1
|
Yue WWS, Touhara KK, Toma K, Duan X, Julius D. Endogenous opioid signalling regulates spinal ependymal cell proliferation. Nature 2024; 634:407-414. [PMID: 39294372 DOI: 10.1038/s41586-024-07889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2024] [Indexed: 09/20/2024]
Abstract
After injury, mammalian spinal cords develop scars to confine the lesion and prevent further damage. However, excessive scarring can hinder neural regeneration and functional recovery1,2. These competing actions underscore the importance of developing therapeutic strategies to dynamically modulate scar progression. Previous research on scarring has primarily focused on astrocytes, but recent evidence has suggested that ependymal cells also participate. Ependymal cells normally form the epithelial layer encasing the central canal, but they undergo massive proliferation and differentiation into astroglia following certain injuries, becoming a core scar component3-7. However, the mechanisms regulating ependymal proliferation in vivo remain unclear. Here we uncover an endogenous κ-opioid signalling pathway that controls ependymal proliferation. Specifically, we detect expression of the κ-opioid receptor, OPRK1, in a functionally under-characterized cell type known as cerebrospinal fluid-contacting neuron (CSF-cN). We also discover a neighbouring cell population that expresses the cognate ligand prodynorphin (PDYN). Whereas κ-opioids are typically considered inhibitory, they excite CSF-cNs to inhibit ependymal proliferation. Systemic administration of a κ-antagonist enhances ependymal proliferation in uninjured spinal cords in a CSF-cN-dependent manner. Moreover, a κ-agonist impairs ependymal proliferation, scar formation and motor function following injury. Together, our data suggest a paracrine signalling pathway in which PDYN+ cells tonically release κ-opioids to stimulate CSF-cNs and suppress ependymal proliferation, revealing an endogenous mechanism and potential pharmacological strategy for modulating scarring after spinal cord injury.
Collapse
Affiliation(s)
- Wendy W S Yue
- Department of Physiology, University of California, San Francisco, CA, USA.
| | - Kouki K Touhara
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Xiong Y, Pi W, Zhao W, Shi W, Yan W, Yang H, Zhou Y, Li Q, Yang L. Roles of cerebrospinal fluid-contacting neurons as potential neural stem cells in the repair and regeneration of spinal cord injuries. Front Cell Dev Biol 2024; 12:1426395. [PMID: 38983786 PMCID: PMC11231923 DOI: 10.3389/fcell.2024.1426395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) represent a distinct group of interneurons characterized by their prominent apical globular protrusions penetrating the spinal cord's central canal and their basal axons extending towards adjacent cells. Identified nearly a century back, the specific roles and attributes of CSF-cNs have just started to emerge due to the historical lack of definitive markers. Recent findings have confirmed that CSF-cNs expressing PKD2L1 possess attributes of neural stem cells, suggesting a critical function in the regeneration processes following spinal cord injuries. This review aims to elucidate the molecular markers of CSF-cNs as potential neural stem cells during spinal cord development and assess their roles post-spinal cord injury, with an emphasis on their potential therapeutic implications for spinal cord repair.
Collapse
Affiliation(s)
- Yanxiang Xiong
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wang Zhao
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiwei Shi
- Department of Medical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weihong Yan
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hao Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanrong Zhou
- Department of Health, The Qinglong County People’s Hospital, Qinglong, Guizhou, China
| | - Qing Li
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Leiluo Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Riondel P, Jurčić N, Mounien L, Ibrahim S, Ramirez-Franco J, Stefanovic S, Trouslard J, Wanaverbecq N, Seddik R. Evidence for Two Subpopulations of Cerebrospinal Fluid-Contacting Neurons with Opposite GABAergic Signaling in Adult Mouse Spinal Cord. J Neurosci 2024; 44:e2289222024. [PMID: 38684364 PMCID: PMC11140688 DOI: 10.1523/jneurosci.2289-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl-) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na+-K+-Cl- cotransporter 1 (NKCC1) allowing intracellular Cl- accumulation. However, we did not find expression of the K+-Cl- cotransporter 2 (KCC2) responsible for Cl- efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl- extrusion capacity in CSF-cNs under high Cl- load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl- concentration, we found that the activation of ionotropic GABAA receptors (GABAA-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABAB receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K+ currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABAA-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit.
Collapse
Affiliation(s)
- Priscille Riondel
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, Marseille 13005, France
| | - Nina Jurčić
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, Marseille 13005, France
| | - Lourdes Mounien
- C2VN, Aix-Marseille Université, INRAE, INSERM, Marseille 13005, France
- PhenoMARS, Aix-Marseille Technology Platform, Marseille 13005, France
| | - Stéphanie Ibrahim
- C2VN, Aix-Marseille Université, INRAE, INSERM, Marseille 13005, France
| | - Jorge Ramirez-Franco
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, Marseille 13005, France
| | - Sonia Stefanovic
- C2VN, Aix-Marseille Université, INRAE, INSERM, Marseille 13005, France
| | - Jérôme Trouslard
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, Marseille 13005, France
| | - Nicolas Wanaverbecq
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, Marseille 13005, France
| | - Riad Seddik
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, Marseille 13005, France
| |
Collapse
|
4
|
Cucun G, Köhler M, Pfitsch S, Rastegar S. Insights into the mechanisms of neuron generation and specification in the zebrafish ventral spinal cord. FEBS J 2024; 291:646-662. [PMID: 37498183 DOI: 10.1111/febs.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
The vertebrate nervous system is composed of a wide range of neurons and complex synaptic connections, raising the intriguing question of how neuronal diversity is generated. The spinal cord provides an excellent model for exploring the mechanisms governing neuronal diversity due to its simple neural network and the conserved molecular processes involved in neuron formation and specification during evolution. This review specifically examines two distinct progenitor domains present in the zebrafish ventral spinal cord: the lateral floor plate (LFP) and the p2 progenitor domain. The LFP is responsible for the production of GABAergic Kolmer-Agduhr neurons (KA″), glutamatergic V3 neurons, and intraspinal serotonergic neurons, while the p2 domain generates V2 precursors that subsequently differentiate into three unique subpopulations of V2 neurons, namely glutamatergic V2a, GABAergic V2b, and glycinergic V2s. Based on recent findings, we will examine the fundamental signaling pathways and transcription factors that play a key role in the specification of these diverse neurons and neuronal subtypes derived from the LFP and p2 progenitor domains.
Collapse
Affiliation(s)
- Gokhan Cucun
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Melina Köhler
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sabrina Pfitsch
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sepand Rastegar
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Yue WWS, Touhara KK, Toma K, Duan X, Julius D. Endogenous Opioid Signaling Regulates Proliferation of Spinal Cord Ependymal Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.556726. [PMID: 38883735 PMCID: PMC11178014 DOI: 10.1101/2023.09.07.556726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
After injury, mammalian spinal cords develop scars to seal off the damaged area and prevent further injury. However, excessive scarring can hinder neural regeneration and functional recovery (1, 2). These competing actions underscore the importance of developing therapeutic strategies to dynamically modulate the extent of scar formation. Previous research on scar formation has primarily focused on the role of astrocytes, but recent evidence suggests that ependymal cells also participate. Ependymal cells normally form the epithelial layer encasing the central canal, but they undergo massive proliferation and differentiation into astroglia following certain types of injury, becoming a core component of scars (3-7). However, the mechanisms regulating ependymal proliferation in vivo in both healthy and injured conditions remain unclear. Here, we uncover an intercellular kappa (κ) opioid signaling pathway that controls endogenous ependymal proliferation. Specifically, we detect expression of the κ opioid receptor, OPRK1, in a functionally under-characterized cell type called cerebrospinal fluid-contacting neurons (CSF-cNs). We also discover a neighboring cell population that express the cognate ligand, prodynorphin (PDYN). Importantly, OPRK1 activation excites CSF-cNs, and systemic administration of a κ antagonist enhances ependymal proliferation in uninjured spinal cords in a CSF-cN-dependent manner. Moreover, injecting a κ agonist reduces the proliferation induced by dorsal hemisection. Altogether, our data suggest a regulatory mechanism whereby PDYN + cells tonically release κ opioids to stimulate CSF-cNs, which in turn suppress ependymal proliferation. This endogenous pathway provides a mechanistic basis for the potential use of κ opiates in modulating scar formation and treating spinal cord injuries.
Collapse
|
6
|
Wyart C, Carbo-Tano M, Cantaut-Belarif Y, Orts-Del'Immagine A, Böhm UL. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat Rev Neurosci 2023; 24:540-556. [PMID: 37558908 DOI: 10.1038/s41583-023-00723-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
The cerebrospinal fluid (CSF) is a complex solution that circulates around the CNS, and whose composition changes as a function of an animal's physiological state. Ciliated neurons that are bathed in the CSF - and thus referred to as CSF-contacting neurons (CSF-cNs) - are unusual polymodal interoceptive neurons. As chemoreceptors, CSF-cNs respond to variations in pH and osmolarity and to bacterial metabolites in the CSF. Their activation during infections of the CNS results in secretion of compounds to enhance host survival. As mechanosensory neurons, CSF-cNs operate together with an extracellular proteinaceous polymer known as the Reissner fibre to detect compression during spinal curvature. Once activated, CSF-cNs inhibit motor neurons, premotor excitatory neurons and command neurons to enhance movement speed and stabilize posture. At longer timescales, CSF-cNs instruct morphogenesis throughout life via the release of neuropeptides that act over long distances on skeletal muscle. Finally, recent evidence suggests that mouse CSF-cNs may act as neural stem cells in the spinal cord, inspiring new paths of investigation for repair after injury.
Collapse
Affiliation(s)
- Claire Wyart
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France.
| | - Martin Carbo-Tano
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | | | - Urs L Böhm
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Liu X, Rich K, Nasseri SM, Li G, Hjæresen S, Finsen B, Scherberger H, Svenningsen Å, Zhang M. A Comparison of PKD2L1-Expressing Cerebrospinal Fluid Contacting Neurons in Spinal Cords of Rodents, Carnivores, and Primates. Int J Mol Sci 2023; 24:13582. [PMID: 37686387 PMCID: PMC10488076 DOI: 10.3390/ijms241713582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Cerebrospinal fluid contacting neurons (CSF-cNs) are a specific type of neurons located around the ventricles in the brain and the central canal in the spinal cord and have been demonstrated to be intrinsic sensory neurons in the central nervous system. One of the important channels responsible for the sensory function is the polycystic kidney disease 2-like 1 (PKD2L1) channel. Most of the studies concerning the distribution and function of the PKD2L1-expressing CSF-cNs in the spinal cord have previously been performed in non-mammalian vertebrates. In the present study immunohistochemistry was performed to determine the distribution of PKD2L1-immunoreactive (IR) CSF-cNs in the spinal cords of four mammalian species: mouse, rat, cat, and macaque monkey. Here, we found that PKD2L1-expressing CSF-cNs were present at all levels of the spinal cord in these animal species. Although the distribution pattern was similar across these species, differences existed. Mice and rats presented a clear PKD2L1-IR cell body labeling, whereas in cats and macaques the PKD2L1-IR cell bodies were more weakly labeled. Ectopic PKD2L1-IR neurons away from the ependymal layer were observed in all the animal species although the abundance and the detailed locations varied. The apical dendritic protrusions with ciliated fibers were clearly seen in the lumen of the central canal in all the animal species, but the sizes of protrusion bulbs were different among the species. PKD2L1-IR cell bodies/dendrites were co-expressed with doublecortin, MAP2 (microtubule-associated protein 2), and aromatic L-amino acid decarboxylase, but not with NeuN (neuronal nuclear protein), indicating their immature properties and ability to synthesize monoamine transmitters. In addition, in situ hybridization performed in rats revealed PKD2L1 mRNA expression in the cells around the central canal. Our results indicate that the intrinsic sensory neurons are conserved across non-mammalian and mammalian vertebrates. The similar morphology of the dendritic bulbs with ciliated fibers (probably representing stereocilia and kinocilia) protruding into the central canal across different animal species supports the notion that PKD2L1 is a chemo- and mechanical sensory channel that responds to mechanical stimulations and maintains homeostasis of the spinal cord. However, the differences of PKD2L1 distribution and expression between the species suggest that PKD2L1-expressing neurons may receive and process sensory signals differently in different animal species.
Collapse
Affiliation(s)
- Xiaohe Liu
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Karen Rich
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Sohail M. Nasseri
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Guifa Li
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Simone Hjæresen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Bente Finsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Hansjörg Scherberger
- Deutsches Primantenzentrum, GmbH, 37077 Göttingen, Germany;
- Department of Biology and Psychology, University of Göttingen, 37077 Göttingen, Germany
| | - Åsa Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
- BRIDGE, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Mengliang Zhang
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
- BRIDGE, University of Southern Denmark, DK-5000 Odense, Denmark
| |
Collapse
|
8
|
Prendergast AE, Jim KK, Marnas H, Desban L, Quan FB, Djenoune L, Laghi V, Hocquemiller A, Lunsford ET, Roussel J, Keiser L, Lejeune FX, Dhanasekar M, Bardet PL, Levraud JP, van de Beek D, Vandenbroucke-Grauls CMJE, Wyart C. CSF-contacting neurons respond to Streptococcus pneumoniae and promote host survival during central nervous system infection. Curr Biol 2023; 33:940-956.e10. [PMID: 36791723 DOI: 10.1016/j.cub.2023.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The pathogenic bacterium Streptococcus pneumoniae (S. pneumoniae) can invade the cerebrospinal fluid (CSF) and cause meningitis with devastating consequences. Whether and how sensory cells in the central nervous system (CNS) become activated during bacterial infection, as recently reported for the peripheral nervous system, is not known. We find that CSF infection by S. pneumoniae in larval zebrafish leads to changes in posture and behavior that are reminiscent of pneumococcal meningitis, including dorsal arching and epileptic-like seizures. We show that during infection, invasion of the CSF by S. pneumoniae massively activates in vivo sensory neurons contacting the CSF, referred to as "CSF-cNs" and previously shown to detect spinal curvature and to control posture, locomotion, and spine morphogenesis. We find that CSF-cNs express orphan bitter taste receptors and respond in vitro to bacterial supernatant and metabolites via massive calcium transients, similar to the ones observed in vivo during infection. Upon infection, CSF-cNs also upregulate the expression of numerous cytokines and complement components involved in innate immunity. Accordingly, we demonstrate, using cell-specific ablation and blockade of neurotransmission, that CSF-cN neurosecretion enhances survival of the host during S. pneumoniae infection. Finally, we show that CSF-cNs respond to various pathogenic bacteria causing meningitis in humans, as well as to the supernatant of cells infected by a neurotropic virus. Altogether, our work uncovers that central sensory neurons in the spinal cord, previously involved in postural control and morphogenesis, contribute as well to host survival by responding to the invasion of the CSF by pathogenic bacteria during meningitis.
Collapse
Affiliation(s)
- Andrew E Prendergast
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Kin Ki Jim
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Neuroscience, 1081 HV Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Prevention, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, the Netherlands
| | - Hugo Marnas
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Laura Desban
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Feng B Quan
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Lydia Djenoune
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Valerio Laghi
- Institut Pasteur, Unité Macrophages et Développement, Centre National de la Recherche Scientifique (CNRS), Université Paris-Cité, 75015 Paris, France
| | - Agnès Hocquemiller
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Elias T Lunsford
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Julian Roussel
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Ludovic Keiser
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 18, 1015 Lausanne, Switzerland
| | - Francois-Xavier Lejeune
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Mahalakshmi Dhanasekar
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Pierre-Luc Bardet
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Jean-Pierre Levraud
- Institut Pasteur, Unité Macrophages et Développement, Centre National de la Recherche Scientifique (CNRS), Université Paris-Cité, 75015 Paris, France; Université Paris-Saclay, CNRS, Institut Pasteur, Université Paris-Cité, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Diederik van de Beek
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Neuroscience, 1081 HV Amsterdam, the Netherlands
| | - Christina M J E Vandenbroucke-Grauls
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Prevention, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, the Netherlands.
| | - Claire Wyart
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
9
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
10
|
Abstract
Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.
Collapse
Affiliation(s)
- Orhi Esarte Palomero
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
11
|
Nakamura Y, Kurabe M, Matsumoto M, Sato T, Miytashita S, Hoshina K, Kamiya Y, Tainaka K, Matsuzawa H, Ohno N, Ueno M. Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord. eLife 2023; 12:83108. [PMID: 36805807 PMCID: PMC9943067 DOI: 10.7554/elife.83108] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) are enigmatic mechano- or chemosensory cells lying along the central canal of the spinal cord. Recent studies in zebrafish larvae and lampreys have shown that CSF-cNs control postures and movements via spinal connections. However, the structures, connectivity, and functions in mammals remain largely unknown. Here we developed a method to genetically target mouse CSF-cNs that highlighted structural connections and functions. We first found that intracerebroventricular injection of adeno-associated virus with a neuron-specific promoter and Pkd2l1-Cre mice specifically labeled CSF-cNs. Single-cell labeling of 71 CSF-cNs revealed rostral axon extensions of over 1800 μm in unmyelinated bundles in the ventral funiculus and terminated on CSF-cNs to form a recurrent circuitry, which was further determined by serial electron microscopy and electrophysiology. CSF-cNs were also found to connect with axial motor neurons and premotor interneurons around the central canal and within the axon bundles. Chemogenetic CSF-cNs inactivation reduced speed and step frequency during treadmill locomotion. Our data revealed the basic structures and connections of mouse CSF-cNs to control spinal motor circuits for proper locomotion. The versatile methods developed in this study will contribute to further understanding of CSF-cN functions in mammals.
Collapse
Affiliation(s)
- Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Miyuki Kurabe
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological SciencesOkazakiJapan,Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Satoshi Miytashita
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Kana Hoshina
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Hitoshi Matsuzawa
- Center for Advanced Medicine and Clinical Research, Kashiwaba Neurosurgical HospitalSapporoJapan,Center for Integrated Human Brain Science, Niigata UniversityNiigataJapan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of MedicineShimotsukeJapan,Division of Ultrastructural Research, National Institute for Physiological SciencesOkazakiJapan
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| |
Collapse
|
12
|
Johnson E, Clark M, Oncul M, Pantiru A, MacLean C, Deuchars J, Deuchars SA, Johnston J. Graded spikes differentially signal neurotransmitter input in cerebrospinal fluid contacting neurons of the mouse spinal cord. iScience 2022; 26:105914. [PMID: 36691620 PMCID: PMC9860393 DOI: 10.1016/j.isci.2022.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The action potential and its all-or-none nature is fundamental to neural communication. Canonically, the action potential is initiated once voltage-activated Na+ channels are activated, and their rapid kinetics of activation and inactivation give rise to the action potential's all-or-none nature. Here we demonstrate that cerebrospinal fluid contacting neurons (CSFcNs) surrounding the central canal of the mouse spinal cord employ a different strategy. Rather than using voltage-activated Na+ channels to generate binary spikes, CSFcNs use two different types of voltage-activated Ca2+ channel, enabling spikes of different amplitude. T-type Ca2+ channels generate small amplitude spikes, whereas larger amplitude spikes require high voltage-activated Cd2+-sensitive Ca2+ channels. We demonstrate that these different amplitude spikes can signal input from different transmitter systems; purinergic inputs evoke smaller T-type dependent spikes whereas cholinergic inputs evoke larger spikes that do not rely on T-type channels. Different synaptic inputs to CSFcNs can therefore be signaled by the spike amplitude.
Collapse
Affiliation(s)
- Emily Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marilyn Clark
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Merve Oncul
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andreea Pantiru
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Claudia MacLean
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Susan A. Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jamie Johnston
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK,Corresponding author
| |
Collapse
|
13
|
Jurčić N, Michelle C, Trouslard J, Wanaverbecq N, Kastner A. Evidence for PKD2L1-positive neurons distant from the central canal in the ventromedial spinal cord and medulla of the adult mouse. Eur J Neurosci 2021; 54:4781-4803. [PMID: 34097332 DOI: 10.1111/ejn.15342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Neurons in contact with the cerebrospinal fluid (CSF) are found around the medullo-spinal central canal (CC) in adult mice. These neurons (CSF-cNs), located within or below the ependymal cell layer, known as the stem cell niche, present a characteristic morphology with a dendrite projecting to the CC and ending with a protrusion. They are GABAergic, present an intermediate neuronal maturity and selectively express PKD2L1, a member of the transient receptor potential channel superfamily with sensory properties. Using immunohistological and electrophysiological recording techniques in mice, we characterize the properties of a new population of PKD2L1 positive cells that is distant from the CC in a zone enriched with astrocytes and ependymal fibers of the ventro-medial spinal cord and medulla. They appear around embryonic day 16 and their number increases up to early postnatal days. With development and the reorganization of the CC region, they progressively become more distant from the CC, suggesting some migratory capabilities. These neurons share functional and phenotypical properties with CSF-cNs but appear subdivided in two groups. One group, present along the midline, has a bipolar morphology and extends a long dendrite along ependymal fibers and towards the CC. The second group, localized in more ventro-lateral regions, has a multipolar morphology and no apparent projection to the CC. Altogether, we describe a novel population of PKD2L1+ neurons distant from the CC but with properties similar to CSF-cNs that might serve to sense modification in the composition of either CSF or interstitial liquid, a function that will need to be confirmed.
Collapse
Affiliation(s)
- Nina Jurčić
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Caroline Michelle
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Jérôme Trouslard
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Nicolas Wanaverbecq
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Anne Kastner
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| |
Collapse
|
14
|
Wu MY, Carbo-Tano M, Mirat O, Lejeune FX, Roussel J, Quan FB, Fidelin K, Wyart C. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr Biol 2021; 31:3315-3329.e5. [PMID: 34146485 DOI: 10.1016/j.cub.2021.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.
Collapse
Affiliation(s)
- Ming-Yue Wu
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Martin Carbo-Tano
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Francois-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Kevin Fidelin
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| |
Collapse
|
15
|
Bearce EA, Grimes DT. On being the right shape: Roles for motile cilia and cerebrospinal fluid flow in body and spine morphology. Semin Cell Dev Biol 2020; 110:104-112. [PMID: 32693941 DOI: 10.1016/j.semcdb.2020.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
How developing and growing organisms attain their proper shape is a central problem of developmental biology. In this review, we investigate this question with respect to how the body axis and spine form in their characteristic linear head-to-tail fashion in vertebrates. Recent work in the zebrafish has implicated motile cilia and cerebrospinal fluid flow in axial morphogenesis and spinal straightness. We begin by introducing motile cilia, the fluid flows they generate and their roles in zebrafish development and growth. We then describe how cilia control body and spine shape through sensory cells in the spinal canal, a thread-like extracellular structure called the Reissner fiber, and expression of neuropeptide signals. Last, we discuss zebrafish mutants in which spinal straightness breaks down and three-dimensional curves form. These curves resemble the common but little-understood human disease Idiopathic Scoliosis. Zebrafish research is therefore poised to make progress in our understanding of this condition and, more generally, how body and spine shape is acquired and maintained through development and growth.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
16
|
Littlejohn EL, Fedorchak S, Boychuk CR. Sex-steroid-dependent plasticity of brain-stem autonomic circuits. Am J Physiol Regul Integr Comp Physiol 2020; 319:R60-R68. [PMID: 32493037 DOI: 10.1152/ajpregu.00357.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the central nervous system (CNS), nuclei of the brain stem play a critical role in the integration of peripheral sensory information and the regulation of autonomic output in mammalian physiology. The nucleus tractus solitarius of the brain stem acts as a relay center that receives peripheral sensory input from vagal afferents of the nodose ganglia, integrates information from within the brain stem and higher central centers, and then transmits autonomic efferent output through downstream premotor nuclei, such as the nucleus ambiguus, the dorsal motor nucleus of the vagus, and the rostral ventral lateral medulla. Although there is mounting evidence that sex and sex hormones modulate autonomic physiology at the level of the CNS, the mechanisms and neurocircuitry involved in producing these functional consequences are poorly understood. Of particular interest in this review is the role of estrogen, progesterone, and 5α-reductase-dependent neurosteroid metabolites of progesterone (e.g., allopregnanolone) in the modulation of neurotransmission within brain-stem autonomic neurocircuits. This review will discuss our understanding of the actions and mechanisms of estrogen, progesterone, and neurosteroids at the cellular level of brain-stem nuclei. Understanding the complex interaction between sex hormones and neural signaling plasticity of the autonomic nervous system is essential to elucidating the role of sex in overall physiology and disease.
Collapse
Affiliation(s)
- Erica L Littlejohn
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
17
|
Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo. Curr Biol 2020; 30:827-839.e4. [PMID: 32084399 DOI: 10.1016/j.cub.2019.12.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 02/04/2023]
Abstract
Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.
Collapse
|
18
|
Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons. PLoS Biol 2019; 17:e3000235. [PMID: 31002663 PMCID: PMC6493769 DOI: 10.1371/journal.pbio.3000235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/01/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple types of microvilliated sensory cells exhibit an apical extension thought to be instrumental in the detection of sensory cues. The investigation of the mechanisms underlying morphogenesis of sensory apparatus is critical to understand the biology of sensation. Most of what we currently know comes from the study of the hair bundle of the inner ear sensory cells, but morphogenesis and function of other sensory microvilliated apical extensions remain poorly understood. We focused on spinal sensory neurons that contact the cerebrospinal fluid (CSF) through the projection of a microvilliated apical process in the central canal, referred to as cerebrospinal fluid-contacting neurons (CSF-cNs). CSF-cNs respond to pH and osmolarity changes as well as mechanical stimuli associated with changes of flow and tail bending. In vivo time-lapse imaging in zebrafish embryos revealed that CSF-cNs are atypical neurons that do not lose their apical attachment and form a ring of actin at the apical junctional complexes (AJCs) that they retain during differentiation. We show that the actin-based protrusions constituting the microvilliated apical extension arise and elongate from this ring of actin, and we identify candidate molecular factors underlying every step of CSF-cN morphogenesis. We demonstrate that Crumbs 1 (Crb1), Myosin 3b (Myo3b), and Espin orchestrate the morphogenesis of CSF-cN apical extension. Using calcium imaging in crb1 and espin mutants, we further show that the size of the apical extension modulates the amplitude of CSF-cN sensory response to bending of the spinal cord. Based on our results, we propose that the apical actin ring could be a common site of initiation of actin-based protrusions in microvilliated sensory cells. Furthermore, our work provides a set of actors underlying actin-based protrusion elongation shared by different sensory cell types and highlights the critical role of the apical extension shape in sensory detection. A study of differentiating spinal sensory neurons in vivo uncovers critical factors required for the morphogenesis of sensory microvilli and reveals fine modulation of mechanosensory responses by microvillus length.
Collapse
|
19
|
Goyal RK, Guo Y, Mashimo H. Advances in the physiology of gastric emptying. Neurogastroenterol Motil 2019; 31:e13546. [PMID: 30740834 PMCID: PMC6850045 DOI: 10.1111/nmo.13546] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/29/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
There have been many recent advances in the understanding of various aspects of the physiology of gastric motility and gastric emptying. Earlier studies had discovered the remarkable ability of the stomach to regulate the timing and rate of emptying of ingested food constituents and the underlying motor activity. Recent studies have shown that two parallel neural circuits, the gastric inhibitory vagal motor circuit (GIVMC) and the gastric excitatory vagal motor circuit (GEVMC), mediate gastric inhibition and excitation and therefore the rate of gastric emptying. The GIVMC includes preganglionic cholinergic neurons in the DMV and the postganglionic inhibitory neurons in the myenteric plexus that act by releasing nitric oxide, ATP, and peptide VIP. The GEVMC includes distinct gastric excitatory preganglionic cholinergic neurons in the DMV and postganglionic excitatory cholinergic neurons in the myenteric plexus. Smooth muscle is the final target of these circuits. The role of the intramuscular interstitial cells of Cajal in neuromuscular transmission remains debatable. The two motor circuits are differentially regulated by different sets of neurons in the NTS and vagal afferents. In the digestive period, many hormones including cholecystokinin and GLP-1 inhibit gastric emptying via the GIVMC, and in the inter-digestive period, hormones ghrelin and motilin hasten gastric emptying by stimulating the GEVMC. The GIVMC and GEVMC are also connected to anorexigenic and orexigenic neural pathways, respectively. Identification of the control circuits of gastric emptying may provide better delineation of the pathophysiology of abnormal gastric emptying and its relationship to satiety signals and food intake.
Collapse
Affiliation(s)
- Raj K. Goyal
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| | - Yanmei Guo
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| | - Hiroshi Mashimo
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
20
|
|
21
|
Jurčić N, Er-Raoui G, Airault C, Trouslard J, Wanaverbecq N, Seddik R. GABA B receptors modulate Ca 2+ but not G protein-gated inwardly rectifying K + channels in cerebrospinal-fluid contacting neurones of mouse brainstem. J Physiol 2018; 597:631-651. [PMID: 30418666 DOI: 10.1113/jp277172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/08/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Medullo-spinal CSF contacting neurones (CSF-cNs) located around the central canal are conserved in all vertebrates and suggested to be a novel sensory system intrinsic to the CNS. CSF-cNs receive GABAergic inhibitory synaptic inputs involving ionotropic GABAA receptors, but the contribution of metabotropic GABAB receptors (GABAB -Rs) has not yet been studied. Here, we indicate that CSF-cNs express functional GABAB -Rs that inhibit postsynaptic calcium channels but fail to activate inhibitory potassium channel of the Kir3-type. We further show that GABAB -Rs localise presynaptically on GABAergic and glutamatergic synaptic inputs contacting CSF-cNs, where they inhibit the release of GABA and glutamate. Our data are the first to address the function of GABAB -Rs in CSF-cNs and show that on the presynaptic side they exert a classical synaptic modulation whereas at the postsynaptic level they have an atypical action by modulating calcium signalling without inducing potassium-dependent inhibition. ABSTRACT Medullo-spinal neurones that contact the cerebrospinal fluid (CSF-cNs) are a population of evolutionary conserved cells located around the central canal. CSF-cN activity has been shown to be regulated by inhibitory synaptic inputs involving ionotropic GABAA receptors, but the contribution of the G-protein coupled GABAB receptors has not yet been studied. Here, we used a combination of immunofluorescence, electrophysiology and calcium imaging to investigate the expression and function of GABAB -Rs in CSF-cNs of the mouse brainstem. We found that CSF-cNs express GABAB -Rs, but their selective activation failed to induce G protein-coupled inwardly rectifying potassium (GIRK) currents. Instead, CSF-cNs express primarily N-type voltage-gated calcium (CaV 2.2) channels, and GABAB -Rs recruit Gβγ subunits to inhibit CaV channel activity induced by membrane voltage steps or under physiological conditions by action potentials. Moreover, using electrical stimulation, we indicate that GABAergic inhibitory (IPSCs) and excitatory glutamatergic (EPSCs) synaptic currents can be evoked in CSF-cNs showing that mammalian CSF-cNs are also under excitatory control by glutamatergic synaptic inputs. We further demonstrate that baclofen reversibly reduced the amplitudes of both IPSCs and EPSCs evoked in CSF-cNs through a presynaptic mechanism of regulation. In summary, these results are the first to demonstrate the existence of functional postsynaptic GABAB -Rs in medullar CSF-cNs, as well as presynaptic GABAB auto- and heteroreceptors regulating the release of GABA and glutamate. Remarkably, postsynaptic GABAB -Rs associate with CaV but not GIRK channels, indicating that GABAB -Rs function as a calcium signalling modulator without GIRK-dependent inhibition in CSF-cNs.
Collapse
Affiliation(s)
- Nina Jurčić
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Ghizlane Er-Raoui
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France.,Université Sultan Moulay Slimane, Laboratoire de Génie Biologique, Béni Mellal, Morocco
| | | | - Jérôme Trouslard
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | | | - Riad Seddik
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| |
Collapse
|
22
|
Cerebrospinal Fluid-Contacting Neurons Sense pH Changes and Motion in the Hypothalamus. J Neurosci 2018; 38:7713-7724. [PMID: 30037834 DOI: 10.1523/jneurosci.3359-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 01/20/2023] Open
Abstract
CSF-contacting (CSF-c) cells are present in the walls of the brain ventricles and the central canal of the spinal cord and found throughout the vertebrate phylum. We recently identified ciliated somatostatin-/GABA-expressing CSF-c neurons in the lamprey spinal cord that act as pH sensors as well as mechanoreceptors. In the same neuron, acidic and alkaline responses are mediated through ASIC3-like and PKD2L1 channels, respectively. Here, we investigate the functional properties of the ciliated somatostatin-/GABA-positive CSF-c neurons in the hypothalamus by performing whole-cell recordings in hypothalamic slices. Depolarizing current pulses readily evoked action potentials, but hypothalamic CSF-c neurons had no or a very low level of spontaneous activity at pH 7.4. They responded, however, with membrane potential depolarization and trains of action potentials to small deviations in pH in both the acidic and alkaline direction. Like in spinal CSF-c neurons, the acidic response in hypothalamic cells is mediated via ASIC3-like channels. In contrast, the alkaline response appears to depend on connexin hemichannels, not on PKD2L1 channels. We also show that hypothalamic CSF-c neurons respond to mechanical stimulation induced by fluid movements along the wall of the third ventricle, a response mediated via ASIC3-like channels. The hypothalamic CSF-c neurons extend their processes dorsally, ventrally, and laterally, but as yet, the effects exerted on hypothalamic circuits are unknown. With similar neurons being present in rodents, the pH- and mechanosensing ability of hypothalamic CSF-c neurons is most likely conserved throughout vertebrate phylogeny.SIGNIFICANCE STATEMENT CSF-contacting neurons are present in all vertebrates and are located mainly in the hypothalamic area and the spinal cord. Here, we report that the somatostatin-/GABA-expressing CSF-c neurons in the lamprey hypothalamus sense bidirectional deviations in the extracellular pH and do so via different molecular mechanisms. They also serve as mechanoreceptors. The hypothalamic CSF-c neurons have extensive axonal ramifications and may decrease the level of motor activity via release of somatostatin. In conclusion, hypothalamic somatostatin-/GABA-expressing CSF-c neurons, as well as their spinal counterpart, represent a novel homeostatic mechanism designed to sense any deviation from physiological pH and thus constitute a feedback regulatory system intrinsic to the CNS, possibly serving a protective role from damage caused by changes in pH.
Collapse
|
23
|
Illes S. More than a drainage fluid: the role of CSF in signaling in the brain and other effects on brain tissue. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:33-46. [PMID: 29110778 DOI: 10.1016/b978-0-12-804279-3.00003-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Current progress in neuroscience demonstrates that the brain is not an isolated organ and is influenced by the systemic environment and extracerebral processes within the body. In view of this new concept, blood and cerebrospinal fluid (CSF) are important body fluids linking extracerebral and intracerebral processes. For decades, substantial evidence has been accumulated indicating that CSF modulates brain states and influences behavior as well as cognition. This chapter provides an overview of how CSF directly modulates the function of different types of brain cells, such as neurons, neural stem cells, and CSF-contacting cells. Alterations in CSF content occur in most pathologic central nervous system (CNS) conditions. In a classic view, the function of CSF is to drain waste products and detrimental factors derived from diseased brain parenchyma. This chapter presents examples for how intra- and extracerebral pathologic processes lead to alterations in the CSF content. Current knowledge about how pathologically altered CSF influences the functionality of brain cells will be presented. Thereby, it becomes evident that CSF has more than a drainage function and has a causal role for the etiology and pathogenesis of different CNS diseases.
Collapse
Affiliation(s)
- Sebastian Illes
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
24
|
Djenoune L, Wyart C. Light on a sensory interface linking the cerebrospinal fluid to motor circuits in vertebrates. J Neurogenet 2017; 31:113-127. [PMID: 28789587 DOI: 10.1080/01677063.2017.1359833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cerebrospinal fluid (CSF) is circulating around the entire central nervous system (CNS). The main function of the CSF has been thought to insure the global homeostasis of the CNS. Recent evidence indicates that the CSF also dynamically conveys signals modulating the development and the activity of the nervous system. The later observation implies that cues from the CSF could act on neurons in the brain and the spinal cord via bordering receptor cells. Candidate neurons to enable such modulation are the cerebrospinal fluid-contacting neurons (CSF-cNs) that are located precisely at the interface between the CSF and neuronal circuits. The atypical apical extension of CSF-cNs bears a cluster of microvilli bathing in the CSF indicating putative sensory or secretory roles in relation with the CSF. In the brainstem and spinal cord, CSF-cNs have been described in over two hundred species by Kolmer and Agduhr, suggesting an important function within the spinal cord. However, the lack of specific markers and the difficulty to access CSF-cNs hampered their physiological investigation. The transient receptor potential channel PKD2L1 is a specific marker of spinal CSF-cNs in vertebrate species. The transparency of zebrafish at early stages eases the functional characterization of pkd2l1+ CSF-cNs. Recent studies demonstrate that spinal CSF-cNs detect spinal curvature via the channel PKD2L1 and modulate locomotion and posture by projecting onto spinal interneurons and motor neurons in vivo. In vitro recordings demonstrated that spinal CSF-cNs are sensing pH variations mainly through ASIC channels, in combination with PKD2L1. Altogether, neurons contacting the CSF appear as a novel sensory modality enabling the detection of mechanical and chemical stimuli from the CSF and modulating the excitability of spinal circuits underlying locomotion and posture.
Collapse
Affiliation(s)
- Lydia Djenoune
- a Institut du Cerveau et de la Moelle épinière (ICM) , Paris , France
| | - Claire Wyart
- a Institut du Cerveau et de la Moelle épinière (ICM) , Paris , France
| |
Collapse
|
25
|
The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Sci Rep 2017; 7:719. [PMID: 28389647 PMCID: PMC5428266 DOI: 10.1038/s41598-017-00350-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/30/2017] [Indexed: 11/30/2022] Open
Abstract
Chemical and mechanical cues from the cerebrospinal fluid (CSF) can affect the development and function of the central nervous system (CNS). How such cues are detected and relayed to the CNS remains elusive. Cerebrospinal fluid-contacting neurons (CSF-cNs) situated at the interface between the CSF and the CNS are ideally located to convey such information to local networks. In the spinal cord, these GABAergic neurons expressing the PKD2L1 channel extend an apical extension into the CSF and an ascending axon in the spinal cord. In zebrafish and mouse spinal CSF-cNs originate from two distinct progenitor domains characterized by distinct cascades of transcription factors. Here we ask whether these neurons with different developmental origins differentiate into cells types with different functional properties. We show in zebrafish larva that the expression of specific markers, the morphology of the apical extension and axonal projections, as well as the neuronal targets contacted by CSF-cN axons, distinguish the two CSF-cN subtypes. Altogether our study demonstrates that the developmental origins of spinal CSF-cNs give rise to two distinct functional populations of sensory neurons. This work opens novel avenues to understand how these subtypes may carry distinct functions related to development of the spinal cord, locomotion and posture.
Collapse
|
26
|
Browning KN, Verheijden S, Boeckxstaens GE. The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation. Gastroenterology 2017; 152:730-744. [PMID: 27988382 PMCID: PMC5337130 DOI: 10.1053/j.gastro.2016.10.046] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/27/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Although the gastrointestinal tract contains intrinsic neural plexuses that allow a significant degree of independent control over gastrointestinal functions, the central nervous system provides extrinsic neural inputs that modulate, regulate, and integrate these functions. In particular, the vagus nerve provides the parasympathetic innervation to the gastrointestinal tract, coordinating the complex interactions between central and peripheral neural control mechanisms. This review discusses the physiological roles of the afferent (sensory) and motor (efferent) vagus in regulation of appetite, mood, and the immune system, as well as the pathophysiological outcomes of vagus nerve dysfunction resulting in obesity, mood disorders, and inflammation. The therapeutic potential of vagus nerve modulation to attenuate or reverse these pathophysiological outcomes and restore autonomic homeostasis is also discussed.
Collapse
Affiliation(s)
- Kirsteen N. Browning
- Department of Neural and Behavioral Science Penn State College of Medicine 500 University Drive MC H109 Hershey, PA 17033
| | - Simon Verheijden
- Translational Research Center of Gastrointestinal Disorders (TARGID) KU Leuven Herestraat 49 3000 Leuven, Belgium
| | - Guy E. Boeckxstaens
- Translational Research Center of Gastrointestinal Disorders (TARGID) KU Leuven Herestraat 49 3000 Leuven, Belgium,Division of Gastroenterology & Hepatology University Hospital Leuven Herestraat 49 3000 Leuven, Belgium,Address of correspondence: Prof. dr. Guy Boeckxstaens,
| |
Collapse
|
27
|
England SJ, Campbell PC, Banerjee S, Swanson AJ, Lewis KE. Identification and Expression Analysis of the Complete Family of Zebrafish pkd Genes. Front Cell Dev Biol 2017; 5:5. [PMID: 28271061 PMCID: PMC5318412 DOI: 10.3389/fcell.2017.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/19/2017] [Indexed: 01/01/2023] Open
Abstract
Polycystic kidney disease (PKD) proteins are trans-membrane proteins that have crucial roles in many aspects of vertebrate development and physiology, including the development of many organs as well as left–right patterning and taste. They can be divided into structurally-distinct PKD1-like and PKD2-like proteins and usually one PKD1-like protein forms a heteromeric polycystin complex with a PKD2-like protein. For example, PKD1 forms a complex with PKD2 and mutations in either of these proteins cause Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most frequent potentially-lethal single-gene disorder in humans. Here, we identify the complete family of pkd genes in zebrafish and other teleosts. We describe the genomic locations and sequences of all seven genes: pkd1, pkd1b, pkd1l1, pkd1l2a, pkd1l2b, pkd2, and pkd2l1. pkd1l2a/pkd1l2b are likely to be ohnologs of pkd1l2, preserved from the whole genome duplication that occurred at the base of the teleosts. However, in contrast to mammals and cartilaginous and holostei fish, teleosts lack pkd2l2, and pkdrej genes, suggesting that these have been lost in the teleost lineage. In addition, teleost, and holostei fish have only a partial pkd1l3 sequence, suggesting that this gene may be in the process of being lost in the ray-finned fish lineage. We also provide the first comprehensive description of the expression of zebrafish pkd genes during development. In most structures we detect expression of one pkd1-like gene and one pkd2-like gene, consistent with these genes encoding a heteromeric protein complex. For example, we found that pkd2 and pkd1l1 are expressed in Kupffer's vesicle and pkd1 and pkd2 are expressed in the developing pronephros. In the spinal cord, we show that pkd1l2a and pkd2l1 are co-expressed in KA cells. We also identify potential co-expression of pkd1b and pkd2 in the floor-plate. Interestingly, and in contrast to mouse, we observe expression of all seven pkd genes in regions that may correspond to taste receptors. Taken together, these results provide a crucial catalog of pkd genes in an important model system for elucidating cell and developmental processes and modeling human diseases and the most comprehensive analysis of embryonic pkd gene expression in any vertebrate.
Collapse
Affiliation(s)
| | - Paul C Campbell
- Department of Biology, Syracuse University Syracuse, NY, USA
| | | | | | | |
Collapse
|
28
|
Chaverra M, George L, Mergy M, Waller H, Kujawa K, Murnion C, Sharples E, Thorne J, Podgajny N, Grindeland A, Ueki Y, Eiger S, Cusick C, Babcock AM, Carlson GA, Lefcort F. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system. Dis Model Mech 2017; 10:605-618. [PMID: 28167615 PMCID: PMC5451171 DOI: 10.1242/dmm.028258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023] Open
Abstract
Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. Summary:Ikbkap is essential for normal CNS development, neuronal survival and behavior, adding to our understanding of the role of the Elongator complex in the mammalian CNS.
Collapse
Affiliation(s)
- Marta Chaverra
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.,Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Marc Mergy
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Hannah Waller
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Katharine Kujawa
- Department of Psychology, Montana State University, Bozeman, MT 59717, USA
| | - Connor Murnion
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Ezekiel Sharples
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Julian Thorne
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.,University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Nathaniel Podgajny
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | | | - Yumi Ueki
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Steven Eiger
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Cassie Cusick
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - A Michael Babcock
- Department of Psychology, Montana State University, Bozeman, MT 59717, USA
| | | | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
29
|
Orts-Del’Immagine A, Trouslard J, Airault C, Hugnot JP, Cordier B, Doan T, Kastner A, Wanaverbecq N. Postnatal maturation of mouse medullo-spinal cerebrospinal fluid-contacting neurons. Neuroscience 2017; 343:39-54. [DOI: 10.1016/j.neuroscience.2016.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 11/27/2022]
|
30
|
Hubbard JM, Böhm UL, Prendergast A, Tseng PEB, Newman M, Stokes C, Wyart C. Intraspinal Sensory Neurons Provide Powerful Inhibition to Motor Circuits Ensuring Postural Control during Locomotion. Curr Biol 2016; 26:2841-2853. [PMID: 27720623 DOI: 10.1016/j.cub.2016.08.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 01/13/2023]
Abstract
In the vertebrate spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic neurons whose functions are only beginning to unfold. Recent evidence indicates that CSF-cNs detect local spinal bending and relay this mechanosensory feedback information to motor circuits, yet many CSF-cN targets remain unknown. Using optogenetics, patterned illumination, and in vivo electrophysiology, we show here that CSF-cNs provide somatic inhibition to fast motor neurons and excitatory sensory interneurons involved in the escape circuit. Ventral CSF-cNs respond to longitudinal spinal contractions and induce large inhibitory postsynaptic currents (IPSCs) sufficient to silence spiking of their targets. Upon repetitive stimulation, these IPSCs promptly depress, enabling the mechanosensory response to the first bend to be the most effective. When CSF-cNs are silenced, postural control is compromised, resulting in rollovers during escapes. Altogether, our data demonstrate how GABAergic sensory neurons provide powerful inhibitory feedback to the escape circuit to maintain balance during active locomotion.
Collapse
Affiliation(s)
- Jeffrey Michael Hubbard
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Urs Lucas Böhm
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Andrew Prendergast
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Po-En Brian Tseng
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Morgan Newman
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Caleb Stokes
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France.
| |
Collapse
|
31
|
Böhm UL, Wyart C. Spinal sensory circuits in motion. Curr Opin Neurobiol 2016; 41:38-43. [PMID: 27573214 DOI: 10.1016/j.conb.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/09/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this view: GABAergic sensory neurons located within the spinal cord have been shown to relay mechanical and chemical information from the cerebrospinal fluid to motor circuits. Innovative approaches combining genetics, quantitative analysis of behavior and optogenetics now allow probing the contribution of these sensory feedback pathways to locomotion and recovery following spinal cord injury.
Collapse
Affiliation(s)
- Urs Lucas Böhm
- Institut du Cerveau et de la Moelle Épinière, Campus Hospitalier Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013 Paris, France; UPMC Univ., Paris 06, France; Inserm UMR S1127, France; CNRS UMR 7225, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière, Campus Hospitalier Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013 Paris, France; UPMC Univ., Paris 06, France; Inserm UMR S1127, France; CNRS UMR 7225, France.
| |
Collapse
|
32
|
Abstract
A large body of research has been dedicated to the effects of gastrointestinal peptides on vagal afferent fibres, yet multiple lines of evidence indicate that gastrointestinal peptides also modulate brainstem vagal neurocircuitry, and that this modulation has a fundamental role in the physiology and pathophysiology of the upper gastrointestinal tract. In fact, brainstem vagovagal neurocircuits comprise highly plastic neurons and synapses connecting afferent vagal fibres, second order neurons of the nucleus tractus solitarius (NTS), and efferent fibres originating in the dorsal motor nucleus of the vagus (DMV). Neuronal communication between the NTS and DMV is regulated by the presence of a variety of inputs, both from within the brainstem itself as well as from higher centres, which utilize an array of neurotransmitters and neuromodulators. Because of the circumventricular nature of these brainstem areas, circulating hormones can also modulate the vagal output to the upper gastrointestinal tract. This Review summarizes the organization and function of vagovagal reflex control of the upper gastrointestinal tract, presents data on the plasticity within these neurocircuits after stress, and discusses the gastrointestinal dysfunctions observed in Parkinson disease as examples of physiological adjustment and maladaptation of these reflexes.
Collapse
|
33
|
DeCaen PG, Liu X, Abiria S, Clapham DE. Atypical calcium regulation of the PKD2-L1 polycystin ion channel. eLife 2016; 5. [PMID: 27348301 PMCID: PMC4922860 DOI: 10.7554/elife.13413] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
Native PKD2-L1 channel subunits are present in primary cilia and other restricted cellular spaces. Here we investigate the mechanism for the channel's unusual regulation by external calcium, and rationalize this behavior to its specialized function. We report that the human PKD2-L1 selectivity filter is partially selective to calcium ions (Ca(2+)) moving into the cell, but blocked by high internal Ca(2+)concentrations, a unique feature of this transient receptor potential (TRP) channel family member. Surprisingly, we find that the C-terminal EF-hands and coiled-coil domains do not contribute to PKD2-L1 Ca(2+)-induced potentiation and inactivation. We propose a model in which prolonged channel activity results in calcium accumulation, triggering outward-moving Ca(2+) ions to block PKD2-L1 in a high-affinity interaction with the innermost acidic residue (D523) of the selectivity filter and subsequent long-term channel inactivation. This response rectifies Ca(2+) flow, enabling Ca(2+) to enter but not leave small compartments such as the cilium.
Collapse
Affiliation(s)
- Paul G DeCaen
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Xiaowen Liu
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sunday Abiria
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - David E Clapham
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
34
|
The Spinal Cord Has an Intrinsic System for the Control of pH. Curr Biol 2016; 26:1346-51. [DOI: 10.1016/j.cub.2016.03.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/10/2023]
|
35
|
CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nat Commun 2016; 7:10866. [PMID: 26946992 PMCID: PMC4786674 DOI: 10.1038/ncomms10866] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/28/2016] [Indexed: 12/15/2022] Open
Abstract
Throughout vertebrates, cerebrospinal fluid-contacting neurons (CSF-cNs) are ciliated cells surrounding the central canal in the ventral spinal cord. Their contribution to modulate locomotion remains undetermined. Recently, we have shown CSF-cNs modulate locomotion by directly projecting onto the locomotor central pattern generators (CPGs), but the sensory modality these cells convey to spinal circuits and their relevance to innate locomotion remain elusive. Here, we demonstrate in vivo that CSF-cNs form an intraspinal mechanosensory organ that detects spinal bending. By performing calcium imaging in moving animals, we show that CSF-cNs respond to both passive and active bending of the spinal cord. In mutants for the channel Pkd2l1, CSF-cNs lose their response to bending and animals show a selective reduction of tail beat frequency, confirming the central role of this feedback loop for optimizing locomotion. Altogether, our study reveals that CSF-cNs constitute a mechanosensory organ operating during locomotion to modulate spinal CPGs.
Collapse
|
36
|
Petracca YL, Sartoretti MM, Di Bella DJ, Marin-Burgin A, Carcagno AL, Schinder AF, Lanuza GM. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord. Development 2016; 143:880-91. [PMID: 26839365 DOI: 10.1242/dev.129254] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3(+) V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells.
Collapse
Affiliation(s)
- Yanina L Petracca
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Maria Micaela Sartoretti
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Daniela J Di Bella
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Antonia Marin-Burgin
- Neuronal Plasticity Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Abel L Carcagno
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Alejandro F Schinder
- Neuronal Plasticity Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Guillermo M Lanuza
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| |
Collapse
|
37
|
Jalalvand E, Robertson B, Wallén P, Grillner S. Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. Nat Commun 2016; 7:10002. [PMID: 26743691 PMCID: PMC4729841 DOI: 10.1038/ncomms10002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/26/2015] [Indexed: 01/02/2023] Open
Abstract
Cerebrospinal fluid-contacting (CSF-c) cells are found in all vertebrates but their function has remained elusive. We recently identified one type of laterally projecting CSF-c cell in lamprey spinal cord with neuronal properties that expresses GABA and somatostatin. We show here that these CSF-c neurons respond to both mechanical stimulation and to lowered pH. These effects are most likely mediated by ASIC3-channels, since APETx2, a specific antagonist of ASIC3, blocks them both. Furthermore, lowering of pH as well as application of somatostatin will reduce the locomotor burst rate. The somatostatin receptor antagonist counteracts the effects of both a decrease in pH and of somatostatin. Lateral bending movement imposed on the spinal cord, as would occur during natural swimming, activates CSF-c neurons. Taken together, we show that CSF-c neurons act both as mechanoreceptors and as chemoreceptors through ASIC3 channels, and their action may protect against pH-changes resulting from excessive neuronal activity.
Collapse
Affiliation(s)
- Elham Jalalvand
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Brita Robertson
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Peter Wallén
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Sten Grillner
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
38
|
Fidelin K, Djenoune L, Stokes C, Prendergast A, Gomez J, Baradel A, Del Bene F, Wyart C. State-Dependent Modulation of Locomotion by GABAergic Spinal Sensory Neurons. Curr Biol 2015; 25:3035-47. [PMID: 26752076 DOI: 10.1016/j.cub.2015.09.070] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023]
Abstract
The cerebrospinal fluid (CSF) constitutes an interface through which chemical cues can reach and modulate the activity of neurons located at the epithelial boundary within the entire nervous system. Here, we investigate the role and functional connectivity of a class of GABAergic sensory neurons contacting the CSF in the vertebrate spinal cord and referred to as CSF-cNs. The remote activation of CSF-cNs was shown to trigger delayed slow locomotion in the zebrafish larva, suggesting that these cells modulate components of locomotor central pattern generators (CPGs). Combining anatomy, electrophysiology, and optogenetics in vivo, we show that CSF-cNs form active GABAergic synapses onto V0-v glutamatergic interneurons, an essential component of locomotor CPGs. We confirmed that activating CSF-cNs at rest induced delayed slow locomotion in the fictive preparation. In contrast, the activation of CSF-cNs promptly inhibited ongoing slow locomotion. Moreover, selective activation of rostral CSF-cNs during ongoing activity disrupted rostrocaudal propagation of descending excitation along the spinal cord, indicating that CSF-cNs primarily act at the premotor level. Altogether, our results demonstrate how a spinal GABAergic sensory neuron can tune the excitability of locomotor CPGs in a state-dependent manner by projecting onto essential components of the excitatory premotor pool.
Collapse
Affiliation(s)
- Kevin Fidelin
- Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75013 Paris, France; UPMC Univ Paris 06, 75005 Paris, France
| | - Lydia Djenoune
- Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75013 Paris, France; UPMC Univ Paris 06, 75005 Paris, France; Museum National d'Histoire Naturelle, 75005 Paris, France
| | - Caleb Stokes
- Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75013 Paris, France; UPMC Univ Paris 06, 75005 Paris, France
| | - Andrew Prendergast
- Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75013 Paris, France; UPMC Univ Paris 06, 75005 Paris, France
| | - Johanna Gomez
- Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75013 Paris, France; UPMC Univ Paris 06, 75005 Paris, France
| | - Audrey Baradel
- Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75013 Paris, France; UPMC Univ Paris 06, 75005 Paris, France
| | - Filippo Del Bene
- UPMC Univ Paris 06, 75005 Paris, France; Institut Curie, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75013 Paris, France; UPMC Univ Paris 06, 75005 Paris, France.
| |
Collapse
|
39
|
Stil A, Drapeau P. Neuronal labeling patterns in the spinal cord of adult transgenic Zebrafish. Dev Neurobiol 2015; 76:642-60. [PMID: 26408263 DOI: 10.1002/dneu.22350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 01/20/2023]
Abstract
We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well-known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP-positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP-positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish.
Collapse
Affiliation(s)
- Aurélie Stil
- Hospital Research Centre (CRCHUM) and Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada, H2X 0A9
| | - Pierre Drapeau
- Hospital Research Centre (CRCHUM) and Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada, H2X 0A9
| |
Collapse
|
40
|
Orts-Del'Immagine A, Seddik R, Tell F, Airault C, Er-Raoui G, Najimi M, Trouslard J, Wanaverbecq N. A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem. Neuropharmacology 2015. [PMID: 26220314 DOI: 10.1016/j.neuropharm.2015.07.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cerebrospinal fluid contacting neurons (CSF-cNs) are found around the central canal of all vertebrates. They present a typical morphology, with a single dendrite that projects into the cavity and ends in the CSF with a protuberance. These anatomical features have led to the suggestion that CSF-cNs might have sensory functions, either by sensing CSF movement or composition, but the physiological mechanisms for any such role are unknown. This hypothesis was recently supported by the demonstration that in several vertebrate species medullo-spinal CSF-cNs selectively express Polycystic Kidney Disease 2-Like 1 proteins (PKD2L1). PKD2L1 are members of the 'transient receptor potential (TRP)' superfamily, form non-selective cationic channels of high conductance, are regulated by various stimuli including protons and are therefore suggested to act as sensory receptors. Using patch-clamp whole-cell recordings of CSF-cNs in brainstem slices obtained from wild type and mutant PKD2L1 mice, we demonstrate that spontaneously active unitary currents in CSF-cNs are due to PKD2L1 channels that are capable, with a single opening, of triggering action potentials. Thus PKD2L1 might contribute to the setting of CSF-cN spiking activity. We also reveal that CSF-cNs have the capacity of discriminating between alkalinization and acidification following activation of specific conductances (PKD2L1 vs. ASIC) generating specific responses. Altogether, this study reinforces the idea that CSF-cNs represent sensory neurons intrinsic to the central nervous system and suggests a role for PKD2L1 channels as spike generators.
Collapse
Affiliation(s)
| | - Riad Seddik
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France
| | - Fabien Tell
- Aix Marseille Université, CNRS, CRN2M UMR 7286, 13344, Marseille, France
| | - Coraline Airault
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France
| | - Ghizlane Er-Raoui
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France; Université Sultan Moulay Slimane, 23000, Béni Mellal, Morocco
| | - Mohamed Najimi
- Université Sultan Moulay Slimane, 23000, Béni Mellal, Morocco
| | - Jérôme Trouslard
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France.
| | | |
Collapse
|
41
|
Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2015; 4:1339-68. [PMID: 25428846 DOI: 10.1002/cphy.c130055] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
42
|
Bushman JD, Ye W, Liman ER. A proton current associated with sour taste: distribution and functional properties. FASEB J 2015; 29:3014-26. [PMID: 25857556 DOI: 10.1096/fj.14-265694] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/11/2015] [Indexed: 02/06/2023]
Abstract
Sour taste is detected by taste receptor cells that respond to acids through yet poorly understood mechanisms. The cells that detect sour express the protein PKD2L1, which is not the sour receptor but nonetheless serves as a useful marker for sour cells. By use of mice in which the PKD2L1 promoter drives expression of yellow fluorescent protein, we previously reported that sour taste cells from circumvallate papillae in the posterior tongue express a proton current. To establish a correlation between this current and sour transduction, we examined its distribution by patch-clamp recording. We find that the current is present in PKD2L1-expressing taste cells from mouse circumvallate, foliate, and fungiform papillae but not in a variety of other cells, including spinal cord neurons that express PKD2L1. We describe biophysical properties of the current, including pH-dependent Zn(2+) inhibition, lack of voltage-dependent gating, and activation at modest pH values (6.5) that elicit action potentials in isolated cells. Consistent with a channel that is constitutively open, the cytosol of sour taste cells is acidified. These data define a functional signature for the taste cell proton current and indicate that its expression is mostly restricted to the subset of taste cells that detect sour.
Collapse
Affiliation(s)
- Jeremy D Bushman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Wenlei Ye
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Emily R Liman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
43
|
Djenoune L, Khabou H, Joubert F, Quan FB, Nunes Figueiredo S, Bodineau L, Del Bene F, Burcklé C, Tostivint H, Wyart C. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates. Front Neuroanat 2014; 8:26. [PMID: 24834029 PMCID: PMC4018565 DOI: 10.3389/fnana.2014.00026] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Over 90 years ago, Kolmer and Agduhr identified spinal cerebrospinal fluid-contacting neurons (CSF-cNs) based on their morphology and location within the spinal cord. In more than 200 vertebrate species, they observed ciliated neurons around the central canal that extended a brush of microvilli into the cerebrospinal fluid (CSF). Although their morphology is suggestive of a primitive sensory cell, their function within the vertebrate spinal cord remains unknown. The identification of specific molecular markers for these neurons in vertebrates would benefit the investigation of their physiological roles. PKD2L1, a transient receptor potential channel that could play a role as a sensory receptor, has been found in cells contacting the central canal in mouse. In this study, we demonstrate that PKD2L1 is a specific marker for CSF-cNs in the spinal cord of mouse (Mus musculus), macaque (Macaca fascicularis) and zebrafish (Danio rerio). In these species, the somata of spinal PKD2L1+ CSF-cNs were located below or within the ependymal layer and extended an apical bulbous extension into the central canal. We found GABAergic PKD2L1-expressing CSF-cNs in all three species. We took advantage of the zebrafish embryo for its transparency and rapid development to identify the progenitor domains from which pkd2l1+ CSF-cNs originate. pkd2l1+ CSF-cNs were all GABAergic and organized in two rows—one ventral and one dorsal to the central canal. Their location and marker expression is consistent with previously described Kolmer–Agduhr cells. Accordingly, pkd2l1+ CSF-cNs were derived from the progenitor domains p3 and pMN defined by the expression of nkx2.2a and olig2 transcription factors, respectively. Altogether our results suggest that a system of CSF-cNs expressing the PKD2L1 channel is conserved in the spinal cord across bony vertebrate species.
Collapse
Affiliation(s)
- Lydia Djenoune
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France ; Muséum National d'Histoire Naturelle Paris, France ; Centre National de la Recherche Scientifique UMR 7221 Paris, France
| | - Hanen Khabou
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| | - Fanny Joubert
- UPMC Univ. Paris 06 Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR S 1158 Paris, France
| | - Feng B Quan
- Muséum National d'Histoire Naturelle Paris, France ; Centre National de la Recherche Scientifique UMR 7221 Paris, France
| | - Sophie Nunes Figueiredo
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| | - Laurence Bodineau
- UPMC Univ. Paris 06 Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR S 1158 Paris, France
| | - Filippo Del Bene
- Institut Curie Paris, France ; Centre National de la Recherche Scientifique UMR 3215 Paris, France ; Institut National de la Santé et de la Recherche Médicale U 934 Paris, France
| | - Céline Burcklé
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle Paris, France ; Centre National de la Recherche Scientifique UMR 7221 Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| |
Collapse
|
44
|
Jalalvand E, Robertson B, Wallén P, Hill RH, Grillner S. Laterally projecting cerebrospinal fluid-contacting cells in the lamprey spinal cord are of two distinct types. J Comp Neurol 2014; 522:1753-68. [DOI: 10.1002/cne.23542] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Elham Jalalvand
- Department of Neuroscience; Nobel Institute for Neurophysiology, Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Brita Robertson
- Department of Neuroscience; Nobel Institute for Neurophysiology, Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Peter Wallén
- Department of Neuroscience; Nobel Institute for Neurophysiology, Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Russell H. Hill
- Department of Neuroscience; Nobel Institute for Neurophysiology, Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Sten Grillner
- Department of Neuroscience; Nobel Institute for Neurophysiology, Karolinska Institutet; SE-171 77 Stockholm Sweden
| |
Collapse
|
45
|
Orts-Del’Immagine A, Kastner A, Tillement V, Tardivel C, Trouslard J, Wanaverbecq N. Morphology, distribution and phenotype of polycystin kidney disease 2-like 1-positive cerebrospinal fluid contacting neurons in the brainstem of adult mice. PLoS One 2014; 9:e87748. [PMID: 24504595 PMCID: PMC3913643 DOI: 10.1371/journal.pone.0087748] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/30/2013] [Indexed: 11/18/2022] Open
Abstract
The mammalian spinal cord and medulla oblongata harbor unique neurons that remain in contact with the cerebrospinal fluid (CSF-cNs). These neurons were shown recently to express a polycystin member of the TRP channels family (PKD2L1) that potentially acts as a chemo- or mechanoreceptor. Recent studies carried out in young rodents indicate that spinal CSF-cNs express immature neuronal markers that appear to persist even in adult cells. Nevertheless, little is known about the phenotype and morphological properties of medullar CSF-cNs. Using immunohistochemistry and confocal microscopy techniques on tissues obtained from three-month old PKD2L1:EGFP transgenic mice, we analyzed the morphology, distribution, localization and phenotype of PKD2L1(+) CSF-cNs around the brainstem and cervical spinal cord central canal. We show that PKD2L1(+) CSF-cNs are GABAergic neurons with a subependymal localization, projecting a dendrite towards the central canal and an axon-like process running through the parenchyma. These neurons display a primary cilium on the soma and the dendritic process appears to bear ciliary-like structures in contact with the CSF. PKD2L1(+) CSF-cNs present a conserved morphology along the length of the medullospinal central canal with a change in their density, localization and dendritic length according to the rostro-caudal axis. At adult stages, PKD2L1(+) medullar CSF-cNs appear to remain in an intermediate state of maturation since they still exhibit characteristics of neuronal immaturity (DCX positive, neurofilament 160 kDa negative) along with the expression of a marker representative of neuronal maturation (NeuN). In addition, PKD2L1(+) CSF-cNs express Nkx6.1, a homeodomain protein that enables the differentiation of ventral progenitors into somatic motoneurons and interneurons. The present study provides valuable information on the cellular properties of this peculiar neuronal population that will be crucial for understanding the physiological role of CSF-cNs in mammals and their link with the stem cells contained in the region surrounding the medullospinal central canal.
Collapse
Affiliation(s)
- Adeline Orts-Del’Immagine
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Anne Kastner
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Vanessa Tillement
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Catherine Tardivel
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Jérôme Trouslard
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Nicolas Wanaverbecq
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
- * E-mail:
| |
Collapse
|
46
|
Abstract
It has been exciting times since the identification of polycystic kidney disease 1 (PKD1) and PKD2 as the genes mutated in autosomal dominant polycystic kidney disease (ADPKD). Biological roles of the encoded proteins polycystin-1 and TRPP2 have been deduced from phenotypes in ADPKD patients, but recent insights from vertebrate and invertebrate model organisms have significantly expanded our understanding of the physiological functions of these proteins. The identification of additional TRPP (TRPP3 and TRPP5) and polycystin-1-like proteins (PKD1L1, PKD1L2, PKD1L3, and PKDREJ) has added yet another layer of complexity to these fascinating cellular signalling units. TRPP proteins assemble with polycystin-1 family members to form receptor-channel complexes. These protein modules have important biological roles ranging from tubular morphogenesis to determination of left-right asymmetry. The founding members of the polycystin family, TRPP2 and polycystin-1, are a prime example of how studying human disease genes can provide insights into fundamental biological mechanisms using a so-called "reverse translational" approach (from bedside to bench). Here, we discuss the current literature on TRPP ion channels and polycystin-1 family proteins including expression, structure, physical interactions, physiology, and lessons from animal model systems and human disease.
Collapse
Affiliation(s)
- Mariam Semmo
- Renal Division, Department of Medicine, University Medical Centre Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany,
| | | | | |
Collapse
|
47
|
Browning KN, Babic T, Holmes GM, Swartz E, Travagli RA. A critical re-evaluation of the specificity of action of perivagal capsaicin. J Physiol 2013; 591:1563-80. [PMID: 23297311 DOI: 10.1113/jphysiol.2012.246827] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Perivagal application of capsaicin (1% solution) is considered to cause a selective degeneration of vagal afferent C fibres and has been used extensively to examine the site of action of many gastrointestinal (GI) neuropeptides. The actions of both capsaicin and GI neuropeptides may not be restricted to vagal afferent fibres, however, as other non-sensory neurones have displayed sensitivity to capsaicin and brainstem microinjections of these neuropeptides induce GI effects similar to those obtained upon systemic application. The aim of the present study was to test the hypothesis that perivagal capsaicin induces degeneration of vagal efferents controlling GI functions. Experiments were conducted 7-14 days after 30 min unilateral perivagal application of 0.1-1% capsaicin. Immunohistochemical analyses demonstrated that, as following vagotomy, capsaicin induced dendritic degeneration, decreased choline acetyltransferase but increased nitric oxide synthase immunoreactivity in rat dorsal motor nucleus of the vagus (DMV) neurones. Electrophysiological recordings showed a decreased DMV input resistance and excitability due, in part, to the expression of a large conductance calcium-dependent potassium current and the opening of a transient outward potassium window current at resting potential. Furthermore, the number of DMV neurones excited by thyrotrophin-releasing hormone and the gastric motility response to DMV microinjections of TRH were decreased significantly. Our data indicate that perivagal application of capsaicin induced DMV neuronal degeneration and decreased vagal motor responses. Treatment with perivagal capsaicin cannot therefore be considered selective for vagal afferent C fibres and, consequently, care is needed when using perivagal capsaicin to assess the mechanism of action of GI neuropeptides.
Collapse
Affiliation(s)
- K N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
48
|
Alberto Travagli R. Neurones in the dorsal vagal complex may be more tasteful than expected. J Physiol 2012; 590:3637-8. [PMID: 22904361 DOI: 10.1113/jphysiol.2012.237750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University – College of Medicine, Hershey, PA, USA.
| |
Collapse
|