1
|
Greiner J, Dente M, Orós-Rodrigo S, Cameron BA, Madl J, Kaltenbacher W, Kok T, Zgierski-Johnston CM, Peyronnet R, Kohl P, Sacconi L, Rog-Zielinska EA. Different effects of cardiomyocyte contractile activity on transverse and axial tubular system luminal content dynamics. J Mol Cell Cardiol 2024; 197:125-135. [PMID: 39491670 DOI: 10.1016/j.yjmcc.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Efficient excitation-contraction coupling of mammalian ventricular cardiomyocytes depends on the transverse-axial tubular system (TATS), a network of surface membrane invaginations. TATS enables tight coupling of sarcolemmal and sarcoplasmic reticulum membranes, which is essential for rapid Ca2+-induced Ca2+ release, and uniform contraction upon electrical stimulation. The majority of TATS in healthy ventricular cardiomyocytes is composed of transverse tubules (TT, ∼90 % of TATS in rabbit). The remainder consists of mostly axial tubules (AT), which are less abundant and less well studied. In disease, however, the relative abundance of TT and AT changes. The mechanisms and relevance of this change are not known, and understanding them requires a more targeted effort to study the dynamics of AT structure and function. While TATS content is continuous with the interstitial space, it is contained within a domain of restricted diffusion. We have previously shown that TT are cyclically squeezed during stretch and contraction. This can contribute to TT content mixing and accelerates luminal content exchange with the environment. Here, we explore the effects of cardiomyocyte stretch and contraction on AT. METHODS TATS structure and diffusion dynamics were studied using 3D electron tomography of rabbit left ventricular cardiomyocytes, preserved at rest or during contraction, and ventricular tissue preserved at rest or during stretch, as well as live-cell TATS content exchange measurements. RESULTS We show (i) that cardiomyocyte contraction is associated with an increase in the apparent speed of diffusion of TT content that scales with beating rate and degree of cell shortening. In contrast, (ii) AT develop membrane folds and constrictions during contraction, (iii) with no effect of contraction on luminal exchange dynamics, while (iv) cardiomyocyte stretch is associated with AT straightening and AT and TT 'squeezing' that (v) supports an acceleration of the apparent speed of diffusion in AT and TT. Finally, (vi) we present a simple computational model outlining the potential relevance of AT in healthy and diseased cells. CONCLUSIONS Our results indicate that TT and AT are differently affected by the cardiac contractile cycle, and suggest that AT may play a role in ensuring TATS network content homogeneity in diseased cardiomyocytes. Further research is needed to explore the interplay of structural and functional remodelling of different TATS components in failing myocardium.
Collapse
Affiliation(s)
- J Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - M Dente
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Florence, Italy
| | - S Orós-Rodrigo
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - B A Cameron
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - W Kaltenbacher
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - T Kok
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - C M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - R Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - L Sacconi
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Clinical Physiology, National Research Council, Florence, Italy
| | - E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Birkedal R, Laasmaa M, Branovets J, Vendelin M. Ontogeny of cardiomyocytes: ultrastructure optimization to meet the demand for tight communication in excitation-contraction coupling and energy transfer. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210321. [PMID: 36189816 PMCID: PMC9527910 DOI: 10.1098/rstb.2021.0321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ontogeny of the heart describes its development from the fetal to the adult stage. In newborn mammals, blood pressure and thus cardiac performance are relatively low. The cardiomyocytes are thin, and with a central core of mitochondria surrounded by a ring of myofilaments, while the sarcoplasmic reticulum (SR) is sparse. During development, as blood pressure and performance increase, the cardiomyocytes become more packed with structures involved in excitation–contraction (e-c) coupling (SR and myofilaments) and the generation of ATP (mitochondria) to fuel the contraction. In parallel, the e-c coupling relies increasingly on calcium fluxes through the SR, while metabolism relies increasingly on fatty acid oxidation. The development of transverse tubules and SR brings channels and transporters interacting via calcium closer to each other and is crucial for e-c coupling. However, for energy transfer, it may seem counterintuitive that the increased structural density restricts the overall ATP/ADP diffusion. In this review, we discuss how this is because of the organization of all these structures forming modules. Although the overall diffusion across modules is more restricted, the energy transfer within modules is fast. A few studies suggest that in failing hearts this modular design is disrupted, and this may compromise intracellular energy transfer. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| |
Collapse
|
3
|
Spinozzi S, Liu C, Chen Z, Feng W, Zhang L, Ouyang K, Evans SM, Chen J. Nexilin Is Necessary for Maintaining the Transverse-Axial Tubular System in Adult Cardiomyocytes. Circ Heart Fail 2020; 13:e006935. [PMID: 32635769 PMCID: PMC7583668 DOI: 10.1161/circheartfailure.120.006935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/31/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND NEXN (nexilin) is a protein of the junctional membrane complex required for development of cardiac T-tubules. Global and cardiomyocyte-specific loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy and premature death. Therefore, little is known as to the role of NEXN in adult cardiomyocytes. Transverse-axial tubular system remodeling are well-known features in heart failure. Although NEXN is required during development for T-tubule formation, its role, if any, in mature T-tubules remains to be addressed. METHODS Nexn inducible adult cardiomyocyte-specific KO mice were generated. Comprehensive morphological and functional analyses were performed. Heart samples (n>3) were analyzed by molecular, biochemical, and electron microscopy analyses. Isolated single adult cardiomyocytes were analyzed by confocal microscopy, and myocyte shortening/re-lengthening and Ca2+ transient studies were conducted. RESULTS Inducible cardiomyocyte-specific loss of Nexn in adult mice resulted in a dilated cardiomyopathy with reduced cardiac function (13% reduction in percentage fractional shortening; P<0.05). In vivo and in vitro analyses of adult mouse heart samples revealed that NEXN was essential for optimal contraction and calcium handling and was required for maintenance of T-tubule network organization (transverse tubular component in Nexn inducible adult cardiomyocyte-specific KO mice reduced by 40% with respect to controls, P<0.05). CONCLUSIONS Results here reported reveal NEXN to be a pivotal component of adult junctional membrane complexes required for maintenance of transverse-axial tubular architecture. These results demonstrate that NEXN plays an essential role in the adult cardiomyocyte and give further understanding of pathological mechanisms responsible for cardiomyopathy in patients carrying mutations in the NEXN gene.
Collapse
MESH Headings
- Age Factors
- Animals
- Calcium/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Disease Models, Animal
- Mice
- Mice, Knockout
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Microfilament Proteins/physiology
- Microtubules/metabolism
- Microtubules/physiology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Simone Spinozzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ze’e Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei Feng
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lunfeng Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Rog-Zielinska EA, O'Toole ET, Hoenger A, Kohl P. Mitochondrial Deformation During the Cardiac Mechanical Cycle. Anat Rec (Hoboken) 2018; 302:146-152. [PMID: 30302911 PMCID: PMC6312496 DOI: 10.1002/ar.23917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/22/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
Abstract
Cardiomyocytes both cause and experience continual cyclic deformation. The exact effects of this deformation on the properties of intracellular organelles are not well characterized, although they are likely to be relevant for cardiomyocyte responses to active and passive changes in their mechanical environment. In the present study we provide three‐dimensional ultrastructural evidence for mechanically induced mitochondrial deformation in rabbit ventricular cardiomyocytes over a range of sarcomere lengths representing myocardial tissue stretch, an unloaded “slack” state, and contracture. We also show structural indications for interaction of mitochondria with one another, as well as with other intracellular elements such as microtubules, sarcoplasmic reticulum and T‐tubules. The data presented here help to contextualize recent reports on the mechanosensitivity and cell‐wide connectivity of the mitochondrial network and provide a structural framework that may aide interpretation of mechanically‐regulated molecular signaling in cardiac cells. Anat Rec, 302:146–152, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, USA
| | - A Hoenger
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, USA
| | - P Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Galice S, Xie Y, Yang Y, Sato D, Bers DM. Size Matters: Ryanodine Receptor Cluster Size Affects Arrhythmogenic Sarcoplasmic Reticulum Calcium Release. J Am Heart Assoc 2018; 7:e008724. [PMID: 29929992 PMCID: PMC6064922 DOI: 10.1161/jaha.118.008724] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ryanodine receptors (RyR) mediate sarcoplasmic reticulum calcium (Ca2+) release and influence myocyte Ca2+ homeostasis and arrhythmias. In cardiac myocytes, RyRs are found in clusters of various sizes and shapes, and RyR cluster size may critically influence normal and arrhythmogenic Ca2+ spark and wave formation. However, the actual RyR cluster sizes at specific Ca2+ spark sites have never been measured in the physiological setting. METHODS AND RESULTS Here we measured RyR cluster size and Ca2+ sparks simultaneously to assess how RyR cluster size influences Ca2+ sparks and sarcoplasmic reticulum Ca2+ leak. For small RyR cluster sizes (<50), Ca2+ spark frequency is very low but then increases dramatically at larger cluster sizes. In contrast, Ca2+ spark amplitude is nearly maximal even at relatively small RyR cluster size (≈10) and changes little at larger cluster size. These properties agreed with computational simulations of RyR gating within clusters. CONCLUSIONS Our study explains how this combination of properties may limit arrhythmogenic Ca2+ sparks and wave propagation (at many junctions) while preserving the efficacy and spatial synchronization of Ca2+-induced Ca2+-release during normal excitation-contraction coupling. However, variations in RyR cluster size among individual junctions and RyR sensitivity could exacerbate heterogeneity of local sarcoplasmic reticulum Ca2+ release and arrhythmogenesis under pathological conditions.
Collapse
Affiliation(s)
- Samuel Galice
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Yuanfang Xie
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Yi Yang
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA
| |
Collapse
|
6
|
Wescott AP, Jafri MS, Lederer WJ, Williams GSB. Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling. J Mol Cell Cardiol 2016; 92:82-92. [PMID: 26827896 PMCID: PMC4807626 DOI: 10.1016/j.yjmcc.2016.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 11/27/2022]
Abstract
Calcium-induced calcium release is the principal mechanism that triggers the cell-wide [Ca(2+)]i transient that activates muscle contraction during cardiac excitation-contraction coupling (ECC). Here, we characterize this process in mouse cardiac myocytes with a novel mathematical action potential (AP) model that incorporates realistic stochastic gating of voltage-dependent L-type calcium (Ca(2+)) channels (LCCs) and sarcoplasmic reticulum (SR) Ca(2+) release channels (the ryanodine receptors, RyR2s). Depolarization of the sarcolemma during an AP stochastically activates the LCCs elevating subspace [Ca(2+)] within each of the cell's 20,000 independent calcium release units (CRUs) to trigger local RyR2 opening and initiate Ca(2+) sparks, the fundamental unit of triggered Ca(2+) release. Synchronization of Ca(2+) sparks during systole depends on the nearly uniform cellular activation of LCCs and the likelihood of local LCC openings triggering local Ca(2+) sparks (ECC fidelity). The detailed design and true SR Ca(2+) pump/leak balance displayed by our model permits investigation of ECC fidelity and Ca(2+) spark fidelity, the balance between visible (Ca(2+) spark) and invisible (Ca(2+) quark/sub-spark) SR Ca(2+) release events. Excess SR Ca(2+) leak is examined as a disease mechanism in the context of "catecholaminergic polymorphic ventricular tachycardia (CPVT)", a Ca(2+)-dependent arrhythmia. We find that that RyR2s (and therefore Ca(2+) sparks) are relatively insensitive to LCC openings across a wide range of membrane potentials; and that key differences exist between Ca(2+) sparks evoked during quiescence, diastole, and systole. The enhanced RyR2 [Ca(2+)]i sensitivity during CPVT leads to increased Ca(2+) spark fidelity resulting in asynchronous systolic Ca(2+) spark activity. It also produces increased diastolic SR Ca(2+) leak with some prolonged Ca(2+) sparks that at times become "metastable" and fail to efficiently terminate. There is a huge margin of safety for stable Ca(2+) handling within the cell and this novel mechanistic model provides insight into the molecular signaling characteristics that help maintain overall Ca(2+) stability even under the conditions of high SR Ca(2+) leak during CPVT. Finally, this model should provide tools for investigators to examine normal and pathological Ca(2+) signaling characteristics in the heart.
Collapse
Affiliation(s)
- Andrew P Wescott
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States
| | - M Saleet Jafri
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States; Molecular Neuroscience Department, George Mason University, Fairfax, VA, United States
| | - W J Lederer
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States
| | - George S B Williams
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States.
| |
Collapse
|
7
|
Hiess F, Vallmitjana A, Wang R, Cheng H, ter Keurs HEDJ, Chen J, Hove-Madsen L, Benitez R, Chen SRW. Distribution and Function of Cardiac Ryanodine Receptor Clusters in Live Ventricular Myocytes. J Biol Chem 2015; 290:20477-87. [PMID: 26109063 DOI: 10.1074/jbc.m115.650531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
The cardiac Ca(2+) release channel (ryanodine receptor, RyR2) plays an essential role in excitation-contraction coupling in cardiac muscle cells. Effective and stable excitation-contraction coupling critically depends not only on the expression of RyR2, but also on its distribution. Despite its importance, little is known about the distribution and organization of RyR2 in living cells. To study the distribution of RyR2 in living cardiomyocytes, we generated a knock-in mouse model expressing a GFP-tagged RyR2 (GFP-RyR2). Confocal imaging of live ventricular myocytes isolated from the GFP-RyR2 mouse heart revealed clusters of GFP-RyR2 organized in rows with a striated pattern. Similar organization of GFP-RyR2 clusters was observed in fixed ventricular myocytes. Immunofluorescence staining with the anti-α-actinin antibody (a z-line marker) showed that nearly all GFP-RyR2 clusters were localized in the z-line zone. There were small regions with dislocated GFP-RyR2 clusters. Interestingly, these same regions also displayed dislocated z-lines. Staining with di-8-ANEPPS revealed that nearly all GFP-RyR2 clusters were co-localized with transverse but not longitudinal tubules, whereas staining with MitoTracker Red showed that GFP-RyR2 clusters were not co-localized with mitochondria in live ventricular myocytes. We also found GFP-RyR2 clusters interspersed between z-lines only at the periphery of live ventricular myocytes. Simultaneous detection of GFP-RyR2 clusters and Ca(2+) sparks showed that Ca(2+) sparks originated exclusively from RyR2 clusters. Ca(2+) sparks from RyR2 clusters induced no detectable changes in mitochondrial Ca(2+) level. These results reveal, for the first time, the distribution of RyR2 clusters and its functional correlation in living ventricular myocytes.
Collapse
Affiliation(s)
- Florian Hiess
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and
| | - Alexander Vallmitjana
- the Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and
| | - Hongqiang Cheng
- the Department of Medicine, University of California at San Diego, La Jolla, California 92161, and
| | - Henk E D J ter Keurs
- the Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ju Chen
- the Department of Medicine, University of California at San Diego, La Jolla, California 92161, and
| | - Leif Hove-Madsen
- the Cardiovascular Research Centre CSIC-ICCC, Hospital de Sant Pau, 08025 Barcelona, Spain
| | - Raul Benitez
- the Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and
| |
Collapse
|
8
|
Bovo E, de Tombe PP, Zima AV. The role of dyadic organization in regulation of sarcoplasmic reticulum Ca(2+) handling during rest in rabbit ventricular myocytes. Biophys J 2014; 106:1902-9. [PMID: 24806922 DOI: 10.1016/j.bpj.2014.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/24/2014] [Accepted: 03/25/2014] [Indexed: 01/01/2023] Open
Abstract
The dyadic organization of ventricular myocytes ensures synchronized activation of sarcoplasmic reticulum (SR) Ca(2+) release during systole. However, it remains obscure how the dyadic organization affects SR Ca(2+) handling during diastole. By measuring intraluminal SR Ca(2+) ([Ca(2+)]SR) decline during rest in rabbit ventricular myocytes, we found that ∼76% of leaked SR Ca(2+) is extruded from the cytosol and only ∼24% is pumped back into the SR. Thus, the majority of Ca(2+) that leaks from the SR is removed from the cytosol before it can be sequestered back into the SR by the SR Ca(2+)-ATPase (SERCA). Detubulation decreased [Ca(2+)]SR decline during rest, thus making the leaked SR Ca(2+) more accessible for SERCA. These results suggest that Ca(2+) extrusion systems are localized in T-tubules. Inhibition of Na(+)-Ca(2+) exchanger (NCX) slowed [Ca(2+)]SR decline during rest by threefold, however did not prevent it. Depolarization of mitochondrial membrane potential during NCX inhibition completely prevented the rest-dependent [Ca(2+)]SR decline. Despite a significant SR Ca(2+) leak, Ca(2+) sparks were very rare events in control conditions. NCX inhibition or detubulation increased Ca(2+) spark activity independent of SR Ca(2+) load. Overall, these results indicate that during rest NCX effectively competes with SERCA for cytosolic Ca(2+) that leaks from the SR. This can be explained if the majority of SR Ca(2+) leak occurs through ryanodine receptors in the junctional SR that are located closely to NCX in the dyadic cleft. Such control of the dyadic [Ca(2+)] by NCX play a critical role in suppressing Ca(2+) sparks during rest.
Collapse
Affiliation(s)
- Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois.
| |
Collapse
|
9
|
Wagner E, Brandenburg S, Kohl T, Lehnart SE. Analysis of tubular membrane networks in cardiac myocytes from atria and ventricles. J Vis Exp 2014:e51823. [PMID: 25350293 PMCID: PMC4541455 DOI: 10.3791/51823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Collapse
Affiliation(s)
- Eva Wagner
- Heart Research Center Goettingen; Clinic of Cardiology & Pulmonology, University Medical Center Goettingen; German Center for Cardiovascular Research (DZHK) partner site Goettingen
| | - Sören Brandenburg
- Heart Research Center Goettingen; Clinic of Cardiology & Pulmonology, University Medical Center Goettingen
| | - Tobias Kohl
- Heart Research Center Goettingen; Clinic of Cardiology & Pulmonology, University Medical Center Goettingen
| | - Stephan E Lehnart
- Heart Research Center Goettingen; Clinic of Cardiology & Pulmonology, University Medical Center Goettingen; German Center for Cardiovascular Research (DZHK) partner site Goettingen; BioMET, Center for Biomedical Engineering & Technology, University of Maryland School of Medicine;
| |
Collapse
|
10
|
Hollander JM, Thapa D, Shepherd DL. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Physiol Heart Circ Physiol 2014; 307:H1-14. [PMID: 24778166 DOI: 10.1152/ajpheart.00747.2013] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle.
Collapse
|
11
|
Eisner V, Csordás G, Hajnóczky G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca²⁺ and reactive oxygen species signaling. J Cell Sci 2013; 126:2965-78. [PMID: 23843617 DOI: 10.1242/jcs.093609] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are strategically and dynamically positioned in the cell to spatially coordinate ATP production with energy needs and to allow the local exchange of material with other organelles. Interactions of mitochondria with the sarco-endoplasmic reticulum (SR/ER) have been receiving much attention owing to emerging evidence on the role these sites have in cell signaling, dynamics and biosynthetic pathways. One of the most important physiological and pathophysiological paradigms for SR/ER-mitochondria interactions is in cardiac and skeletal muscle. The contractile activity of these tissues has to be matched by mitochondrial ATP generation that is achieved, at least in part, by propagation of Ca(2+) signals from SR to mitochondria. However, the muscle has a highly ordered structure, providing only limited opportunity for mitochondrial dynamics and interorganellar interactions. This Commentary focuses on the latest advances in the structure, function and disease relevance of the communication between SR/ER and mitochondria in muscle. In particular, we discuss the recent demonstration of SR/ER-mitochondria tethers that are formed by multiple proteins, and local Ca(2+) transfer between SR/ER and mitochondria.
Collapse
Affiliation(s)
- Verónica Eisner
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
12
|
Bround MJ, Wambolt R, Luciani DS, Kulpa JE, Rodrigues B, Brownsey RW, Allard MF, Johnson JD. Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo. J Biol Chem 2013; 288:18975-86. [PMID: 23678000 DOI: 10.1074/jbc.m112.427062] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ca(2+) fluxes between adjacent organelles are thought to control many cellular processes, including metabolism and cell survival. In vitro evidence has been presented that constitutive Ca(2+) flux from intracellular stores into mitochondria is required for basal cellular metabolism, but these observations have not been made in vivo. We report that controlled in vivo depletion of cardiac RYR2, using a conditional gene knock-out strategy (cRyr2KO mice), is sufficient to reduce mitochondrial Ca(2+) and oxidative metabolism, and to establish a pseudohypoxic state with increased autophagy. Dramatic metabolic reprogramming was evident at the transcriptional level via Sirt1/Foxo1/Pgc1α, Atf3, and Klf15 gene networks. Ryr2 loss also induced a non-apoptotic form of programmed cell death associated with increased calpain-10 but not caspase-3 activation or endoplasmic reticulum stress. Remarkably, cRyr2KO mice rapidly exhibited many of the structural, metabolic, and molecular characteristics of heart failure at a time when RYR2 protein was reduced 50%, a similar degree to that which has been reported in heart failure. RYR2-mediated Ca(2+) fluxes are therefore proximal controllers of mitochondrial Ca(2+), ATP levels, and a cascade of transcription factors controlling metabolism and survival.
Collapse
Affiliation(s)
- Michael J Bround
- Cardiovascular Research Group, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hake J, Edwards AG, Yu Z, Kekenes-Huskey PM, Michailova AP, McCammon JA, Holst MJ, Hoshijima M, McCulloch AD. Modelling cardiac calcium sparks in a three-dimensional reconstruction of a calcium release unit. J Physiol 2012; 590:4403-22. [PMID: 22495592 DOI: 10.1113/jphysiol.2012.227926] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Triggered release of Ca2+ from an individual sarcoplasmic reticulum (SR) Ca(2+) release unit (CRU) is the fundamental event of cardiac excitation–contraction coupling, and spontaneous release events (sparks) are the major contributor to diastolic Ca(2+) leak in cardiomyocytes. Previous model studies have predicted that the duration and magnitude of the spark is determined by the local CRU geometry, as well as the localization and density of Ca(2+) handling proteins. We have created a detailed computational model of a CRU, and developed novel tools to generate the computational geometry from electron tomographic images. Ca(2+) diffusion was modelled within the SR and the cytosol to examine the effects of localization and density of the Na(+)/Ca(2+) exchanger, sarco/endoplasmic reticulum Ca(2+)-ATPase 2 (SERCA), and calsequestrin on spark dynamics. We reconcile previous model predictions of approximately 90% local Ca(2+) depletion in junctional SR, with experimental reports of about 40%. This analysis supports the hypothesis that dye kinetics and optical averaging effects can have a significant impact on measures of spark dynamics. Our model also predicts that distributing calsequestrin within non-junctional Z-disc SR compartments, in addition to the junctional compartment, prolongs spark release time as reported by Fluo5. By pumping Ca(2+) back into the SR during a release, SERCA is able to prolong a Ca(2+) spark, and this may contribute to SERCA-dependent changes in Ca(2+) wave speed. Finally, we show that including the Na(+)/Ca(2+) exchanger inside the dyadic cleft does not alter local [Ca(2+)] during a spark.
Collapse
Affiliation(s)
- Johan Hake
- Department of Bioengineering, University of California San Diego, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Johnson JD, Bround MJ, White SA, Luciani DS. Nanospaces between endoplasmic reticulum and mitochondria as control centres of pancreatic β-cell metabolism and survival. PROTOPLASMA 2012; 249 Suppl 1:S49-S58. [PMID: 22105567 DOI: 10.1007/s00709-011-0349-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
Nanometre-scale spaces between organelles represent focused nodes for signal transduction and the control of cellular decisions. The endoplasmic reticulum (ER) and the mitochondria form dynamic quasi-synaptic interaction nanodomains in all cell types examined, but the functional role of these junctions in cellular metabolism and cell survival remains to be fully understood. In this paper, we review recent evidence that ER Ca(2+) channels, such as the RyR and IP(3)R, can signal specifically across this nanodomain to the adjacent mitochondria to pace basal metabolism, with focus on the pancreatic β-cell. Blocking these signals in the basal state leads to a form of programmed cell death associated with reduced ATP and the induction of calpain-10 and hypoxia-inducible factors. On the other hand, the hyperactivity of this signalling domain plays a deleterious role during classical forms of apoptosis. Thus, the nanospace between ER and mitochondria represents a critical rheostat controlling both metabolism and programmed cell death. Many aspects of the mechanisms underlying this control system remain to be uncovered, and new nanotechnologies are required understand these domains at a molecular level.
Collapse
Affiliation(s)
- James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
15
|
Biesmans L, Macquaide N, Heinzel FR, Bito V, Smith GL, Sipido KR. Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density. PLoS One 2011; 6:e25100. [PMID: 22022376 PMCID: PMC3192718 DOI: 10.1371/journal.pone.0025100] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/26/2011] [Indexed: 11/19/2022] Open
Abstract
RATIONALE In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI). OBJECTIVE To characterize RyR functional properties in relation to TT proximity, at baseline and after MI. METHODS Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca(2+) transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca(2+) release, F>F(50) within 20 ms) or their absence (delayed areas). Spontaneous Ca(2+) release events during diastole, Ca(2+) sparks, reflecting RyR activity and properties, were subsequently assigned to either category. RESULTS In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na(+)/Ca(2+) exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca(2+) influx via Ca(2+) channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca(2+) content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca(2+) removal by NCX at the membrane was significantly lower in MI. CONCLUSION TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca(2+) loss and raise SR Ca(2+) content, but may promote Ca(2+) waves.
Collapse
Affiliation(s)
- Liesbeth Biesmans
- Laboratory of Experimental Cardiology, University of Leuven, Leuven, Belgium
| | - Niall Macquaide
- Laboratory of Experimental Cardiology, University of Leuven, Leuven, Belgium
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Frank R. Heinzel
- Laboratory of Experimental Cardiology, University of Leuven, Leuven, Belgium
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Virginie Bito
- Laboratory of Experimental Cardiology, University of Leuven, Leuven, Belgium
| | - Godfrey L. Smith
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karin R. Sipido
- Laboratory of Experimental Cardiology, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
16
|
Williams GSB, Chikando AC, Tuan HTM, Sobie EA, Lederer WJ, Jafri MS. Dynamics of calcium sparks and calcium leak in the heart. Biophys J 2011; 101:1287-96. [PMID: 21943409 DOI: 10.1016/j.bpj.2011.07.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022] Open
Abstract
We present what we believe to be a new mathematical model of Ca(2+) leak from the sarcoplasmic reticulum (SR) in the heart. To our knowledge, it is the first to incorporate a realistic number of Ca(2+)-release units, each containing a cluster of stochastically gating Ca(2+) channels (RyRs), whose biophysical properties (e.g., Ca(2+) sensitivity and allosteric interactions) are informed by the latest molecular investigations. This realistic model allows for the detailed characterization of RyR Ca(2+)-release properties, and shows how this balances reuptake by the SR Ca(2+) pump. Simulations reveal that SR Ca(2+) leak consists of brief but frequent single RyR openings (~3000 cell(-1) s(-1)) that are likely to be experimentally undetectable, and are, therefore, "invisible". We also observe that these single RyR openings can recruit additional RyRs to open, due to elevated local (Ca(2+)), and occasionally lead to the generation of Ca(2+) sparks (~130 cell(-1) s(-1)). Furthermore, this physiological formulation of "invisible" leak allows for the removal of the ad hoc, non-RyR mediated Ca(2+) leak terms present in prior models. Finally, our model shows how Ca(2+) sparks can be robustly triggered and terminated under both normal and pathological conditions. Together, these discoveries profoundly influence how we interpret and understand diverse experimental and clinical results from both normal and diseased hearts.
Collapse
Affiliation(s)
- George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
17
|
Collins TP, Bayliss R, Churchill GC, Galione A, Terrar DA. NAADP influences excitation-contraction coupling by releasing calcium from lysosomes in atrial myocytes. Cell Calcium 2011; 50:449-58. [PMID: 21906808 DOI: 10.1016/j.ceca.2011.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 07/18/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
In atrial myocytes, the sarcoplasmic reticulum (SR) has an essential role in regulating the force of contraction as a consequence of its involvement in excitation-contraction coupling (ECC). Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca(2+) mobilizing messenger that acts to release Ca(2+) from an acidic store in mammalian cells. The photorelease of NAADP in atrial myocytes increased Ca(2+) transient amplitude with no effect on accompanying action potentials or the L-type Ca(2+) current. NAADP-AM, a cell permeant form of NAADP, increased Ca(2+) spark amplitude and frequency. The effect on Ca(2+) spark frequency could be prevented by bafilomycin A1, a vacuolar H(+)-ATPase inhibitor, or by disruption of lysosomes by GPN. Bafilomycin prevented staining of acidic stores with LysoTracker red by increasing lysosomal pH. NAADP-AM also produced an increase in the lysosomal pH, as detected by a reduction in LysoSensor green fluorescence. These effects of NAADP were associated with an increase in the amount of caffeine-releasable Ca(2+) in the SR and may be regulated by β-adrenoceptor stimulation with isoprenaline. These observations are consistent with a role for NAADP in regulating ECC in atrial myocytes by releasing Ca(2+) from an acidic store, which enhances SR Ca(2+) release by increasing SR load.
Collapse
Affiliation(s)
- Thomas P Collins
- Department of Pharmacology, University of Oxford, Mansfield Road, UK.
| | | | | | | | | |
Collapse
|
18
|
Heinzel FR, MacQuaide N, Biesmans L, Sipido K. Dyssynchrony of Ca2+ release from the sarcoplasmic reticulum as subcellular mechanism of cardiac contractile dysfunction. J Mol Cell Cardiol 2010; 50:390-400. [PMID: 21075114 DOI: 10.1016/j.yjmcc.2010.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 09/30/2010] [Accepted: 11/05/2010] [Indexed: 02/05/2023]
Abstract
Cardiac contractile function depends on coordinated electrical activation throughout the heart. Dyssynchronous electrical activation of the ventricles has been shown to contribute to contractile dysfunction in heart failure, and resynchronization therapy has emerged as a therapeutic concept. At the cellular level, coupling of membrane excitation to myofilament contraction is facilitated by highly organized intracellular structures which coordinate Ca(2+) release. The cytosolic [Ca(2+)] transient triggered by depolarization-induced Ca(2+) influx is the result of a gradable and robust high gain process, Ca(2+)-induced Ca(2+) release (CICR), which integrates subcellular localized Ca(2+) release events. Lack of synchronization of these localized release events can contribute to contractile dysfunction in myocardial hypertrophy and heart failure. Different underlying mechanisms relate to functional and structural changes in sarcolemmal Ca(2+) channels, the sarcoplasmic Ca(2+) release channel or ryanodine receptor, RyR, their intracellular arrangement in close proximity in couplons and the loss of t-tubules. Dyssynchrony at the subcellular level translates in a reduction of the overall gain of CICR at the cellular level and forms an important determinant of myocyte contractility in heart failure.
Collapse
|
19
|
MacQuaide N, Ramay HR, Sobie EA, Smith GL. Differential sensitivity of Ca²+ wave and Ca²+ spark events to ruthenium red in isolated permeabilised rabbit cardiomyocytes. J Physiol 2010; 588:4731-42. [PMID: 20921197 DOI: 10.1113/jphysiol.2010.193375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spontaneous Ca²(+) waves in cardiac muscle cells are thought to arise from the sequential firing of local Ca²(+) sparks via a fire-diffuse-fire mechanism. This study compares the ability of the ryanodine receptor (RyR) blocker ruthenium red (RuR) to inhibit these two types of Ca²(+) release in permeabilised rabbit ventricular cardiomyocytes. Perfusing with 600 nm Ca²(+) (50 μm EGTA) caused regular spontaneous Ca²(+) waves that were imaged with the fluorescence from Fluo-5F using a laser-scanning confocal microscope. Addition of 4 μm RuR caused complete inhibition of Ca²(+) waves in 50% of cardiomyocytes by 2 min and in 100% by 4 min. Separate experiments used 350 μm EGTA (600 nm Ca²(+)) to limit Ca²(+) diffusion but allow the underlying Ca(2+) sparks to be imaged. The time course of RuR-induced inhibition did not match that of waves. After 2 min of RuR, none of the characteristics of the Ca²(+) sparks were altered, and after 4 min Ca²(+) spark frequency was reduced ∼40%; no sparks could be detected after 10 min. Measurements of Ca(2+) within the SR lumen using Fluo-5N showed an increase in intra-SR Ca²(+) during the initial 2-4 min of perfusion with RuR in both wave and spark conditions. Computational modelling suggests that the sensitivity of Ca²(+) waves to RuR block depends on the number of RyRs per cluster. Therefore inhibition of Ca²(+) waves without affecting Ca²(+) sparks may be explained by block of small, non-spark producing clusters of RyRs that are important to the process of Ca²(+) wave propagation.
Collapse
Affiliation(s)
- N MacQuaide
- Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | |
Collapse
|
20
|
Ramay HR, Jafri MS, Lederer WJ, Sobie EA. Predicting local SR Ca(2+) dynamics during Ca(2+) wave propagation in ventricular myocytes. Biophys J 2010; 98:2515-23. [PMID: 20513395 DOI: 10.1016/j.bpj.2010.02.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/17/2010] [Accepted: 02/26/2010] [Indexed: 10/19/2022] Open
Abstract
Of the many ongoing controversies regarding the workings of the sarcoplasmic reticulum (SR) in cardiac myocytes, two unresolved and interconnected topics are 1), mechanisms of calcium (Ca(2+)) wave propagation, and 2), speed of Ca(2+) diffusion within the SR. Ca(2+) waves are initiated when a spontaneous local SR Ca(2+) release event triggers additional release from neighboring clusters of SR release channels (ryanodine receptors (RyRs)). A lack of consensus regarding the effective Ca(2+) diffusion constant in the SR (D(Ca,SR)) severely complicates our understanding of whether dynamic local changes in SR [Ca(2+)] can influence wave propagation. To address this problem, we have implemented a computational model of cytosolic and SR [Ca(2+)] during Ca(2+) waves. Simulations have investigated how dynamic local changes in SR [Ca(2+)] are influenced by 1), D(Ca,SR); 2), the distance between RyR clusters; 3), partial inhibition or stimulation of SR Ca(2+) pumps; 4), SR Ca(2+) pump dependence on cytosolic [Ca(2+)]; and 5), the rate of transfer between network and junctional SR. Of these factors, D(Ca,SR) is the primary determinant of how release from one RyR cluster alters SR [Ca(2+)] in nearby regions. Specifically, our results show that local increases in SR [Ca(2+)] ahead of the wave can potentially facilitate Ca(2+) wave propagation, but only if SR diffusion is relatively slow. These simulations help to delineate what changes in [Ca(2+)] are possible during SR Ca(2+)release, and they broaden our understanding of the regulatory role played by dynamic changes in [Ca(2+)](SR).
Collapse
Affiliation(s)
- Hena R Ramay
- Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
21
|
Franzini-Armstrong C. RyRs: Their Disposition, Frequency, and Relationships with Other Proteins of Calcium Release Units. CURRENT TOPICS IN MEMBRANES 2010; 66:3-26. [PMID: 22353474 DOI: 10.1016/s1063-5823(10)66001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
22
|
Ziman AP, Gómez-Viquez NL, Bloch RJ, Lederer WJ. Excitation-contraction coupling changes during postnatal cardiac development. J Mol Cell Cardiol 2010; 48:379-86. [PMID: 19818794 PMCID: PMC3097073 DOI: 10.1016/j.yjmcc.2009.09.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 09/14/2009] [Accepted: 09/26/2009] [Indexed: 01/09/2023]
Abstract
Cardiac contraction is initiated by the release of Ca(2+) from intracellular stores in response to an action potential, in a process known as "excitation-contraction coupling" (ECC). Here we investigate the maturation of ECC in the rat heart during postnatal development. We provide new information on how proteins of the sarcoplasmic reticulum (SR) and the t-tubules (TTs) assemble to form the structures that support EC coupling during postnatal development. We show that the surface membrane protein, caveolin-3 (Cav3), is a good protein marker for TTs in ventricular myocytes and compared it quantitatively to junctophilin-2 (JP2), a protein found on the SR at sites of SR-TT junctions, or couplons. Although JP2 and Cav3 associate primarily with the SR and TTs, respectively, we found that they occupy the appropriate sites at maturing structures in synchrony, as visualized with high resolution, quantitative 3-dimensional imaging. We also found the surprising result that while both ryanodine receptor type 2, (RyR2) and JP2 proteins are localized to the same membrane and sub-compartments, they assume their positions at very different rates: RyR2 moves to the SR membrane at the Z-disc very early in development while JP2 only appears in the SR membrane as the TTs mature. Our data suggest that, although RyR2 appears to be prepositioned at the sites ultimately occupied by dyad junctions, JP2 arrives at these sites in synchrony with the development of the TTs at the Z-discs. Finally, we report that EC coupling efficiency changes with development, in concert with these structural changes. Thus we provide the first well-integrated information that links the developing organization of proteins underlying EC coupling (RyR2, DHPR, Cav3 and JP2) to the developing efficacy of EC coupling.
Collapse
Affiliation(s)
- Andrew P Ziman
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard St Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
23
|
Jayasinghe I, Cannell MB, Soeller C. Organization of ryanodine receptors, transverse tubules, and sodium-calcium exchanger in rat myocytes. Biophys J 2009; 97:2664-73. [PMID: 19917219 PMCID: PMC2776253 DOI: 10.1016/j.bpj.2009.08.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022] Open
Abstract
Confocal and total internal reflection fluorescence imaging was used to examine the distribution of caveolin-3, sodium-calcium exchange (NCX) and ryanodine receptors (RyRs) in rat ventricular myocytes. Transverse and longitudinal optical sectioning shows that NCX is distributed widely along the transverse and longitudinal tubular system (t-system). The NCX labeling consisted of both punctate and distributed components, which partially colocalize with RyRs (27%). Surface membrane labeling showed a similar pattern but the fraction of RyR clusters containing NCX label was decreased and no nonpunctate labeling was observed. Sixteen percent of RyRs were not colocalized with the t-system and 1.6% of RyRs were found on longitudinal elements of the t-system. The surface distribution of RyR labeling was not generally consistent with circular patches of RyRs. This suggests that previous estimates for the number of RyRs in a junction (based on circular close-packed arrays) need to be revised. The observed distribution of caveolin-3 labeling was consistent with its exclusion from RyR clusters. Distance maps for all colocalization pairs were calculated to give the distance between centroids of punctate labeling and edges for distributed components. The possible roles for punctate NCX labeling are discussed.
Collapse
Affiliation(s)
- Izzy Jayasinghe
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mark B. Cannell
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Christian Soeller
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Gunter TE, Sheu SS. Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1291-308. [PMID: 19161975 PMCID: PMC2730425 DOI: 10.1016/j.bbabio.2008.12.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 02/07/2023]
Abstract
Mitochondria produce around 92% of the ATP used in the typical animal cell by oxidative phosphorylation using energy from their electrochemical proton gradient. Intramitochondrial free Ca(2+) concentration ([Ca(2+)](m)) has been found to be an important component of control of the rate of this ATP production. In addition, [Ca(2+)](m) also controls the opening of a large pore in the inner mitochondrial membrane, the permeability transition pore (PTP), which plays a role in mitochondrial control of programmed cell death or apoptosis. Therefore, [Ca(2+)](m) can control whether the cell has sufficient ATP to fulfill its functions and survive or is condemned to death. Ca(2+) is also one of the most important second messengers within the cytosol, signaling changes in cellular response through Ca(2+) pulses or transients. Mitochondria can also sequester Ca(2+) from these transients so as to modify the shape of Ca(2+) signaling transients or control their location within the cell. All of this is controlled by the action of four or five mitochondrial Ca(2+) transport mechanisms and the PTP. The characteristics of these mechanisms of Ca(2+) transport and a discussion of how they might function are described in this paper.
Collapse
Affiliation(s)
- Thomas E Gunter
- Department of Biochemistry and Biophysics and Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | |
Collapse
|
25
|
Lukyanenko V, Chikando A, Lederer WJ. Mitochondria in cardiomyocyte Ca2+ signaling. Int J Biochem Cell Biol 2009; 41:1957-71. [PMID: 19703657 PMCID: PMC3522519 DOI: 10.1016/j.biocel.2009.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/20/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
Ca(2+) signaling is of vital importance to cardiac cell function and plays an important role in heart failure. It is based on sarcolemmal, sarcoplasmic reticulum and mitochondrial Ca(2+) cycling. While the first two are well characterized, the latter remains unclear, controversial and technically challenging. In mammalian cardiac myocytes, Ca(2+) influx through L-type calcium channels in the sarcolemmal membrane triggers Ca(2+) release from the nearby junctional sarcoplasmic reticulum to produce Ca(2+) sparks. When this triggering is synchronized by the cardiac action potential, a global [Ca(2+)](i) transient arises from coordinated Ca(2+) release events. The ends of intermyofibrillar mitochondria are located within 20 nm of the junctional sarcoplasmic reticulum and thereby experience a high local [Ca(2+)] during the Ca(2+) release process. Both local and global Ca(2+) signals may thus influence calcium signaling in mitochondria and, reciprocally, mitochondria may contribute to the local control of calcium signaling. In addition to the intermyofibrillar mitochondria, morphologically distinct mitochondria are also located in the perinuclear and subsarcolemmal regions of the cardiomyocyte and thus experience a different local [Ca(2+)]. Here we review the literature in regard to several issues of broad interest: (1) the ultrastructural basis for mitochondrion - sarcoplasmic reticulum cross-signaling; (2) mechanisms of sarcoplasmic reticulum signaling; (3) mitochondrial calcium signaling; and (4) the possible interplay of calcium signaling between the sarcoplasmic reticulum and adjacent mitochondria. Finally, this review discusses experimental findings and mathematical models of cardiac calcium signaling between the sarcoplasmic reticulum and mitochondria, identifies weaknesses in these models, and suggests strategies and approaches for future investigations.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
26
|
Diffusion restrictions surrounding mitochondria: a mathematical model of heart muscle fibers. Biophys J 2009; 97:443-52. [PMID: 19619458 PMCID: PMC2711342 DOI: 10.1016/j.bpj.2009.04.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 01/21/2023] Open
Abstract
Several experiments on permeabilized heart muscle fibers suggest the existence of diffusion restrictions grouping mitochondria and surrounding ATPases. The specific causes of these restrictions are not known, but intracellular structures are speculated to act as diffusion barriers. In this work, we assume that diffusion restrictions are induced by sarcoplasmic reticulum (SR), cytoskeleton proteins localized near SR, and crowding of cytosolic proteins. The aim of this work was to test whether such localization of diffusion restrictions would be consistent with the available experimental data and evaluate the extent of the restrictions. For that, a three-dimensional finite-element model was composed with the geometry based on mitochondrial and SR structural organization. Diffusion restrictions induced by SR and cytoskeleton proteins were varied with other model parameters to fit the set of experimental data obtained on permeabilized rat heart muscle fibers. There are many sets of model parameters that were able to reproduce all experiments considered in this work. However, in all the sets, <5–6% of the surface formed by SR and associated cytoskeleton proteins is permeable to metabolites. Such a low level of permeability indicates that the proteins should play a dominant part in formation of the diffusion restrictions.
Collapse
|
27
|
Salnikov V, Lukyanenko YO, Lederer WJ, Lukyanenko V. Distribution of ryanodine receptors in rat ventricular myocytes. J Muscle Res Cell Motil 2009; 30:161-70. [PMID: 19707881 DOI: 10.1007/s10974-009-9186-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 08/04/2009] [Indexed: 11/25/2022]
Abstract
Ryanodine receptors (RyRs) are the major ion channels in the sarcoplasmic reticulum responsible for Ca2+ release in muscle cells. Localization of RyRs is therefore critical to our understanding of Ca2+ cycling and Ca2+-dependent processes within ventricular cells. Recently, RyRs were reportedly found in non-classical locations in the middle of the sarcomere, between perinuclear mitochondria and in the inner mitochondrial membrane of cardiac mitochondria. However, for multiple reasons these reports could not be considered conclusive. Therefore, we modified immunogold labeling to visualize the distribution of RyRs in ventricular myocytes. Using antibodies to the voltage-dependent anion channel (i.e. VDAC) or cytochrome c along with our labeling method, we showed that these mitochondrial proteins were appropriately localized to the mitochondrial outer and inner membrane respectively. Immunogold labeling of ultrathin sections of intact and permeabilized ventricular myocytes with antibodies to three types of RyRs confirmed the existence of RyRs between the Z-lines and around the perinuclear mitochondria. However, we did not find any evidence to support localization of RyRs to the mitochondrial inner membrane.
Collapse
Affiliation(s)
- V Salnikov
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 W. Lombard St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
28
|
Asghari P, Schulson M, Scriven DRL, Martens G, Moore EDW. Axial tubules of rat ventricular myocytes form multiple junctions with the sarcoplasmic reticulum. Biophys J 2009; 96:4651-60. [PMID: 19486687 DOI: 10.1016/j.bpj.2009.02.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 02/04/2009] [Accepted: 02/23/2009] [Indexed: 10/20/2022] Open
Abstract
Ryanodine receptors (RyRs) are located primarily on the junctional sarcoplasmic reticulum (SR), adjacent to the transverse tubules and on the cell surface near the Z-lines, but some RyRs are on junctional SR adjacent to axial tubules. Neither the size of the axial junctions nor the numbers of RyRs that they contain have been determined. RyRs may also be located on the corbular SR and on the free or network SR. Because determining and quantifying the distribution of RyRs is critical for both understanding and modeling calcium dynamics, we investigated the distribution of RyRs in healthy adult rat ventricular myocytes, using electron microscopy, electron tomography, and immunofluorescence. We found RyRs in only three regions: in couplons on the surface and on transverse tubules, both of which are near the Z-line, and in junctions on most of the axial tubules--axial junctions. The axial junctions averaged 510 nm in length, but they occasionally spanned an entire sarcomere. Numerical analysis showed that they contain as much as 19% of a cell's RyRs. Tomographic analysis confirmed the axial junction's architecture, which is indistinguishable from junctions on transverse tubules or on the surface, and revealed a complexly structured tubule whose lumen was only 26 nm at its narrowest point. RyRs on axial junctions colocalize with Ca(v)1.2, suggesting that they play a role in excitation-contraction coupling.
Collapse
Affiliation(s)
- Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
29
|
Birkedal R, Christopher J, Thistlethwaite A, Shiels HA. Temperature acclimation has no effect on ryanodine receptor expression or subcellular localization in rainbow trout heart. J Comp Physiol B 2009; 179:961-9. [DOI: 10.1007/s00360-009-0377-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 11/30/2022]
|
30
|
Hayashi T, Martone ME, Yu Z, Thor A, Doi M, Holst MJ, Ellisman MH, Hoshijima M. Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci 2009; 122:1005-13. [PMID: 19295127 DOI: 10.1242/jcs.028175] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the current study, the three-dimensional (3D) topologies of dyadic clefts and associated membrane organelles were mapped in mouse ventricular myocardium using electron tomography. The morphological details and the distribution of membrane systems, including transverse tubules (T-tubules), junctional sarcoplasmic reticulum (SR) and vicinal mitochondria, were determined and presumed to be crucial for controlling cardiac Ca(2+) dynamics. The geometric complexity of T-tubules that varied in diameter with frequent branching was clarified. Dyadic clefts were intricately shaped and remarkably small (average 4.39x10(5) nm(3), median 2.81x10(5) nm(3)). Although a dyadic cleft of average size could hold maximum 43 ryanodine receptor (RyR) tetramers, more than one-third of clefts were smaller than the size that is able to package as many as 15 RyR tetramers. The dyadic clefts were also adjacent to one another (average end-to-end distance to the nearest dyadic cleft, 19.9 nm) and were distributed irregularly along T-tubule branches. Electron-dense structures that linked membrane organelles were frequently observed between mitochondrial outer membranes and SR or T-tubules. We, thus, propose that the topology of dyadic clefts and the neighboring cellular micro-architecture are the major determinants of the local control of Ca(2+) in the heart, including the establishment of the quantal nature of SR Ca(2+) releases (e.g. Ca(2+) sparks).
Collapse
Affiliation(s)
- Takeharu Hayashi
- The Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gupta SC, Varian KD, Bal NC, Abraham JL, Periasamy M, Janssen PML. Pulmonary artery banding alters the expression of Ca2+ transport proteins in the right atrium in rabbits. Am J Physiol Heart Circ Physiol 2009; 296:H1933-9. [PMID: 19376811 DOI: 10.1152/ajpheart.00026.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following pulmonary artery banding (PAB), the contractile function of right ventricle diminishes over time. Subsequently, the right atrium (RA) has to contract against a higher afterload, but it is unknown to what extent ventricular dysfunction has an effect on the atrial contractility. We hypothesized that right ventricular pressure overload may have an affect on atrial contractility and Ca(2+) transport protein expression. Therefore, we induced pressure overload of the right ventricle by PAB for 10 wk in rabbits and examined the changes in the expression of Ca(2+) transport proteins in the atrium. We demonstrate that PAB significantly decreased the expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase (Serca) 2a while expression of Na(+)/Ca(2+) exchanger-1 was significantly upregulated in the RA but not in the left atria of rabbit hearts, indicating that pressure is the major trigger. A decrease in Serca2a expression was concomitant with a significant decrease in sarcolipin (SLN), possibly indicating a compensatory role of SLN. The decreased expression of SLN was unable to completely restore sarcoplasmic reticulum Ca(2+) uptake function of Serca2a. Functional contractile assessments in isolated trabeculae showed no difference between PAB- and sham-operated rabbits at 1 Hz but displayed an enhanced force development at higher frequencies and in the presence of isoproterenol, while twitch timing was unaffected. Our results indicate that right ventricular mechanical overload due to PAB affects the expression of the Ca(2+)-handling proteins in the RA in rabbits.
Collapse
Affiliation(s)
- Subash C Gupta
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
32
|
Blayney LM, Lai FA. Ryanodine receptor-mediated arrhythmias and sudden cardiac death. Pharmacol Ther 2009; 123:151-77. [PMID: 19345240 PMCID: PMC2704947 DOI: 10.1016/j.pharmthera.2009.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 12/25/2022]
Abstract
The cardiac ryanodine receptor-Ca2+ release channel (RyR2) is an essential sarcoplasmic reticulum (SR) transmembrane protein that plays a central role in excitation–contraction coupling (ECC) in cardiomyocytes. Aberrant spontaneous, diastolic Ca2+ leak from the SR due to dysfunctional RyR2 contributes to the formation of delayed after-depolarisations, which are thought to underlie the fatal arrhythmia that occurs in both heart failure (HF) and in catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is an inherited disorder associated with mutations in either the RyR2 or a SR luminal protein, calsequestrin. RyR2 shows normal function at rest in CPVT but the RyR2 dysfunction is unmasked by physical exercise or emotional stress, suggesting abnormal RyR2 activation as an underlying mechanism. Several potential mechanisms have been advanced to explain the dysfunctional RyR2 observed in HF and CPVT, including enhanced RyR2 phosphorylation status, altered RyR2 regulation at luminal/cytoplasmic sites and perturbed RyR2 intra/inter-molecular interactions. This review considers RyR2 dysfunction in the context of the structural and functional modulation of the channel, and potential therapeutic strategies to stabilise RyR2 function in cardiac pathology.
Collapse
Affiliation(s)
- Lynda M Blayney
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF144XN, UK.
| | | |
Collapse
|
33
|
Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A. Modulation of calcium signalling by mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1374-82. [PMID: 19344663 DOI: 10.1016/j.bbabio.2009.01.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 02/07/2023]
Abstract
In this review we will attempt to summarise the complex and sometimes contradictory effects that mitochondria have on different forms of calcium signalling. Mitochondria can influence Ca(2+) signalling indirectly by changing the concentration of ATP, NAD(P)H, pyruvate and reactive oxygen species - which in turn modulate components of the Ca(2+) signalling machinery i.e. buffering, release from internal stores, influx from the extracellular solution, uptake into cellular organelles and extrusion by plasma membrane Ca(2+) pumps. Mitochondria can directly influence the calcium concentration in the cytosol of the cell by importing Ca(2+) via the mitochondrial Ca(2+) uniporter or transporting Ca(2+) from the interior of the organelle into the cytosol by means of Na+/Ca(2+) or H+/Ca(2+) exchangers. Considerable progress in understanding the relationship between Ca(2+) signalling cascades and mitochondrial physiology has been accumulated over the last few years due to the development of more advanced optical techniques and electrophysiological approaches.
Collapse
Affiliation(s)
- Ciara Walsh
- Department of Physiology, School of Biomedical Sciences, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | | | | | |
Collapse
|
34
|
Berezhnov AV, Fedotova EI, Nenov MN, Kokoz YM, Zinchenko VP, Dynnik VV. Destabilization of the cytosolic calcium level and the death of cardiomyocytes in the presence of derivatives of long-chain fatty acids. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908060183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Satin J, Itzhaki I, Rapoport S, Schroder EA, Izu L, Arbel G, Beyar R, Balke CW, Schiller J, Gepstein L. Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells 2008; 26:1961-72. [PMID: 18483424 DOI: 10.1634/stemcells.2007-0591] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of the current study was to characterize calcium handling in developing human embryonic stem cell-derived cardiomyocytes (hESC-CMs). To this end, real-time polymerase chain reaction (PCR), immunocytochemistry, whole-cell voltage-clamp, and simultaneous patch-clamp/laser scanning confocal calcium imaging and surface membrane labeling with di-8-aminonaphthylethenylpridinium were used. Immunostaining studies in the hESC-CMs demonstrated the presence of the sarcoplasmic reticulum (SR) calcium release channels, ryanodine receptor-2, and inositol-1,4,5-trisphosphate (IP3) receptors. Store calcium function was manifested as action-potential-induced calcium transients. Time-to-target plots showed that these action-potential-initiated calcium transients traverse the width of the cell via a propagated wave of intracellular store calcium release. The hESC-CMs also exhibited local calcium events ("sparks") that were localized to the surface membrane. The presence of caffeine-sensitive intracellular calcium stores was manifested following application of focal, temporally limited puffs of caffeine in three different age groups: early-stage (with the initiation of beating), intermediate-stage (10 days post-beating [dpb]), and late-stage (30-40 dpb) hESC-CMs. Calcium store load gradually increased during in vitro maturation. Similarly, ryanodine application decreased the amplitude of the spontaneous calcium transients. Interestingly, the expression and function of an IP3-releasable calcium pool was also demonstrated in the hESC-CMs in experiments using caged-IP3 photolysis and antagonist application (2 microM 2-Aminoethoxydiphenyl borate). In summary, our study establishes the presence of a functional SR calcium store in early-stage hESC-CMs and shows a unique pattern of calcium handling in these cells. This study also stresses the importance of the functional characterization of hESC-CMs both for developmental studies and for the development of future myocardial cell replacement strategies. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jonathan Satin
- The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lukyanenko V. Delivery of nano-objects to functional sub-domains of healthy and failing cardiac myocytes. Nanomedicine (Lond) 2008; 2:831-46. [PMID: 18095849 DOI: 10.2217/17435889.2.6.831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease, including heart failure, is one of the leading causes of mortality in the world. Delivery of nano-objects as carriers for markers, drugs or therapeutic genes to cellular organelles has the potential to sharply increase the efficiency of diagnostic and treatment protocols for heart failure. However, cardiac cells present special problems to the delivery of nano-objects, and the number of papers devoted to this important area is remarkably small. The present review discusses fundamental aspects, problems and perspectives in the delivery of nano-objects to functional sub-domains of failing cardiomyocytes. What size nano-objects can reach cellular sub-domains in failing hearts? What are the mechanisms for their permeation through the sarcolemma? How can we improve the delivery of nano-objects to the sub-domains? Answering these questions is fundamental to identifying cellular targets within the failing heart and the development of nanocarriers for heart-failure therapy at the cellular level.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- University of Maryland Biotechnology Institute, Medical Biotechnology Center, 725 W. Lombard St., Rm S216, Baltimore, MD 21201, USA.
| |
Collapse
|