1
|
Westhofen T, Frank K, Buchner A, Becker A, Eismann L, Rodler S, Aydogdu C, Berg E, Jokisch F, Kazmierczak PM, Stief CG, Kretschmer A. The impact of preoperative 5-alpha reductase inhibitors on functional outcomes and health-related quality of life following radical prostatectomy - A propensity score matched longitudinal study. World J Urol 2024; 42:432. [PMID: 39037579 PMCID: PMC11263412 DOI: 10.1007/s00345-024-05108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVES While the impact of treatment with 5-alpha Reductase Inhibitors (5-ARI) on the risk of cancer-related mortality in men with prostate cancer (PC) has been extensively studied, little is known about the impact of preoperative 5-ARI use on patient-reported outcomes (PROs) following radical prostatectomy (RP). METHODS Within our prospectively maintained institutional database of 5899 patients treated with RP for PC (2008- 2021), 99 patients with preoperative 5-ARI therapy were identified. A 1:4 propensity-score matched analysis of 442 men (n = 90 5-ARI, n = 352 no 5-ARI) was conducted. Primary endpoint was continence recovery using daily pad usage and ICIQ-SF. Health-related quality of life (HRQOL) was assessed using the validated EORTC QLQ-C30 and PR25 questionnaires. Multivariable Cox-regression-models tested the effect of preoperative 5-ARI treatment on continence-recovery (p < 0.05). RESULTS Patients were followed up perioperatively, followed by annual assessments up to 60mo postoperatively. Preoperative mean ICIQ-SF score (2.2 vs. 0.9) was significantly higher in the 5-ARI cohort (p = 0.006). 24mo postoperatively, 68.6% (no 5-ARI) vs. 55.7% (5-ARI) had full continence recovery (p = 0.002). Multivariable Cox regression analysis, revealed preoperative 5-ARI treatment as an independent predictor for impaired continence recovery (HR 0.50, 95% CI 0.27-0.94, p = 0.03) In line, general HRQOL was significantly higher for patients without 5-ARI only up to 24mo postoperatively (70.6 vs. 61.2, p = 0.045). There was no significant impact of preoperative 5-ARI treatment on erectile function, biochemical recurrence-free survival and metastasis-free survival. CONCLUSIONS Pre-RP 5-ARI treatment was associated with impaired continence outcomes starting 24mo postoperatively, suggesting that preoperative 5-ARI treatment can impair the long-term urinary function recovery following RP.
Collapse
Affiliation(s)
- Thilo Westhofen
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Kerstin Frank
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Alexander Buchner
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Armin Becker
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Lennert Eismann
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Severin Rodler
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Can Aydogdu
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Elena Berg
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Friedrich Jokisch
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | | | - Christian G Stief
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Alexander Kretschmer
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
- Janssen Oncology Research and Development, Los Angeles, CA, USA
| |
Collapse
|
2
|
Salter D, Swamy S, Salis KM, Deep DK, Nadig P. A botanical extract blend of Mangifera indica and Sphaeranthus indicus combined with resistance exercise training improves muscle strength and endurance over exercise alone in young men: a randomized, blinded, placebo-controlled trial. Front Nutr 2024; 11:1393917. [PMID: 38765822 PMCID: PMC11099261 DOI: 10.3389/fnut.2024.1393917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Resistance exercise training (RET) is used to improve muscular strength and function. This study tested the hypothesis that RET alongside daily supplementation of a Sphaeranthus indicus and Mangifera indica extract blend (SMI) would augment bench press (BP) and leg extension (LE) strength and repetitions to failure (RTF) compared to RET alone. Ninety-nine men (age 22 ± 3) completed the trial after randomization into one of four groups: (A1) 425 mg SMI plus one RET set; (A2) 850 mg SMI plus one RET set; (P1) placebo plus one RET set; and (P2) placebo plus two RET sets. RET sets were 6-8 BP and LE repetitions at 80% of a progressive one repetition maximum (1-RM), performed 3x/week for 8 weeks. Strength and RTF were evaluated at baseline and days 14, 28, and 56 while serum values of total testosterone (TT), free testosterone (FT), and cortisol (C) values were evaluated at baseline and day 56. RET significantly (p < 0.05) increased 1-RM, RTF, and T measures above baselines regardless of group assignment, but the increases were greater in the supplemented groups. At week 8, A1 bench pressed more than P1 (71.5.5 ± 17.5 kg vs. 62.0 ± 15.3 kg, p = 0.003), while A2 pressed 13.8 ± 3.0 kg more (95% CI 5.7-21.8, p < 0.001) than P1 and 9.9 ± 13.0 kg more (95% CI 1.7-18.2, p = 0.01) than P2. Also at week 8, the mean LE 1-RM of A1 (159.4 ± 22.6 kg) and A2 (162.2 ± 22.9 kg) was greater (p < 0.05) than that of P1 (142.2 ± 25.6 kg) and P2 (146.5 ± 19.7 kg). Supplementation improved RTF, TT, and FT values over those measured in exercise alone (p < 0.05), while C levels in A2 (9.3 ± 3.8 μg/dL) were lower than P2 (11.7 ± 3.8 μg/dL, p < 0.05). Daily supplementation with SMI was well tolerated and may help optimize muscle adaptive responses to RET in men.
Collapse
Affiliation(s)
- Dawna Salter
- Department of Clinical Research and Innovation, PLT Health Solutions, Inc., Morristown, NJ, United States
| | - Shubhatara Swamy
- Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India
| | - Kevin Manohar Salis
- Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India
| | | | - Pratibha Nadig
- Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India
| |
Collapse
|
3
|
Nuccio A, Nogueira-Ferreira R, Moreira-Pais A, Attanzio A, Duarte JA, Luparello C, Ferreira R. The contribution of mitochondria to age-related skeletal muscle wasting: A sex-specific perspective. Life Sci 2024; 336:122324. [PMID: 38042281 DOI: 10.1016/j.lfs.2023.122324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
As people age, their skeletal muscle (SkM) experiences a decline in mitochondrial functionality and density, which leads to decreased energy production and increased generation of reactive oxygen species. This cascade of events, in turn, might determine the loss of SkM mass, strength and quality. Even though the mitochondrial processes dysregulated by aging, such as oxidative phosphorylation, mitophagy, antioxidant defenses and mtDNA transcription, are the same in both sexes, mitochondria age differently in the SkM of men and women. Indeed, the onset and magnitude of the impairment of these processes seem to be influenced by sex-specific factors. Sexual hormones play a pivotal role in the regulation of SkM mass through both genomic and non-genomic mechanisms. However, the precise mechanisms by which these hormones regulate mitochondrial plasticity in SkM are not fully understood. Although the presence of estrogen receptors in mitochondria is recognized, it remains unclear whether androgen receptors affect mitochondrial function. This comprehensive review critically dissects the current knowledge on the interplay of sex in the aging of SkM, focusing on the role of sex hormones and the corresponding signaling pathways in shaping mitochondrial plasticity. Improved knowledge on the sex dimorphism of mitochondrial aging may lead to sex-tailored interventions that target mitochondrial health, which could be effective in slowing or preventing age-related muscle loss.
Collapse
Affiliation(s)
- Alessandro Nuccio
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Rita Nogueira-Ferreira
- Cardiovascular R&D Center - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal.
| | - Alexandra Moreira-Pais
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450 Porto, Portugal; Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - José Alberto Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450 Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Fricke AL, Mühlhäuser WWD, Reimann L, Zimmermann JP, Reichenbach C, Knapp B, Peikert CD, Heberle AM, Faessler E, Schäuble S, Hahn U, Thedieck K, Radziwill G, Warscheid B. Phosphoproteomics Profiling Defines a Target Landscape of the Basophilic Protein Kinases AKT, S6K, and RSK in Skeletal Myotubes. J Proteome Res 2023; 22:768-789. [PMID: 36763541 DOI: 10.1021/acs.jproteome.2c00505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Phosphorylation-dependent signal transduction plays an important role in regulating the functions and fate of skeletal muscle cells. Central players in the phospho-signaling network are the protein kinases AKT, S6K, and RSK as part of the PI3K-AKT-mTOR-S6K and RAF-MEK-ERK-RSK pathways. However, despite their functional importance, knowledge about their specific targets is incomplete because these kinases share the same basophilic substrate motif RxRxxp[ST]. To address this, we performed a multifaceted quantitative phosphoproteomics study of skeletal myotubes following kinase inhibition. Our data corroborate a cross talk between AKT and RAF, a negative feedback loop of RSK on ERK, and a putative connection between RSK and PI3K signaling. Altogether, we report a kinase target landscape containing 49 so far unknown target sites. AKT, S6K, and RSK phosphorylate numerous proteins involved in muscle development, integrity, and functions, and signaling converges on factors that are central for the skeletal muscle cytoskeleton. Whereas AKT controls insulin signaling and impinges on GTPase signaling, nuclear signaling is characteristic for RSK. Our data further support a role of RSK in glucose metabolism. Shared targets have functions in RNA maturation, stability, and translation, which suggests that these basophilic kinases establish an intricate signaling network to orchestrate and regulate processes involved in translation.
Collapse
Affiliation(s)
- Anna L Fricke
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Wignand W D Mühlhäuser
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Reimann
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Johannes P Zimmermann
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christa Reichenbach
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Knapp
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander M Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Erik Faessler
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sascha Schäuble
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany.,Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology─Leibniz-HKI, 07745 Jena, Germany
| | - Udo Hahn
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Gerald Radziwill
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
McDougle JM, Mangine GT, Townsend JR, Jajtner AR, Feito Y. Acute physiological outcomes of high-intensity functional training: a scoping review. PeerJ 2023; 11:e14493. [PMID: 36620744 PMCID: PMC9817969 DOI: 10.7717/peerj.14493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023] Open
Abstract
Background Systematic reviews and meta-analyses related to high-intensity functional training (HIFT) have been conducted. However, due to a restricted pool of available research, these investigations are often limited in scope. As such, a scoping review investigating the present literature surrounding the acute physiological response to HIFT-based exercise was chosen as a more appropriate structured review. Methodology A scoping review was conducted following Arksey and O'Malley's framework. Three large scale databases were searched to reveal any article pertaining to HIFT and related exercise terminology. Results A total of 2,241 articles were found during the initial search. Following this, titles, then abstracts, and full-texts were reviewed to determine inclusion eligibility. A total of 60 articles which investigated a combined total of 35 unique HIFT workouts were included within this review. Conclusions A variety of physiological parameters and HIFT workouts have been examined. Markers of intensity (e.g., blood lactate concentrations, heart rate) have been most consistently assessed across all studies, and these support the idea that HIFT workouts are typically performed at high-intensity. In contrast, the inclusion of most other measures (e.g., hormonal, markers of inflammation and damage, energy expenditure, performance) has been inconsistent and has thus, limited the possibility for making generalized conclusions. Differences in study methodologies have further impacted conclusions, as different studies have varied in sample population characteristics, workouts assessed, and time points. Though it may be impossible to comprehensively research all possible HIFT workouts, consistent adoption of population definitions and workload quantification may overcome this challenge and assist with future comparisons.
Collapse
Affiliation(s)
- Jacob M. McDougle
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Gerald T. Mangine
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Jeremy R. Townsend
- Exercise and Nutrition Science, Lipscomb University, Nashville, TN, United States
| | - Adam R. Jajtner
- Exercise Physiology, Kent State University, Kent, OH, United States
| | - Yuri Feito
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States,American College of Sports Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Garcia CK, Robinson GP, Gambino BJ, Rua MT, Laitano O, Clanton TL. The impact of castration on physiological responses to exertional heat stroke in mice. PLoS One 2022; 17:e0275715. [PMID: 36227921 PMCID: PMC9560521 DOI: 10.1371/journal.pone.0275715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The capability of male mice to exercise in hot environments without succumbing to exertional heat stroke (EHS) is markedly blunted compared to females. Epidemiological evidence in humans and other mammals also suggests some degree of greater vulnerability to heat stroke in males compared to females. The origins of these differences are unknown, but testosterone has previously been shown to induce faster elevations in core temperature during acute, passive heat exposure. In this study, we tested the hypothesis that loss of testosterone and related sex hormones through castration would improve the performance and heat tolerance of male mice during EHS exposure. METHODS Twenty-four male mice were randomly divided into 3 groups, untreated EHS mice (SHAM-EHS), castrated EHS mice (CAS+EHS) and naïve exercise controls (NAIVE). Exercise performance and physiological responses in the heat were monitored during EHS and early recovery. Two weeks later, blood and tissues were collected and analyzed for biomarkers of cardiac damage and testosterone. RESULTS Core temperature in CAS+EHS rose faster to 39.5°C in the early stages of the EHS trial (P<0.0001). However, both EHS groups ran similar distances, exhibited similar peak core temperatures and achieved similar exercise times in the heat, prior to symptom limitation (unconsciousness). CAS+EHS mice had ~10.5% lower body mass at the time of EHS, but this provided no apparent advantage in performance. There was no evidence of myocardial damage in any group, and testosterone levels were undetectable in CAS+EHS after gonadectomy. CONCLUSIONS The results of these experiments exclude the hypothesis that reduced performance of male mice during EHS trials is due to the effects of male sex hormones or intact gonads. However, the results are consistent with a role of male sex hormones or intact gonads in suppressing the early and rapid rise in core temperature during the early stages of exercise in the heat.
Collapse
Affiliation(s)
- Christian K. Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Gerard P. Robinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Bryce J. Gambino
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
7
|
Antinozzi C, Duranti G, Ceci R, Lista M, Sabatini S, Caporossi D, Di Luigi L, Sgrò P, Dimauro I. Hydrogen Peroxide Stimulates Dihydrotestosterone Release in C2C12 Myotubes: A New Perspective for Exercise-Related Muscle Steroidogenesis? Int J Mol Sci 2022; 23:ijms23126566. [PMID: 35743011 PMCID: PMC9223901 DOI: 10.3390/ijms23126566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is a tissue that has recently been recognized for its ability to produce androgens under physiological conditions. The steroidogenesis process is known to be negatively influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect on muscle steroidogenesis is still an unexplored field. Muscle cells are continuously exposed to ROS, resulting from both their metabolic activity and the surrounding environment. Interestingly, the regulation of signaling pathways, induced by mild ROS levels, plays an important role in muscle fiber adaptation to exercise, in a process that also elicits a significant modulation in the hormonal response. The aim of the present study was to investigate whether ROS could influence steroidogenesis in skeletal muscle cells by evaluating the release of testosterone (T) and dihydrotestosterone (DHT), as well as the evaluation of the relative expression of the key steroidogenic enzymes 5α-reductase, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, and aromatase. C2C12 mouse myotubes were exposed to a non-cytotoxic concentration of hydrogen peroxide (H2O2), a condition intended to reproduce, in vitro, one of the main stimuli linked to the process of homeostasis and adaptation induced by exercise in skeletal muscle. Moreover, the influence of tadalafil (TAD), a phosphodiesterase 5 inhibitor (PDE5i) originally used to treat erectile dysfunction but often misused among athletes as a "performance-enhancing" drug, was evaluated in a single treatment or in combination with H2O2. Our data showed that a mild hydrogen peroxide exposure induced the release of DHT, but not T, and modulated the expression of the enzymes involved in steroidogenesis, while TAD treatment significantly reduced the H2O2-induced DHT release. This study adds a new piece of information about the adaptive skeletal muscle cell response to an oxidative environment, revealing that hydrogen peroxide plays an important role in activating muscle steroidogenesis.
Collapse
Affiliation(s)
- Cristina Antinozzi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Guglielmo Duranti
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
- Correspondence: (G.D.); (P.S.)
| | - Roberta Ceci
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
| | - Marco Lista
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Stefania Sabatini
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
| | - Daniela Caporossi
- Laboratory of Biology and Human Genetic, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (D.C.); (I.D.)
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
- Correspondence: (G.D.); (P.S.)
| | - Ivan Dimauro
- Laboratory of Biology and Human Genetic, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (D.C.); (I.D.)
| |
Collapse
|
8
|
Roth C, Schoenfeld BJ, Behringer M. Lean mass sparing in resistance-trained athletes during caloric restriction: the role of resistance training volume. Eur J Appl Physiol 2022; 122:1129-1151. [PMID: 35146569 PMCID: PMC9012799 DOI: 10.1007/s00421-022-04896-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Many sports employ caloric restriction (CR) to reduce athletes’ body mass. During these phases, resistance training (RT) volume is often reduced to accommodate recovery demands. Since RT volume is a well-known anabolic stimulus, this review investigates whether a higher training volume helps to spare lean mass during CR. A total of 15 studies met inclusion criteria. The extracted data allowed calculation of total tonnage lifted (repetitions × sets × intensity load) or weekly sets per muscle group for only 4 of the 15 studies, with RT volume being highly dependent on the examined muscle group as well as weekly training frequency per muscle group. Studies involving high RT volume programs (≥ 10 weekly sets per muscle group) revealed low-to-no (mostly female) lean mass loss. Additionally, studies increasing RT volume during CR over time appeared to demonstrate no-to-low lean mass loss when compared to studies reducing RT volume. Since data regarding RT variables applied were incomplete in most of the included studies, evidence is insufficient to conclude that a higher RT volume is better suited to spare lean mass during CR, although data seem to favor higher volumes in female athletes during CR. Moreover, the data appear to suggest that increasing RT volume during CR over time might be more effective in ameliorating CR-induced atrophy in both male and female resistance-trained athletes when compared to studies reducing RT volume. The effects of CR on lean mass sparing seem to be mediated by training experience, pre-diet volume, and energy deficit, with, on average, women tending to spare more lean mass than men. Potential explanatory mechanisms for enhanced lean mass sparing include a preserved endocrine milieu as well as heightened anabolic signaling.
Collapse
Affiliation(s)
- C Roth
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Ginnheimer Landstrasse 39, 60487, Frankfurt/Main, Germany.
| | - B J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, USA
| | - M Behringer
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Ginnheimer Landstrasse 39, 60487, Frankfurt/Main, Germany
| |
Collapse
|
9
|
Testosterone and Dihydrotestosterone Changes in Male and Female Athletes Relative to Training Status. Int J Sports Physiol Perform 2021; 16:1700-1706. [PMID: 33952710 DOI: 10.1123/ijspp.2020-0910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To establish if training volume was associated with androgen baselines and androgen responsiveness to acute exercise. METHODS During a "high-volume" training phase, 28 cyclists (14 men and 14 women) undertook oxygen-uptake and maximal-work-capacity testing. Two days later, they completed a repeat-sprint protocol, which was repeated 3 weeks later during a "low-volume" phase. Blood and saliva samples were collected before and after (+5 and +60 min) the repeat-sprint protocol. Blood was assayed for total testosterone (TT), free testosterone (FT), and dihydrotestosterone (DHT) and saliva, for testosterone and DHT. RESULTS Pretrial TT, FT, and DHT concentration was greater for males (P < .001, large effect size differences), and in both genders TT, DHT, and saliva for DHT was higher during high-volume loading (moderate to large effect size). Area-under-the-curve analysis revealed larger TT, FT, and DHT responses to the repeat-sprint protocol among females, and high-volume training was linked to larger TT, DHT, and saliva for DHT responses (moderate to large effect size). Baseline TT and FT correlated with oxygen uptake and work capacity in both genders (P < .05). CONCLUSION DHT showed no acute performance correlation but was responsive to volume of training, particularly in females. This work informs on timelines and relationships of androgenic biomarkers in males and females across different training loads, adding to the complexity that should be considered in interpretation thereof. The authors speculate that testosterone may impact acute performance via behavioral mechanisms of motivation and attention; DHT, via training volume-induced androgenic promotion, may facilitate long-term adaptive changes, especially for females.
Collapse
|
10
|
McCullough D, Webb R, Enright KJ, Lane KE, McVeigh J, Stewart CE, Davies IG. How the love of muscle can break a heart: Impact of anabolic androgenic steroids on skeletal muscle hypertrophy, metabolic and cardiovascular health. Rev Endocr Metab Disord 2021; 22:389-405. [PMID: 33269425 PMCID: PMC8087567 DOI: 10.1007/s11154-020-09616-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
It is estimated 6.4% of males and 1.6% of females globally use anabolic-androgenic steroids (AAS), mostly for appearance and performance enhancing reasons. In combination with resistance exercise, AAS use increases muscle protein synthesis resulting in skeletal muscle hypertrophy and increased performance. Primarily through binding to the androgen receptor, AAS exert their hypertrophic effects via genomic, non-genomic and anti-catabolic mechanisms. However, chronic AAS use also has a detrimental effect on metabolism ultimately increasing the risk of cardiovascular disease (CVD). Much research has focused on AAS effects on blood lipids and lipoproteins, with abnormal concentrations of these associated with insulin resistance, hypertension and increased visceral adipose tissue (VAT). This clustering of interconnected abnormalities is often referred as metabolic syndrome (MetS). Therefore, the aim of this review is to explore the impact of AAS use on mechanisms of muscle hypertrophy and markers of MetS. AAS use markedly decreases high-density lipoprotein cholesterol (HDL-C) and increases low-density lipoprotein cholesterol (LDL-C). Chronic AAS use also appears to cause higher fasting insulin levels and impaired glucose tolerance and possibly higher levels of VAT; however, research is currently lacking on the effects of AAS use on glucose metabolism. While cessation of AAS use can restore normal lipid levels, it may lead to withdrawal symptoms such as depression and hypogonadism that can increase CVD risk. Research is currently lacking on effective treatments for withdrawal symptoms and further long-term research is warranted on the effects of AAS use on metabolic health in males and females.
Collapse
Affiliation(s)
- Deaglan McCullough
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.
| | - Richard Webb
- Faculty of Science, Liverpool Hope University, Liverpool, UK
| | - Kevin J Enright
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Katie E Lane
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Jim McVeigh
- Substance Use and Associated Behaviours Group, Manchester Metropolitan University, Manchester, UK
| | - Claire E Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
11
|
Hu S, Cheng L, Wang J, Li L, He H, Hu B, Ren X, Hu J. Genome-wide transcriptome profiling reveals the mechanisms underlying muscle group-specific phenotypic changes under different raising systems in ducks. Poult Sci 2020; 99:6723-6736. [PMID: 33248588 PMCID: PMC7704955 DOI: 10.1016/j.psj.2020.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 11/26/2022] Open
Abstract
Although a number of nongenetic factors have been reported to be able to modulate skeletal muscle phenotypes in meat-type birds, neither the underlying mechanisms nor the muscle group–specific phenotypic and molecular responses have been fully understood. In the present study, a total of 240 broiler ducks were used to compare the effects of floor raising system (FRS) and net raising system (NRS) on the physicochemical properties and global gene expression profiles of both breast and thigh muscles at the posthatching week 4 (W4), W8, and W13. Our results showed that compared with FRS, NRS generally induced higher pH, lower lightness (L∗) and yellowness (b∗), lower drip loss and cooking loss, and lower shear force in either breast or thigh muscles during early posthatching stages but subsequently showed less pronounced or even reverse effects. Meanwhile, it was observed that the raising system differently changed the myofiber characteristics depending on the muscle group and the developmental stage. Genome-wide transcriptome analysis showed that compared with FRS, NRS induced the most extensive gene expression changes in breast muscle (BM) at W4 but in thigh muscle (TM) at W13, suggesting the asynchronous molecular responses of BM and TM to the raising system and period. Most of differentially expressed genes in either BM or TM between NRS and FRS were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes terms associated with regulation of muscle cellular functions, metabolic and contractile activities, and tissue remodeling, indicating similar molecular mechanisms principally responsible for the raising system-caused phenotypic changes in both muscle groups. Nevertheless, several crucial pathways (e.g., adipocytokine signaling, AGE-RAGE signaling, and apoptosis) and genes (e.g., ANO6, ACER2, UCP3, DTL, and TMEM120A) were tightly related to the muscle group–specific adaptive remodeling on different raising systems. These data could not only contribute to a better understanding of the molecular mechanisms behind meat quality but also provide novel insights into the molecular causes of the muscle group–specific adaptive remodeling in response to environmental stimuli.
Collapse
Affiliation(s)
- Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Lumin Cheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China.
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Xufang Ren
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| |
Collapse
|
12
|
Solheim SA, Mørkeberg J, Juul A, Freiesleben SY, Upners EN, Dehnes Y, Nordsborg NB. An Intramuscular Injection of Mixed Testosterone Esters Does Not Acutely Enhance Strength and Power in Recreationally Active Young Men. Front Physiol 2020; 11:563620. [PMID: 33071818 PMCID: PMC7538707 DOI: 10.3389/fphys.2020.563620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/31/2020] [Indexed: 01/26/2023] Open
Abstract
Purpose: Limited data are available on the acute performance-enhancing effects of single-dose administration of testosterone in healthy humans. Studies of testosterone administrations to healthy humans are rare due to the difficult nature and necessity of close clinical monitoring. However, our unique physiological experimental facilities combined with close endocrinological collaboration have allowed us to safely complete such a study. We tested the hypothesis that an intramuscular injection of 250 mg mixed testosterone esters (TEs) enhances physical performance in strength and power exercises acutely, measured 24 h after injection. Additionally, we investigated whether the basal serum testosterone concentration influences the performance in countermovement jump (CMJ), 30-s all out cycle sprint, and one-arm isometric elbow flexion. Methods: In a randomized, double-blind, placebo-controlled design, 19 eugonadal men received either a TE (n = 9, 23 ± 1 years, 183 ± 7 cm, 83 ± 10 kg) or a PLA (n = 10, 25 ± 2 years, 186 ± 6 cm, 82 ± 14 kg) injection. Hormonal levels and the performance in CMJ, 30-s all out cycle sprint, and one-arm isometric elbow flexion were measured before and 24 h after injection. Results: Firstly, an intramuscular injection of 250 mg mixed TEs did not enhance the vertical jump height in a CMJ test, peak power, mean power, and fatigue index in a 30-s all-out cycle sprint or rate of force development and maximal voluntary contraction in a one-arm isometric elbow flexion 24 h post-injection. Secondly, baseline testosterone levels appeared not to influence performance in strength and power exercises to a large extent in healthy, recreationally active young men. Conclusion: A single intramuscular injection of 250 mg mixed TEs has no acute ergogenic effects on strength and power performance in recreationally active, young men. This novel information has implication for basic physiological understanding. Whether the same applies to an elite athlete population remains to be determined. If so, this would have implications for anti-doping efforts aiming to determine the most cost-efficient testing programs.
Collapse
Affiliation(s)
- Sara Amalie Solheim
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Anti Doping Denmark, Brøndby, Denmark
| | | | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stine Yde Freiesleben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Emmie N Upners
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yvette Dehnes
- Norwegian Doping Control Laboratory, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
13
|
Swiecicka A, Piasecki M, Stashuk D, Jones D, Wu F, McPhee JS, Rutter MK. Relationship of Anabolic Hormones With Motor Unit Characteristics in Quadriceps Muscle in Healthy and Frail Aging Men. J Clin Endocrinol Metab 2020; 105:5781153. [PMID: 32133493 DOI: 10.1210/clinem/dgaa100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Anabolic hormones are important factors in maintaining muscle mass for aging men, but their role in overall motor unit structure and function is unclear. OBJECTIVE The objective of this work is to determine associations of anabolic and reproductive hormone levels with motor unit characteristics in quadriceps muscle in older healthy and frail men. DESIGN This work is an observational cohort study of community-dwelling men. PARTICIPANTS Participants included healthy and frail men younger than 65 years. INTERVENTION No intervention was performed. OUTCOME MEASURE Quantitative assessments of electromyography-derived motor unit potential size (MUP) and compound muscle action potential size (CMAP) of the vastus lateralis muscle. RESULTS We studied 98 men (mean ± SD: age 73 ± 6 years; body mass index [BMI] 25.7 ± 4.0 kg/m2; diabetes 11%) of whom 45% were prefrail and 18% frail. After adjusting for age, BMI, and prevalent diabetes, higher total and free testosterone levels were significantly related to larger CMAP (total testosterone: β [95% CI]: 0.3 [0.08-0.53]; free testosterone: 0.34 [0.13-0.56]). Exploratory analysis showed the relationship between free testosterone and CMAP was stronger in frail rather than robust men. In univariate analyses, estradiol was associated with CMAP size (0.37 [0.16-0.57]); and vitamin D was associated with MUP size (0.22 [0.01-0.43]) but these relationships were no longer significant after adjusting for potential confounders. CONCLUSION Our data highlight the associations between androgen levels and the electrophysiological characteristics of older men, particularly in the frail. Clinical trials involving administration of androgens will help to elucidate the potential benefits of intervention on neuromuscular function and/or frailty status.
Collapse
Affiliation(s)
- Agnieszka Swiecicka
- Division of Endocrinology, Diabetes and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, and National Institute of Health Research (NIHR), Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Daniel Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada
| | - David Jones
- Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Frederick Wu
- Division of Endocrinology, Diabetes and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Martin K Rutter
- Division of Endocrinology, Diabetes and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
14
|
Di Giminiani R, Rucci N, Capuano L, Ponzetti M, Aielli F, Tihanyi J. Individualized Whole-Body Vibration: Neuromuscular, Biochemical, Muscle Damage and Inflammatory Acute Responses. Dose Response 2020; 18:1559325820931262. [PMID: 32647498 PMCID: PMC7328225 DOI: 10.1177/1559325820931262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022] Open
Abstract
Objective. We aimed to investigate the acute residual hormonal,
biochemical, and neuromuscular responses to a single session of individualized
whole-body vibration (WBV) while maintaining a half-squat position.
Methods. Twenty male sport science students voluntarily
participated in the present study and were randomly assigned to an
individualized WBV group (with the acceleration load determined for each
participant) or an isometric group (ISOM). A double-blind, controlled parallel
study design with repeated measures was employed. Results.
Testosterone and growth hormone increased significantly over time in the WBV
group (P < .05 and P < .01,
respectively; effect size [ES] ranged from 1.00 to 1.23), whereas cortisol
increased over time in both groups (P < .01; ES ranged from
1.04 and 1.36). Interleukin-6 and creatine kinase increased significantly over
time only in the WBV group (P < .05; ES = 1.07). The maximal
voluntary contraction decreased significantly over time in the ISOM group
(P = .019; ES = 0.42), whereas in the WBV group, the
decrease did not reach a significant level (P = .05). The ratio
of electromyographic activity and power decreased significantly over time in the
WBV group (P < .01; ES ranged from 0.57 to 0.72).
Conclusion. Individualized WBV increased serum hormonal
concentrations, muscle damage, and inflammation to levels similar to those
induced by resistance training and hypertrophy exercises.
Collapse
Affiliation(s)
- Riccardo Di Giminiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Lorenzo Capuano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | | | - Jozsef Tihanyi
- Department of Biomechanics, University of Physical Education, Budapest, Hungary
| |
Collapse
|
15
|
Kraemer WJ, Ratamess NA, Hymer WC, Nindl BC, Fragala MS. Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth With Exercise. Front Endocrinol (Lausanne) 2020; 11:33. [PMID: 32158429 PMCID: PMC7052063 DOI: 10.3389/fendo.2020.00033] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Hormones are largely responsible for the integrated communication of several physiological systems responsible for modulating cellular growth and development. Although the specific hormonal influence must be considered within the context of the entire endocrine system and its relationship with other physiological systems, three key hormones are considered the "anabolic giants" in cellular growth and repair: testosterone, the growth hormone superfamily, and the insulin-like growth factor (IGF) superfamily. In addition to these anabolic hormones, glucocorticoids, mainly cortisol must also be considered because of their profound opposing influence on human skeletal muscle anabolism in many instances. This review presents emerging research on: (1) Testosterone signaling pathways, responses, and adaptations to resistance training; (2) Growth hormone: presents new complexity with exercise stress; (3) Current perspectives on IGF-I and physiological adaptations and complexity these hormones as related to training; and (4) Glucocorticoid roles in integrated communication for anabolic/catabolic signaling. Specifically, the review describes (1) Testosterone as the primary anabolic hormone, with an anabolic influence largely dictated primarily by genomic and possible non-genomic signaling, satellite cell activation, interaction with other anabolic signaling pathways, upregulation or downregulation of the androgen receptor, and potential roles in co-activators and transcriptional activity; (2) Differential influences of growth hormones depending on the "type" of the hormone being assayed and the magnitude of the physiological stress; (3) The exquisite regulation of IGF-1 by a family of binding proteins (IGFBPs 1-6), which can either stimulate or inhibit biological action depending on binding; and (4) Circadian patterning and newly discovered variants of glucocorticoid isoforms largely dictating glucocorticoid sensitivity and catabolic, muscle sparing, or pathological influence. The downstream integrated anabolic and catabolic mechanisms of these hormones not only affect the ability of skeletal muscle to generate force; they also have implications for pharmaceutical treatments, aging, and prevalent chronic conditions such as metabolic syndrome, insulin resistance, and hypertension. Thus, advances in our understanding of hormones that impact anabolic: catabolic processes have relevance for athletes and the general population, alike.
Collapse
Affiliation(s)
- William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- *Correspondence: William J. Kraemer
| | - Nicholas A. Ratamess
- Department of Health and Exercise Science, The College of New Jersey, Ewing, NJ, United States
| | - Wesley C. Hymer
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Bradley C. Nindl
- Department of Sports Medicine, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
16
|
Cintineo HP, Freidenreich DJ, Blaine CM, Cardaci TD, Pellegrino JK, Arent SM. Acute Physiological Responses to an Intensity-And Time-Under-Tension-Equated Single- vs. Multiple-Set Resistance Training Bout in Trained Men. J Strength Cond Res 2018; 32:3310-3318. [DOI: 10.1519/jsc.0000000000002872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Testosterone and Cortisol Responses to Five High-Intensity Functional Training Competition Workouts in Recreationally Active Adults. Sports (Basel) 2018; 6:sports6030062. [PMID: 30011910 PMCID: PMC6162535 DOI: 10.3390/sports6030062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
To determine the salivary steroid response to high-intensity functional training (HIFT) competition workouts, saliva samples were collected from ten recreationally trained male and female competitors during a 5-week (WK1–WK5) international competition. Competitors arrived at their local affiliate and provided samples prior to (PRE) their warm-up, immediately (IP), 30-min (30P), and 60-min (60P) post-exercise. Samples were analyzed for concentrations of testosterone (T), cortisol (C), and their ratio (TC). Generalized linear mixed models with repeated measures revealed significant main effects for time (p < 0.001) for T, C, and TC. Compared to PRE-concentrations, elevated (p < 0.05) T was observed at IP on WK2–WK5 (mean difference: 135–511 pg·mL−1), at 30P on WK3 (mean difference: 81.0 ± 30.1 pg·mL−1) and WK5 (mean difference: 56.6 ± 22.7 pg·mL−1), and at 60P on WK3 (mean difference: 73.5 ± 29.7 pg·mL−1) and WK5 (mean difference: 74.3 ± 28.4 pg·mL−1). Compared to PRE-concentrations, elevated (p < 0.05) C was noted on all weeks at IP (mean difference: 9.3–15.9 ng·mL−1) and 30P (mean difference: 6.0–19.9 ng·mL−1); significant (p < 0.006) elevations were noted at 60P on WK1 (mean difference: 9.1 ± 3.0 ng·mL−1) and WK5 (mean difference: 12.8 ± 2.9 ng·mL−1). Additionally, TC was significantly reduced from PRE-values by 61% on WK1 at 60P (p = 0.040) and by 80% on WK5 at 30P (p = 0.023). Differences in T, C, and TC were also observed between weeks at specific time points. Although each workout affected concentrations in T, C, and/or the TC ratio, changes appeared to be modulated by the presence of overload and workout duration. During periods of elevated training or competition, athletes and coaches may consider monitoring these hormones for consistency and as a means of assessing workout difficulty.
Collapse
|
18
|
Abstract
Anabolic-androgenic steroids (AAS) and other hormones such as growth hormone (GH) and insulin-like growth factor-1 (IGF-1) have been shown to increase muscle mass in patients suffering from various diseases related to muscle atrophy. Despite known side-effects associated with supraphysiologic doses of such drugs, their anabolic effects have led to their widespread use and abuse by bodybuilders and athletes such as strength athletes seeking to improve performance and muscle mass. On the other hand, resistance training (RT) has also been shown to induce significant endogenous hormonal (testosterone (T), GH, IGF-1) elevations. Therefore, some bodybuilders employ RT protocols designed to elevate hormonal levels in order to maximize anabolic responses. In this article, we reviewed current RT protocol outcomes with and without performance enhancing drug usage. Acute RT-induced hormonal elevations seem not to be directly correlated with muscle growth. On the other hand, supplementation with AAS and other hormones might lead to supraphysiological muscle hypertrophy, especially when different compounds are combined.
Collapse
Affiliation(s)
- Julius Fink
- a Graduate School of Medicine, Department of Metabolism and Endocrinology , Juntendo University , Tokyo , Japan
| | | | - Koichi Nakazato
- c Graduate Schools of Health and Sport Science , Nippon Sport Science University , Tokyo , Japan
| |
Collapse
|
19
|
Kristina Parr M, Müller-Schöll A. Pharmacology of doping agents—mechanisms promoting muscle hypertrophy. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.2.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
Ueberschlag-Pitiot V, Stantzou A, Messéant J, Lemaitre M, Owens DJ, Noirez P, Roy P, Agbulut O, Metzger D, Ferry A. Gonad-related factors promote muscle performance gain during postnatal development in male and female mice. Am J Physiol Endocrinol Metab 2017; 313:E12-E25. [PMID: 28351832 DOI: 10.1152/ajpendo.00446.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/22/2017] [Accepted: 03/22/2017] [Indexed: 11/22/2022]
Abstract
To better define the role of male and female gonad-related factors (MGRF, presumably testosterone, and FGRF, presumably estradiol, respectively) on mouse hindlimb skeletal muscle contractile performance/function gain during postnatal development, we analyzed the effect of castration initiated before puberty in male and female mice. We found that muscle absolute and specific (normalized to muscle weight) maximal forces were decreased in 6-mo-old male and female castrated mice compared with age- and sex-matched intact mice, without alteration in neuromuscular transmission. Moreover, castration decreased absolute and specific maximal powers, another important aspect of muscle performance, in 6-mo-old males, but not in females. Absolute maximal force was similarly reduced by castration in 3-mo-old muscle fiber androgen receptor (AR)-deficient and wild-type male mice, indicating that the effect of MGRF was muscle fiber AR independent. Castration reduced the muscle weight gain in 3-mo mice of both sexes and in 6-mo females but not in males. We also found that bone morphogenetic protein signaling through Smad1/5/9 was not altered by castration in atrophic muscle of 3-mo-old mice of both sexes. Moreover, castration decreased the sexual dimorphism regarding muscle performance. Together, these results demonstrated that in the long term, MGRF and FGRF promote muscle performance gain in mice during postnatal development, independently of muscle growth in males, largely via improving muscle contractile quality (force and power normalized), and that MGFR and FGRF also contribute to sexual dimorphism. However, the mechanisms underlying MGFR and FGRF actions remain to be determined.
Collapse
Affiliation(s)
- Vanessa Ueberschlag-Pitiot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR7104/INSERM U964, Illkirch, France
| | - Amalia Stantzou
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Julien Messéant
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Megane Lemaitre
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Daniel J Owens
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Philippe Noirez
- Institut de Recherche Biomédicale et D'épidemiologie du Sport, EA 7329, Institut National du Sport de l'Expertise et de la Performance, Laboratory of Excellence GR-Ex, Paris, France
- Université Sorbonne Paris Cité, Université Paris Descartes, Paris, France; and
| | - Pauline Roy
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Institut de Biologie Paris-Seine, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR7104/INSERM U964, Illkirch, France
| | - Arnaud Ferry
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France;
- Université Sorbonne Paris Cité, Université Paris Descartes, Paris, France; and
| |
Collapse
|
21
|
Lara-García M, Alvarado M, Cuevas E, Lara-García O, Sengelaub DR, Pacheco P. Hormonal Treatment Effects on the Cross-sectional Area of Pubococcygeus Muscle Fibers After Denervation and Castration in Male Rats. Anat Rec (Hoboken) 2017; 300:1327-1335. [PMID: 28176462 DOI: 10.1002/ar.23565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 11/07/2022]
Abstract
We explore the interaction of muscle innervation and gonadal hormone action in the pubococcygeus muscle (Pcm) after castration and hormone replacement. Male Wistar rats were castrated and the Pcm was unilaterally denervated; after 2 or 6 weeks, the cross-sectional area (CSA) of Pcm fibers was assessed. Additional groups of castrated rats were used to examine the effects of hormone replacement. At 2 weeks post surgeries, rats were implanted with Silastic capsules containing either dihydrotestosterone (DHT), estradiol benzoate (EB) or both hormones, and the CSA of Pcm fibers was assessed after 4 weeks of hormone treatment. At 2 weeks post surgeries, gonadectomy without hormone replacement resulted in reductions in the CSA of Pcm fibers, and denervation combined with castration increased the magnitude of this effect; further reductions in CSA were present at 6 weeks post surgeries, but again denervation combined with castration increased the magnitude of this effect. Hormone replacement with DHT resulted in hypertrophy in the CSA of nondenervated muscles compared to those of intact normal males, but this effect was attenuated in denervated muscles. Hormone replacement with EB treatment prevented further castration-induced reductions in CSA of nondenervated muscles, but denervation prevented this effect. Similar to that seen with treatment with EB alone, combined treatment with both DHT and EB prevented further reductions in CSA of Pcm fibers in nondenervated muscles, but again denervation attenuated this effect. Thus, while hormone replacement can reverse or prevent further castration-induced atrophy of Pcm fibers, these effects are dependent on muscle innervation. Anat Rec, 300:1327-1335, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miguel Lara-García
- Departamento de Neurofisiología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
- Departamento de Endocrinología, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Mayvi Alvarado
- Departamento de Neurofisiología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Estela Cuevas
- Departamento de Endocrinología, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Omar Lara-García
- Departamento de Neurofisiología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Dale R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Pablo Pacheco
- Departamento de Neurofisiología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, DF, México
| |
Collapse
|
22
|
Wendowski O, Redshaw Z, Mutungi G. Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres. J Cachexia Sarcopenia Muscle 2017; 8:48-56. [PMID: 27239418 PMCID: PMC4863930 DOI: 10.1002/jcsm.12122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 01/05/2016] [Accepted: 04/05/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. METHODS In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast-twitch muscle) and the soleus (a slow-twitch muscle) of adult mice of different ages (range 100-900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium-coupled neutral amino acid transporter (SNAT) 2, and the sodium-independent L-type amino-acid transporter (LAT) 2. RESULTS At all ages investigated, protein synthesis was always higher in the slow-twitch than in the fast-twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast-twitch than in the slow-twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast-twitch than in the slow-twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. CONCLUSION From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age-dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT.
Collapse
Affiliation(s)
- Oskar Wendowski
- Department of Medicine, Norwich Medical School University of East Anglia Norwich NR4 7TJ UK
| | - Zoe Redshaw
- Faculty of Health and Life Sciences De Montfort University Leicester UK
| | - Gabriel Mutungi
- Department of Medicine, Norwich Medical School University of East Anglia Norwich NR4 7TJ UK
| |
Collapse
|
23
|
Mangine GT, Hoffman JR, Gonzalez AM, Townsend JR, Wells AJ, Jajtner AR, Beyer KS, Boone CH, Wang R, Miramonti AA, LaMonica MB, Fukuda DH, Witta EL, Ratamess NA, Stout JR. Exercise-Induced Hormone Elevations Are Related to Muscle Growth. J Strength Cond Res 2017; 31:45-53. [DOI: 10.1519/jsc.0000000000001491] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Thornton KJ, Kamange-Sollo E, White ME, Dayton WR. Role of G protein-coupled receptors (GPCR), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-binding epidermal growth factor-like growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) in trenbolone acetate-stimulated bovine satellite cell proliferation. J Anim Sci 2016; 93:4291-301. [PMID: 26440329 DOI: 10.2527/jas.2015-9191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Implanting cattle with steroids significantly enhances feed efficiency, rate of gain, and muscle growth. However, the mechanisms responsible for these improvements in muscle growth have not been fully elucidated. Trenbolone acetate (TBA), a testosterone analog, has been shown to increase proliferation rate in bovine satellite cell (BSC) cultures. The classical genomic actions of testosterone have been well characterized; however, our results indicate that TBA may also initiate a quicker, nongenomic response that involves activation of G protein-coupled receptors (GPCR) resulting in activation of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) that release membrane-bound heparin-binding epidermal growth factor-like growth factor (hbEGF), which then binds to and activates the epidermal growth factor receptor (EGFR) and/or erbB2. Furthermore, the EGFR has been shown to regulate expression of the IGF-1 receptor (IGF-1R), which is well known for its role in modulating muscle growth. To determine whether this nongenomic pathway is potentially involved in TBA-stimulated BSC proliferation, we analyzed the effects of treating BSC with guanosine 5'-O-2-thiodiphosphate (GDPβS), an inhibitor of all GPCR; a MMP2 and MMP9 inhibitor (MMPI); CRM19, a specific inhibitor of hbEGF; AG1478, a specific EGFR tyrosine kinase inhibitor; AG879, a specific erbB2 kinase inhibitor; and AG1024, an IGF-1R tyrosine kinase inhibitor on TBA-stimulated proliferation rate (H-thymidine incorporation). Assays were replicated at least 9 times for each inhibitor experiment using BSC cultures obtained from at least 3 different animals. Bovine satellite cell cultures were obtained from yearling steers that had no previous exposure to androgenic or estrogenic compounds. As expected, BSC cultures treated with 10 n TBA showed ( < 0.05) increased proliferation rate when compared with control cultures. Additionally, treatment with 5 ng hbEGF/mL stimulated proliferation in BSC cultures ( < 0.05). Treatment with GDPβS, MMPI, CRM197, AG1024, AG1478, and/or AG879 all suppressed ( < 0.05) TBA-induced increases in proliferation. These data indicate that TBA likely initiates a nongenomic response involving GPCR, MMP2 and MMP9, hbEGF, EGFR, erbB2, and IGF-1R, which may play a role in TBA-mediated increases in BSC proliferation.
Collapse
|
25
|
Felici F, Bazzucchi I, Sgrò P, Quinzi F, Conti A, Aversa A, Gizzi L, Mezzullo M, Romanelli F, Pasquali R, Lenzi A, Di Luigi L. Acute severe male hypo-testosteronemia affects central motor command in humans. J Electromyogr Kinesiol 2016; 28:184-92. [DOI: 10.1016/j.jelekin.2015.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 11/25/2022] Open
|
26
|
Lai S, Collins BC, Colson BA, Kararigas G, Lowe DA. Estradiol modulates myosin regulatory light chain phosphorylation and contractility in skeletal muscle of female mice. Am J Physiol Endocrinol Metab 2016; 310:E724-33. [PMID: 26956186 PMCID: PMC4867308 DOI: 10.1152/ajpendo.00439.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/02/2016] [Indexed: 11/22/2022]
Abstract
Impairment of skeletal muscle function has been associated with changes in ovarian hormones, especially estradiol. To elucidate mechanisms of estradiol on skeletal muscle strength, the hormone's effects on phosphorylation of the myosin regulatory light chain (pRLC) and muscle contractility were investigated, hypothesizing an estradiol-specific beneficial impact. In a skeletal muscle cell line, C2C12, pRLC was increased by 17β-estradiol (E2) in a concentration-dependent manner. In skeletal muscles of C57BL/6 mice that were E2 deficient via ovariectomy (OVX), pRLC was lower than that from ovary-intact, sham-operated mice (Sham). The reduced pRLC in OVX muscle was reversed by in vivo E2 treatment. Posttetanic potentiation (PTP) of muscle from OVX mice was low compared with that from Sham mice, and this decrement was reversed by acute E2 treatment, demonstrating physiological consequence. Western blot of those muscles revealed that low PTP corresponded with low pRLC and higher PTP with greater pRLC. We aimed to elucidate signaling pathways affecting E2-mediated pRLC using a kinase inhibitor library and C2C12 cells as well as a specific myosin light chain kinase inhibitor in muscles. PI3K/Akt, MAPK, and CamKII were identified as candidate kinases sensitive to E2 in terms of phosphorylating RLC. Applying siRNA strategy in C2C12 cells, pRLC triggered by E2 was found to be mediated by estrogen receptor-β and the G protein-coupled estrogen receptor. Together, these results provide evidence that E2 modulates myosin pRLC in skeletal muscle and is one mechanism by which this hormone can affect muscle contractility in females.
Collapse
Affiliation(s)
- Shaojuan Lai
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China; and
| | - Brittany C Collins
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Brett A Colson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Georgios Kararigas
- Institute of Gender in Medicine, Charite University Hospital, and German Centre for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany
| | - Dawn A Lowe
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota;
| |
Collapse
|
27
|
Sarin H. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function. J Transl Med 2015; 13:372. [PMID: 26610602 PMCID: PMC4660824 DOI: 10.1186/s12967-015-0707-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre-synthesized vesicular endogolgi peptides and small molecules as well as nuclear-to-rough endoplasmic reticulum membrane proteins to the CM, with the potential to simultaneously increase the NM-associated chromatin DNA transcription of higher molecular weight protein forms, secretory and CM-destined, mitochondrial and nuclear, including the highest molecular weight nuclear proteins, Ki67 (359 kDa) and Separase (230 kDa), with the latter leading to mitogenesis and cell division; while, in the case of growth factors or cytokines with external cationomodulation capability, CM Receptor External Cationomodulation of CM receptors (≥3+ → 1+) results in cationic extracellular interaction (≥3+) with extracellular matrix heparan sulfates (≥3+ → 1+) concomitant with lamellopodesis and cell migration. It can be surmised that the modulation of cellular, and nuclear, function is mostly a reactive process, governed, primarily, by small molecule hormone and peptide interactions at the cell membrane, with CM receptors and the CM itself. These insights taken together, provide valuable translationally applicable knowledge.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, WV, USA.
| |
Collapse
|
28
|
Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, Mutungi G. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol 2015; 593:2679-92. [PMID: 25846902 DOI: 10.1113/jp270502] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/30/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Many studies have previously suggested the existence of stress hormone receptors on the cell membrane of many cell types, including skeletal muscle fibres; however, the exact localisation of these receptors and how they signal to the rest of the cell is poorly understood. In this study, we investigated the localisation and the mechanism(s) underlying the physiological functions of these receptors in mouse skeletal muscle cells. We found that the receptors were present throughout muscle development and that, in adult muscle fibres, they were localised in the extracellular matrix, satellite cells (muscle stem cells) and close to mitochondria. We also found that they signalled to the rest of the cell by activating enzymes called mitogen-activated protein kinases. From these results we suggest that, at physiological concentrations, stress hormones may be important in skeletal muscle differentiation, repair and regeneration. ABSTRACT A number of studies have previously proposed the existence of glucocorticoid receptors on the plasma membrane of many cell types, including skeletal muscle fibres. However, their exact localisation and the cellular signalling pathway(s) they utilise to communicate with the rest of the cell are still poorly understood. In this study, we investigated the localisation and the mechanism(s) underlying the non-genomic physiological functions of these receptors in mouse skeletal muscle cells. The results show that the receptors were localised in the cytoplasm in myoblasts, in the nucleus in myotubes, in the extracellular matrix, in satellite cells and in the proximity of mitochondria in adult muscle fibres. Also, they bound laminin in a glucocorticoid-dependent manner. Treating small skeletal muscle fibre bundles with the synthetic glucocorticoid beclomethasone dipropionate increased the phosphorylation (= activation) of extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. This occurred within 5 min and depended on the fibre type and the duration of the treatment. It was also abolished by the glucocorticoid receptor inhibitor, mifepristone, and a monoclonal antibody against the receptor. From these results we conclude that the non-genomic/non-canonical physiological functions of glucocorticoids, in adult skeletal muscle fibres, are mediated by a glucocorticoid receptor localised in the extracellular matrix, in satellite cells and close to mitochondria, and involve activation of the mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Simona Boncompagni
- Centre for Research on Aging, University G. d'Annunzio, I-66013, Chieti, Italy
| | - Lewis Arthurton
- School of Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Eugene Akujuru
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Timothy Pearson
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Dietmar Steverding
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Feliciano Protasi
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, I-66013, Chieti, Italy
| | - Gabriel Mutungi
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
29
|
Di Giminiani R, Fabiani L, Baldini G, Cardelli G, Giovannelli A, Tihanyi J. Hormonal and neuromuscular responses to mechanical vibration applied to upper extremity muscles. PLoS One 2014; 9:e111521. [PMID: 25368995 PMCID: PMC4219718 DOI: 10.1371/journal.pone.0111521] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
Objective To investigate the acute residual hormonal and neuromuscular responses exhibited following a single session of mechanical vibration applied to the upper extremities among different acceleration loads. Methods Thirty male students were randomly assigned to a high vibration group (HVG), a low vibration group (LVG), or a control group (CG). A randomized double-blind, controlled-parallel study design was employed. The measurements and interventions were performed at the Laboratory of Biomechanics of the University of L'Aquila. The HVG and LVG participants were exposed to a series of 20 trials ×10 s of synchronous whole-body vibration (WBV) with a 10-s pause between each trial and a 4-min pause after the first 10 trials. The CG participants assumed an isometric push-up position without WBV. The outcome measures were growth hormone (GH), testosterone, maximal voluntary isometric contraction during bench-press, maximal voluntary isometric contraction during handgrip, and electromyography root-mean-square (EMGrms) muscle activity (pectoralis major [PM], triceps brachii [TB], anterior deltoid [DE], and flexor carpi radialis [FCR]). Results The GH increased significantly over time only in the HVG (P = 0.003). Additionally, the testosterone levels changed significantly over time in the LVG (P = 0.011) and the HVG (P = 0.001). MVC during bench press decreased significantly in the LVG (P = 0.001) and the HVG (P = 0.002). In the HVG, the EMGrms decreased significantly in the TB (P = 0.006) muscle. In the LVG, the EMGrms decreased significantly in the DE (P = 0.009) and FCR (P = 0.006) muscles. Conclusion Synchronous WBV acutely increased GH and testosterone serum concentrations and decreased the MVC and their respective maximal EMGrms activities, which indicated a possible central fatigue effect. Interestingly, only the GH response was dependent on the acceleration with respect to the subjects' responsiveness.
Collapse
Affiliation(s)
- Riccardo Di Giminiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila Italy
- * E-mail:
| | - Leila Fabiani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuliano Baldini
- Laboratory of Chemical-Clinical and Microbiological Analysis, Giulianova Hospital, Teramo, Italy
| | - Giovanni Cardelli
- Laboratory of Chemical-Clinical and Microbiological Analysis, Giulianova Hospital, Teramo, Italy
| | - Aldo Giovannelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila Italy
| | - Jozsef Tihanyi
- Department of Biomechanics, Faculty of Physical Education and Sport Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
30
|
Fraysse B, Vignaud A, Fane B, Schuh M, Butler-Browne G, Metzger D, Ferry A. Acute effect of androgens on maximal force-generating capacity and electrically evoked calcium transient in mouse skeletal muscles. Steroids 2014; 87:6-11. [PMID: 24844204 DOI: 10.1016/j.steroids.2014.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/17/2014] [Accepted: 05/06/2014] [Indexed: 11/24/2022]
Abstract
As androgens might have rapid androgen-receptor (AR) independent action on muscle cells, we analysed the in vivo acute effect of androgens on maximal force generation capacity and electrically evoked calcium transient responsible for the excitation-contraction coupling in skeletal muscle from wild-type male mice and muscle fibre androgen receptor (AR) deficient (AR(skm-/y)) male mice. We tested the hypothesis that acute in vivo androgen treatment improves contractility and modifies calcium transient in mouse hindlimb muscles. In addition, we determined whether the reduced maximal force generation capacity of AR(skm-/y) mice is caused by an alteration in calcium transient. We found that acute dehydrotestosterone (DHT) and testosterone treatment of mice does not change in situ maximal force, power or fatigue resistance of tibialis anterior muscles. In agreement with this observation, maximal force and twitch kinetics also remained unchanged when both whole extensor digitorum longus (EDL) muscle or fibre bundles were incubated in vitro with DHT. Electrically evoked calcium transient, i.e. calcium amplitude, time to peak and decay, was also not modified by DHT treatment of EDL muscle fibre bundles. Finally, we found no difference in calcium transient between AR(skm-/y) and wild-type mice despite the reduced maximal force in EDL fibre bundles of AR(skm-/y) mice. In conclusion, acute androgen treatment has no ergogenic effect on muscle contractility and does not affect calcium transient in response to stimulation. In addition, the reduced maximal force of AR(skm-/y) mice is not related to calcium transient dysfunction.
Collapse
Affiliation(s)
- Bodvael Fraysse
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR 974S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | | | - Bourama Fane
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR 974S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Mélanie Schuh
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104/INSERM U964, Université de Strasbourg, Illkirch, France
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR 974S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104/INSERM U964, Université de Strasbourg, Illkirch, France
| | - Arnaud Ferry
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR 974S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
31
|
Testosterone reduces knee passive range of motion and expression of relaxin receptor isoforms via 5α-dihydrotestosterone and androgen receptor binding. Int J Mol Sci 2014; 15:4619-34. [PMID: 24642882 PMCID: PMC3975417 DOI: 10.3390/ijms15034619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022] Open
Abstract
Ovarian steroids such as estrogen and progesterone have been reported to influence knee laxity. The effect of testosterone, however, remains unknown. This study investigated the effect of testosterone on the knee range of motion (ROM) and the molecular mechanisms that might involve changes in the expression of relaxin receptor isoforms, Rxfp1 and Rxfp2 in the patella tendon and lateral collateral ligament of the female rat knee. Ovariectomized adult female Wistar rats received three days treatment with peanut oil (control), testosterone (125 and 250 μg/kg) and testosterone (125 and 250 μg/kg) plus flutamide, an androgen receptor blocker or finasteride, a 5α-reductase inhibitor. Duplicate groups received similar treatment however in the presence of relaxin (25 ng/kg). A day after the last drug injection, knee passive ROM was measured by using a digital miniature goniometer. Both tendon and ligament were harvested and then analysed for protein and mRNA expression for Rxfp1 and Rxfp2 respectively. Knee passive ROM, Rxfp1 and Rxfp2 expression were significantly reduced following treatment with testosterone. Flutamide or finasteride administration antagonized the testosterone effect. Concomitant administration of testosterone and relaxin did not result in a significant change in knee ROM as compared to testosterone only treatment; however this was significantly increased following flutamide or finasteride addition. Testosterone effect on knee passive ROM is likely mediated via dihydro-testosterone (DHT), and involves downregulation of Rxfp1 and Rxfp2 expression, which may provide the mechanism underlying testosterone-induced decrease in female knee laxity.
Collapse
|
32
|
Pérez MHA, Cormack J, Mallinson D, Mutungi G. A membrane glucocorticoid receptor mediates the rapid/non-genomic actions of glucocorticoids in mammalian skeletal muscle fibres. J Physiol 2013; 591:5171-85. [PMID: 23878367 PMCID: PMC3810817 DOI: 10.1113/jphysiol.2013.256586] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/19/2013] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nM and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres.
Collapse
|
33
|
Ma Y, Liang D, Liu J, Wen JG, Servoll E, Waaler G, Sæter T, Axcrona K, Vlatkovic L, Axcrona U, Paus E, Yang Y, Zhang Z, Kvalheim G, Nesland JM, Suo Z. SHBG is an important factor in stemness induction of cells by DHT in vitro and associated with poor clinical features of prostate carcinomas. PLoS One 2013; 8:e70558. [PMID: 23936228 PMCID: PMC3728318 DOI: 10.1371/journal.pone.0070558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Androgen plays a vital role in prostate cancer development. However, it is not clear whether androgens influence stem-like properties of prostate cancer, a feature important for prostate cancer progression. In this study, we show that upon DHT treatment in vitro, prostate cancer cell lines LNCaP and PC-3 were revealed with higher clonogenic potential and higher expression levels of stemness related factors CD44, CD90, Oct3/4 and Nanog. Moreover, sex hormone binding globulin (SHBG) was also simultaneously upregulated in these cells. When the SHBG gene was blocked by SHBG siRNA knock-down, the induction of Oct3/4, Nanog, CD44 and CD90 by DHT was also correspondingly blocked in these cells. Immunohistochemical evaluation of clinical samples disclosed weakly positive, and areas negative for SHBG expression in the benign prostate tissues, while most of the prostate carcinomas were strongly positive for SHBG. In addition, higher levels of SHBG expression were significantly associated with higher Gleason score, more seminal vesicle invasions and lymph node metastases. Collectively, our results show a role of SHBG in upregulating stemness of prostate cancer cells upon DHT exposure in vitro, and SHBG expression in prostate cancer samples is significantly associated with poor clinicopathological features, indicating a role of SHBG in prostate cancer progression.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dongming Liang
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jian Liu
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jian-Guo Wen
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Einar Servoll
- Department of Surgery, Soerlandet Hospital, Arendal, Norway
| | - Gudmund Waaler
- Department of Surgery, Soerlandet Hospital, Arendal, Norway
| | | | - Karol Axcrona
- Departments of Urology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ljiljana Vlatkovic
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ulrika Axcrona
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elisabeth Paus
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Yue Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiqian Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Gunnar Kvalheim
- Departments of Cell Therapy, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jahn M. Nesland
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
- * E-mail:
| |
Collapse
|
34
|
|
35
|
Paus T. How environment and genes shape the adolescent brain. Horm Behav 2013; 64:195-202. [PMID: 23624012 DOI: 10.1016/j.yhbeh.2013.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/18/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". This review provides a conceptual framework for the study of factors--in our genes and environment--that shape the adolescent brain. I start by pointing out that brain phenotypes obtained with magnetic resonance imaging are complex traits reflecting the interplay of genes and the environment. In some cases, variations in the structural phenotypes observed during adolescence have their origin in the pre-natal or early post-natal periods. I then emphasize the bidirectional nature of brain-behavior relationships observed during this period of human development, where function may be more likely to influence structure rather than vice versa. In the main part of this article, I review our ongoing work on the influence of gonadal hormones on the adolescent brain. I also discuss the importance of social context and brain plasticity on shaping the relevant neural circuits.
Collapse
Affiliation(s)
- Tomáš Paus
- Rotman Research Institute, University of Toronto, 3560 Bathurst Street, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Smith AA, Toone R, Peacock O, Drawer S, Stokes KA, Cook CJ. Dihydrotestosterone is elevated following sprint exercise in healthy young men. J Appl Physiol (1985) 2013; 114:1435-40. [DOI: 10.1152/japplphysiol.01419.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dihydrotestosterone (DHT) exerts both functional and signaling effects extending beyond the effects of testosterone in rodent skeletal muscle. As a primer for investigating the role of DHT in human skeletal muscle function, this study aimed to determine whether circulating DHT is acutely elevated in men following a bout of repeat sprint exercise and to establish the importance of training status and sprint performance to this response. Fourteen healthy active young men (V̇o2max61.0 ± 8.1 ml·kg body mass−1·min−1) performed a bout of repeat sprint cycle exercise at a target workload based on an incremental work-rate maximum (10 × 30 s at 150% Wmaxwith 90-s recovery). Venous blood samples were collected preexercise and 5 and 60 min after exercise. Five minutes after exercise, there were significant elevations in total testosterone (TT; P < 0.001), free testosterone (FT; P < 0.001), and DHT ( P = 0.004), which returned to baseline after 1 h. Changes in DHT with exercise (5 min postexercise − preexercise) correlated significantly with changes in TT ( r = 0.870; P < 0.001) and FT ( r = 0.914; P < 0.001). Sprinting cadence correlated with changes in FT ( r = 0.697; P = 0.006), DHT ( r = 0.625; P = 0.017), and TT ( r = 0.603; P = 0.022), and habitual training volume correlated with the change in TT ( r = 0.569, P = 0.034). In conclusion, our data demonstrate that DHT is acutely elevated following sprint cycle exercise and that this response is influenced by cycling cadence. The importance of DHT in the context of exercise training and sports performance remains to be determined.
Collapse
Affiliation(s)
- Alan A. Smith
- Sport, Health and Exercise Science, Department for Health, University of Bath
- United Kingdom Sports Council, London, United Kingdom
| | - Rebecca Toone
- Sport, Health and Exercise Science, Department for Health, University of Bath
| | - Oliver Peacock
- Sport, Health and Exercise Science, Department for Health, University of Bath
| | - Scott Drawer
- United Kingdom Sports Council, London, United Kingdom
| | - Keith A. Stokes
- Sport, Health and Exercise Science, Department for Health, University of Bath
| | - Christian J. Cook
- Sport, Health and Exercise Science, Department for Health, University of Bath
- United Kingdom Sports Council, London, United Kingdom
| |
Collapse
|
37
|
Grandys M, Majerczak J, Karasinski J, Kulpa J, Zoladz JA. Skeletal muscle myosin heavy chain isoform content in relation to gonadal hormones and anabolic-catabolic balance in trained and untrained men. J Strength Cond Res 2012; 26:3262-9. [PMID: 22990573 DOI: 10.1519/jsc.0b013e31827361d7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gonadal hormones and anabolic-catabolic hormone balance have potent influence on skeletal muscle tissue, but little is known about their action with regard to myosin heavy chain (MHC) transformation in humans. We investigated the relationship between skeletal muscle MHC isoform content in the vastus lateralis muscle and basal testosterone (T) concentration in 3 groups of subjects: endurance trained (E), sprint/strength trained (S), and untrained (U) young men. We have also determined basal sex hormone-binding globulin and cortisol (C) concentrations in untrained subjects to examine the relationship between MHC composition and the anabolic-catabolic hormone balance. Moreover, basal free testosterone (fT) and bioavailable testosterone (bio-T) concentrations were calculated for this subgroup. Despite significant differences in MHC isoform content (69.4 ± 2.39%, 61.4 ± 8.04%, and 37.5 ± 13.80% of MHC-2 for groups S, U, and E, respectively, Kruskal-Wallis: H = 18.58, p < 0.001), the T concentration was similar in the three groups of subjects (18.84 ± 5.73 nmol·L(-1), 18.60 ± 5.73 nmol·L(-1), and 20.73 ± 4.06 nmol·L(-1) for U, E, and S groups, respectively, Kruskal-Wallis: H = 1.11, p > 0.5). We have also found that in the U group, type 2 MHC in the vastus lateralis muscle is positively correlated with basal fT:C ratio (r = 0.63, p = 0.01). It is concluded that the differences in the training history and training specificity can be distinguished with regard to the MHC composition but not with regard to the basal T concentration. Simultaneously, it has been shown that MHC isoform content in human vastus lateralis muscle may be related to basal anabolic-catabolic hormone balance, and this hypothesis needs further investigation.
Collapse
Affiliation(s)
- Marcin Grandys
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | | | | | | | | |
Collapse
|
38
|
Dent JR, Fletcher DK, McGuigan MR. Evidence for a Non-Genomic Action of Testosterone in Skeletal Muscle Which may Improve Athletic Performance: Implications for the Female Athlete. J Sports Sci Med 2012; 11:363-70. [PMID: 24149341 PMCID: PMC3737931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/01/2012] [Indexed: 06/02/2023]
Abstract
This review will focus on the proposed second mode of testosterone action (now termed non-genomic) that appears to occur independently of the traditional transcriptional mechanism in mammalian skeletal muscle cells which may enhance skeletal muscle contractile properties. This mechanism of testosterone action differs from the traditional pathway, originating at the cell membrane, having a rapid onset of action, requiring second messengers to execute its effects and is insensitive to inhibitors of traditional androgen receptor action, transcription and protein synthesis. Importantly, unlike the traditional action of testosterone in skeletal muscle, this non-genomic pathway is shown to have a direct acute effect on calcium-dependent components important for the contractile process. The changes within the contractile apparatus may enhance the ability of the muscle to produce explosive power during athletic performance. Rapid increases in Inositol triphosphate mass and calcium release from the sarcoplasmic reticulum have been reported in rodent skeletal muscle cells, and a rapid androgen (dihydrotestosterone)-induced increase in peak force production has been recorded in intact rodent skeletal muscle fibre bundles while showing increases in the activity of the Ras/MAP/ERK mediated pathway. Because the non-genomic action of testosterone is enhanced during increases in exposure to testosterone and is acute in its action, implications for athletic performance are likely greater in females than males due to natural fluctuations in circulating testosterone levels during the female menstrual cycle, reproductive pathology, and changes induced by hormonal contraceptive methods. Research should be undertaken in humans to confirm a pathway for non-genomic testosterone action in human skeletal muscle. Specifically, relationships between testosterone fluctuations and physiological changes within skeletal muscle cells and whole muscle exercise performance need to be examined. Key pointsNon-genomic calcium mediated events activated by testosterone have been identified in skeletal muscle cells.The non-genomic action originates at the cell membrane, is rapid in onset and is directed by second messengers' calcium and IP3.A possible action of non-genomic testosterone may be the initiation of a more efficient contraction through the mobilisation of calcium from the SR resulting in greater force production or velocity of contraction in fast twitch fibres.Physiologically, females with menstrual disorders that cause hyperandrogenism may have a performance advantage in events that require great force or power production.
Collapse
Affiliation(s)
- Jessica R Dent
- Sports Performance Research Institute New Zealand, School of Sport and Recreation, Auckland University of Technology , Auckland, New Zealand
| | | | | |
Collapse
|
39
|
Yarrow JF, McCoy SC, Borst SE. Intracrine and myotrophic roles of 5α-reductase and androgens: a review. Med Sci Sports Exerc 2012; 44:818-26. [PMID: 21988936 DOI: 10.1249/mss.0b013e31823bfcbf] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Historically, the circulation was thought to be the primary source of androgens influencing skeletal muscle. However, a growing body of research indicates that skeletal muscle expresses several androgen-synthesizing enzymes, including 5α-reductase. The intramuscular expression of these enzymes suggests that skeletal muscle is capable of synthesizing bioactive androgens, which could induce myotrophic effects via intracrine action. PURPOSE The aim of this brief review is to discuss recent research related to the intracrine and myotrophic roles of androgens, with particular focus on 5α-reductase as a myotrophic mediator. METHODS Included in the review are 17 reviews and 58 original studies that were identified by a systematic review from MEDLINE and deemed particularly relevant to our purpose. Results are summarized to provide an overview of 5α-reductase as a mediator of the myotrophic effects of androgens. In particular, discussions are included regarding androgen biosynthesis and androgen signaling within skeletal muscle, the effects of exercise on intramuscular androgen biosynthesis, and clinical applications of androgens and of a new class of myotrophic agonists termed selective androgen receptor modulator. RESULTS The ability of several peripheral tissues to synthesize bioactive androgens is well documented in the literature. Herein, we summarize newer studies that demonstrate that 1) skeletal muscle has the capability to synthesize both testosterone and dihydrotestosterone from dehydroepiandrosterone, which is present in abundance within the circulation, and 2) that exercise increases the expression of certain androgen-biosynthesizing enzymes within muscle. CONCLUSIONS Intramuscularly synthesized androgens have the potential to influence skeletal muscle via intracrine action; however, their exact role in skeletal muscle development and maintenance requires further elucidation.
Collapse
|
40
|
Dubois V, Laurent M, Boonen S, Vanderschueren D, Claessens F. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell Mol Life Sci 2012; 69:1651-67. [PMID: 22101547 PMCID: PMC11115174 DOI: 10.1007/s00018-011-0883-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 12/14/2022]
Abstract
Androgens increase both the size and strength of skeletal muscle via diverse mechanisms. The aim of this review is to discuss the different cellular targets of androgens in skeletal muscle as well as the respective androgen actions in these cells leading to changes in proliferation, myogenic differentiation, and protein metabolism. Androgens bind and activate a specific nuclear receptor which will directly affect the transcription of target genes. These genes encode muscle-specific transcription factors, enzymes, structural proteins, as well as microRNAs. In addition, anabolic action of androgens is partly established through crosstalk with other signaling molecules such as Akt, myostatin, IGF-I, and Notch. Finally, androgens may also exert non-genomic effects in muscle by increasing Ca(2+) uptake and modulating kinase activities. In conclusion, the anabolic effect of androgens on skeletal muscle is not only explained by activation of the myocyte androgen receptor but is also the combined result of many genomic and non-genomic actions.
Collapse
Affiliation(s)
- Vanessa Dubois
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, K.U. Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Leuven, Belgium
| | | | | | | | | |
Collapse
|
41
|
Sen A, Prizant H, Hammes SR. Understanding extranuclear (nongenomic) androgen signaling: what a frog oocyte can tell us about human biology. Steroids 2011; 76:822-8. [PMID: 21354434 PMCID: PMC4972037 DOI: 10.1016/j.steroids.2011.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/13/2011] [Accepted: 02/16/2011] [Indexed: 12/13/2022]
Abstract
Steroids are key factors in a myriad of mammalian biological systems, including the brain, kidney, heart, bones, and gonads. While alternative potential steroid receptors have been described, the majority of biologically relevant steroid responses appear to be mediated by classical steroid receptors that are located in all parts of the cell, from the plasma membrane to the nucleus. Interestingly, these classical steroid receptors modulate different signals depending upon their location. For example, receptors in the plasma membrane interact with membrane signaling molecules, including G proteins and kinases. In contrast, receptors in the nucleus interact with nuclear signaling molecules, including transcriptional co-regulators. These extranuclear and intranuclear signals function together in an integrated fashion to regulate important biological functions. While most studies on extranuclear steroid signaling have focused on estrogens, recent work has demonstrated that nongenomic androgen signaling is equally important and that these two steroids modulate similar signaling pathways. In fact, by taking advantage of a simple model system whereby a physiologically relevant androgen-mediated process is regulated completely independent of transcription (Xenopus laevis oocyte maturation), many novel and conserved concepts in nongenomic steroid signaling have been uncovered and characterized.
Collapse
Affiliation(s)
| | | | - Stephen R Hammes
- Corresponding author: Stephen R Hammes, M.D., Ph.D., Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave. Rochester, NY 14642. Phone: 585-275-2901; Fax: 585-273-1288;
| |
Collapse
|
42
|
Pérez-Gutiérrez JF, Argüelles JC, Iglesias-Núñez M, Oliveira KS, De La Muela MS. Epidermal growth factor and active caspase-3 expression in the levator ani muscle of dogs with and without perineal hernia. J Small Anim Pract 2011; 52:365-70. [PMID: 21671944 DOI: 10.1111/j.1748-5827.2011.01078.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To perform a histological and immunohistochemical study of epidermal growth factor, transforming growth factor-alpha and their receptor, as well as the apoptotic signal active caspase-3 in the levator ani muscle of dogs with and without perineal hernia. METHODS Biopsy specimens of the levator ani muscle were obtained from 25 dogs with perineal hernia and 4 non-affected dogs and were processed for Masson and immunohistochemical staining. RESULTS The affected dogs exhibited myopathological features, internalised nuclei, destruction and abnormal size of muscle fibres, which were replaced by collagen. The immunohistochemical study revealed active caspase-3, epidermal growth factor, transforming growth factor-alpha and epidermal growth factor receptor in the levator ani. Compared to the healthy muscle, transforming growth factor-alpha staining intensity was lower in the affected muscle, whereas epidermal growth factor receptor and active caspase-3 staining were higher. CLINICAL SIGNIFICANCE Pelvic diaphragm muscle weakening is the leading cause of perineal hernia in the dog. Survival and death signals expressed in these muscles may contribute to the pathogenesis of this disease. This study reports epidermal growth factor, transforming growth factor-alpha and epidermal growth factor receptor immunohistochemical expression in the skeletal muscle and suggests that perineal hernia in the dog is accompanied by levator ani muscle atrophy, increased expression of epidermal growth factor receptor, caspase-3 activation, and decreased expression of transforming growth factor-alpha.
Collapse
Affiliation(s)
- J F Pérez-Gutiérrez
- Department of Animal Medicine and Surgery, Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
Hamdi MM, Mutungi G. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism. J Physiol 2011; 589:3623-40. [PMID: 21606113 DOI: 10.1113/jphysiol.2011.207175] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and α-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression.
Collapse
Affiliation(s)
- M M Hamdi
- Biomedical and Clinical Sciences Research Institute, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
44
|
|
45
|
McCormick C, Alexandre L, Thompson J, Mutungi G. Clenbuterol and formoterol decrease force production in isolated intact mouse skeletal muscle fiber bundles through a beta2-adrenoceptor-independent mechanism. J Appl Physiol (1985) 2010; 109:1716-27. [PMID: 20864554 DOI: 10.1152/japplphysiol.00592.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the acute actions of short-acting β(2)-adrenoceptor agonists on force production in isolated mammalian skeletal muscle fibers have been the subject of a number of previous studies, those of long-acting β(2)-adrenoceptor agonists have never been investigated. Also, little is known about the cellular signal transduction events mediating their actions. Therefore, the primary aim of this study was to investigate the acute effects of treatment of mouse fast- and slow-twitch muscle fiber bundles with clenbuterol, formoterol, and salbutamol. Both clenbuterol and salbutamol increased the levels of cAMP in both fiber types, and this effect was reversed by ICI-118551. On the other hand, clenbuterol and formoterol decreased force production in both fiber types. They also increased the phosphorylation of phospholamban and β(2)-adrenoceptors in slow-twitch fiber bundles, and their effects were insensitive to propranolol, ICI-118551, and 14-22 amide. In contrast, salbutamol increased force production in both fiber types. It also increased the phosphorylation of β(2)-adrenoceptors in slow-twitch fibers only, but it had no effect on the phosphorylation of phospholamban in either fiber type. These effects were reversed by propranolol and ICI-118551 but not by 14-22 amide. Instead, 14-22 amide further potentiated the effects of salbutamol on force. In summary, long- and short-acting β(2)-adrenoceptor agonists have opposite effects on force production in isolated intact mouse skeletal muscle fiber bundles. From these results, we suggest that the acute actions of short-acting β(2)-adrenoceptor agonists on force production in mammalian skeletal muscles are mediated through the β(2)-adrenoceptor, whereas those of long-acting β(2)-adrenoceptor agonists are not.
Collapse
Affiliation(s)
- Cecilia McCormick
- Biomedical and Clinical Sciences Research Institute, School of Medicine, Health Policy and Practice, Univ. of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|