1
|
Lee JU, Ma JE, Sartori Valinotti JC, Rooke TW, Sandroni P, Watson JC, Davis MD. Procedural interventions for erythromelalgia: A narrative review. Vasc Med 2024; 29:723-732. [PMID: 39319570 DOI: 10.1177/1358863x241279427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Erythromelalgia is a rare disorder characterized by episodic burning pain with redness and warmth of the extremities. Topical and systemic medications are the mainstay of management. We reviewed the published evidence for using procedural interventions to manage erythromelalgia, including their proposed mechanism of action and possible adverse effects, and included information in this review on epidural infusion, sympathetic ganglion block, sympathectomy, pulsed radiofrequency, spinal cord stimulation, dorsal root ganglion stimulation, brain stimulation, transcranial magnetic stimulation, and botulinum toxin injections. Both successful and unsuccessful outcomes have been reported. Although these procedural interventions extend the therapeutic options for erythromelalgia, the evidence for their use is limited. Case reports and small case series comprise most of the evidence. Based on our review, a multidisciplinary approach to management may be needed for patients with erythromelalgia.
Collapse
Affiliation(s)
- Jinnee Uj Lee
- Student, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - Janice E Ma
- Division of Dermatology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Thom W Rooke
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - Paola Sandroni
- Department of Neurology, Mayo Clinic Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - James C Watson
- Department of Neurology, Mayo Clinic Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - Mark Dp Davis
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Vasylyev DV, Zhao P, Schulman BR, Waxman SG. Interplay of Nav1.8 and Nav1.7 channels drives neuronal hyperexcitability in neuropathic pain. J Gen Physiol 2024; 156:e202413596. [PMID: 39378238 PMCID: PMC11465073 DOI: 10.1085/jgp.202413596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
While voltage-gated sodium channels Nav1.7 and Nav1.8 both contribute to electrogenesis in dorsal root ganglion (DRG) neurons, details of their interactions have remained unexplored. Here, we studied the functional contribution of Nav1.8 in DRG neurons using a dynamic clamp to express Nav1.7L848H, a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, and demonstrate a profound functional interaction of Nav1.8 with Nav1.7 close to the threshold for AP generation. At the voltage threshold of -21.9 mV, we observed that Nav1.8 channel open-probability exceeded Nav1.7WT channel open-probability ninefold. Using a kinetic model of Nav1.8, we showed that a reduction of Nav1.8 current by even 25-50% increases rheobase and reduces firing probability in small DRG neurons expressing Nav1.7L848H. Nav1.8 subtraction also reduces the amplitudes of subthreshold membrane potential oscillations in these cells. Our results show that within DRG neurons that express peripheral sodium channel Nav1.7, the Nav1.8 channel amplifies excitability at a broad range of membrane voltages with a predominant effect close to the AP voltage threshold, while Nav1.7 plays a major role at voltages closer to resting membrane potential. Our data show that dynamic-clamp reduction of Nav1.8 conductance by 25-50% can reverse hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes pain in humans and suggests, more generally, that full inhibition of Nav1.8 may not be required for relief of pain due to DRG neuron hyperexcitability.
Collapse
Affiliation(s)
- Dmytro V. Vasylyev
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Betsy R. Schulman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
3
|
Xiao Y, Pan Y, Xiao J, Cummins TR. Molecular determinants of resurgent sodium currents mediated by Navβ4 peptide and A-type FHFs. Front Mol Neurosci 2024; 17:1433981. [PMID: 39416265 PMCID: PMC11480954 DOI: 10.3389/fnmol.2024.1433981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Resurgent current (INaR ) generated by voltage-gated sodium channels (VGSCs) plays an essential role in maintaining high-frequency firing of many neurons and contributes to disease pathophysiology such as epilepsy and painful disorders. Targeting INaR may present a highly promising strategy in the treatment of these diseases. Navβ4 and A-type fibroblast growth factor homologous factors (FHFs) have been identified as two classes of important INaR mediators; however, their receptor sites in VGSCs remain unknown, which hinders the development of novel agents to effectively target INaR . Methods Navβ4 and FHF4A can mediate INaR generation through the amino acid segment located in their C-terminus and N-terminus, respectively. We mainly employed site-directed mutagenesis, chimera construction and whole-cell patch-clamp recording to explore the receptor sites of Navβ4 peptide and FHF4A in Nav1.7 and Nav1.8. Results We show that the receptor of Navβ4-peptide involves four residues, N395, N945, F1737 and Y1744, in Nav1.7 DI-S6, DII-S6, and DIV-S6. We show that A-type FHFs generating INaR depends on the segment located at the very beginning, not at the distal end, of the FHF4 N-terminus domain. We show that the receptor site of A-type FHFs also resides in VGSC inner pore region. We further show that an asparagine at DIIS6, N891 in Nav1.8, is a major determinant of INaR generated by A-type FHFs in VGSCs. Discussion Cryo-EM structures reveal that the side chains of the critical residues project into the VGSC channel pore. Our findings provide additional evidence that Navβ4 peptide and A-type FHFs function as open-channel pore blockers and highlight channel inner pore region as a hotspot for development of novel agents targeting INaR .
Collapse
Affiliation(s)
- Yucheng Xiao
- Biology Department, School of Science, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Yanling Pan
- Biology Department, School of Science, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Jingyu Xiao
- School of Engineering, Purdue University, West Lafayette, IN, United States
| | - Theodore R. Cummins
- Biology Department, School of Science, Indiana University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
4
|
Martina M, Banderali U, Yogi A, Arbabi Ghahroudi M, Liu H, Sulea T, Durocher Y, Hussack G, van Faassen H, Chakravarty B, Liu QY, Iqbal U, Ling B, Lessard E, Sheff J, Robotham A, Callaghan D, Moreno M, Comas T, Ly D, Stanimirovic D. A Novel Antigen Design Strategy to Isolate Single-Domain Antibodies that Target Human Nav1.7 and Reduce Pain in Animal Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405432. [PMID: 39206821 PMCID: PMC11516162 DOI: 10.1002/advs.202405432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Genetic studies have identified the voltage-gated sodium channel 1.7 (Nav1.7) as pain target. Due to the ineffectiveness of small molecules and monoclonal antibodies as therapeutics for pain, single-domain antibodies (VHHs) are developed against the human Nav1.7 (hNav1.7) using a novel antigen presentation strategy. A 70 amino-acid peptide from the hNav1.7 protein is identified as a target antigen. A recombinant version of this peptide is grafted into the complementarity determining region 3 (CDR3) loop of an inert VHH in order to maintain the native 3D conformation of the peptide. This antigen is used to isolate one VHH able to i) bind hNav1.7, ii) slow the deactivation of hNav1.7, iii) reduce the ability of eliciting action potentials in nociceptors, and iv) reverse hyperalgesia in in vivo rat and mouse models. This VHH exhibits the potential to be developed as a therapeutic capable of suppressing pain. This novel antigen presentation strategy can be applied to develop biologics against other difficult targets such as ion channels, transporters and GPCRs.
Collapse
Affiliation(s)
- Marzia Martina
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Umberto Banderali
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Alvaro Yogi
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Mehdi Arbabi Ghahroudi
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Hong Liu
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Traian Sulea
- Human Health Therapeutics Research CentreNational Research Council Canada6100 Royalmount Avenue MontréalQuebecH4P 2R2Canada
| | - Yves Durocher
- Human Health Therapeutics Research CentreNational Research Council Canada6100 Royalmount Avenue MontréalQuebecH4P 2R2Canada
| | - Greg Hussack
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Henk van Faassen
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Balu Chakravarty
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Qing Yan Liu
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Umar Iqbal
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Binbing Ling
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Etienne Lessard
- Human Health Therapeutics Research CentreNational Research Council Canada6100 Royalmount Avenue MontréalQuebecH4P 2R2Canada
| | - Joey Sheff
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Anna Robotham
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Debbie Callaghan
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Maria Moreno
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Tanya Comas
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Dao Ly
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| |
Collapse
|
5
|
Wang X, Zhang Y, Guo T, Wu S, Zhong J, Cheng C, Sui X. Selective intrafascicular stimulation of myelinated and unmyelinated nerve fibers through a longitudinal electrode: A computational study. Comput Biol Med 2024; 176:108556. [PMID: 38733726 DOI: 10.1016/j.compbiomed.2024.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Carbon nanotube (CNT) fiber electrodes have demonstrated exceptional spatial selectivity and sustained reliability in the context of intrafascicular electrical stimulation, as evidenced through rigorous animal experimentation. A significant presence of unmyelinated C fibers, known to induce uncomfortable somatosensory experiences, exists within peripheral nerves. This presence poses a considerable challenge to the excitation of myelinated Aβ fibers, which are crucial for tactile sensation. To achieve nuanced tactile sensory feedback utilizing CNT fiber electrodes, the selective stimulation of Aβ sensory afferents emerges as a critical factor. In confronting this challenge, the present investigation sought to refine and apply a rat sciatic-nerve model leveraging the capabilities of the COMSOL-NEURON framework. This approach enables a systematic evaluation of the influence exerted by stimulation parameters and electrode geometry on the activation dynamics of both myelinated Aβ and unmyelinated C fibers. The findings advocate for the utilization of current pulses featuring a pulse width of 600 μs, alongside the deployment of CNT fibers characterized by a diminutive diameter of 10 μm, with an exclusively exposed cross-sectional area, to facilitate reduced activation current thresholds. Comparative analysis under monopolar and bipolar electrical stimulation conditions revealed proximate activation thresholds, albeit with bipolar stimulation exhibiting superior fiber selectivity relative to its monopolar counterpart. Concerning pulse waveform characteristics, the adoption of an anodic-first biphasic stimulation modality is favored, taking into account the dual criteria of activation threshold and fiber selectivity optimization. Consequently, this investigation furnishes an efficacious stimulation paradigm for the selective activation of touch-related nerve fibers, alongside provisioning a comprehensive theoretical foundation for the realization of natural tactile feedback within the domain of prosthetic hand applications.
Collapse
Affiliation(s)
- Xintong Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yapeng Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhui Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junwen Zhong
- Department of Electromechanical Engineering, University of Macau, Macau SAR, 999078, China
| | - Chengkung Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Med-X Research Institute, Shanghai Jiao Tong University, Engineering Research Center of Digital Medicine, Ministry of Education, Shanghai, China
| | - Xiaohong Sui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Madden LR, Graham RD, Lempka SF, Bruns TM. Multiformity of extracellular microelectrode recordings from Aδ neurons in the dorsal root ganglia: a computational modeling study. J Neurophysiol 2024; 131:261-277. [PMID: 38169334 PMCID: PMC11305647 DOI: 10.1152/jn.00385.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
Microelectrodes serve as a fundamental tool in electrophysiology research throughout the nervous system, providing a means of exploring neural function with a high resolution of neural firing information. We constructed a hybrid computational model using the finite element method and multicompartment cable models to explore factors that contribute to extracellular voltage waveforms that are produced by sensory pseudounipolar neurons, specifically smaller A-type neurons, and that are recorded by microelectrodes in dorsal root ganglia. The finite element method model included a dorsal root ganglion, surrounding tissues, and a planar microelectrode array. We built a multicompartment neuron model with multiple trajectories of the glomerular initial segment found in many A-type sensory neurons. Our model replicated both the somatic intracellular voltage profile of Aδ low-threshold mechanoreceptor neurons and the unique extracellular voltage waveform shapes that are observed in experimental settings. Results from this model indicated that tortuous glomerular initial segment geometries can introduce distinct multiphasic properties into a neuron's recorded waveform. Our model also demonstrated how recording location relative to specific microanatomical components of these neurons, and recording distance from these components, can contribute to additional changes in the multiphasic characteristics and peak-to-peak voltage amplitude of the waveform. This knowledge may provide context for research employing microelectrode recordings of pseudounipolar neurons in sensory ganglia, including functional mapping and closed-loop neuromodulation. Furthermore, our simulations gave insight into the neurophysiology of pseudounipolar neurons by demonstrating how the glomerular initial segment aids in increasing the resistance of the stem axon and mitigating rebounding somatic action potentials.NEW & NOTEWORTHY We built a computational model of sensory neurons in the dorsal root ganglia to investigate factors that influence the extracellular waveforms recorded by microelectrodes. Our model demonstrates how the unique structure of these neurons can lead to diverse and often multiphasic waveform profiles depending on the location of the recording contact relative to microanatomical neural components. Our model also provides insight into the neurophysiological function of axon glomeruli that are often present in these neurons.
Collapse
Affiliation(s)
- Lauren R Madden
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Robert D Graham
- Department of Anesthesiology, Washington University, St. Louis, Missouri, United States
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Tan ZY, Wu B, Su X, Zhou Y, Ji YH. Differential expression of slow and fast-repriming tetrodotoxin-sensitive sodium currents in dorsal root ganglion neurons. Front Mol Neurosci 2024; 16:1336664. [PMID: 38273939 PMCID: PMC10808659 DOI: 10.3389/fnmol.2023.1336664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Sodium channel Nav1.7 triggers the generation of nociceptive action potentials and is important in sending pain signals under physiological and pathological conditions. However, studying endogenous Nav1.7 currents has been confounded by co-expression of multiple sodium channel isoforms in dorsal root ganglion (DRG) neurons. In the current study, slow-repriming (SR) and fast-repriming (FR) tetrodotoxin-sensitive (TTX-S) currents were dissected electrophysiologically in small DRG neurons of both rats and mice. Three subgroups of small DRG neurons were identified based on the expression pattern of SR and FR TTX-S currents. A majority of rat neurons only expressed SR TTX-S currents, while a majority of mouse neurons expressed additional FR TTX-S currents. ProTx-II inhibited SR TTX-S currents with variable efficacy among DRG neurons. The expression of both types of TTX-S currents was higher in Isolectin B4-negative (IB4-) compared to Isolectin B4-positive (IB4+) neurons. Paclitaxel selectively increased SR TTX-S currents in IB4- neurons. In simulation experiments, the Nav1.7-expressing small DRG neuron displayed lower rheobase and higher frequency of action potentials upon threshold current injections compared to Nav1.6. The results suggested a successful dissection of endogenous Nav1.7 currents through electrophysiological manipulation that may provide a useful way to study the functional expression and pharmacology of endogenous Nav1.7 channels in DRG neurons.
Collapse
Affiliation(s)
- Zhi-Yong Tan
- Department of Pathophysiology, Hebei University School of Basic Medicine, Baoding, China
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bin Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Institute of Special Environment Medicine, Nantong University, Nantong, China
| | - Xiaolin Su
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - You Zhou
- Department of Physiology, Hebei University School of Basic Medicine, Baoding, China
| | - Yong-Hua Ji
- Department of Physiology, Hebei University School of Basic Medicine, Baoding, China
| |
Collapse
|
8
|
Foxworthy GE, Fridman GY. The Significance of Concentration-dependent Components in Computational Models of C-Fibers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-7. [PMID: 38083017 DOI: 10.1109/embc40787.2023.10341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Computational models of neurons are valuable tools that allow researchers to form and evaluate hypotheses and minimize high-cost animal work. We soon plan to use computational modeling to explore the response of different sensory fiber types to long duration external stimulation to try to selectively block nociceptive C-fibers. In this work, we modified an existing C-fiber-specific axon model to additionally include concentration-dependent conductance changes, the contribution of longitudinal current flow to changes in local concentrations, and longitudinal currents generated by concentration gradients along the axon. Then, we examined the impact of these additional elements on the modeled action potential properties, activity-dependent latency increases, and concentration changes due to external stimulation. We found that these additional model elements did not significantly affect the action potential properties or activity-dependent behavior, but they did have a significant impact on the modeled response to external long duration stimulation.Clinical Relevance- This presents a computational model that can be used to help investigate and develop electrical stimulation therapies for pathological pain.
Collapse
|
9
|
Petroianu GA, Aloum L, Adem A. Neuropathic pain: Mechanisms and therapeutic strategies. Front Cell Dev Biol 2023; 11:1072629. [PMID: 36727110 PMCID: PMC9884983 DOI: 10.3389/fcell.2023.1072629] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
The physiopathology and neurotransmission of pain are of an owe inspiring complexity. Our ability to satisfactorily suppress neuropathic or other forms of chronic pain is limited. The number of pharmacodynamically distinct and clinically available medications is low and the successes achieved modest. Pain Medicine practitioners are confronted with the ethical dichotomy imposed by Hippocrates: On one hand the mandate of primum non nocere, on the other hand, the promise of heavenly joys if successful divinum est opus sedare dolorem. We briefly summarize the concepts associated with nociceptive pain from nociceptive input (afferents from periphery), modulatory output [descending noradrenergic (NE) and serotoninergic (5-HT) fibers] to local control. The local control is comprised of the "inflammatory soup" at the site of pain origin and synaptic relay stations, with an ATP-rich environment promoting inflammation and nociception while an adenosine-rich environment having the opposite effect. Subsequently, we address the transition from nociceptor pain to neuropathic pain (independent of nociceptor activation) and the process of sensitization and pain chronification (transient pain progressing into persistent pain). Having sketched a model of pain perception and processing we attempt to identify the sites and modes of action of clinically available drugs used in chronic pain treatment, focusing on adjuvant (co-analgesic) medication.
Collapse
|
10
|
Hao H, Ramli R, Wang C, Liu C, Shah S, Mullen P, Lall V, Jones F, Shao J, Zhang H, Jaffe DB, Gamper N, Du X. Dorsal root ganglia control nociceptive input to the central nervous system. PLoS Biol 2023; 21:e3001958. [PMID: 36603052 PMCID: PMC9847955 DOI: 10.1371/journal.pbio.3001958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/18/2023] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Accumulating observations suggest that peripheral somatosensory ganglia may regulate nociceptive transmission, yet direct evidence is sparse. Here, in experiments on rats and mice, we show that the peripheral afferent nociceptive information undergoes dynamic filtering within the dorsal root ganglion (DRG) and suggest that this filtering occurs at the axonal bifurcations (t-junctions). Using synchronous in vivo electrophysiological recordings from the peripheral and central processes of sensory neurons (in the spinal nerve and dorsal root), ganglionic transplantation of GABAergic progenitor cells, and optogenetics, we demonstrate existence of tonic and dynamic filtering of action potentials traveling through the DRG. Filtering induced by focal application of GABA or optogenetic GABA release from the DRG-transplanted GABAergic progenitor cells was specific to nociceptive fibers. Light-sheet imaging and computer modeling demonstrated that, compared to other somatosensory fiber types, nociceptors have shorter stem axons, making somatic control over t-junctional filtering more efficient. Optogenetically induced GABA release within DRG from the transplanted GABAergic cells enhanced filtering and alleviated hypersensitivity to noxious stimulation produced by chronic inflammation and neuropathic injury in vivo. These findings support "gating" of pain information by DRGs and suggest new therapeutic approaches for pain relief.
Collapse
Affiliation(s)
- Han Hao
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Rosmaliza Ramli
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Caixue Wang
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Chao Liu
- Department of Animal Care, Hebei Medical University; The Key Laboratory of Experimental Animal, Hebei Province; Shijiazhuang, China
| | - Shihab Shah
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Pierce Mullen
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Varinder Lall
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Frederick Jones
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jicheng Shao
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - David B. Jaffe
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| |
Collapse
|
11
|
Effects of Photodynamic Therapy on Nav1.7 Expression in Spinal Dorsal Root Ganglion Neurons. Curr Med Sci 2022; 42:1267-1272. [PMID: 36462133 DOI: 10.1007/s11596-022-2640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/17/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVE The aim of this study was to examine the effects of photodynamic therapy (PDT) on the expression of Nav1.7 in spinal dorsal root ganglion (DRG) neurons. METHODS The primary DRG neurons from newborn SD rats were cultured. The cells were identified by neuron-specific enolase immunofluorescence staining. DRG neurons were divided into four groups: control group, photosensitizer group, laser group, and PDT group. The cell viability was detected by a cell counting kit-8 (CCK8) assay. qRT-PCR and Western blotting were used to determine the mRNA and protein expression levels of Nav1.7 in DRG neurons. RESULTS The purity of the cultured primary DRG neurons was greater than 90%. Compared with the control group, no significant change was found in the cell viability of the photosensitizer group, while the viability in the laser group and the PDT group was significantly reduced. The mRNA and protein expression levels of Nav1.7 were significantly greater in the laser group and the PDT group than in the control group. At the same time, the mRNA and protein expression levels of Nav1.7 were greater in the laser group than in the PDT group. CONCLUSION Both laser and PDT could upregulate the expression of Nav1.7 in DRG neurons, and the promoting effect might be related to the pain induced by clinical treatment. This study provides a research basis for the use of laser and PDT to treat pain. A better understanding of the relationship between Nav1.7 and PDT can help clinicians better manage PDT-related pain.
Collapse
|
12
|
Klein-Weigel P, Ruttloff A, König D, Nielitz J, Steindl J, Sander O, Richter JG. [Functional vascular acrosyndromes]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:591-600. [PMID: 35925129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Vascular acrosyndromes are characterized by sparse, uniform clinical manifestations and a variety of possible pathomechanisms. The present article focuses on the functional entities. Raynaud phenomenon is based on cold- or stress-induced vasospasms of acral arteries. It is defined by the color changes of the skin, in the typical case white-blue-red (tricolore). The long fingers are most commonly affected. The etiology is unknown, and the pathophysiology is poorly understood. A distinction is made between primary and a secondary Raynaud phenomenon. The most important underlying diseases include collagenosis, primarily systemic sclerosis, and malignancies; furthermore, medications and drugs may promote vasospasm. Treatment is aimed at preventing or breaking the vasospasm, but has been only partially effective in doing so. Acrocyanosis is a vasospastic dystonic acral disorder that results in permanent reddish-livid discoloration, especially of the hands and feet. Secondary forms occur in collagenosis, malignancies, and myelodysplastic syndromes. The etiology and pathophysiology are virtually unknown. Targeted pharmacological intervention is not possible. Unlike all other vascular acrosyndromes, erythromelalgia is characterized by hyperemia. The primary form is a genetic sodium channelopathy, while secondary forms include malignancies, connective tissue diseases, and myelodysplastic syndromes. The symptoms are often distressing and disabling. Therapy requires a multimodal approach that includes both nonpharmacological and pharmacological strategies. Close interdisciplinary collaboration is essential for the management of this disease.
Collapse
Affiliation(s)
- Peter Klein-Weigel
- Klinik für Angiologie, Klinikum Ernst von Bergmann, Charlottenstr. 72, 14467, Potsdam, Deutschland.
| | - Andreas Ruttloff
- Klinik für Angiologie, Klinikum Ernst von Bergmann, Charlottenstr. 72, 14467, Potsdam, Deutschland
| | - Dana König
- Klinik für Angiologie, Klinikum Ernst von Bergmann, Charlottenstr. 72, 14467, Potsdam, Deutschland
| | - Jessica Nielitz
- Klinik für Angiologie, Klinikum Ernst von Bergmann, Charlottenstr. 72, 14467, Potsdam, Deutschland
| | - Julia Steindl
- Klinik für Angiologie, Klinikum Ernst von Bergmann, Charlottenstr. 72, 14467, Potsdam, Deutschland
| | - Oliver Sander
- Poliklinik und Funktionsbereich für Rheumatologie & Hiller-Forschungszentrum für Rheumatologie, Universitätsklinikum Düsseldorf, Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Jutta G Richter
- Poliklinik und Funktionsbereich für Rheumatologie & Hiller-Forschungszentrum für Rheumatologie, Universitätsklinikum Düsseldorf, Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| |
Collapse
|
13
|
Fouda MA, Ghovanloo MR, Ruben PC. Late sodium current: incomplete inactivation triggers seizures, myotonias, arrhythmias, and pain syndromes. J Physiol 2022; 600:2835-2851. [PMID: 35436004 DOI: 10.1113/jp282768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Acquired and inherited dysfunction in voltage-gated sodium channels underlies a wide range of diseases. "In addition to the defects in trafficking and expression, sodium channelopathies are also caused by dysfunction in one or several gating properties, for instance activation or inactivation. Disruption of the channel inactivation leads to the increased late sodium current, which is a common defect in seizure disorders, cardiac arrhythmias skeletal muscle myotonia and pain. An increase in late sodium current leads to repetitive action potential in neurons and skeletal muscles, and prolonged action potential duration in the heart. In this topical review, we compare the effects of late sodium current in brain, heart, skeletal muscle, and peripheral nerves. Abstract figure legend Shows cartoon illustration of general Nav channel transitions between (1) resting, (2) open, and (3) fast inactivated states. Disruption of the inactivation process exacerbates (4) late sodium currents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | | | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
14
|
Britton OJ, Rodriguez B. A population of in silico models identifies the interplay between Nav 1.8 conductance and potassium currents as key in regulating human dorsal root ganglion neuron excitability. F1000Res 2022; 11:104. [PMID: 39290372 PMCID: PMC11406138 DOI: 10.12688/f1000research.74551.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 09/19/2024] Open
Abstract
Background: The Nav 1.8 sodium channel has a key role in generating repetitive action potentials in nociceptive human dorsal root ganglion neurons. Nav 1.8 is differentiated from other voltage-gated sodium channels by its unusually slow inactivation kinetics and depolarised voltage-dependence of activation. These features are particularly pronounced in the human Nav 1.8 channel and allow the channel to remain active during repolarisation. Gain-of-function mutations in Nav 1.8 have been linked to neuropathic pain and selective blockers of Nav 1.8 have been developed as potential new analgesics. However, it is not well understood how modulating the Nav 1.8 conductance alters neuronal excitability and how this depends on the balance of other ion channels expressed by nociceptive neurons. Methods: To investigate this, we developed a novel computational model of the human dorsal root ganglion neuron and used it to construct a population of models that mimicked inter-neuronal heterogeneity in ionic conductances and action potential morphology Results: By simulating changes to the Nav 1.8 conductance in the population of models, we found that moderately increasing the Nav 1.8 conductance led to increased firing rate, as expected, but increasing Nav 1.8 conductance beyond an inflection point caused firing rate to decrease. We found that the delayed rectifier and M-type potassium conductances were also critical for determining neuronal excitability. In particular, altering the delayed rectifier potassium conductance shifted the position of the Nav 1.8 inflection point and therefore the relationship between Nav 1.8 conductance and firing rate. Conclusions: Our results suggest that the effects of modulating Nav 1.8 in a nociceptive neuron can depend significantly on other conductances, particularly potassium conductances.
Collapse
Affiliation(s)
- Oliver J Britton
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| |
Collapse
|
15
|
Ganguly S, Thompson CH, George AL. Enhanced slow inactivation contributes to dysfunction of a recurrent SCN2A mutation associated with developmental and epileptic encephalopathy. J Physiol 2021; 599:4375-4388. [PMID: 34287911 PMCID: PMC8446326 DOI: 10.1113/jp281834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The recurrent SCN2A mutation R853Q is associated with developmental and epileptic encephalopathy with typical onset after the first months of life. Heterologously expressed R853Q channels exhibit an overall loss-of-function as a result of multiple defects in time- and voltage-dependent channel properties. A previously unrecognized enhancement of slow inactivation is conferred by the R853Q mutation and is a major driver of loss-of-function. Enhanced slow inactivation is potentiated in the canonical splice isoform of the channel and this may explain the later onset of symptoms associated with R853Q. ABSTRACT Mutations in voltage gated sodium (NaV ) channel genes, including SCN2A (encoding NaV 1.2), are associated with diverse neurodevelopmental disorders with or without epilepsy that present clinically with varying severity, age-of-onset and pharmacoresponsiveness. We examined the functional properties of the most recurrent SCN2A mutation (R853Q) to determine whether developmentally-regulated alternative splicing impacts dysfunction severity and to investigate effects of the mutation on slow inactivation. We engineered the R853Q mutation into neonatal and adult NaV 1.2 splice isoforms. Channel constructs were heterologously co-expressed in HEK293T cells with human β1 and β2 subunits. Whole-cell patch clamp recording was used to compare time- and voltage-dependent properties of mutant and wild-type channels. The R853Q mutation exhibits an overall loss-of-function attributed to multiple functional defects including a previously undiscovered enhancement of slow inactivation. The mutation exhibited altered voltage dependence of activation and inactivation, slower recovery from inactivation and decreased channel availability during high-frequency depolarizations. More notable were effects on slow inactivation, including a 10-fold slower rate of recovery from slow inactivation exhibited by mutant channels. The impairments in fast inactivation properties were more severe in the neonatal splice isoform, whereas slow inactivation was more pronounced in the splice isoform of the channel expressed predominantly in later childhood. Enhanced later-onset slow inactivation may be a primary driver of the later onset of neurological features associated with this mutation.
Collapse
Affiliation(s)
- Surobhi Ganguly
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Christopher H. Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
16
|
The insecticide deltamethrin enhances sodium channel slow inactivation of human Nav1.9, Nav1.8 and Nav1.7. Toxicol Appl Pharmacol 2021; 428:115676. [PMID: 34389319 DOI: 10.1016/j.taap.2021.115676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023]
Abstract
The insecticide deltamethrin of the pyrethroid class mainly targets voltage-gated sodium channels (Navs). Deltamethrin prolongs the opening of Navs by slowing down fast inactivation and deactivation. Pyrethroids are supposedly safe for humans, however, they have also been linked to the gulf-war syndrome, a neuropathic pain condition that can develop following exposure to certain chemicals. Inherited neuropathic pain conditions have been linked to mutations in the Nav subtypes Nav1.7, Nav1.8, and Nav1.9. Here, we examined the effect of deltamethrin on the human isoforms Nav1.7, Nav1.8, and Nav1.9_C4 (chimera containing the C-terminus of rat Nav1.4) heterologously expressed in HEK293T and ND7/23 cells using whole-cell patch-clamp electrophysiology. For all three Nav subtypes, we observed increased persistent and tail currents that are typical for Nav channels modified by deltamethrin. The most surprising finding was an enhanced slow inactivation induced by deltamethrin in all three Nav subtypes. An enhanced slow inactivation is contrary to the prolonged opening caused by pyrethroids and has not been described for deltamethrin or any other pyrethroid before. Furthermore, we found that the fraction of deltamethrin-modified channels increased use-dependently. However, for Nav1.8, the use-dependent potentiation occurred only when the holding potential was increased to -90 mV, a potential at which the tail currents decay more slowly. This indicates that use-dependent modification is due to an accumulation of tail currents. In summary, our findings support a novel mechanism whereby deltamethrin enhances slow inactivation of voltage-gated sodium channels, which may, depending on the cellular resting membrane potential, reduce neuronal excitability and counteract the well-described pyrethroid effects of prolonging channel opening.
Collapse
|
17
|
Lam CM, Zayed H, Sayed D. High frequency dorsal column spinal cord stimulation for management of erythromelalgia. BMJ Case Rep 2021; 14:14/8/e244758. [PMID: 34353840 PMCID: PMC8344303 DOI: 10.1136/bcr-2021-244758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Erythromelalgia is a rare hereditary channelopathy affecting the Nav1.7 sodium channel. Patients afflicted with this condition suffer from pain in their hands and feet, with vasomotor changes including flushing and redness to the distal upper and lower extremities. Current treatment modalities for this condition include pharmacological therapies (neuropathic medications), behavioural interventions, lumbar epidural infusions with local anaesthetics and sympathetic nerve blocks. Despite these treatments, many patients may have refractory pain. In these situations, there may be a role for dorsal column spinal cord stimulation for management of their pain. Here, we present the case of a 21-year-old man with 9-year history of refractory erythromelalgia successfully treated with paresthesia-free dorsal column spinal cord stimulation.
Collapse
Affiliation(s)
- Christopher M Lam
- Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hadi Zayed
- University of Kansas Medical Center School of Medicine, Kansas City, Kansas, USA
| | - Dawood Sayed
- Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
18
|
A Narrative Review on Perioperative Pain Management Strategies in Enhanced Recovery Pathways-The Past, Present and Future. J Clin Med 2021; 10:jcm10122568. [PMID: 34200695 PMCID: PMC8229260 DOI: 10.3390/jcm10122568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Effective pain management is a key component in the continuum of perioperative care to ensure optimal outcomes for surgical patients. The overutilization of opioids in the past few decades for postoperative pain control has been a major contributor to the current opioid epidemic. Multimodal analgesia (MMA) and enhanced recovery after surgery (ERAS) pathways have been repeatedly shown to significantly improve postoperative outcomes such as pain, function and satisfaction. The current review aims to examine the history of perioperative MMA strategies in ERAS and provide an update with recent evidence. Furthermore, this review details recent advancements in personalized pain medicine. We speculate that the next important step for improving perioperative pain management could be through incorporating these personalized metrics, such as clinical pharmacogenomic testing and patient-reported outcome measurements, into ERAS program.
Collapse
|
19
|
Xenakis MN, Kapetis D, Yang Y, Gerrits MM, Heijman J, Waxman SG, Lauria G, Faber CG, Westra RL, Lindsey PJ, Smeets HJ. Hydropathicity-based prediction of pain-causing NaV1.7 variants. BMC Bioinformatics 2021; 22:212. [PMID: 33892629 PMCID: PMC8063372 DOI: 10.1186/s12859-021-04119-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mutation-induced variations in the functional architecture of the NaV1.7 channel protein are causally related to a broad spectrum of human pain disorders. Predicting in silico the phenotype of NaV1.7 variant is of major clinical importance; it can aid in reducing costs of in vitro pathophysiological characterization of NaV1.7 variants, as well as, in the design of drug agents for counteracting pain-disease symptoms. Results In this work, we utilize spatial complexity of hydropathic effects toward predicting which NaV1.7 variants cause pain (and which are neutral) based on the location of corresponding mutation sites within the NaV1.7 structure. For that, we analyze topological and scaling hydropathic characteristics of the atomic environment around NaV1.7’s pore and probe their spatial correlation with mutation sites. We show that pain-related mutation sites occupy structural locations in proximity to a hydrophobic patch lining the pore while clustering at a critical hydropathic-interactions distance from the selectivity filter (SF). Taken together, these observations can differentiate pain-related NaV1.7 variants from neutral ones, i.e., NaV1.7 variants not causing pain disease, with 80.5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% sensitivity and 93.7\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% specificity [area under the receiver operating characteristics curve = 0.872]. Conclusions Our findings suggest that maintaining hydrophobic NaV1.7 interior intact, as well as, a finely-tuned (dictated by hydropathic interactions) distance from the SF might be necessary molecular conditions for physiological NaV1.7 functioning. The main advantage for using the presented predictive scheme is its negligible computational cost, as well as, hydropathicity-based biophysical rationalization. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04119-2.
Collapse
Affiliation(s)
- Makros N Xenakis
- Department of Toxicogenomics, Section Clinical Genomics, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands. .,Research School for Mental Health and Neuroscience (MHeNS), Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Dimos Kapetis
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN, 47907, USA.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN, 47907, USA
| | - Monique M Gerrits
- Department of Clinical Genetics, Maastricht University Medical Center, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Ronald L Westra
- Department of Data Science and Knowledge Engineering, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Patrick J Lindsey
- Department of Toxicogenomics, Section Clinical Genomics, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.,Research School for Oncology and Developmental Biology (GROW), Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Hubert J Smeets
- Department of Toxicogenomics, Section Clinical Genomics, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.,Research School for Mental Health and Neuroscience (MHeNS), Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
20
|
Nwebube C, Bulancea S, Marchidann A, Bello-Espinosa L, Treidler S. Erythromelalgia: A Child With V400M Mutation in the SCN9A Gene. NEUROLOGY-GENETICS 2021; 7:e570. [PMID: 33688580 PMCID: PMC7923388 DOI: 10.1212/nxg.0000000000000570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/03/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Chineze Nwebube
- Stony Brook University Hospital (C.N., L.B.-E.), NY; Pneumophtisiology Clinical Hospital (S.B.), Brasov, Romania; Kings County Hospital (A.M.), Brooklyn, NY; and SUNY Downstate (S.T.), Maimonides Medical Center, Brooklyn
| | - Sabrina Bulancea
- Stony Brook University Hospital (C.N., L.B.-E.), NY; Pneumophtisiology Clinical Hospital (S.B.), Brasov, Romania; Kings County Hospital (A.M.), Brooklyn, NY; and SUNY Downstate (S.T.), Maimonides Medical Center, Brooklyn
| | - Adrian Marchidann
- Stony Brook University Hospital (C.N., L.B.-E.), NY; Pneumophtisiology Clinical Hospital (S.B.), Brasov, Romania; Kings County Hospital (A.M.), Brooklyn, NY; and SUNY Downstate (S.T.), Maimonides Medical Center, Brooklyn
| | - Lourdes Bello-Espinosa
- Stony Brook University Hospital (C.N., L.B.-E.), NY; Pneumophtisiology Clinical Hospital (S.B.), Brasov, Romania; Kings County Hospital (A.M.), Brooklyn, NY; and SUNY Downstate (S.T.), Maimonides Medical Center, Brooklyn
| | - Simona Treidler
- Stony Brook University Hospital (C.N., L.B.-E.), NY; Pneumophtisiology Clinical Hospital (S.B.), Brasov, Romania; Kings County Hospital (A.M.), Brooklyn, NY; and SUNY Downstate (S.T.), Maimonides Medical Center, Brooklyn
| |
Collapse
|
21
|
Pelot NA, Catherall DC, Thio BJ, Titus ND, Liang ED, Henriquez CS, Grill WM. Excitation properties of computational models of unmyelinated peripheral axons. J Neurophysiol 2021; 125:86-104. [PMID: 33085556 PMCID: PMC8087387 DOI: 10.1152/jn.00315.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Biophysically based computational models of nerve fibers are important tools for designing electrical stimulation therapies, investigating drugs that affect ion channels, and studying diseases that affect neurons. Although peripheral nerves are primarily composed of unmyelinated axons (i.e., C-fibers), most modeling efforts focused on myelinated axons. We implemented the single-compartment model of vagal afferents from Schild et al. (1994) (Schild JH, Clark JW, Hay M, Mendelowitz D, Andresen MC, Kunze DL. J Neurophysiol 71: 2338-2358, 1994) and extended the model into a multicompartment axon, presenting the first cable model of a C-fiber vagal afferent. We also implemented the updated parameters from the Schild and Kunze (1997) model (Schild JH, Kunze DL. J Neurophysiol 78: 3198-3209, 1997). We compared the responses of these novel models with those of three published models of unmyelinated axons (Rattay F, Aberham M. IEEE Trans Biomed Eng 40: 1201-1209, 1993; Sundt D, Gamper N, Jaffe DB. J Neurophysiol 114: 3140-3153, 2015; Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M, Fransén E. J Neurophysiol 111: 1721-1735, 2014) and with experimental data from single-fiber recordings. Comparing the two models by Schild et al. (1994, 1997) revealed that differences in rest potential and action potential shape were driven by changes in maximum conductances rather than changes in sodium channel dynamics. Comparing the five model axons, the conduction speeds and strength-duration responses were largely within expected ranges, but none of the models captured the experimental threshold recovery cycle-including a complete absence of late subnormality in the models-and their action potential shapes varied dramatically. The Tigerholm et al. (2014) model best reproduced the experimental data, but these modeling efforts make clear that additional data are needed to parameterize and validate future models of autonomic C-fibers.NEW & NOTEWORTHY Peripheral nerves are primarily composed of unmyelinated axons, and there is growing interest in electrical stimulation of the autonomic nervous system to treat various diseases. We present the first cable model of an unmyelinated vagal nerve fiber and compare its ion channel isoforms and conduction responses with other published models of unmyelinated axons, establishing important tools for advancing modeling of autonomic nerves.
Collapse
Affiliation(s)
- Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - David C Catherall
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Brandon J Thio
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Nathan D Titus
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Edward D Liang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Craig S Henriquez
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Neurobiology, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, North Carolina
| |
Collapse
|
22
|
Toffano AA, Chiarot G, Zamuner S, Marchi M, Salvi E, Waxman SG, Faber CG, Lauria G, Giacometti A, Simeoni M. Computational pipeline to probe NaV1.7 gain-of-function variants in neuropathic painful syndromes. Sci Rep 2020; 10:17930. [PMID: 33087732 PMCID: PMC7578092 DOI: 10.1038/s41598-020-74591-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 01/09/2023] Open
Abstract
Applications of machine learning and graph theory techniques to neuroscience have witnessed an increased interest in the last decade due to the large data availability and unprecedented technology developments. Their employment to investigate the effect of mutational changes in genes encoding for proteins modulating the membrane of excitable cells, whose biological correlates are assessed at electrophysiological level, could provide useful predictive clues. We apply this concept to the analysis of variants in sodium channel NaV1.7 subunit found in patients with chronic painful syndromes, by the implementation of a dedicated computational pipeline empowering different and complementary techniques including homology modeling, network theory, and machine learning. By testing three templates of different origin and sequence identities, we provide an optimal condition for its use. Our findings reveal the usefulness of our computational pipeline in supporting the selection of candidates for cell electrophysiology assay and with potential clinical applications.
Collapse
Affiliation(s)
- Alberto A Toffano
- Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca' Foscari Venezia, Venezia-Mestre, Italy
| | - Giacomo Chiarot
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Universitá Ca' Foscari Venezia, Venezia-Mestre, Italy
| | - Stefano Zamuner
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences, Ècole Polytechnique Fèdèrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System and Yale Medical School, West Haven, USA
| | - Catharina G Faber
- MHeNs school for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca' Foscari Venezia, Venezia-Mestre, Italy.,European Centre for Living Technology (ECLT), Venice, Italy
| | - Marta Simeoni
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Universitá Ca' Foscari Venezia, Venezia-Mestre, Italy. .,European Centre for Living Technology (ECLT), Venice, Italy.
| |
Collapse
|
23
|
Verma P, Eaton M, Kienle A, Flockerzi D, Yang Y, Ramkrishna D. Examining Sodium and Potassium Channel Conductances Involved in Hyperexcitability of Chemotherapy-Induced Peripheral Neuropathy: A Mathematical and Cell Culture-Based Study. Front Comput Neurosci 2020; 14:564980. [PMID: 33178002 PMCID: PMC7593680 DOI: 10.3389/fncom.2020.564980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/02/2020] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a prevalent, painful side effect which arises due to a number of chemotherapy agents. CIPN can have a prolonged effect on quality of life. Chemotherapy treatment is often reduced or stopped altogether because of the severe pain. Currently, there are no FDA-approved treatments for CIPN partially due to its complex pathogenesis in multiple pathways involving a variety of channels, specifically, voltage-gated ion channels. One aspect of neuropathic pain in vitro is hyperexcitability in dorsal root ganglia (DRG) peripheral sensory neurons. Our study employs bifurcation theory to investigate the role of voltage-gated ion channels in inducing hyperexcitability as a consequence of spontaneous firing due to the common chemotherapy agent paclitaxel. Our mathematical investigation of a reductionist DRG neuron model comprised of sodium channel Nav1.7, sodium channel Nav1.8, delayed rectifier potassium channel, A-type transient potassium channel, and a leak channel suggests that Nav1.8 and delayed rectifier potassium channel conductances are critical for hyperexcitability of small DRG neurons. Introducing paclitaxel into the model, our bifurcation analysis predicts that hyperexcitability is highest for a medium dose of paclitaxel, which is supported by multi-electrode array (MEA) recordings. Furthermore, our findings using MEA reveal that Nav1.8 blocker A-803467 and delayed rectifier potassium enhancer L-alpha-phosphatidyl-D-myo-inositol 4,5-diphosphate, dioctanoyl (PIP2) can reduce paclitaxel-induced hyperexcitability of DRG neurons. Our approach can be readily extended and used to investigate various other contributors of hyperexcitability in CIPN.
Collapse
Affiliation(s)
- Parul Verma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Muriel Eaton
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Achim Kienle
- Process Synthesis and Dynamics Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Automation/Modeling, Otto von Guericke University, Magdeburg, Germany
| | - Dietrich Flockerzi
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Otto von Guericke University, Magdeburg, Germany
| | - Yang Yang
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Doraiswami Ramkrishna
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
24
|
Packiasabapathy S, Rangasamy V, Horn N, Hendrickson M, Renschler J, Sadhasivam S. Personalized pediatric anesthesia and pain management: problem-based review. Pharmacogenomics 2020; 21:55-73. [PMID: 31849281 DOI: 10.2217/pgs-2019-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pharmacogenetics, the genetic influence on the interpersonal variability in drug response, has enabled tailored pharmacotherapy and emerging 'personalized medicine.' Although oncology spearheaded the clinical implementation of personalized medicine, other specialties are rapidly catching up. In anesthesia, classical examples of genetically mediated idiosyncratic reactions have been long known (e.g., malignant hyperthermia and prolonged apnea after succinylcholine). The last two decades have witnessed an expanding body of pharmacogenetic evidence in anesthesia. This review highlights some of the prominent pharmacogenetic associations studied in anesthesia and pain management, with special focus on pediatric anesthesia.
Collapse
Affiliation(s)
- Senthil Packiasabapathy
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Valluvan Rangasamy
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Nicole Horn
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Michele Hendrickson
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Janelle Renschler
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| |
Collapse
|
25
|
Computational analysis of a 9D model for a small DRG neuron. J Comput Neurosci 2020; 48:429-444. [PMID: 32862338 DOI: 10.1007/s10827-020-00761-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Small dorsal root ganglion (DRG) neurons are primary nociceptors which are responsible for sensing pain. Elucidation of their dynamics is essential for understanding and controlling pain. To this end, we present a numerical bifurcation analysis of a small DRG neuron model in this paper. The model is of Hodgkin-Huxley type and has 9 state variables. It consists of a Nav1.7 and a Nav1.8 sodium channel, a leak channel, a delayed rectifier potassium, and an A-type transient potassium channel. The dynamics of this model strongly depend on the maximal conductances of the voltage-gated ion channels and the external current, which can be adjusted experimentally. We show that the neuron dynamics are most sensitive to the Nav1.8 channel maximal conductance ([Formula: see text]). Numerical bifurcation analysis shows that depending on [Formula: see text] and the external current, different parameter regions can be identified with stable steady states, periodic firing of action potentials, mixed-mode oscillations (MMOs), and bistability between stable steady states and stable periodic firing of action potentials. We illustrate and discuss the transitions between these different regimes. We further analyze the behavior of MMOs. As the external current is decreased, we find that MMOs appear after a cyclic limit point. Within this region, bifurcation analysis shows a sequence of isolated periodic solution branches with one large action potential and a number of small amplitude peaks per period. For decreasing external current, the number of small amplitude peaks is increasing and the distance between the large amplitude action potentials is growing, finally tending to infinity and thereby leading to a stable steady state. A closer inspection reveals more complex concatenated MMOs in between these periodic MMO branches, forming Farey sequences. Lastly, we also find small solution windows with aperiodic oscillations which seem to be chaotic. The dynamical patterns found here-as consequences of bifurcation points regulated by different parameters-have potential translational significance as repetitive firing of action potentials imply pain of some form and intensity; manipulating these patterns by regulating the different parameters could aid in investigating pain dynamics.
Collapse
|
26
|
Graham RD, Bruns TM, Duan B, Lempka SF. The Effect of Clinically Controllable Factors on Neural Activation During Dorsal Root Ganglion Stimulation. Neuromodulation 2020; 24:655-671. [PMID: 32583523 DOI: 10.1111/ner.13211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Dorsal root ganglion stimulation (DRGS) is an effective therapy for chronic pain, though its mechanisms of action are unknown. Currently, we do not understand how clinically controllable parameters (e.g., electrode position, stimulus pulse width) affect the direct neural response to DRGS. Therefore, the goal of this study was to utilize a computational modeling approach to characterize how varying clinically controllable parameters changed neural activation profiles during DRGS. MATERIALS AND METHODS We coupled a finite element model of a human L5 DRG to multicompartment models of primary sensory neurons (i.e., Aα-, Aβ-, Aδ-, and C-neurons). We calculated the stimulation amplitudes necessary to elicit one or more action potentials in each neuron, and examined how neural activation profiles were affected by varying clinically controllable parameters. RESULTS In general, DRGS predominantly activated large myelinated Aα- and Aβ-neurons. Shifting the electrode more than 2 mm away from the ganglion abolished most DRGS-induced neural activation. Increasing the stimulus pulse width to 500 μs or greater increased the number of activated Aδ-neurons, while shorter pulse widths typically only activated Aα- and Aβ-neurons. Placing a cathode near a nerve root, or an anode near the ganglion body, maximized Aβ-mechanoreceptor activation. Guarded active contact configurations did not activate more Aβ-mechanoreceptors than conventional bipolar configurations. CONCLUSIONS Our results suggest that DRGS applied with stimulation parameters within typical clinical ranges predominantly activates Aβ-mechanoreceptors. In general, varying clinically controllable parameters affects the number of Aβ-mechanoreceptors activated, although longer pulse widths can increase Aδ-neuron activation. Our data support several Neuromodulation Appropriateness Consensus Committee guidelines on the clinical implementation of DRGS.
Collapse
Affiliation(s)
- Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Bo Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Complementary roles of murine Na V1.7, Na V1.8 and Na V1.9 in acute itch signalling. Sci Rep 2020; 10:2326. [PMID: 32047194 PMCID: PMC7012836 DOI: 10.1038/s41598-020-59092-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (NaV) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, NaV1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing NaV-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, β-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in NaV channel-mediated itch signalling. NaV1.7−/− showed substantial scratch reduction mainly towards strong pruritogens. NaV1.8−/− impaired histamine and 5-HT-induced scratching while NaV1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of NaV1.7 and indicated an overall contribution of NaV1.9. Beside the proposed general role of NaV1.7 and 1.9 in itch signalling, scrutiny of time courses suggested NaV1.8 to sustain prolonged itching. Therefore, NaV1.7 and 1.9 may represent targets in pruritus therapy.
Collapse
|
28
|
Cornett EM, Carroll Turpin MA, Pinner A, Thakur P, Sekaran TSG, Siddaiah H, Rivas J, Yates A, Huang GJ, Senthil A, Khurmi N, Miller JL, Stark CW, Urman RD, Kaye AD. Pharmacogenomics of Pain Management: The Impact of Specific Biological Polymorphisms on Drugs and Metabolism. Curr Oncol Rep 2020; 22:18. [PMID: 32030524 DOI: 10.1007/s11912-020-0865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Pain is multifactorial and complex, often with a genetic component. Pharmacogenomics is a relative new field, which allows for the development of a truly unique and personalized therapeutic approach in the treatment of pain. RECENT FINDINGS Until recently, drug mechanisms in humans were determined by testing that drug in a population and calculating response averages. However, some patients will inevitably fall outside of those averages, and it is nearly impossible to predict who those outliers might be. Pharmacogenetics considers a patient's unique genetic information and allows for anticipation of that individual's response to medication. Pharmacogenomic testing is steadily making progress in the management of pain by being able to identify individual differences in the perception of pain and susceptibility and sensitivity to drugs based on genetic markers. This has a huge potential to increase efficacy and reduce the incidence of iatrogenic drug dependence and addiction. The streamlining of relevant polymorphisms of genes encoding receptors, transporters, and drug-metabolizing enzymes influencing the pain phenotype can be an important guide to develop safe new strategies and approaches to personalized pain management. Additionally, some challenges still prevail and preclude adoption of pharmacogenomic testing universally. These include lack of knowledge about pharmacogenomic testing, inadequate standardization of the process of data handling, questionable benefits about the clinical and financial aspects of pharmacogenomic testing-guided therapy, discrepancies in clinical evidence supporting these tests, and doubtful reimbursement of the tests by health insurance agencies.
Collapse
Affiliation(s)
- Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Michelle A Carroll Turpin
- Department of Biomedical Sciences, College of Medicine, University of Houston, Health 2 Building, Room 8037, Houston, TX, USA
| | - Allison Pinner
- Ochsner LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Pankaj Thakur
- Department of Anesthesiology, Ochsner LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | | | - Harish Siddaiah
- Department of Anesthesiology, Ochsner LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Jasmine Rivas
- Department of Family Medicine, ECU Vidant Medical Center, 101 Heart Drive, Greenville, NC, 27834, USA
| | - Anna Yates
- LSU Health Shreveport School of Medicine, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - G Jason Huang
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Anitha Senthil
- Department of Anesthesiology, Lahey Hospital & Medical Center, 41Mall Road, Burlington, MA, 01805, USA
| | - Narjeet Khurmi
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA
| | - Jenna L Miller
- LSU Health Sciences Center New Orleans, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Cain W Stark
- Medical College of Wisconsin, 8701 West Watertown Plank Road, Wauwatosa, WI, 53226, USA
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Alan David Kaye
- Department of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University School of Medicine, 1501 Kings Hwy, Shreveport, LA, 71103, USA
| |
Collapse
|
29
|
Verma P, Kienle A, Flockerzi D, Ramkrishna D. Using Bifurcation Theory for Exploring Pain. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Parul Verma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Achim Kienle
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 39106, Germany
- Otto von Guericke University, Magdeburg 39106, Germany
| | - Dietrich Flockerzi
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 39106, Germany
- Otto von Guericke University, Magdeburg 39106, Germany
| | - Doraiswami Ramkrishna
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Ciotu CI, Tsantoulas C, Meents J, Lampert A, McMahon SB, Ludwig A, Fischer MJM. Noncanonical Ion Channel Behaviour in Pain. Int J Mol Sci 2019; 20:E4572. [PMID: 31540178 PMCID: PMC6770626 DOI: 10.3390/ijms20184572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Jannis Meents
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UR, UK
| | - Andreas Ludwig
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
31
|
Ma RSY, Kayani K, Whyte-Oshodi D, Whyte-Oshodi A, Nachiappan N, Gnanarajah S, Mohammed R. Voltage gated sodium channels as therapeutic targets for chronic pain. J Pain Res 2019; 12:2709-2722. [PMID: 31564962 PMCID: PMC6743634 DOI: 10.2147/jpr.s207610] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023] Open
Abstract
Being maladaptive and frequently unresponsive to pharmacotherapy, chronic pain presents a major unmet clinical need. While an intact central nervous system is required for conscious pain perception, nociceptor hyperexcitability induced by nerve injury in the peripheral nervous system (PNS) is sufficient and necessary to initiate and maintain neuropathic pain. The genesis and propagation of action potentials is dependent on voltage-gated sodium channels, in particular, Nav1.7, Nav1.8 and Nav1.9. However, nerve injury triggers changes in their distribution, expression and/or biophysical properties, leading to aberrant excitability. Most existing treatment for pain relief acts through non-selective, state-dependent sodium channel blockage and have narrow therapeutic windows. Natural toxins and developing subtype-specific and molecular-specific sodium channel blockers show promise for treatment of neuropathic pain with minimal side effects. New approaches to analgesia include combination therapy and gene therapy. Here, we review how individual sodium channel subtypes contribute to pain, and the attempts made to develop more effective analgesics for the treatment of chronic pain.
Collapse
Affiliation(s)
- Renee Siu Yu Ma
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kayani Kayani
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Raihan Mohammed
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Dusch M, Schmelz M. [Erythromelalgia: skin redness and pain]. Schmerz 2019; 33:475-490. [PMID: 31485751 DOI: 10.1007/s00482-019-00401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Erythromelalgia is a rare disease that is associated with hemato-oncological diseases or after taking certain drugs and toxins, but it can also occur as an independent clinical picture, for example, due to mutations in the sodium channel NaV1.7. Clinically, there is a characteristic triad of attack-like burning pain and skin redness in the area of the distal extremities, which can be alleviated by excessive cooling. The attacks are triggered by heat, exertion, and stress. The diagnosis is primarily made clinically and can be confirmed by genetic testing if a sodium channel NaV1.7 mutation is present. Important differential diagnoses are complex regional pain syndrome, the non-freezing cold injury, and small fiber neuropathies. Therapy is multidisciplinary and has to be planned individually and include physical therapy and psychotherapy as well as drug therapy as integral components.
Collapse
Affiliation(s)
- M Dusch
- Klinik für Anästhesiologie und Intensivmedizin, Fachbereich Schmerzmedizin, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625, Hannover, Deutschland.
| | - M Schmelz
- Abteilung Experimentelle Schmerzforschung, CBTM, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| |
Collapse
|
33
|
From Perception Threshold to Ion Channels-A Computational Study. Biophys J 2019; 117:281-295. [PMID: 31255293 DOI: 10.1016/j.bpj.2019.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/20/2019] [Accepted: 04/22/2019] [Indexed: 01/24/2023] Open
Abstract
Small-surface-area electrodes have successfully been used to preferentially activate cutaneous nociceptors, unlike conventional large area-electrodes, which preferentially activate large non-nociceptor fibers. Assessments of the strength-duration relationship, threshold electrotonus, and slowly increasing pulse forms have displayed different perception thresholds between large and small surface electrodes, which may indicate different excitability properties of the activated cutaneous nerves. In this study, the origin of the differences in perception thresholds between the two electrodes was investigated. It was hypothesized that different perception thresholds could be explained by the varying distributions of voltage-gated ion channels and by morphological differences between peripheral nerve endings of small and large fibers. A two-part computational model was developed to study activation of peripheral nerve fibers by different cutaneous electrodes. The first part of the model was a finite-element model, which calculated the extracellular field delivered by the cutaneous electrodes. The second part of the model was a detailed multicompartment model of an Aδ-axon as well as an Aβ-axon. The axon models included a wide range of voltage-gated ion channels: NaTTXs, NaTTXr, Nap, Kdr, KM, KA, and HCN channel. The computational model reproduced the experimentally assessed perception thresholds for the three protocols, the strength-duration relationship, the threshold electrotonus, and the slowly increasing pulse forms. The results support the hypothesis that voltage-gated ion channel distributions and morphology differences between small and large fibers were sufficient to explain the difference in perception thresholds between the two electrodes. In conclusion, assessments of perception thresholds using the three protocols may be an indirect measurement of the membrane excitability, and computational models may have the possibility to link voltage-gated ion channel activation to perception threshold measurements.
Collapse
|
34
|
Pointer-kindreds and pain: big lessons from small families. Pain 2019; 160 Suppl 1:S49-S52. [PMID: 31008849 DOI: 10.1097/j.pain.0000000000001492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Small families carrying rare mutations, which I call "pointer-kindreds," can teach us important lessons. Here, I provide some examples from the field of pain.
Collapse
|
35
|
Graham RD, Bruns TM, Duan B, Lempka SF. Dorsal root ganglion stimulation for chronic pain modulates Aβ-fiber activity but not C-fiber activity: A computational modeling study. Clin Neurophysiol 2019; 130:941-951. [PMID: 30981900 DOI: 10.1016/j.clinph.2019.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/23/2019] [Accepted: 02/16/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The goal of this project was to use computational models to investigate which types of primary sensory neurons are modulated by dorsal root ganglion stimulation (DRGS) to provide pain relief. METHODS We modeled DRGS by coupling an anatomical finite element model of a human L5 dorsal root ganglion to biophysical models of primary sensory neurons. We calculated the stimulation amplitude needed to elicit an action potential in each neuron, and examined how DRGS affected sensory neuron activity. RESULTS We showed that within clinical ranges of stimulation parameters, DRGS drives the activity of large myelinated Aβ-fibers but does not directly activate small nonmyelinated C-fibers. We also showed that the position of the active and return electrodes and the polarity of the stimulus pulse influence neural activation. CONCLUSIONS Our results indicate that DRGS may provide pain relief by activating pain-gating mechanisms in the dorsal horn via repeated activation of large myelinated afferents. SIGNIFICANCE Understanding the mechanisms of action of DRGS-induced pain relief may lead to innovations in stimulation technologies that improve patient outcomes.
Collapse
Affiliation(s)
- Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Bo Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Pediatric Erythromelalgia and SCN9A Mutations: Systematic Review and Single-Center Case Series. J Pediatr 2019; 206:217-224.e9. [PMID: 30416015 DOI: 10.1016/j.jpeds.2018.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate the clinical features of erythromelalgia in childhood associated with gain-of-function SCN9A mutations that increase activity of the Nav1.7 voltage-gated sodium channel, we conducted a systematic review of pediatric presentations of erythromelalgia related to SCN9A mutations, and compared pediatric clinical presentations of symptomatic erythromelalgia, with or without SCN9A mutations. STUDY DESIGN PubMed, Embase, and PsycINFO Databases were searched for reports of inherited erythromelalgia in childhood. Clinical features, management, and genotype were extracted. Case notes of pediatric patients with erythromelalgia from the Great Ormond Street Hospital Pain Service were reviewed for clinical features, patient-reported outcomes, and treatments. Children aged over 10 years were recruited for quantitative sensory testing. RESULTS Twenty-eight publications described erythromelalgia associated with 15 different SCN9A gene variants in 25 children. Pain was severe and often refractory to multiple treatments, including nonspecific sodium channel blockers. Skin damage or other complications of cold immersion for symptomatic relief were common (60%). SCN9A mutations resulting in greater hyperpolarizing shifts in Nav1.7 sodium channels correlated with symptom onset at younger ages (P = .016). Variability in reporting, and potential publication bias toward severe cases, limit any estimations of overall prevalence. In our case series, symptoms were similar but comorbidities were more common in children with SCN9A mutations. Quantitative sensory testing revealed marked dynamic warm allodynia. CONCLUSIONS Inherited erythromelalgia in children is associated with difficult-to-manage pain and significant morbidity. Standardized reporting of outcome and management in larger series will strengthen identification of genotype-phenotype relationships. More effective long-term therapies are a significant unmet clinical need.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The current review will discuss the current literature on genetics of pain and analgesia, with special emphasis on perioperative setting. We will also discuss pharmacogenetics-based management guidelines, current clinical status and future perspectives. RECENT FINDINGS Recent literature suggests that the interindividual variability in pain and postoperative analgesic response is at least in part because of one's genetic make-up. Some of the well characterized polymorphisms that are associated with surgical pain and opioid-related postoperative adverse outcomes are described in catechol-O-methyl transferase, CYP2D6 and μ-opioid receptor (OPRM1), ATP-binding cassette subfamily B member 1, ABCC3, organic cation transporter 1 genes. Clinical Pharmacogenetics Implementation Consortium has put forth recommendations on CYP2D6 genotype-based opioid selection and dosing. The list of drug-gene pairs studied continue to expand. SUMMARY Pharmacogenetic approach marks the dawn of personalized pain medicine both in perioperative and chronic pain settings.
Collapse
|
38
|
|
39
|
Packiasabapathy S, Sadhasivam S. Gender, genetics, and analgesia: understanding the differences in response to pain relief. J Pain Res 2018; 11:2729-2739. [PMID: 30519077 PMCID: PMC6235329 DOI: 10.2147/jpr.s94650] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic variations and gender contribute significantly to the large interpatient variations in opioid-related serious adverse effects and differences in pain relief with other analgesics. Opioids are the most commonly used analgesics to relieve moderate-to-severe postoperative pain. Narrow therapeutic index and unexplained large interpatient variations in opioid-related serious adverse effects and analgesia negatively affect optimal perioperative outcomes. In surgical, experimental, chronic, and neuropathic pain models, females have been reported to have more pain than males. This review focuses on literature evidence of differences in pain relief due to multiple genetic variations and gender of the patient.
Collapse
Affiliation(s)
- Senthil Packiasabapathy
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA,
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA,
| |
Collapse
|
40
|
Tham SW, Giles M. Current pain management strategies for patients with erythromelalgia: a critical review. J Pain Res 2018; 11:1689-1698. [PMID: 30214279 PMCID: PMC6121769 DOI: 10.2147/jpr.s154462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Erythromelalgia (EM) is a rare disorder characterized by erythematous, warm, painful extremities, which is often precipitated by cold conditions. The pathophysiology of EM is incompletely understood. Recent investigations have identified sodium channelopathy as a genetic cause for this pain condition, classified as primary inherited EM. Other subtypes are idiopathic EM and secondary EM. The management of pain in EM is challenging as no single therapy has been found to be effective. There is varying response to pharmacotherapy and significant variability within this clinical population, resulting in a stepwise trial and error approach. Consequently, EM is often associated with poorer health-related quality of life with higher morbidity. There is currently no consensus or guidelines on management of pain in EM. This is a review of the literature on management of pain using pharmacologic, procedural intervention and nonpharmacologic treatment in children and adults with EM.
Collapse
Affiliation(s)
- See Wan Tham
- Seattle Children's Research Institute, Seattle, WA, USA,
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA,
| | - Marian Giles
- Seattle Children's Research Institute, Seattle, WA, USA,
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA,
| |
Collapse
|
41
|
Mandge D, Manchanda R. A biophysically detailed computational model of urinary bladder small DRG neuron soma. PLoS Comput Biol 2018; 14:e1006293. [PMID: 30020934 PMCID: PMC6066259 DOI: 10.1371/journal.pcbi.1006293] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/30/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Bladder small DRG neurons, which are putative nociceptors pivotal to urinary bladder function, express more than a dozen different ionic membrane mechanisms: ion channels, pumps and exchangers. Small-conductance Ca2+-activated K+ (SKCa) channels which were earlier thought to be gated solely by intracellular Ca2+ concentration ([Ca]i) have recently been shown to exhibit inward rectification with respect to membrane potential. The effect of SKCa inward rectification on the excitability of these neurons is unknown. Furthermore, studies on the role of KCa channels in repetitive firing and their contributions to different types of afterhyperpolarization (AHP) in these neurons are lacking. In order to study these phenomena, we first constructed and validated a biophysically detailed single compartment model of bladder small DRG neuron soma constrained by physiological data. The model includes twenty-two major known membrane mechanisms along with intracellular Ca2+ dynamics comprising Ca2+ diffusion, cytoplasmic buffering, and endoplasmic reticulum (ER) and mitochondrial mechanisms. Using modelling studies, we show that inward rectification of SKCa is an important parameter regulating neuronal repetitive firing and that its absence reduces action potential (AP) firing frequency. We also show that SKCa is more potent in reducing AP spiking than the large-conductance KCa channel (BKCa) in these neurons. Moreover, BKCa was found to contribute to the fast AHP (fAHP) and SKCa to the medium-duration (mAHP) and slow AHP (sAHP). We also report that the slow inactivating A-type K+ channel (slow KA) current in these neurons is composed of 2 components: an initial fast inactivating (time constant ∼ 25-100 ms) and a slow inactivating (time constant ∼ 200-800 ms) current. We discuss the implications of our findings, and how our detailed model can help further our understanding of the role of C-fibre afferents in the physiology of urinary bladder as well as in certain disorders.
Collapse
Affiliation(s)
- Darshan Mandge
- Computational Neurophysiology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Rohit Manchanda
- Computational Neurophysiology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
42
|
Tarotin I, Aristovich K, Holder D. Model of Impedance Changes in Unmyelinated Nerve Fibers. IEEE Trans Biomed Eng 2018; 66:471-484. [PMID: 29993457 DOI: 10.1109/tbme.2018.2849220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Currently, there is no imaging method that is able to distinguish the functional activity inside nerves. Such a method would be essential for understanding peripheral nerve physiology and would allow precise neuromodulation of organs these nerves supply. Electrical impedance tomography (EIT) is a method that produces images of electrical impedance change (dZ) of an object by injecting alternating current and recording surface voltages. It has been shown to be able to image fast activity in the brain and large peripheral nerves. To image inside small autonomic nerves, mostly containing unmyelinated fibers, it is necessary to maximize SNR and optimize the EIT parameters. An accurate model of the nerve is required to identify these optimal parameters as well as to validate data obtained in the experiments. METHODS In this study, we developed two three-dimensional models of unmyelinated fibers: Hodgkin-Huxley (HH) squid giant axon (single and multiple) and mammalian C-nociceptor. A coupling feedback system was incorporated into the models to simulate direct and alternating current application and simultaneously record external field during action potential propagation. RESULTS Parameters of the developed models were varied to study their influence on the recorded impedance changes; the optimal parameters were identified. The negative dZ was found to monotonically decrease with frequency for both HH and C fiber models, in accordance with the experimental data. CONCLUSION AND SIGNIFICANCE The accurate realistic model of unmyelinated nerve allows the optimization of EIT parameters and matches literature and experimental results.
Collapse
|
43
|
Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. Br J Pharmacol 2018; 175:2138-2157. [PMID: 28749537 PMCID: PMC5980290 DOI: 10.1111/bph.13962] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (NaV channels) are essential for the initiation and propagation of action potentials that critically influence our ability to respond to a diverse range of stimuli. Physiological and pharmacological studies have linked abnormal function of NaV channels to many human disorders, including chronic neuropathic pain. These findings, along with the description of the functional properties and expression pattern of NaV channel subtypes, are helping to uncover subtype specific roles in acute and chronic pain and revealing potential opportunities to target these with selective inhibitors. High-throughput screens and automated electrophysiology platforms have identified natural toxins as a promising group of molecules for the development of target-specific analgesics. In this review, the role of toxins in defining the contribution of NaV channels in acute and chronic pain states and their potential to be used as analgesic therapies are discussed. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Richard J Lewis
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
44
|
Li Y, Zhu T, Yang H, Dib-Hajj SD, Waxman SG, Yu Y, Xu TL, Cheng X. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Mol Pain 2018; 14:1744806918782229. [PMID: 29790812 PMCID: PMC6024516 DOI: 10.1177/1744806918782229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Voltage-gated sodium channel Nav1.7 is a key molecule in nociception, and its dysfunction has been associated with various pain disorders. Here, we investigated the regulation of Nav1.7 biophysical properties by Fyn, an Src family tyrosine kinase. Nav1.7 was coexpressed with either constitutively active (FynCA) or dominant negative (FynDN) variants of Fyn kinase. FynCA elevated protein expression and tyrosine phosphorylation of Nav1.7 channels. Site-directed mutagenesis analysis identified two tyrosine residues (Y1470 and Y1471) located within the Nav1.7 DIII-DIV linker (L3) as phosphorylation sites of Fyn. Whole-cell recordings revealed that FynCA evoked larger changes in Nav1.7 biophysical properties when expressed in ND7/23 cells than in Human Embryonic Kidney (HEK) 293 cells, suggesting a cell type-specific modulation of Nav1.7 by Fyn kinase. In HEK 293 cells, substitution of both tyrosine residues with phenylalanine dramatically reduced current amplitude of mutant channels, which was partially rescued by expressing mutant channels in ND7/23 cells. Phenylalanine substitution showed little effect on FynCA-induced changes in Nav1.7 activation and inactivation, suggesting additional modifications in the channel or modulation by interaction with extrinsic factor(s). Our study demonstrates that Nav1.7 is a substrate for Fyn kinase, and the effect of the channel phosphorylation depends on the cell background. Fyn-mediated modulation of Nav1.7 may regulate DRG neuron excitability and contribute to pain perception. Whether this interaction could serve as a target for developing new pain therapeutics requires future study.
Collapse
Affiliation(s)
- Yangyang Li
- 1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengteng Zhu
- 1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Yang
- 1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sulayman D Dib-Hajj
- 2 Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,3 Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- 2 Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,3 Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| | - Ye Yu
- 4 Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Le Xu
- 1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Cheng
- 1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Annecchino LA, Schultz SR. Progress in automating patch clamp cellular physiology. Brain Neurosci Adv 2018; 2:2398212818776561. [PMID: 32166142 PMCID: PMC7058203 DOI: 10.1177/2398212818776561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 12/30/2022] Open
Abstract
Patch clamp electrophysiology has transformed research in the life sciences over the last few decades. Since their inception, automatic patch clamp platforms have evolved considerably, demonstrating the capability to address both voltage- and ligand-gated channels, and showing the potential to play a pivotal role in drug discovery and biomedical research. Unfortunately, the cell suspension assays to which early systems were limited cannot recreate biologically relevant cellular environments, or capture higher order aspects of synaptic physiology and network dynamics. In vivo patch clamp electrophysiology has the potential to yield more biologically complex information and be especially useful in reverse engineering the molecular and cellular mechanisms of single-cell and network neuronal computation, while capturing important aspects of human disease mechanisms and possible therapeutic strategies. Unfortunately, it is a difficult procedure with a steep learning curve, which has restricted dissemination of the technique. Luckily, in vivo patch clamp electrophysiology seems particularly amenable to robotic automation. In this review, we document the development of automated patch clamp technology, from early systems based on multi-well plates through to automated planar-array platforms, and modern robotic platforms capable of performing two-photon targeted whole-cell electrophysiological recordings in vivo.
Collapse
Affiliation(s)
- Luca A. Annecchino
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| | - Simon R. Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
46
|
Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:665-674. [PMID: 28825121 PMCID: PMC5599482 DOI: 10.1007/s00249-017-1246-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022]
Abstract
Asparagine is conserved in the S6 transmembrane segments of all voltage-gated sodium, calcium, and TRP channels identified to date. A broad spectrum of channelopathies including cardiac arrhythmias, epilepsy, muscle diseases, and pain disorders is associated with its mutation. To investigate its effects on sodium channel functional properties, we mutated the simple prokaryotic sodium channel NaChBac. Electrophysiological characterization of the N225D mutant reveals that this conservative substitution shifts the voltage-dependence of inactivation by 25 mV to more hyperpolarized potentials. The mutant also displays greater thermostability, as determined by synchrotron radiation circular dichroism spectroscopy studies of purified channels. Based on our analyses of high-resolution structures of NaChBac homologues, we suggest that the side-chain amine group of asparagine 225 forms one or more hydrogen bonds with different channel elements and that these interactions are important for normal channel function. The N225D mutation eliminates these hydrogen bonds and the structural consequences involve an enhanced channel inactivation.
Collapse
|
47
|
Abstract
A significant number of commonly administered medications in anesthesia show wide clinical interpatient variability. Some of these include neuromuscular blockers, opioids, local anesthetics, and inhalation anesthetics. Individual genetic makeup may account for and predict cardiovascular outcomes after cardiac surgery. These interactions can manifest at any point in the perioperative period and may also only affect a specific system. A better understanding of pharmacogenomics will allow for more individually tailored anesthetics and may ultimately lead to better outcomes, decreased hospital stays, and improved patient satisfaction.
Collapse
Affiliation(s)
- Ramsey Saba
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Alan D Kaye
- Department of Anesthesiology and Pain Medicine, LSU Health Science Center, Louisiana State University School of Medicine, 1542 Tulane Avenue, Room 659, New Orleans, LA 70112, USA
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Abstract
To gain insights into erythromelalgia disease pathophysiology, this study elucidated changes in peripheral axonal excitability and influences of temperature and mexiletine on axonal function. Erythromelalgia (EM) is a rare neurovascular disorder characterized by intermittent severe burning pain, erythema, and warmth in the extremities on heat stimuli. To investigate the underlying pathophysiology, peripheral axonal excitability studies were performed and changes with heating and therapy explored. Multiple excitability indices (stimulus–response curve, strength–duration time constant (SDTC), threshold electrotonus, and recovery cycle) were investigated in 23 (9 EMSCN9A+ and 14 EMSCN9A−) genetically characterized patients with EM stimulating median motor and sensory axons at the wrist. At rest, patients with EM showed a higher threshold and rheobase (P < 0.001) compared with controls. Threshold electrotonus and current–voltage relationships demonstrated greater changes of thresholds in both depolarizing and hyperpolarizing preconditioning electrotonus in both EM cohorts compared with controls in sensory axons (P < 0.005). When average temperature was raised from 31.5°C to 36.3°C in EMSCN9A+ patients, excitability changes showed depolarization, specifically SDTC significantly increased, in contrast to the effects of temperature previously established in healthy subjects (P < 0.05). With treatment, 4 EMSCN9A+ patients (4/9) reported improvement with mexiletine, associated with reduction in SDTC in motor and sensory axons. This is the first study of primary EM using threshold tracking techniques to demonstrate alterations in peripheral axonal membrane function. Taken together, these changes may be attributed to systemic neurovascular abnormalities in EM, with chronic postischaemic resting membrane potential hyperpolarization due to Na+/K+ pump overactivity. With heating, a trigger of acute symptoms, axonal depolarization developed, corresponding to acute axonal ischaemia. This study has provided novel insights into EM pathophysiology.
Collapse
|
49
|
Helås T, Sagafos D, Kleggetveit I, Quiding H, Jönsson B, Segerdahl M, Zhang Z, Salter H, Schmelz M, Jørum E. Pain thresholds,supra-threshold pain and lidocaine sensitivity in patients with erythromelalgia, including the I848Tmutation in NaV1.7. Eur J Pain 2017; 21:1316-1325. [DOI: 10.1002/ejp.1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- T. Helås
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
| | - D. Sagafos
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
| | - I.P. Kleggetveit
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
| | | | | | | | - Z. Zhang
- Astra-Zeneca R&D; Södertälje Sweden
| | - H. Salter
- Astra-Zeneca R&D; Södertälje Sweden
- Department of Clinical Neuroscience; Karolinska Institutet; Solna Sweden
| | - M. Schmelz
- Department of Anesthesiology Mannheim; Heidelberg University; Germany
| | - E. Jørum
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
- Faculty of Medicine, Institute of Clinical Medicine; University of Oslo; Norway
| |
Collapse
|
50
|
Vetter I, Deuis JR, Mueller A, Israel MR, Starobova H, Zhang A, Rash LD, Mobli M. NaV1.7 as a pain target – From gene to pharmacology. Pharmacol Ther 2017; 172:73-100. [DOI: 10.1016/j.pharmthera.2016.11.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|