors, specifically the low signal-to-noise ratio intrinsic to all intracellular FRET probes. Here, we overcome this limitation, at least in part, by implementing spectral imaging approaches to estimate FRET efficiency when multiple fluorescent labels are used and when signals are measured from weakly expressed fluorescent proteins in the presence of background autofluorescence and stray light. Analysis of spectral image stacks in two spatial dimensions (2D) from single confocal slices indicates little or no cAMP gradients formed within pulmonary microvascular endothelial cells (PMVECs) under baseline conditions or following 10 min treatment with the adenylyl cyclase activator forskolin. However, analysis of spectral image stacks in 3D demonstrates marked cAMP gradients from the apical to basolateral face of PMVECs. Results demonstrate that spectral imaging approaches can be used to assess cAMP gradients-and in general gradients in fluorescence and FRET-within intact cells. Results also demonstrate that 2D imaging studies of localized fluorescence signals and, in particular, cAMP signals, whether using epifluorescence or confocal microscopy, may lead to erroneous conclusions about the existence and/or magnitude of gradients in either FRET or the underlying cAMP signals. Thus, with the exception of cellular structures that can be considered in one spatial dimension, such as neuronal processes, 3D measurements are required to assess mechanisms underlying compartmentalization and specificity within intracellular signaling pathways.
Collapse
Affiliation(s)
- Naga S Annamdevula
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Rachel Sweat
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - John R Griswold
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - Kenny Trinh
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - Chase Hoffman
- Medical Sciences, University of South Alabama, Mobile, Alabama
| | - Savannah West
- Department of Biomedical Sciences, University of South Alabama, Mobile, Alabama
| | - Joshua Deal
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Andrea L Britain
- Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Kees Jalink
- The Netherlands Cancer Institute and van Leeuwenhoek Center for Advanced Microscopy, Amsterdam, the Netherlands
| | - Thomas C Rich
- Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama.,College of Engineering, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
17
|
Agarwal SR, Gratwohl J, Cozad M, Yang PC, Clancy CE, Harvey RD. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes. Front Pharmacol 2018; 9:332. [PMID: 29740315 PMCID: PMC5925456 DOI: 10.3389/fphar.2018.00332] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane domains contribute to the formation of distinct pools of cAMP under basal conditions as well as following receptor stimulation in adult ventricular myocytes.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Jackson Gratwohl
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Mia Cozad
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Pei-Chi Yang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
18
|
Kumari N, Gaur H, Bhargava A. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling. Life Sci 2017; 194:139-149. [PMID: 29288765 DOI: 10.1016/j.lfs.2017.12.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/17/2017] [Accepted: 12/24/2017] [Indexed: 01/08/2023]
Abstract
Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated.
Collapse
Affiliation(s)
- Neema Kumari
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Himanshu Gaur
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Anamika Bhargava
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India.
| |
Collapse
|
19
|
Wu YS, Chen CC, Chien CL, Lai HL, Jiang ST, Chen YC, Lai LP, Hsiao WF, Chen WP, Chern Y. The type VI adenylyl cyclase protects cardiomyocytes from β-adrenergic stress by a PKA/STAT3-dependent pathway. J Biomed Sci 2017; 24:68. [PMID: 28870220 PMCID: PMC5584049 DOI: 10.1186/s12929-017-0367-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/11/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The type VI adenylyl cyclase (AC6) is a main contributor of cAMP production in the heart. The amino acid (aa) sequence of AC6 is highly homologous to that of another major cardiac adenylyl cyclase, AC5, except for its N-terminus (AC6-N, aa 1-86). Activation of AC6, rather than AC5, produces cardioprotective effects against heart failure, while the underlying mechanism remains to be unveiled. Using an AC6-null (AC6-/-) mouse and a knockin mouse with AC6-N deletion (AC6 ΔN/ΔN), we aimed to investigate the cardioprotective mechanism of AC6 in the heart. METHODS Western blot analysis and immunofluorescence staining were performed to determine the intracellular distribution of AC6, AC6-ΔN (a truncated AC6 lacking the first 86 amino acids), and STAT3 activation. Activities of AC6 and AC6-ΔN in the heart were assessed by cAMP assay. Apoptosis of cardiomyocytes were evaluated by the TUNEL assay and a propidium iodine-based survival assay. Fibrosis was examined by collagen staining. RESULTS Immunofluorescence staining revealed that cardiac AC6 was mainly anchored on the sarcolemmal membranes, while AC6-ΔN was redistributed to the sarcoplasmic reticulum. AC6ΔN/ΔN and AC6-/- mice had more apoptotic myocytes and cardiac remodeling than WT mice in experimental models of isoproterenol (ISO)-induced myocardial injury. Adult cardiomyocytes isolated from AC6ΔN/ΔN or AC6-/- mice survived poorly after exposure to ISO, which produced no effect on WT cardiomyocytes under the condition tested. Importantly, ISO treatment induced cardiac STAT3 phosphorylation/activation in WT mice, but not in AC6ΔN/ΔN and AC6-/- mice. Pharmacological blockage of PKA-, Src-, or STAT3- pathway markedly reduced the survival of WT myocytes in the presence of ISO, but did not affect those of AC6ΔN/ΔN and AC6-/- myocytes, suggesting an important role of AC6 in mediating cardioprotective action through the activation of PKA-Src-STAT3-signaling. CONCLUSIONS Collectively, AC6-N controls the anchorage of cardiac AC6 on the sarcolemmal membrane, which enables the coupling of AC6 with the pro-survival PKA-STAT3 pathway. Our findings may facilitate the development of novel therapies for heart failure.
Collapse
Affiliation(s)
- Yu-Shuo Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chien-Chang Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chen-Li Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Hsing-Lin Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Yong-Cyuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Lin-Ping Lai
- Institute of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Fan Hsiao
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yijuang Chern
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
20
|
Phosphodiesterases 3 and 4 Differentially Regulate the Funny Current, I f, in Mouse Sinoatrial Node Myocytes. J Cardiovasc Dev Dis 2017; 4. [PMID: 28868308 PMCID: PMC5573264 DOI: 10.3390/jcdd4030010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiac pacemaking, at rest and during the sympathetic fight-or-flight response, depends on cAMP (3',5'-cyclic adenosine monophosphate) signaling in sinoatrial node myocytes (SAMs). The cardiac "funny current" (If) is among the cAMP-sensitive effectors that drive pacemaking in SAMs. If is produced by hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels. Voltage-dependent gating of HCN channels is potentiated by cAMP, which acts either by binding directly to the channels or by activating the cAMP-dependent protein kinase (PKA), which phosphorylates them. PKA activity is required for signaling between β adrenergic receptors (βARs) and HCN channels in SAMs but the mechanism that constrains cAMP signaling to a PKA-dependent pathway is unknown. Phosphodiesterases (PDEs) hydrolyze cAMP and form cAMP signaling domains in other types of cardiomyocytes. Here we examine the role of PDEs in regulation of If in SAMs. If was recorded in whole-cell voltage-clamp experiments from acutely-isolated mouse SAMs in the absence or presence of PDE and PKA inhibitors, and before and after βAR stimulation. General PDE inhibition caused a PKA-independent depolarizing shift in the midpoint activation voltage (V1/2) of If at rest and removed the requirement for PKA in βAR-to-HCN signaling. PDE4 inhibition produced a similar PKA-independent depolarizing shift in the V1/2 of If at rest, but did not remove the requirement for PKA in βAR-to-HCN signaling. PDE3 inhibition produced PKA-dependent changes in If both at rest and in response to βAR stimulation. Our results suggest that PDE3 and PDE4 isoforms create distinct cAMP signaling domains that differentially constrain access of cAMP to HCN channels and establish the requirement for PKA in signaling between βARs and HCN channels in SAMs.
Collapse
|
21
|
Abstract
The universal second messengers cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) play central roles in cardiovascular function and disease. They act in discrete, functionally relevant subcellular microdomains which regulate, for example, calcium cycling and excitation-contraction coupling. Such localized cAMP and cGMP signals have been difficult to measure using conventional biochemical techniques. Recent years have witnessed the advent of live cell imaging techniques which allow visualization of these functionally relevant second messengers with unprecedented spatial and temporal resolution at cellular, subcellular and tissue levels. In this review, we discuss these new imaging techniques and give examples how they are used to visualize cAMP and cGMP in physiological and pathological settings to better understand cardiovascular function and disease. Two primary techniques include the use of Förster resonance energy transfer (FRET) based cyclic nucleotide biosensors and nanoscale scanning ion conductance microscopy (SICM). These methods can provide deep mechanistic insights into compartmentalized cAMP and cGMP signaling.
Collapse
Affiliation(s)
- Filip Berisha
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of General and Interventional Cardiology, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
22
|
Sharpe EJ, Larson ED, Proenza C. Cyclic AMP reverses the effects of aging on pacemaker activity and If in sinoatrial node myocytes. J Gen Physiol 2017; 149:237-247. [PMID: 28057842 PMCID: PMC5299620 DOI: 10.1085/jgp.201611674] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
Aging reduces pacemaker activity and shifts the voltage dependence of activation of the funny current, If, in sinoatrial node myocytes. Sharpe et al. find that these effects of aging can be reversed by application of exogenous cAMP but not by stimulation of endogenous cAMP. Aerobic capacity decreases with age, in part because of an age-dependent decline in maximum heart rate (mHR) and a reduction in the intrinsic pacemaker activity of the sinoatrial node of the heart. Isolated sinoatrial node myocytes (SAMs) from aged mice have slower spontaneous action potential (AP) firing rates and a hyperpolarizing shift in the voltage dependence of activation of the “funny current,” If. Cyclic AMP (cAMP) is a critical modulator of both AP firing rate and If in SAMs. Here, we test the ability of endogenous and exogenous cAMP to overcome age-dependent changes in acutely isolated murine SAMs. We found that maximal stimulation of endogenous cAMP with 3-isobutyl-1-methylxanthine (IBMX) and forskolin significantly increased AP firing rate and depolarized the voltage dependence of activation of If in SAMs from both young and aged mice. However, these changes were insufficient to overcome the deficits in aged SAMs, and significant age-dependent differences in AP firing rate and If persisted in the presence of IBMX and forskolin. In contrast, the effects of aging on SAMs were completely abolished by a high concentration of exogenous cAMP, which restored AP firing rate and If activation to youthful levels in cells from aged animals. Interestingly, the age-dependent differences in AP firing rates and If were similar in whole-cell and perforated-patch recordings, and the hyperpolarizing shift in If persisted in excised inside-out patches, suggesting a limited role for cAMP in causing these changes. Collectively, the data indicate that aging does not impose an absolute limit on pacemaker activity and that it does not act by simply reducing the concentration of freely diffusible cAMP in SAMs.
Collapse
Affiliation(s)
- Emily J Sharpe
- Department of Physiology and Biophysics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| | - Eric D Larson
- Department of Physiology and Biophysics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045 .,Department of Medicine, Division of Cardiology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
23
|
Agarwal SR, Clancy CE, Harvey RD. Mechanisms Restricting Diffusion of Intracellular cAMP. Sci Rep 2016; 6:19577. [PMID: 26795432 PMCID: PMC4726171 DOI: 10.1038/srep19577] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/11/2015] [Indexed: 01/11/2023] Open
Abstract
Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology University of Nevada School of Medicine Reno, NV 89557
| | - Colleen E Clancy
- Department of Pharmacology University of California, Davis Davis, CA 95616
| | - Robert D Harvey
- Department of Pharmacology University of Nevada School of Medicine Reno, NV 89557
| |
Collapse
|
24
|
Galindo-Tovar A, Vargas ML, Kaumann AJ. Inhibitors of phosphodiesterases PDE2, PDE3, and PDE4 do not increase the sinoatrial tachycardia of noradrenaline and prostaglandin PGE₁ in mice. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:177-86. [PMID: 26531832 DOI: 10.1007/s00210-015-1178-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/29/2015] [Indexed: 12/30/2022]
Abstract
Phosphodiesterases PDE2, PDE3, and PDE4 are expressed in murine sinoatrial cells. PDE3 and/or PDE4 reduce heart rate but apparently do not influence the tachycardia mediated through sinoatrial β1- and β2-adrenoceptors despite the high content of sinoatrial cAMP. The function of PDE2 is, however, uncertain. Prostaglandin PGE1 elicits sinoatrial tachycardia through EP receptors, but the control by phosphodiesterases is unknown. We investigated on spontaneously beating right atria of mice the effects of the PDE2 inhibitors Bay 60-7550 and EHNA on basal beating and the tachycardia produced by noradrenaline (3 nM) and PGE1 (1 μM). Bay 60-7550 (1 μM), but not EHNA (10 μM), increased basal sinoatrial beating. EHNA also failed to produce tachycardia in the presence of the adenosine deaminase inhibitor 2'-deoxycoformycin (10 μM), remaining inconclusive whether PDE2 reduces basal sinoatrial beating. Rolipram (10 μM) and cilostamide (300 nM) caused moderate tachycardia. The tachycardia evoked by Bay 60-7550 was similar in the absence and presence of rolipram. Noradrenaline elicited stable tachycardia that was not increased by Bay 60-7550. A stable tachycardia caused by PGE1 was not increased by the inhibitors of PDE2, PDE3, and PDE4. Unlike PDE3 and PDE4 which reduce murine basal sinoatrial beating, a possible effect of PDE2 needs further research. The stable tachycardia produced by noradrenaline and PGE1, together with the lack potentiation by the inhibitors of PDE2, PDE3, and PDE4, suggests that cAMP generated at the receptor compartments is hardly hydrolyzed by these phophodiesterases. Evidence from human volunteers is consistent with this proposal.
Collapse
Affiliation(s)
- Alejandro Galindo-Tovar
- Departamento de Tecnología de la Alimentación y Nutrición, Facultad Ciencia de la Salud, Universidad Católica de Murcia, Murcia, 30107, Spain
| | - María Luisa Vargas
- Departamento de Farmacología, Facultad de Medicina, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - Alberto J Kaumann
- Departamento de Farmacología, Facultad de Medicina, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain.
| |
Collapse
|
25
|
Xin W, Feinstein WP, Britain AL, Ochoa CD, Zhu B, Richter W, Leavesley SJ, Rich TC. Estimating the magnitude of near-membrane PDE4 activity in living cells. Am J Physiol Cell Physiol 2015. [PMID: 26201952 DOI: 10.1152/ajpcell.00090.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Wei P Feinstein
- High Performance Computing, Louisiana State University, Baton Rouge, Louisiana
| | - Andrea L Britain
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Cristhiaan D Ochoa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bing Zhu
- Mitchell Cancer Institute, Mobile, Alabama
| | - Wito Richter
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama; Department of Pharmacology, University of South Alabama, Mobile, Alabama; and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Thomas C Rich
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
26
|
Balycheva M, Faggian G, Glukhov AV, Gorelik J. Microdomain-specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophys Rev 2015; 7:43-62. [PMID: 28509981 PMCID: PMC5425752 DOI: 10.1007/s12551-014-0159-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022] Open
Abstract
Cardiac excitation involves the generation of action potential by individual cells and the subsequent conduction of the action potential from cell to cell through intercellular gap junctions. Excitation of the cellular membrane results in opening of the voltage-gated L-type calcium ion (Ca2+) channels, thereby allowing a small amount of Ca2+ to enter the cell, which in turn triggers the release of a much greater amount of Ca2+ from the sarcoplasmic reticulum, the intracellular Ca2+ store, and gives rise to the systolic Ca2+ transient and contraction. These processes are highly regulated by the autonomic nervous system, which ensures the acute and reliable contractile function of the heart and the short-term modulation of this function upon changes in heart rate or workload. It has recently become evident that discrete clusters of different ion channels and regulatory receptors are present in the sarcolemma, where they form an interacting network and work together as a part of a macro-molecular signalling complex which in turn allows the specificity, reliability and accuracy of the autonomic modulation of the excitation-contraction processes by a variety of neurohormonal pathways. Disruption in subcellular targeting of ion channels and associated signalling proteins may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure and certain arrhythmias. Recent methodological advances have made it possible to routinely image the topography of live cardiomyocytes, allowing the study of clustering functional ion channels and receptors as well as their coupling within a specific microdomain. In this review we highlight the emerging understanding of the functionality of distinct subcellular microdomains in cardiac myocytes (e.g. T-tubules, lipid rafts/caveolae, costameres and intercalated discs) and their functional role in the accumulation and regulation of different subcellular populations of sodium, Ca2+ and potassium ion channels and their contributions to cellular signalling and cardiac pathology.
Collapse
Affiliation(s)
- Marina Balycheva
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Giuseppe Faggian
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Alexey V Glukhov
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
27
|
Gurney ME, D'Amato EC, Burgin AB. Phosphodiesterase-4 (PDE4) molecular pharmacology and Alzheimer's disease. Neurotherapeutics 2015; 12:49-56. [PMID: 25371167 PMCID: PMC4322084 DOI: 10.1007/s13311-014-0309-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Between 20% and 25% of patients diagnosed with Alzheimer's disease (AD) do not have amyloid burden as assessed by positron emission tomography imaging. Thus, there is a need for nonamyloid-directed therapies for AD, especially for those patients with non-amyloid AD. The family of phosphodiesterase-4 (PDE4) enzymes are underexploited therapeutic targets for central nervous system indications. While the PDE4A, B, and D subtypes are expressed in brain, the strict amino acid sequence conservation of the active site across the four subtypes of PDE4 has made it difficult to discover subtype inhibitors. The recent elucidation of the structure of the PDE4 N- and C-terminal regulatory domains now makes it possible to design subtype-selective, negative allosteric modulators (PDE4-NAMs). These act through closing the N-terminal UCR2 or C-terminal CR3 regulatory domains, and thereby inhibit the enzyme by blocking access of cyclic adenosine monophosphate (cAMP) to the active site. PDE4B-NAMs have the potential to reduce neuroinflammation by dampening microglia cytokine production triggered by brain amyloid, while PDE4D-NAMs have potent cognitive benefit by augmenting signaling through the cAMP/protein kinase A/cAMP response element-binding protein (CREB) pathway for memory consolidation. The importance of PDE4D for human cognition is underscored by the recent discovery of PDE4D mutations in acrodysostosis (ACRDY2: MIM 600129), an ultra rare disorder associated with intellectual disability. Thus, the family of PDE4 enzymes provides rich opportunities for the development of mechanistically novel drugs to treat neuroinflammation or the cognitive deficits in AD.
Collapse
|
28
|
Agarwal SR, Yang PC, Rice M, Singer CA, Nikolaev VO, Lohse MJ, Clancy CE, Harvey RD. Role of membrane microdomains in compartmentation of cAMP signaling. PLoS One 2014; 9:e95835. [PMID: 24752595 PMCID: PMC3994114 DOI: 10.1371/journal.pone.0095835] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 03/31/2014] [Indexed: 12/03/2022] Open
Abstract
Spatially restricting cAMP production to discrete subcellular locations permits selective regulation of specific functional responses. But exactly where and how cAMP signaling is confined is not fully understood. Different receptors and adenylyl cyclase isoforms responsible for cAMP production are not uniformly distributed between lipid raft and non-lipid raft domains of the plasma membrane. We sought to determine the role that these membrane domains play in organizing cAMP responses in HEK293 cells. The freely diffusible FRET-based biosensor Epac2-camps was used to measure global cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. Disruption of lipid rafts by cholesterol depletion selectively altered cAMP responses produced by raft-associated receptors. The results indicate that receptors associated with lipid raft as well as non-lipid raft domains can contribute to global cAMP responses. In addition, basal cAMP activity was found to be significantly higher in non-raft domains. This was supported by the fact that pharmacologic inhibition of adenylyl cyclase activity reduced basal cAMP activity detected by Epac2-CAAX but not Epac2-MyrPalm or Epac2-camps. Responses detected by Epac2-CAAX were also more sensitive to direct stimulation of adenylyl cyclase activity, but less sensitive to inhibition of phosphodiesterase activity. Quantitative modeling was used to demonstrate that differences in adenylyl cyclase and phosphodiesterase activities are necessary but not sufficient to explain compartmentation of cAMP associated with different microdomains of the plasma membrane.
Collapse
Affiliation(s)
- Shailesh R. Agarwal
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Pei-Chi Yang
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
| | - Monica Rice
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Cherie A. Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Viacheslav O. Nikolaev
- European Heart Research Institute Gottingen, University of Göttingen, Göttingen, Germany
| | - Martin J. Lohse
- Department of Pharmacology, University of Würzburg, Würzburg, Germany
| | - Colleen E. Clancy
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
| | - Robert D. Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
29
|
Rich TC, Webb KJ, Leavesley SJ. Can we decipher the information content contained within cyclic nucleotide signals? J Gen Physiol 2014; 143:17-27. [PMID: 24378904 PMCID: PMC3874573 DOI: 10.1085/jgp.201311095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Thomas C. Rich
- Center for Lung Biology, Department of Pharmacology, Basic Medical Sciences Graduate Program, and Department of Pharmacology, College of Medicine; and Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL 36688
| | - Kristal J. Webb
- Center for Lung Biology, Department of Pharmacology, Basic Medical Sciences Graduate Program, and Department of Pharmacology, College of Medicine; and Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL 36688
| | - Silas J. Leavesley
- Center for Lung Biology, Department of Pharmacology, Basic Medical Sciences Graduate Program, and Department of Pharmacology, College of Medicine; and Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL 36688
| |
Collapse
|
30
|
Dibb KM, Clarke JD, Eisner DA, Richards MA, Trafford AW. A functional role for transverse (t-) tubules in the atria. J Mol Cell Cardiol 2013; 58:84-91. [PMID: 23147188 DOI: 10.1016/j.yjmcc.2012.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 11/17/2022]
Abstract
Mammalian ventricular myocytes are characterised by the presence of an extensive transverse (t-) tubule network which is responsible for the synchronous rise of intracellular Ca(2+) concentration ([Ca(2+)]i) during systole. Disruption to the ventricular t-tubule network occurs in various cardiac pathologies and leads to heterogeneous changes of [Ca(2+)]i which are thought to contribute to the reduced contractility and increased susceptibility to arrhythmias of the diseased ventricle. Here we review evidence that, despite the long-held dogma of atrial cells having no or very few t-tubules, there is indeed an extensive and functionally significant t-tubule network present in atrial myocytes of large mammals including human. Moreover, the atrial t-tubule network is highly plastic in nature and undergoes far more extensive remodelling in heart disease than is the case in the ventricle with profound consequences for the resulting systolic Ca(2+) transient. In addition to considering the functional role of the t-tubule network in the healthy and diseased atria we also provide an overview of recent data concerning the putative factors controlling the formation of t-tubules and conclude by posing some important questions that currently remain to be addressed and whether or not targeting t-tubules offers potential novel therapeutic possibilities for heart disease.
Collapse
Affiliation(s)
- Katharine M Dibb
- Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, 3.08 Core Technology Facility, 46 Grafton Street, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
31
|
Harvey RD, Hell JW. CaV1.2 signaling complexes in the heart. J Mol Cell Cardiol 2012; 58:143-52. [PMID: 23266596 DOI: 10.1016/j.yjmcc.2012.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 01/08/2023]
Abstract
L-type Ca(2+) channels (LTCCs) are essential for generation of the electrical and mechanical properties of cardiac muscle. Furthermore, regulation of LTCC activity plays a central role in mediating the effects of sympathetic stimulation on the heart. The primary mechanism responsible for this regulation involves β-adrenergic receptor (βAR) stimulation of cAMP production and subsequent activation of protein kinase A (PKA). Although it is well established that PKA-dependent phosphorylation regulates LTCC function, there is still much we do not understand. However, it has recently become clear that the interaction of the various signaling proteins involved is not left to completely stochastic events due to random diffusion. The primary LTCC expressed in cardiac muscle, CaV1.2, forms a supramolecular signaling complex that includes the β2AR, G proteins, adenylyl cyclases, phosphodiesterases, PKA, and protein phosphatases. In some cases, the protein interactions with CaV1.2 appear to be direct, in other cases they involve scaffolding proteins such as A kinase anchoring proteins and caveolin-3. Functional evidence also suggests that the targeting of these signaling proteins to specific membrane domains plays a critical role in maintaining the fidelity of receptor mediated LTCC regulation. This information helps explain the phenomenon of compartmentation, whereby different receptors, all linked to the production of a common diffusible second messenger, can vary in their ability to regulate LTCC activity. The purpose of this review is to examine our current understanding of the signaling complexes involved in cardiac LTCC regulation.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
32
|
Kolodecik TR, Shugrue CA, Thrower EC, Levin LR, Buck J, Gorelick FS. Activation of soluble adenylyl cyclase protects against secretagogue stimulated zymogen activation in rat pancreaic acinar cells. PLoS One 2012; 7:e41320. [PMID: 22844459 PMCID: PMC3402497 DOI: 10.1371/journal.pone.0041320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/20/2012] [Indexed: 01/11/2023] Open
Abstract
An early feature of acute pancreatitis is activation of zymogens, such as trypsinogen, within the pancreatic acinar cell. Supraphysiologic concentrations of the hormone cholecystokinin (CCK; 100 nM), or its orthologue cerulein (CER), induce zymogen activation and elevate levels of cAMP in pancreatic acinar cells. The two classes of adenylyl cyclase, trans-membrane (tmAC) and soluble (sAC), are activated by distinct mechanisms, localize to specific subcellular domains, and can produce locally high concentrations of cAMP. We hypothesized that sAC activity might selectively modulate acinar cell zymogen activation. sAC was identified in acinar cells by PCR and immunoblot. It localized to the apical region of the cell under resting conditions and redistributed intracellularly after treatment with supraphysiologic concentrations of cerulein. In cerulein-treated cells, pre-incubation with a trans-membrane adenylyl cyclase inhibitor did not affect zymogen activation or amylase secretion. However, treatment with a sAC inhibitor (KH7), or inhibition of a downstream target of cAMP, protein kinase A (PKA), significantly enhanced secretagogue-stimulated zymogen activation and amylase secretion. Activation of sAC with bicarbonate significantly inhibited secretagogue-stimulated zymogen activation; this response was decreased by inhibition of sAC or PKA. Bicarbonate also enhanced secretagogue-stimulated cAMP accumulation; this effect was inhibited by KH7. Bicarbonate treatment reduced secretagogue-stimulated acinar cell vacuolization, an early marker of pancreatitis. These data suggest that activation of sAC in the pancreatic acinar cell has a protective effect and reduces the pathologic activation of proteases during pancreatitis.
Collapse
Affiliation(s)
- Thomas R. Kolodecik
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
| | - Christine A. Shugrue
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
| | - Edwin C. Thrower
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
| | - Lonny R. Levin
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jochen Buck
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Fred S. Gorelick
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
33
|
Mika D, Leroy J, Vandecasteele G, Fischmeister R. [Role of cyclic nucleotide phosphodiesterases in the cAMP compartmentation in cardiac cells]. Biol Aujourdhui 2012; 206:11-24. [PMID: 22463992 DOI: 10.1051/jbio/2012003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Indexed: 11/15/2022]
Abstract
In the light of the knowledge accumulated over the years, it becomes clear that intracellular cAMP is not uniformly distributed within cardiomyocytes and that cAMP compartmentation is required for adequate processing and targeting of the information generated at the membrane. Localized cAMP signals may be generated by interplay between discrete production sites and restricted diffusion within the cytoplasm. In addition to specialized membrane structures that may limit cAMP spreading, degradation of the second messenger by cyclic nucleotide phosphodiesterases (PDEs) appears critical for the formation of dynamic microdomains that confer specificity of the response to various hormones. This review summarizes the main findings that support the cAMP compartmentation hypothesis in cardiac cells, with a special emphasis on PDEs. The respective roles of the four main cardiac cAMP-PDE families (PDE1 to PDE4) in the organization of cAMP microdomains and hormonal specificity in cardiac cells are reviewed. The evidence that these PDEs are modified in heart failure is summarized, and the implication for the progression of the disease is discussed. Finally, the potential benefits that could be awaited from the manipulation of specific PDE subtypes in heart failure are presented.
Collapse
Affiliation(s)
- Delphine Mika
- Inserm UMR-S 769- LabEx LERMIT, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
34
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
35
|
Feinstein WP, Zhu B, Leavesley SJ, Sayner SL, Rich TC. Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 2011; 302:C839-52. [PMID: 22116306 DOI: 10.1152/ajpcell.00361.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic AMP signals encode information required to differentially regulate a wide variety of cellular responses; yet it is not well understood how information is encrypted within these signals. An emerging concept is that compartmentalization underlies specificity within the cAMP signaling pathway. This concept is based on a series of observations indicating that cAMP levels are distinct in different regions of the cell. One such observation is that cAMP production at the plasma membrane increases pulmonary microvascular endothelial barrier integrity, whereas cAMP production in the cytosol disrupts barrier integrity. To better understand how cAMP signals might be compartmentalized, we have developed mathematical models in which cellular geometry as well as total adenylyl cyclase and phosphodiesterase activities were constrained to approximate values measured in pulmonary microvascular endothelial cells. These simulations suggest that the subcellular localizations of adenylyl cyclase and phosphodiesterase activities are by themselves insufficient to generate physiologically relevant cAMP gradients. Thus, the assembly of adenylyl cyclase, phosphodiesterase, and protein kinase A onto protein scaffolds is by itself unlikely to ensure signal specificity. Rather, our simulations suggest that reductions in the effective cAMP diffusion coefficient may facilitate the formation of substantial cAMP gradients. We conclude that reductions in the effective rate of cAMP diffusion due to buffers, structural impediments, and local changes in viscosity greatly facilitate the ability of signaling complexes to impart specificity within the cAMP signaling pathway.
Collapse
Affiliation(s)
- Wei P Feinstein
- Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
36
|
Harvey RD. How uniform is cAMP signaling? Focus on “Systems analysis of GLP-1 receptor signaling in pancreatic β-cells”. Am J Physiol Cell Physiol 2011; 301:C775-6. [DOI: 10.1152/ajpcell.00245.2011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol 2011; 52:376-87. [PMID: 21888911 DOI: 10.1016/j.yjmcc.2011.08.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/11/2011] [Accepted: 08/17/2011] [Indexed: 11/23/2022]
Abstract
Influx of Ca(2+) through L-type Ca(2+) channels (LTCCs) contributes to numerous cellular processes in cardiomyocytes including excitation-contraction (EC) coupling, membrane excitability, and transcriptional regulation. Distinct subpopulations of LTCCs have been identified in cardiac myocytes, including those at dyadic junctions and within different plasma membrane microdomains such as lipid rafts and caveolae. These subpopulations of LTCCs exhibit regionally distinct functional properties and regulation, affording precise spatiotemporal modulation of L-type Ca(2+) current (I(Ca,L)). Different subcellular LTCC populations demonstrate variable rates of Ca(2+)-dependent inactivation and sometimes coupled gating of neighboring channels, which can lead to focal, persistent I(Ca,L). In addition, the assembly of spatially defined macromolecular signaling complexes permits compartmentalized regulation of I(Ca,L) by a variety of neurohormonal pathways. For example, β-adrenergic receptor subtypes signal to different LTCC subpopulations, with β(2)-adrenergic activation leading to enhanced I(Ca,L) through caveolar LTCCs and β(1)-adrenergic stimulation modulating LTCCs outside of caveolae. Disruptions in the normal subcellular targeting of LTCCs and associated signaling proteins may contribute to the pathophysiology of a variety of cardiac diseases including heart failure and certain arrhythmias. Further identifying the characteristic functional properties and array of regulatory molecules associated with specific LTCC subpopulations will provide a mechanistic framework to understand how LTCCs contribute to diverse cellular processes in normal and diseased myocardium. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
|
38
|
PDEs create local domains of cAMP signaling. J Mol Cell Cardiol 2011; 52:323-9. [PMID: 21888909 DOI: 10.1016/j.yjmcc.2011.08.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/12/2011] [Accepted: 08/17/2011] [Indexed: 01/11/2023]
Abstract
In the light of the knowledge accumulated over the years, it becomes clear that intracellular cAMP is not uniformly distributed within cardiomyocytes and that cAMP compartmentation is required for adequate processing and targeting of the information generated at the membrane. Localized cAMP signals may be generated by interplay between discrete production sites and restricted diffusion within the cytoplasm. In addition to specialized membrane structures that may limit cAMP spreading, degradation of the second messenger by cyclic nucleotide phosphodiesterases (PDEs) appears critical for the formation of dynamic microdomains that confer specificity of the response to various hormones. This review will cover the role of the different cAMP-PDE isoforms in this process. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
|
39
|
Harvey RD, Calaghan SC. Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology. J Mol Cell Cardiol 2011; 52:366-75. [PMID: 21782827 DOI: 10.1016/j.yjmcc.2011.07.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 01/02/2023]
Abstract
Compartmentation of signalling allows multiple stimuli to achieve diverse cellular responses with only a limited pool of second messengers. This spatial control of signalling is achieved, in part, by cellular structures which bring together elements of a particular cascade. One such structure is the caveola, a flask-shaped lipid raft. Caveolae are well-recognised as signalosomes, platforms for assembly of signalling complexes of receptors, effectors and their targets, which can facilitate efficient and specific cellular responses. Here we extend this simple model and present evidence to show how the protein and lipid profiles of caveolae, as well as their characteristic morphology, define their roles in creating local signalling domains in the cardiac myocyte. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
40
|
MacDougall DA, Agarwal SR, Stopford EA, Chu H, Collins JA, Longster AL, Colyer J, Harvey RD, Calaghan S. Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte. J Mol Cell Cardiol 2011; 52:388-400. [PMID: 21740911 PMCID: PMC3270222 DOI: 10.1016/j.yjmcc.2011.06.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/02/2011] [Accepted: 06/20/2011] [Indexed: 01/24/2023]
Abstract
Inotropy and lusitropy in the ventricular myocyte can be efficiently induced by activation of β1-, but not β2-, adrenoceptors (ARs). Compartmentation of β2-AR-derived cAMP-dependent signalling underlies this functional discrepancy. Here we investigate the mechanism by which caveolae (specialised sarcolemmal invaginations rich in cholesterol and caveolin-3) contribute to compartmentation in the adult rat ventricular myocyte. Selective activation of β2-ARs (with zinterol/CGP20712A) produced little contractile response in control cells but pronounced inotropic and lusitropic responses in cells treated with the cholesterol-depleting agent methyl-β-cyclodextrin (MBCD). This was not linked to modulation of L-type Ca2+ current, but instead to a discrete PKA-mediated phosphorylation of phospholamban at Ser16. Application of a cell-permeable inhibitor of caveolin-3 scaffolding interactions mimicked the effect of MBCD on phosphorylated phospholamban (pPLB) during β2-AR stimulation, consistent with MBCD acting via caveolae. Biosensor experiments revealed β2-AR mobilisation of cAMP in PKA II signalling domains of intact cells only after MBCD treatment, providing a real-time demonstration of cAMP freed from caveolar constraint. Other proteins have roles in compartmentation, so the effects of phosphodiesterase (PDE), protein phosphatase (PP) and phosphoinositide-3-kinase (PI3K) inhibitors on pPLB and contraction were compared in control and MBCD treated cells. PP inhibition alone was conspicuous in showing robust de-compartmentation of β2-AR-derived signalling in control cells and a comparatively diminutive effect after cholesterol depletion. Collating all evidence, we promote the novel concept that caveolae limit β2-AR-cAMP signalling by providing a platform that not only attenuates production of cAMP but also prevents inhibitory modulation of PPs at the sarcoplasmic reticulum. This article is part of a Special Issue entitled “Local Signaling in Myocytes”.
Collapse
Affiliation(s)
- David A. MacDougall
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Shailesh R. Agarwal
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | - Hongjin Chu
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jennifer A. Collins
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anna L. Longster
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - John Colyer
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert D. Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Sarah Calaghan
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
- Corresponding author at: Institute of Membrane and Systems Biology, Garstang 7.52d, University of Leeds, Leeds LS2 9JT, UK. Tel.: + 44 113 343 4309; fax: + 44 113 343 4228.
| |
Collapse
|
41
|
Hussain RI, Afzal F, Mørk HK, Aronsen JM, Sjaastad I, Osnes JB, Skomedal T, Levy FO, Krobert KA. Cyclic AMP-dependent inotropic effects are differentially regulated by muscarinic G(i)-dependent constitutive inhibition of adenylyl cyclase in failing rat ventricle. Br J Pharmacol 2011; 162:908-16. [PMID: 21039419 DOI: 10.1111/j.1476-5381.2010.01097.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE β-Adrenoceptor (β-AR)-mediated inotropic effects are attenuated and G(i) proteins are up-regulated in heart failure (HF). Muscarinic receptors constitutively inhibit cAMP formation in normal rat cardiomyocytes. We determined whether constitutive activity of muscarinic receptors to inhibit adenylyl cyclase (AC) increases in HF and if so, whether it modifies the reduced β-AR- or emergent 5-HT₄-mediated cAMP-dependent inotropic effects. EXPERIMENTAL APPROACH Contractility and AC activity were measured and related to each other in rat ventricle with post-infarction HF and sham-operated (Sham) controls with or without blockade of muscarinic receptors by atropine and inactivation of G(i) protein by pertussis toxin (PTX). KEY RESULTS Isoprenaline-mediated inotropic effects were attenuated and basal, isoprenaline- and forskolin-stimulated AC activity was reduced in HF compared with Sham. Atropine or PTX pretreatment increased forskolin-stimulated AC activity in HF hearts. β-AR-stimulated AC and maximal inotropic response were unaffected by atropine in Sham and HF. In HF, the potency of serotonin (5-HT) to evoke an inotropic response was increased in the presence of atropine with no change in the maximal inotropic response. Interestingly, PTX pretreatment reduced the potency of 5-HT to evoke inotropic responses while increasing the maximal inotropic response. CONCLUSIONS AND IMPLICATIONS Although muscarinic constitutive inhibition of AC is increased in HF, it does not contribute to the reduced β-AR-mediated inotropic effects in rat ventricle in HF. The data support the hypothesis that there are differences in the functional compartmentation of 5-HT₄ and β-AR AC signalling in myocardium during HF.
Collapse
Affiliation(s)
- R I Hussain
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Local control of β-adrenergic stimulation: Effects on ventricular myocyte electrophysiology and Ca(2+)-transient. J Mol Cell Cardiol 2011; 50:863-71. [PMID: 21345340 DOI: 10.1016/j.yjmcc.2011.02.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/03/2011] [Accepted: 02/09/2011] [Indexed: 11/21/2022]
Abstract
Local signaling domains and numerous interacting molecular pathways and substrates contribute to the whole-cell response of myocytes during β-adrenergic stimulation (βARS). We aimed to elucidate the quantitative contribution of substrates and their local signaling environments during βARS to the canine epicardial ventricular myocyte electrophysiology and calcium transient (CaT). We present a computational compartmental model of βARS and its electrophysiological effects. Novel aspects of the model include localized signaling domains, incorporation of β1 and β2 receptor isoforms, a detailed population-based approach to integrate the βAR and Ca(2+)/Calmodulin kinase (CaMKII) signaling pathways and their effects on a wide range of substrates that affect whole-cell electrophysiology and CaT. The model identifies major roles for phosphodiesterases, adenylyl cyclases, PKA and restricted diffusion in the control of local cAMP levels and shows that activation of specific cAMP domains by different receptor isoforms allows for specific control of action potential and CaT properties. In addition, the model predicts increased CaMKII activity during βARS due to rate-dependent accumulation and increased Ca(2+) cycling. CaMKII inhibition, reduced compartmentation, and selective blockade of β1AR is predicted to reduce the occurrence of delayed afterdepolarizations during βARS. Finally, the relative contribution of each PKA substrate to whole-cell electrophysiology is quantified by comparing simulations with and without phosphorylation of each target. In conclusion, this model enhances our understanding of localized βAR signaling and its whole-cell effects in ventricular myocytes by incorporating receptor isoforms, multiple pathways and a detailed representation of multiple-target phosphorylation; it provides a basis for further studies of βARS under pathological conditions.
Collapse
|
43
|
Gurney ME, Burgin AB, Magnusson OT, Stewart LJ. Small molecule allosteric modulators of phosphodiesterase 4. Handb Exp Pharmacol 2011:167-92. [PMID: 21695640 DOI: 10.1007/978-3-642-17969-3_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have shown benefit in human clinical trials but dosing is limited by tolerability, particularly because of emesis. Novel cocrystal structures of PDE4 catalytic units with their regulatory domains together with bound inhibitors have revealed three different PDE4 conformers that can be exploited in the design of novel therapeutic agents. The first is an open conformer, which has been employed in the traditional approach to the design of competitive PDE4 inhibitors. The second is an asymmetric dimer in which a UCR2 regulatory helix from one monomer is placed in a closed conformation over the opposite active site in the PDE4 dimer (trans-capping). Only one active site can be closed by an inhibitor at a time with the consequence that compounds exploiting this conformer only partially inhibit PDE4 enzymatic activity while retaining potency in cellular and in vivo models. By placing an intrinsic ceiling on the magnitude of PDE4 inhibition, such compounds may better maintain spatial and temporal patterning of signaling in cAMP microdomains with consequent improved tolerability. The third is a symmetric PDE4 conformer in which helices from the C-terminal portion of the catalytic unit cap both active sites (cis-capping). We propose that dual-gating of PDE4 activity may be further fine tuned by accessory proteins that recognize open or closed conformers of PDE4 regulatory helices.
Collapse
|
44
|
Agarwal SR, MacDougall DA, Tyser R, Pugh SD, Calaghan SC, Harvey RD. Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes. J Mol Cell Cardiol 2010; 50:500-9. [PMID: 21115018 PMCID: PMC3049871 DOI: 10.1016/j.yjmcc.2010.11.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/27/2010] [Accepted: 11/16/2010] [Indexed: 11/02/2022]
Abstract
β(1)-Adrenergic receptors (β(1)ARs) and E-type prostaglandin receptors (EPRs) both produce compartmentalized cAMP responses in cardiac myocytes. The role of cholesterol-dependent lipid rafts in producing these compartmentalized responses was investigated in adult rat ventricular myocytes. β(1)ARs were found in lipid raft and non-lipid raft containing membrane fractions, while EPRs were only found in non-lipid raft fractions. Furthermore, β(1)AR activation enhanced the L-type Ca(2+) current, intracellular Ca(2+) transient, and myocyte shortening, while EPR activation had no effect, consistent with the idea that these functional responses are regulated by cAMP produced by receptors found in lipid raft domains. Using methyl-β-cyclodextrin to disrupt lipid rafts by depleting membrane cholesterol did not eliminate compartmentalized behavior, but it did selectively alter specific receptor-mediated responses. Cholesterol depletion enhanced the sensitivity of functional responses produced by β(1)ARs without having any effect on EPR activation. Changes in cAMP activity were also measured in intact cells using two different FRET-based biosensors: a type II PKA-based probe to monitor cAMP in subcellular compartments that include microdomains associated with caveolar lipid rafts and a freely diffusible Epac2-based probe to monitor total cytosolic cAMP. β(1)AR and EPR activation elicited responses detected by both FRET probes. However, cholesterol depletion only affected β(1)AR responses detected by the PKA probe. These results indicate that lipid rafts alone are not sufficient to explain the difference between β(1)AR and EPR responses. They also suggest that β(1)AR regulation of myocyte contraction involves the local production of cAMP by a subpopulation of receptors associated with caveolar lipid rafts.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology-MS318, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | |
Collapse
|
45
|
Oliver VL, Anderson C, Ventura S, Haynes JM. Androgens regulate adenylate cyclase activity and intracellular calcium in stromal cells derived from human prostate. Prostate 2010; 70:1222-32. [PMID: 20564424 DOI: 10.1002/pros.21157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increased smooth muscle tone is a significant component of benign prostatic hyperplasia, the onset of which correlates with age and declining serum testosterone levels. This study investigates the effects of androgens on key regulators of smooth muscle tone: intracellular calcium ([Ca(2+)](i)) and cyclic adenosine monophosphate (cAMP) in human cultured prostatic stromal cells (HCPSC). METHODS HCPSC were cultured in the absence or presence of dihydrotestosterone (DHT; 3, 30, and 300 nM) or testosterone (0.3-300 nM) alone or in the presence of flutamide (10 microM). Changes in [Ca(2+)](i) were determined in FURA-2AM (10 microM) loaded cells. Changes in cAMP were determined by Alpha Screen(R) assay. RESULTS Up to 32% of cultured cells exhibited spontaneous elevations of [Ca(2+)](i). The frequency of these elevations was reduced by nifedipine (10 microM), ryanodine (1 microM), and the adenylate cyclase inhibitor MDL 12,330A (20 microM). Compared to steroid-free cells, a 3-day incubation of cells with testosterone (only 3 nM) elevated basal, but not peak [Ca(2+)](i). In the presence of flutamide, all concentrations of testosterone tested elevated basal, but not peak [Ca(2+)](i). DHT (30 and 300, but not 3 nM) lowered peak and basal [Ca(2+)](i). Increased testosterone concentration dependently decreased resting cell cAMP (pIC(50): 7.64 +/- 0.29 nM). CONCLUSIONS These findings demonstrate that some HCPSC have the ability to spontaneously and transiently elevate [Ca(2+)](i). The magnitude of these [Ca(2+)](i) peaks, along with resting levels of calcium and cAMP, appear to be regulated by androgens.
Collapse
Affiliation(s)
- Victoria L Oliver
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
46
|
Abstract
Signal transduction events are key modulators of cellular function and, in the cardiovascular system, an emerging role is played by phosphoinositide 3-kinases (PI3Ks), a family of enzymes containing a 3-phosphorylated phosphoinositide that produce lipid second messengers. In the heart, multiple PI3K isoforms are expressed, but play potentially distinct roles. Among cardiac PI3Ks, PI3Kalpha is triggered by tyrosine kinase receptors and plays a role in adaptive hypertrophy, while PI3Kgamma is triggered by G protein-coupled receptors and is involved in maladaptive heart remodeling. This view has been recently complicated by the finding that PI3Ks can also be involved in protein-protein interactions and affect signaling independently of their kinase activity. This review will thus focus on the effects of these multiple signaling events, with particular emphasis on their involvement in cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Federico Damilano
- Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | | | | |
Collapse
|
47
|
Calebiro D, Nikolaev VO, Persani L, Lohse MJ. Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 2010; 31:221-8. [PMID: 20303186 DOI: 10.1016/j.tips.2010.02.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/01/2010] [Accepted: 02/11/2010] [Indexed: 01/27/2023]
Abstract
G-protein-coupled receptors (GPCRs) are cell surface receptors and are generally assumed to signal to second messengers such as cyclic AMP (cAMP) exclusively from the plasma membrane. However, recent studies indicate that GPCRs can continue signaling to cAMP after internalization together with their agonists. Signaling from inside the cell is persistent and appears to trigger specific downstream effects. Here, we will review these recent data, which form the basis for a novel concept of intracellular GPCR signaling and suggest new and intriguing scenarios for the functions of GPCRs in the endocytic compartment. We propose that current models of GPCR signaling should be revised to accommodate the ability of receptors to change their signaling properties depending on their subcellular localization.
Collapse
Affiliation(s)
- Davide Calebiro
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.
| | | | | | | |
Collapse
|
48
|
Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: Activity-dependent positive feedback and cellular migration. Int J Biochem Cell Biol 2010; 42:346-58. [DOI: 10.1016/j.biocel.2009.11.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/30/2009] [Accepted: 11/24/2009] [Indexed: 11/22/2022]
|
49
|
Dai S, Hall DD, Hell JW. Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 2009; 89:411-52. [PMID: 19342611 DOI: 10.1152/physrev.00029.2007] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review addresses the localized regulation of voltage-gated ion channels by phosphorylation. Comprehensive data on channel regulation by associated protein kinases, phosphatases, and related regulatory proteins are mainly available for voltage-gated Ca2+ channels, which form the main focus of this review. Other voltage-gated ion channels and especially Kv7.1-3 (KCNQ1-3), the large- and small-conductance Ca2+-activated K+ channels BK and SK2, and the inward-rectifying K+ channels Kir3 have also been studied to quite some extent and will be included. Regulation of the L-type Ca2+ channel Cav1.2 by PKA has been studied most thoroughly as it underlies the cardiac fight-or-flight response. A prototypical Cav1.2 signaling complex containing the beta2 adrenergic receptor, the heterotrimeric G protein Gs, adenylyl cyclase, and PKA has been identified that supports highly localized via cAMP. The type 2 ryanodine receptor as well as AMPA- and NMDA-type glutamate receptors are in close proximity to Cav1.2 in cardiomyocytes and neurons, respectively, yet independently anchor PKA, CaMKII, and the serine/threonine phosphatases PP1, PP2A, and PP2B, as is discussed in detail. Descriptions of the structural and functional aspects of the interactions of PKA, PKC, CaMKII, Src, and various phosphatases with Cav1.2 will include comparisons with analogous interactions with other channels such as the ryanodine receptor or ionotropic glutamate receptors. Regulation of Na+ and K+ channel phosphorylation complexes will be discussed in separate papers. This review is thus intended for readers interested in ion channel regulation or in localization of kinases, phosphatases, and their upstream regulators.
Collapse
Affiliation(s)
- Shuiping Dai
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
50
|
Balijepalli RC, Kamp TJ. Caveolae, ion channels and cardiac arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 98:149-60. [PMID: 19351512 DOI: 10.1016/j.pbiomolbio.2009.01.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Caveolae are specialized membrane microdomains enriched in cholesterol and sphingolipids which are present in multiple cell types including cardiomyocytes. Along with the essential scaffolding protein caveolin-3, a number of different ion channels and transporters have been localized to caveolae in cardiac myocytes including L-type Ca2+ channels (Ca(v)1.2), Na+ channels (Na(v)1.5), pacemaker channels (HCN4), Na+/Ca2+ exchanger (NCX1) and others. Closely associated with these channels are specific macromolecular signaling complexes that provide highly localized regulation of the channels. Mutations in the caveolin-3 gene (CAV3) have been linked with the congenital long QT syndrome (LQT9), and mutations in caveolar-localized ion channels may contribute to other inherited arrhythmias. Changes in the caveolar microdomain in acquired heart disease may also lead to dysregulation and dysfunction of ion channels, altering the risk of arrhythmias in conditions such as heart failure. This review highlights the existing evidence identifying and characterizing ion channels localized to caveolae in cardiomyocytes and their role in arrhythmogenesis.
Collapse
Affiliation(s)
- Ravi C Balijepalli
- Department of Medicine, Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|