1
|
Gangi M, Maruyama T, Ishii T, Kaneda M. ON and OFF starburst amacrine cells are controlled by distinct cholinergic pathways. J Gen Physiol 2024; 156:e202413550. [PMID: 38836782 PMCID: PMC11153316 DOI: 10.1085/jgp.202413550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Cholinergic signaling in the retina is mediated by acetylcholine (ACh) released from starburst amacrine cells (SACs), which are key neurons for motion detection. SACs comprise ON and OFF subtypes, which morphologically show mirror symmetry to each other. Although many physiological studies on SACs have targeted ON cells only, the synaptic computation of ON and OFF SACs is assumed to be similar. Recent studies demonstrated that gene expression patterns and receptor types differed between ON and OFF SACs, suggesting differences in their functions. Here, we compared cholinergic signaling pathways between ON and OFF SACs in the mouse retina using the patch clamp technique. The application of ACh increased GABAergic feedback, observed as postsynaptic currents to SACs, in both ON and OFF SACs; however, the mode of GABAergic feedback differed. Nicotinic receptors mediated GABAergic feedback in both ON and OFF SACs, while muscarinic receptors mediated GABAergic feedback in ON SACs only in adults. Neither tetrodotoxin, which blocked action potentials, nor LY354740, which blocked neurotransmitter release from SACs, eliminated ACh-induced GABAergic feedback in SACs. These results suggest that ACh-induced GABAergic feedback in ON and OFF SACs is regulated by different feedback mechanisms in adults and mediated by non-spiking amacrine cells other than SACs.
Collapse
Affiliation(s)
- Mie Gangi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
2
|
Seilheimer RL, McClard CK, Sabharwal J, Wu SM. Modulation of narrow-field amacrine cells on light-evoked spike responses and receptive fields of retinal ganglion cells. Vision Res 2023; 205:108186. [PMID: 36764009 PMCID: PMC11339979 DOI: 10.1016/j.visres.2023.108186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
By using multi-electrode array (MEA) recording technique in conjunction with white-noise checkerboard stimuli and reverse correlation methods, we studied modulatory actions of glycinergic narrow-field amacrine cells (NFACs) on spatiotemporal profiles of five functional groups of ganglion cells (GCs) in dark-adapted mouse retinas. We found that application of 2 µM strychnine significantly altered light-evoked spike rates of three groups of GCs. It also decreased receptive field center radii of all five groups of GC by a mean value of 11%, and shifted the GC receptive field (RF) centers of all GCs and the mean shift distances for the sustained GCs are significantly longer than the transient GCs. On the other hand, strychnine did not affect temporal profiles of the GC center responses, as it did not alter the time-to-peak or the biphasic index of the spike triggered average (STA) functions of GC RF centers. Strychnine also exerts limited actions on RF surrounds of most GCs, except that it moderately weakens the antagonistic surround of sustained OFF GCs and strengthens the antagonistic surround of the ON/OFF GCs, possibly through serial connections between NFACs and GABAergic wide-field amacrine cells (WFACs). Using the Sum of Separable Subfilter (SoSS) model and singular value decomposition method, we decomposed GCs' STAs into five space-time separable subfilters, studied the observation rates of each subfilter in the five functional groups of GCs and determined NFAC-dependent and -independent synaptic circuitries that mediate center and surround responses of various groups of mouse retina retinal ganglion cells.
Collapse
Affiliation(s)
- R L Seilheimer
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - C K McClard
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - J Sabharwal
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - S M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
3
|
Pang JJ, Gao F, Wu SM. Light responses and amacrine cell modulation of morphologically-identified retinal ganglion cells in the mouse retina. Vision Res 2023; 205:108187. [PMID: 36758452 PMCID: PMC11349081 DOI: 10.1016/j.visres.2023.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
By analyzing light-evoked spike responses, cation currents (ΔIC) and chloride currents (ΔICl) of over 100 morphologically-identified retinal ganglion cells (GCs) in dark-adapted mouse retina, we found there are at least 14 functionally- and morphologically-distinct types of RGCs. These cells can be divided into 5 groups based on their patterns of spike response to whole field light steps (SRWFLS), a GC identification scheme commonly used in studies with extracellular recording techniques. We also found that all GCs in the mouse retina express strychnine-sensitive glycine receptors, and receive light-elicited chloride current (ΔICl) accompanied by a conductance increase from narrow-field, glycinergic amacrine cells. As the dark membrane potential of RGC are near the chloride-equilibrium potential, mouse GCs' spike responses are mediated primarily by bipolar cells inputs, and modulated by "shunting inhibition" from narrow-field amacrine cells. Analysis of strychnine actions on light-evoked cation current ΔIC (bipolar cell inputs) in GCs suggests that narrow-field amacrine cells modulate GCs by sending ON-OFF crossover feedback signals to presynaptic bipolar cell axon terminals via sign-inverting glycinergic synapses, and the feedback signals are synergistic to the bipolar cell light responses. Therefore narrow-field amacrine cells enhance light-evoked bipolar cell inputs to GCs by presynaptic "synergistic addition", besides the abovementioned postsynaptic "shunting inhibition" in GCs.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - Fan Gao
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
4
|
Dendro-somatic synaptic inputs to ganglion cells contradict receptive field and connectivity conventions in the mammalian retina. Curr Biol 2022; 32:315-328.e4. [PMID: 34822767 PMCID: PMC8792273 DOI: 10.1016/j.cub.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/26/2023]
Abstract
The morphology of retinal neurons strongly influences their physiological function. Ganglion cell (GC) dendrites ramify in distinct strata of the inner plexiform layer (IPL) so that GCs responding to light increments (ON) or decrements (OFF) receive appropriate excitatory inputs. This vertical stratification prescribes response polarity and ensures consistent connectivity between cell types, whereas the lateral extent of GC dendritic arbors typically dictates receptive field (RF) size. Here, we identify circuitry in mouse retina that contradicts these conventions. AII amacrine cells are interneurons understood to mediate "crossover" inhibition by relaying excitatory input from the ON layer to inhibitory outputs in the OFF layer. Ultrastructural and physiological analyses show, however, that some AIIs deliver powerful inhibition to OFF GC somas and proximal dendrites in the ON layer, rendering the inhibitory RFs of these GCs smaller than their dendritic arbors. This OFF pathway, avoiding entirely the OFF region of the IPL, challenges several tenets of retinal circuitry. These results also indicate that subcellular synaptic organization can vary within a single population of neurons according to their proximity to potential postsynaptic targets.
Collapse
|
5
|
Grimes WN, Aytürk DG, Hoon M, Yoshimatsu T, Gamlin C, Carrera D, Nath A, Nadal-Nicolás FM, Ahlquist RM, Sabnis A, Berson DM, Diamond JS, Wong RO, Cepko C, Rieke F. A High-Density Narrow-Field Inhibitory Retinal Interneuron with Direct Coupling to Müller Glia. J Neurosci 2021; 41:6018-6037. [PMID: 34083252 PMCID: PMC8276741 DOI: 10.1523/jneurosci.0199-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
Amacrine cells are interneurons composing the most diverse cell class in the mammalian retina. They help encode visual features, such as edges or directed motion, by mediating excitatory and inhibitory interactions between input (i.e., bipolar) and output (i.e., ganglion) neurons in the inner plexiform layer (IPL). Like other brain regions, the retina also contains glial cells that contribute to neurotransmitter uptake, metabolic regulation, and neurovascular control. Here, we report that, in mouse retina (of either sex), an abundant, though previously unstudied inhibitory amacrine cell is coupled directly to Müller glia. Electron microscopic reconstructions of this amacrine type revealed chemical synapses with known retinal cell types and extensive associations with Müller glia, the processes of which often completely ensheathe the neurites of this amacrine cell. Microinjecting small tracer molecules into the somas of these amacrine cells led to selective labeling of nearby Müller glia, leading us to suggest the name "Müller glia-coupled amacrine cell," or MAC. Our data also indicate that MACs release glycine at conventional chemical synapses, and viral retrograde transsynaptic tracing from the dorsal lateral geniculate nucleus showed selective connections between MACs and a subpopulation of retinal ganglion cell types. Visually evoked responses revealed a strong preference for light increments; these "ON" responses were primarily mediated by excitatory chemical synaptic input and direct electrical coupling with other cells. This initial characterization of the MAC provides the first evidence for neuron-glia coupling in the mammalian retina and identifies the MAC as a potential link between inhibitory processing and glial function.SIGNIFICANCE STATEMENT Gap junctions between pairs of neurons or glial cells are commonly found throughout the nervous system and play multiple roles, including electrical coupling and metabolic exchange. In contrast, gap junctions between neurons and glia cells have rarely been reported and are poorly understood. Here we report the first evidence for neuron-glia coupling in the mammalian retina, specifically between an abundant (but previously unstudied) inhibitory interneuron and Müller glia. Moreover, viral tracing, optogenetics, and serial electron microscopy provide new information about the neuron's synaptic partners and physiological responses.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Didem Göz Aytürk
- Harvard Medical School, Blavatnik Institute, Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Daniel Carrera
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Amurta Nath
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Ahlquist
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Adit Sabnis
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Jeffrey S Diamond
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Connie Cepko
- Harvard Medical School, Blavatnik Institute, Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
6
|
Chen AM, Azar SS, Harris A, Brecha NC, Pérez de Sevilla Müller L. PTEN Expression Regulates Gap Junction Connectivity in the Retina. Front Neuroanat 2021; 15:629244. [PMID: 34093139 PMCID: PMC8172595 DOI: 10.3389/fnana.2021.629244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Manipulation of the phosphatase and tensin homolog (PTEN) pathway has been suggested as a therapeutic approach to treat or prevent vision loss due to retinal disease. In this study, we investigated the effects of deleting one copy of Pten in a well-characterized class of retinal ganglion cells called α-ganglion cells in the mouse retina. In Pten +/- retinas, α-ganglion cells did not exhibit major changes in their dendritic structure, although most cells developed a few, unusual loop-forming dendrites. By contrast, α-ganglion cells exhibited a significant decrease in heterologous and homologous gap junction mediated cell coupling with other retinal ganglion and amacrine cells. Additionally, the majority of OFF α-ganglion cells (12/18 cells) formed novel coupling to displaced amacrine cells. The number of connexin36 puncta, the predominant connexin that mediates gap junction communication at electrical synapses, was decreased by at least 50% on OFF α-ganglion cells. Reduced and incorrect gap junction connectivity of α-ganglion cells will affect their functional properties and alter visual image processing in the retina. The anomalous connectivity of retinal ganglion cells would potentially limit future therapeutic approaches involving manipulation of the Pten pathway for treating ganglion cell degeneration in diseases like glaucoma, traumatic brain injury, Parkinson's, and Alzheimer's diseases.
Collapse
Affiliation(s)
- Ashley M. Chen
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shaghauyegh S. Azar
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Harris
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
- Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
- CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Health System, Los Angeles, CA, United States
| | - Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Yan W, Laboulaye MA, Tran NM, Whitney IE, Benhar I, Sanes JR. Mouse Retinal Cell Atlas: Molecular Identification of over Sixty Amacrine Cell Types. J Neurosci 2020; 40:5177-5195. [PMID: 32457074 PMCID: PMC7329304 DOI: 10.1523/jneurosci.0471-20.2020] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023] Open
Abstract
Amacrine cells (ACs) are a diverse class of interneurons that modulate input from photoreceptors to retinal ganglion cells (RGCs), rendering each RGC type selectively sensitive to particular visual features, which are then relayed to the brain. While many AC types have been identified morphologically and physiologically, they have not been comprehensively classified or molecularly characterized. We used high-throughput single-cell RNA sequencing to profile >32,000 ACs from mice of both sexes and applied computational methods to identify 63 AC types. We identified molecular markers for each type and used them to characterize the morphology of multiple types. We show that they include nearly all previously known AC types as well as many that had not been described. Consistent with previous studies, most of the AC types expressed markers for the canonical inhibitory neurotransmitters GABA or glycine, but several expressed neither or both. In addition, many expressed one or more neuropeptides, and two expressed glutamatergic markers. We also explored transcriptomic relationships among AC types and identified transcription factors expressed by individual or multiple closely related types. Noteworthy among these were Meis2 and Tcf4, expressed by most GABAergic and most glycinergic types, respectively. Together, these results provide a foundation for developmental and functional studies of ACs, as well as means for genetically accessing them. Along with previous molecular, physiological, and morphologic analyses, they establish the existence of at least 130 neuronal types and nearly 140 cell types in the mouse retina.SIGNIFICANCE STATEMENT The mouse retina is a leading model for analyzing the development, structure, function, and pathology of neural circuits. A complete molecular atlas of retinal cell types provides an important foundation for these studies. We used high-throughput single-cell RNA sequencing to characterize the most heterogeneous class of retinal interneurons, amacrine cells, identifying 63 distinct types. The atlas includes types identified previously as well as many novel types. We provide evidence for the use of multiple neurotransmitters and neuropeptides, and identify transcription factors expressed by groups of closely related types. Combining these results with those obtained previously, we proposed that the mouse retina contains ∼130 neuronal types and is therefore comparable in complexity to other regions of the brain.
Collapse
Affiliation(s)
- Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mallory A Laboulaye
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Inbal Benhar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
8
|
Vielma AH, Tapia F, Alcaino A, Fuenzalida M, Schmachtenberg O, Chávez AE. Cannabinoid Signaling Selectively Modulates GABAergic Inhibitory Input to OFF Bipolar Cells in Rat Retina. Invest Ophthalmol Vis Sci 2020; 61:3. [PMID: 32150246 PMCID: PMC7401570 DOI: 10.1167/iovs.61.3.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the mammalian retina, cannabinoid type 1 receptors (CB1Rs) are well-positioned to alter inhibitory synaptic function from amacrine cells and, thus, might influence visual signal processing in the inner retina. However, it is not known if CB1R modulates amacrine cells feedback inhibition at retinal bipolar cell (BC) terminals. Methods Using whole-cell voltage-clamp recordings, we examined the pharmacological effect of CB1R activation and inhibition on spontaneous inhibitory postsynaptic currents (sIPSCs) and glutamate-evoked IPSCs (gIPSCs) from identified OFF BCs in light-adapted rat retinal slices. Results Activation of CB1R with WIN55212-2 selectively increased the frequency of GABAergic, but not glycinergic sIPSC in types 2, 3a, and 3b OFF BCs, and had no effect on inhibitory activity in type 4 OFF BCs. The increase in GABAergic activity was eliminated in axotomized BCs and can be suppressed by blocking CB1R with AM251 or GABAA and GABAρ receptors with SR-95531 and TPMPA, respectively. In all OFF BC types tested, a brief application of glutamate to the outer plexiform layer elicited gIPSCs comprising GABAergic and glycinergic components that were unaffected by CB1R activation. However, blocking CB1R selectively increased GABAergic gIPSCs, supporting a role for endocannabinoid signaling in the regulation of glutamate-evoked GABAergic inhibitory feedback to OFF BCs. Conclusions CB1R activation shape types 2, 3a, and 3b OFF BC responses by selectively regulate GABAergic feedback inhibition at their axon terminals, thus cannabinoid signaling might play an important role in the fine-tuning of visual signal processing in the mammalian inner retina.
Collapse
|
9
|
Parmhans N, Sajgo S, Niu J, Luo W, Badea TC. Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. J Comp Neurol 2017; 526:742-766. [PMID: 29218725 DOI: 10.1002/cne.24367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 11/11/2022]
Abstract
We report the retinal expression pattern of Ret, a receptor tyrosine kinase for the glial derived neurotrophic factor (GDNF) family ligands (GFLs), during development and in the adult mouse. Ret is initially expressed in retinal ganglion cells (RGCs), followed by horizontal cells (HCs) and amacrine cells (ACs), beginning with the early stages of postmitotic development. Ret expression persists in all three classes of neurons in the adult. Using RNA sequencing, immunostaining and random sparse recombination, we show that Ret is expressed in at least three distinct types of ACs, and ten types of RGCs. Using intersectional genetics, we describe the dendritic arbor morphologies of RGC types expressing Ret in combination with each of the three members of the POU4f/Brn3 family of transcription factors. Ret expression overlaps with Brn3a in 4 RGC types, with Brn3b in 5 RGC types, and with Brn3c in one RGC type, respectively. Ret+ RGCs project to the lateral geniculate nucleus (LGN), pretectal area (PTA) and superior colliculus (SC), and avoid the suprachiasmatic nucleus and accessory optic system. Brn3a+ Ret+ and Brn3c+ Ret+ RGCs project preferentially to contralateral retinorecipient areas, while Brn3b+ Ret+ RGCs shows minor ipsilateral projections to the olivary pretectal nucleus and the LGN. Our findings establish intersectional genetic approaches for the anatomic and developmental characterization of individual Ret+ RGC types. In addition, they provide necessary information for addressing the potential interplay between GDNF neurotrophic signaling and transcriptional regulation in RGC type specification.
Collapse
Affiliation(s)
- Nadia Parmhans
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Szilard Sajgo
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Jingwen Niu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tudor Constantin Badea
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| |
Collapse
|
10
|
Pérez de Sevilla Müller L, Solomon A, Sheets K, Hapukino H, Rodriguez AR, Brecha NC. Multiple cell types form the VIP amacrine cell population. J Comp Neurol 2017; 527:133-158. [PMID: 28472856 DOI: 10.1002/cne.24234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Amacrine cells are a heterogeneous group of interneurons that form microcircuits with bipolar, amacrine and ganglion cells to process visual information in the inner retina. This study has characterized the morphology, neurochemistry and major cell types of a VIP-ires-Cre amacrine cell population. VIP-tdTomato and -Confetti (Brainbow2.1) mouse lines were generated by crossing a VIP-ires-Cre line with either a Cre-dependent tdTomato or Brainbow2.1 reporter line. Retinal sections and whole-mounts were evaluated by quantitative, immunohistochemical, and intracellular labeling approaches. The majority of tdTomato and Confetti fluorescent cell bodies were in the inner nuclear layer (INL) and a few cell bodies were in the ganglion cell layer (GCL). Fluorescent processes ramified in strata 1, 3, 4, and 5 of the inner plexiform layer (IPL). All tdTomato fluorescent cells expressed syntaxin 1A and GABA-immunoreactivity indicating they were amacrine cells. The average VIP-tdTomato fluorescent cell density in the INL and GCL was 535 and 24 cells/mm2 , respectively. TdTomato fluorescent cells in the INL and GCL contained VIP-immunoreactivity. The VIP-ires-Cre amacrine cell types were identified in VIP-Brainbow2.1 retinas or by intracellular labeling in VIP-tdTomato retinas. VIP-1 amacrine cells are bistratified, wide-field cells that ramify in strata 1, 4, and 5, VIP-2A and 2B amacrine cells are medium-field cells that mainly ramify in strata 3 and 4, and VIP-3 displaced amacrine cells are medium-field cells that ramify in strata 4 and 5 of the IPL. VIP-ires-Cre amacrine cells form a neuropeptide-expressing cell population with multiple cell types, which are likely to have distinct roles in visual processing.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Alexander Solomon
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Kristopher Sheets
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Hinekura Hapukino
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Allen R Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Medicine, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Ophthalmology and the Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Veterans Administration Greater Los Angeles Health System, Los Angeles, California, 90073
| |
Collapse
|
11
|
Zandt BJ, Liu JH, Veruki ML, Hartveit E. AII amacrine cells: quantitative reconstruction and morphometric analysis of electrophysiologically identified cells in live rat retinal slices imaged with multi-photon excitation microscopy. Brain Struct Funct 2017; 222:151-182. [PMID: 26951289 PMCID: PMC5225199 DOI: 10.1007/s00429-016-1206-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/20/2016] [Indexed: 11/01/2022]
Abstract
AII amacrine cells have been found in all mammalian retinas examined and play an important role for visual processing under both scotopic and photopic conditions. Whereas ultrastructural investigations have provided a detailed understanding of synaptic connectivity, there is little information available with respect to quantitative properties and variation of cellular morphology. Here, we performed whole-cell recordings from AII amacrine cells in rat retinal slices and filled the cells with fluorescent dyes. Multi-photon excitation microscopy was used to acquire image stacks and after deconvolution, we performed quantitative morphological reconstruction by computer-aided manual tracing. We reconstructed and performed morphometric analysis on 43 AII amacrine cells, with a focus on branching pattern, dendritic lengths and diameters, surface area, and number and distribution of dendritic varicosities. Compared to previous descriptions, the most surprising result was the considerable extent of branching, with the maximum branch order ranging from approximately 10-40. We found that AII amacrine cells conform to a recently described general structural design principle for neural arbors, where arbor density decreases proportionally to increasing territory size. We confirmed and quantified the bi-stratified morphology of AII amacrine cells by analyzing the arborizations as a function of retinal localization or with Sholl spheres. Principal component and cluster analysis revealed no evidence for morphological subtypes of AII amacrines. These results establish a database of morphometric properties important for studies of development, regeneration, degeneration, and disease processes, as well as a workflow compatible with compartmental modeling.
Collapse
Affiliation(s)
- Bas-Jan Zandt
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Jian Hao Liu
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Margaret Lin Veruki
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
12
|
Della Santina L, Kuo SP, Yoshimatsu T, Okawa H, Suzuki SC, Hoon M, Tsuboyama K, Rieke F, Wong ROL. Glutamatergic Monopolar Interneurons Provide a Novel Pathway of Excitation in the Mouse Retina. Curr Biol 2016; 26:2070-2077. [PMID: 27426514 DOI: 10.1016/j.cub.2016.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/05/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
Excitatory and inhibitory neurons in the CNS are distinguished by several features, including morphology, transmitter content, and synapse architecture [1]. Such distinctions are exemplified in the vertebrate retina. Retinal bipolar cells are polarized glutamatergic neurons receiving direct photoreceptor input, whereas amacrine cells are usually monopolar inhibitory interneurons with synapses almost exclusively in the inner retina [2]. Bipolar but not amacrine cell synapses have presynaptic ribbon-like structures at their transmitter release sites. We identified a monopolar interneuron in the mouse retina that resembles amacrine cells morphologically but is glutamatergic and, unexpectedly, makes ribbon synapses. These glutamatergic monopolar interneurons (GluMIs) do not receive direct photoreceptor input, and their light responses are strongly shaped by both ON and OFF pathway-derived inhibitory input. GluMIs contact and make almost as many synapses as type 2 OFF bipolar cells onto OFF-sustained A-type (AOFF-S) retinal ganglion cells (RGCs). However, GluMIs and type 2 OFF bipolar cells possess functionally distinct light-driven responses and may therefore mediate separate components of the excitatory synaptic input to AOFF-S RGCs. The identification of GluMIs thus unveils a novel cellular component of excitatory circuits in the vertebrate retina, underscoring the complexity in defining cell types even in this well-characterized region of the CNS.
Collapse
Affiliation(s)
- Luca Della Santina
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA; Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Sidney P Kuo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA; Howard Hughes Medical Institute, Seattle, WA 98195-7290, USA
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | - Kotaro Tsuboyama
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA; Howard Hughes Medical Institute, Seattle, WA 98195-7290, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA.
| |
Collapse
|
13
|
Meyer A, Tetenborg S, Greb H, Segelken J, Dorgau B, Weiler R, Hormuzdi SG, Janssen-Bienhold U, Dedek K. Connexin30.2: In Vitro Interaction with Connexin36 in HeLa Cells and Expression in AII Amacrine Cells and Intrinsically Photosensitive Ganglion Cells in the Mouse Retina. Front Mol Neurosci 2016; 9:36. [PMID: 27303262 PMCID: PMC4882342 DOI: 10.3389/fnmol.2016.00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Electrical coupling via gap junctions is an abundant phenomenon in the mammalian retina and occurs in all major cell types. Gap junction channels are assembled from different connexin subunits, and the connexin composition of the channel confers specific properties to the electrical synapse. In the mouse retina, gap junctions were demonstrated between intrinsically photosensitive ganglion cells and displaced amacrine cells but the underlying connexin remained undetermined. In the primary rod pathway, gap junctions play a crucial role, coupling AII amacrine cells among each other and to ON cone bipolar cells. Although it has long been known that connexin36 and connexin45 are necessary for the proper functioning of this most sensitive rod pathway, differences between homocellular AII/AII gap junctions and AII/ON bipolar cell gap junctions suggested the presence of an additional connexin in AII amacrine cells. Here, we used a connexin30.2-lacZ mouse line to study the expression of connexin30.2 in the retina. We show that connexin30.2 is expressed in intrinsically photosensitive ganglion cells and AII amacrine cells. Moreover, we tested whether connexin30.2 and connexin36-both expressed in AII amacrine cells-are able to interact with each other and are deposited in the same gap junctional plaques. Using newly generated anti-connexin30.2 antibodies, we show in HeLa cells that both connexins are indeed able to interact and may form heteromeric channels: both connexins were co-immunoprecipitated from transiently transfected HeLa cells and connexin30.2 gap junction plaques became significantly larger when co-expressed with connexin36. These data suggest that connexin36 is able to form heteromeric gap junctions with another connexin. We hypothesize that co-expression of connexin30.2 and connexin36 may endow AII amacrine cells with the means to differentially regulate its electrical coupling to different synaptic partners.
Collapse
Affiliation(s)
- Arndt Meyer
- Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany
| | - Stephan Tetenborg
- Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany
| | - Helena Greb
- Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany
| | - Jasmin Segelken
- Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany
| | - Birthe Dorgau
- Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany
| | - Reto Weiler
- Department of Neuroscience and Neurobiology, University of OldenburgOldenburg, Germany; Research Center Neurosensory Science, University of OldenburgOldenburg, Germany
| | | | - Ulrike Janssen-Bienhold
- Department of Neuroscience and Neurobiology, University of OldenburgOldenburg, Germany; Research Center Neurosensory Science, University of OldenburgOldenburg, Germany
| | - Karin Dedek
- Department of Neuroscience and Neurobiology, University of OldenburgOldenburg, Germany; Research Center Neurosensory Science, University of OldenburgOldenburg, Germany
| |
Collapse
|
14
|
Vuong HE, Pérez de Sevilla Müller L, Hardi CN, McMahon DG, Brecha NC. Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines. Neuroscience 2015; 307:319-37. [PMID: 26335381 PMCID: PMC4603663 DOI: 10.1016/j.neuroscience.2015.08.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022]
Abstract
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing.
Collapse
Affiliation(s)
- H E Vuong
- Molecular, Cellular, and Integrative Physiology Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - L Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - C N Hardi
- Department of Psychology, College of Letters and Science, UCLA, Los Angeles, CA 90095, United States
| | - D G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - N C Brecha
- Molecular, Cellular, and Integrative Physiology Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; CURE-Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, United States.
| |
Collapse
|
15
|
Balakrishnan V, Puthussery T, Kim MH, Taylor WR, von Gersdorff H. Synaptic Vesicle Exocytosis at the Dendritic Lobules of an Inhibitory Interneuron in the Mammalian Retina. Neuron 2015; 87:563-75. [PMID: 26247863 DOI: 10.1016/j.neuron.2015.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/07/2015] [Accepted: 07/20/2015] [Indexed: 11/16/2022]
Abstract
Ribbon synapses convey sustained and phasic excitatory drive within retinal microcircuits. However, the properties of retinal inhibitory synapses are less well known. AII-amacrine cells are interneurons in the retina that exhibit large glycinergic synapses at their dendritic lobular appendages. Using membrane capacitance measurements, we observe robust exocytosis elicited by the opening of L-type Ca(2+) channels located on the lobular appendages. Two pools of synaptic vesicles were detected: a small, rapidly releasable pool and a larger and more slowly releasable pool. Depending on the stimulus, either paired-pulse depression or facilitation could be elicited. During early postnatal maturation, the coupling of the exocytosis Ca(2+)-sensor to Ca(2+) channel becomes tighter. Light-evoked depolarizations of the AII-amacrine cell elicited exocytosis that was graded to light intensity. Our results suggest that AII-amacrine cell synapses are capable of providing both phasic and sustained inhibitory input to their postsynaptic partners without the benefit of synaptic ribbons.
Collapse
Affiliation(s)
| | - Theresa Puthussery
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mean-Hwan Kim
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - W Rowland Taylor
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Henrique von Gersdorff
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
16
|
Abstract
UNLABELLED Visual processing in the retina depends on coordinated signaling by interneurons. Photoreceptor signals are relayed to ∼20 ganglion cell types through a dozen excitatory bipolar interneurons, each responsive to light increments (ON) or decrements (OFF). ON and OFF bipolar cell pathways become tuned through specific connections with inhibitory interneurons: horizontal and amacrine cells. A major obstacle for understanding retinal circuitry is the unknown function of most of the ∼30-40 amacrine cell types, each of which synapses onto a subset of bipolar cell terminals, ganglion cell dendrites, and other amacrine cells. Here, we used a transgenic mouse line in which vasoactive intestinal polypeptide-expressing (VIP+) GABAergic interneurons express Cre recombinase. Targeted whole-cell recordings of fluorescently labeled VIP+ cells revealed three predominant types: wide-field bistratified and narrow-field monostratified cells with somas in the inner nuclear layer (INL) and medium-field monostratified cells with somas in the ganglion cell layer (GCL). Bistratified INL cells integrated excitation and inhibition driven by both ON and OFF pathways with little spatial tuning. Narrow-field INL cells integrated excitation driven by the ON pathway and inhibition driven by both pathways, with pronounced hyperpolarizations at light offset. Monostratified GCL cells integrated excitation and inhibition driven by the ON pathway and showed center-surround spatial tuning. Optogenetic experiments showed that, collectively, VIP+ cells made strong connections with OFF δ, ON-OFF direction-selective, and W3 ganglion cells but weak, inconsistent connections with ON and OFF α cells. Revealing VIP+ cell morphologies, receptive fields and synaptic connections advances our understanding of their role in visual processing. SIGNIFICANCE STATEMENT The retina is a model system for understanding nervous system function. At the first stage, rod and cone photoreceptors encode light and communicate with a complex network of interneurons. These interneurons drive the responses of ganglion cells, which form the optic nerve and transmit visual information to the brain. Presently, we lack information about many of the retina's inhibitory amacrine interneurons. In this study, we used genetically modified mice to study the light responses and intercellular connections of specific amacrine cell types. The results show diversity in the shape and function of the studied amacrine cells and elucidate their connections with specific types of ganglion cell. The findings advance our understanding of the cellular basis for retinal function.
Collapse
|
17
|
Sigal YM, Speer CM, Babcock HP, Zhuang X. Mapping Synaptic Input Fields of Neurons with Super-Resolution Imaging. Cell 2015; 163:493-505. [PMID: 26435106 PMCID: PMC4733473 DOI: 10.1016/j.cell.2015.08.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023]
Abstract
As a basic functional unit in neural circuits, each neuron integrates input signals from hundreds to thousands of synapses. Knowledge of the synaptic input fields of individual neurons, including the identity, strength, and location of each synapse, is essential for understanding how neurons compute. Here, we developed a volumetric super-resolution reconstruction platform for large-volume imaging and automated segmentation of neurons and synapses with molecular identity information. We used this platform to map inhibitory synaptic input fields of On-Off direction-selective ganglion cells (On-Off DSGCs), which are important for computing visual motion direction in the mouse retina. The reconstructions of On-Off DSGCs showed a GABAergic, receptor subtype-specific input field for generating direction selective responses without significant glycinergic inputs for mediating monosynaptic crossover inhibition. These results demonstrate unique capabilities of this super-resolution platform for interrogating neural circuitry.
Collapse
Affiliation(s)
- Yaron M Sigal
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Colenso M Speer
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hazen P Babcock
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells. Curr Biol 2015; 25:2763-2773. [PMID: 26441349 DOI: 10.1016/j.cub.2015.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/15/2015] [Accepted: 09/05/2015] [Indexed: 11/22/2022]
Abstract
Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.
Collapse
|
19
|
Lee SCS, Meyer A, Schubert T, Hüser L, Dedek K, Haverkamp S. Morphology and connectivity of the small bistratified A8 amacrine cell in the mouse retina. J Comp Neurol 2015; 523:1529-47. [PMID: 25630271 DOI: 10.1002/cne.23752] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 01/22/2015] [Accepted: 01/24/2015] [Indexed: 01/23/2023]
Abstract
Amacrine cells comprise ∼ 30 morphological types in the mammalian retina. The synaptic connectivity and function of a few γ-aminobutyric acid (GABA)ergic wide-field amacrine cells have recently been studied; however, with the exception of the rod pathway-specific AII amacrine cell, the connectivity of glycinergic small-field amacrine cells has not been investigated in the mouse retina. Here, we studied the morphology and connectivity pattern of the small-field A8 amacrine cell. A8 cells in mouse retina are bistratified with lobular processes in the ON sublamina and arboreal dendrites in the OFF sublamina of the inner plexiform layer. The distinct bistratified morphology was first visible at postnatal day 8, reaching the adult shape at P13, around eye opening. The connectivity of A8 cells to bipolar cells and ganglion cells was studied by double and triple immunolabeling experiments by using various cell markers combined with synaptic markers. Our data suggest that A8 amacrine cells receive glutamatergic input from both OFF and ON cone bipolar cells. Furthermore, A8 cells are coupled to ON cone bipolar cells by gap junctions, and provide inhibitory input via glycine receptor (GlyR) subunit α1 to OFF cone bipolar cells and to ON A-type ganglion cells. Measurements of spontaneous glycinergic postsynaptic currents and GlyR immunolabeling revealed that A8 cells express GlyRs containing the α2 subunit. The results show that the bistratified A8 cell makes very similar synaptic contacts with cone bipolar cells as the rod pathway-specific AII amacrine cell. However, unlike AII cells, A8 amacrine cells provide glycinergic input to ON A-type ganglion cells.
Collapse
Affiliation(s)
- Sammy C S Lee
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany.,University of Sydney-Save Sight Institute, Sydney, New South Wales, 2000, Australia
| | - Arndt Meyer
- Department of Neurobiology, University of Oldenburg, 26129, Oldenburg, Germany
| | - Timm Schubert
- Werner Reichardt Center for Integrative Neuroscience (CIN)/Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Laura Hüser
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | - Karin Dedek
- Department of Neurobiology, University of Oldenburg, 26129, Oldenburg, Germany.,Research Center for Neurosensory Science, University of Oldenburg, 26129, Oldenburg, Germany
| | - Silke Haverkamp
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Elevated intraocular pressure decreases response sensitivity of inner retinal neurons in experimental glaucoma mice. Proc Natl Acad Sci U S A 2015; 112:2593-8. [PMID: 25675503 DOI: 10.1073/pnas.1419921112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glaucoma is the second leading cause of blindness in the United States and the world, characterized by progressive degeneration of the optic nerve and retinal ganglion cells (RGCs). Glaucoma patients exhibit an early diffuse loss of retinal sensitivity followed by focal loss of RGCs in sectored patterns. Recent evidence has suggested that this early sensitivity loss may be associated with dysfunctions in the inner retina, but detailed cellular and synaptic mechanisms underlying such sensitivity changes are largely unknown. In this study, we use whole-cell voltage-clamp techniques to analyze light responses of individual bipolar cells (BCs), AII amacrine cells (AIIACs), and ON and sustained OFF alpha-ganglion cells (ONαGCs and sOFFαGCs) in dark-adapted mouse retinas with elevated intraocular pressure (IOP). We present evidence showing that elevated IOP suppresses the rod ON BC inputs to AIIACs, resulting in less sensitive AIIACs, which alter AIIAC inputs to ONαGCs via the AIIAC→cone ON BC→ONαGC pathway, resulting in lower ONαGC sensitivity. The altered AIIAC response also reduces sOFFαGC sensitivity via the AIIAC→sOFFαGC chemical synapses. These sensitivity decreases in αGCs and AIIACs were found in mice with elevated IOP for 3-7 wk, a stage when little RGC or optic nerve degeneration was observed. Our finding that elevated IOP alters neuronal function in the inner retina before irreversible structural damage occurs provides useful information for developing new diagnostic tools and treatments for glaucoma in human patients.
Collapse
|
21
|
Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina. J Neurosci 2014; 34:6128-39. [PMID: 24790183 DOI: 10.1523/jneurosci.4941-13.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.
Collapse
|
22
|
Tsukamoto Y, Omi N. Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina. J Comp Neurol 2014; 521:3541-55. [PMID: 23749582 PMCID: PMC4265793 DOI: 10.1002/cne.23370] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/07/2013] [Accepted: 05/23/2013] [Indexed: 11/09/2022]
Abstract
Retinal microcircuits for night vision at the absolute threshold are required to relay a single-photon rod signal reliably to ganglion cells via rod bipolar (RB) cells and AII amacrine cells. To assess the noise reduction of intercellular signal transmission in this rod-specific pathway, we quantified its synaptic connectivity by 3D reconstruction of a series of electron micrographs. In most cases (94%), each rod made ribbon synaptic contacts onto two adjacent RB cells. Conversely, each RB cell was contacted by 25 rods. Each RB axon terminal contacted four or five AII amacrine cells via 53 ribbon synapses. Thus, the signal from one rod may be represented as 106 replicates at two RB axons. Moreover, the two adjacent RB cells contacted two to four AII amacrine cells in common, where the signals relayed by two RB cells were reunited. In more detail, over 50% of each RB output was directed predominantly to a single, preferred AII amacrine cell, although each RB cell also separately contacted another one to three AII amacrine cells. Most of the replicate signals at two RB axons were collected on a few AII amacrine cells via reunions, dominant connections, and electrical coupling by AII-AII gap junctions. Thus the original signal may be reliably represented by signal amplification with focal accumulation without gathering unnecessary noise from a wide surrounding area. This allocation of RB-AII synaptic contacts may serve as the structural basis for the physiological properties of the AII single-photon response that include high amplification, local adaptation, and regenerative acceleration.
Collapse
Affiliation(s)
- Yoshihiko Tsukamoto
- Studio Retina, Satonaka, Nishinomiya, Hyogo, 663-8183, Japan; Department of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | | |
Collapse
|
23
|
Pang JJ, Paul DL, Wu SM. Survey on amacrine cells coupling to retrograde-identified ganglion cells in the mouse retina. Invest Ophthalmol Vis Sci 2013; 54:5151-62. [PMID: 23821205 DOI: 10.1167/iovs.13-11774] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Retinal amacrine cells (ACs) may make inhibitory chemical synapses and potentially excitatory gap junctions on ganglion cells (GCs). The total number and subtypes of ACs coupled to the entire GC population were investigated in wild-type and three lines of transgenic mice. METHODS GCs and GC-coupled ACs were identified by the previously established LY-NB (Lucifer yellow-Neurobiotin) retrograde double-labeling technique, in conjunction with specific antibodies and confocal microscopy. RESULTS GC-coupled ACs (NB-positive and LY-negative) comprised nearly 11% of displaced ACs and 4% of conventional ACs in wild-type mice, and were 9% and 4% of displaced ACs in Cx45(-/-) and Cx36/45(-/-) mice, respectively. Their somas were small in Cx36/45(-/-) mice, but variable in other strains. They were mostly γ-aminobutyric acid (GABA)-immunoreactive (IR) and located in the GC layer. They comprised only a small portion in the AC subpopulations, including GABA-IR, glycine-IR, calretinin-IR, 5-HT-accumulating, and ON-type choline acetyltransferase (ChAT) ACs in wild-type and ChAT transgenic mice (ChAT- tdTomato). In the distal 80% of the inner plexiform layer (IPL), dense GC dendrites coexisted with rich glycine-IR and GABA-IR. In the inner 20% of the IPL, sparse GC dendrites presented with a major GABA band and sparse glycine-IR. CONCLUSIONS Various subtypes of ACs may couple to GCs. ACs of the same immunoreactivity may either couple or not couple to GCs. Cx36 and Cx45 dominate GC-AC coupling except for small ACs. The overall potency of GC-AC coupling is moderate, especially in the proximal 20% of the IPL, where inhibitory chemical signals are dominated by GABA ACs.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
24
|
|
25
|
Affiliation(s)
- R F Nelson
- NINDS, NIH, Basic Neurosciences Program, 5625 Fisher’s Lane, Room TS-09, Rockville, MD 20892-9406, USA.
| |
Collapse
|
26
|
Pang JJ, Gao F, Paul DL, Wu SM. Rod, M-cone and M/S-cone inputs to hyperpolarizing bipolar cells in the mouse retina. J Physiol 2012; 590:845-54. [PMID: 22219344 PMCID: PMC3381314 DOI: 10.1113/jphysiol.2011.224113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/27/2011] [Indexed: 11/08/2022] Open
Abstract
Bipolar cells are the central neurons of the retina that convey visual signals from rod and cone photoreceptors in the outer retina to higher-order neurons in the inner retina and the brain. Early anatomical studies have suggested that there are four types of cone hyperpolarizing (OFF) bipolar cells (HBCs) in the mouse retina, but no light responses have been systematically examined. By analysing light-evoked cation and chloride currents (I(C) and I(Cl)) from over 50 morphologically identified HBCs in the dark-adapted wildtype and connexin36 knockout (Cx36(-/-)) mouse retinas, we identified three types of HBCs, each with distinct light responses and morphological characteristics. The HBC(R/MC)s with axon terminals ramifying between 0% and 30% of the inner plexiform layer (IPL) receive mixed inputs from rods and M-cones, the HBC(MC)s with axon terminals ramifying between 10% and 50% of the IPL receive inputs primarily from M-cones, and the HBC(M/SC)s with axon terminals ramifying between 25% and 50% of IPL receive inputs primarily from cones with mixed M- and S-cone pigments. Moreover, we found that HBC(R/MC)s in the Cx36(-/-) mice exhibit light responses very similar to the wildtype HBC(R/MC)s, suggesting that the mixed rod-cone inputs are not mediated by connexin36-dependent rod-cone coupling, but rather by direct synaptic contacts from rods and M-cones. This study constitutes the first systematic investigation that correlates light response characteristics and axonal morphology of HBCs in dark-adapted mouse retina, and contributes to recently emerging evidence that revises the traditional view that mammalian HBCs only contact cone photoreceptors.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA
| | | | | | | |
Collapse
|