1
|
Morrissey ZD, Gao J, Zhan L, Li W, Fortel I, Saido T, Saito T, Bakker A, Mackin S, Ajilore O, Lazarov O, Leow AD. Hippocampal functional connectivity across age in an App knock-in mouse model of Alzheimer's disease. Front Aging Neurosci 2023; 14:1085989. [PMID: 36711209 PMCID: PMC9878347 DOI: 10.3389/fnagi.2022.1085989] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease. The early processes of AD, however, are not fully understood and likely begin years before symptoms manifest. Importantly, disruption of the default mode network, including the hippocampus, has been implicated in AD. Methods To examine the role of functional network connectivity changes in the early stages of AD, we performed resting-state functional magnetic resonance imaging (rs-fMRI) using a mouse model harboring three familial AD mutations (App NL-G-F/NL-G-F knock-in, APPKI) in female mice in early, middle, and late age groups. The interhemispheric and intrahemispheric functional connectivity (FC) of the hippocampus was modeled across age. Results We observed higher interhemispheric functional connectivity (FC) in the hippocampus across age. This was reduced, however, in APPKI mice in later age. Further, we observed loss of hemispheric asymmetry in FC in APPKI mice. Discussion Together, this suggests that there are early changes in hippocampal FC prior to heavy onset of amyloid β plaques, and which may be clinically relevant as an early biomarker of AD.
Collapse
Affiliation(s)
- Zachery D. Morrissey
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Anatomy & Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jin Gao
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Preclinical Imaging Core, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Weiguo Li
- Preclinical Imaging Core, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Scott Mackin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Department of Anatomy & Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex D. Leow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Paradoxical Enhancement of Spatial Learning Induced by Right Hippocampal Lesion in Rats. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The left–right hemispheric differences in some brain functions are well known in humans. Among them, savant syndrome has unique features, such as exceptional abilities in vision, memory, computation, and music, despite brain abnormalities. In cases of acquired savant and transient savant, brain damage or inhibition is often seen in the left hemisphere, suggesting a link between left hemispheric dysfunction and these talents. On the other hand, some functional left–right differences have been reported in rodent brains, and therefore, unilateral damage in rodents may also result in savant-like enhancements. In the present study, we examined the effects of hippocampal damage on spatial learning in rats with left, right, or bilateral hippocampal lesion. The results showed that learning performance was impaired in the bilateral lesion group, and there was no significant difference in the left lesion group, while performance was enhanced in the right lesion group. These results suggest that damage to the right hippocampus in rats may lead to savant-like enhancement in learning and memory. The construction of the savant model through these results will contribute to the neuroscientific elucidation of the paradoxical phenomenon observed in savants, that some abilities are enhanced despite their brain dysfunction.
Collapse
|
3
|
Sugiyama S, Taniguchi T, Kinukawa T, Takeuchi N, Ohi K, Shioiri T, Nishihara M, Inui K. Suppression of Low-Frequency Gamma Oscillations by Activation of 40-Hz Oscillation. Cereb Cortex 2021; 32:2785-2796. [PMID: 34689202 PMCID: PMC9247420 DOI: 10.1093/cercor/bhab381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/14/2022] Open
Abstract
Gamma oscillations have received considerable attention owing to their association with cognitive function and various neuropsychiatric disorders. However, interactions of gamma oscillations at different frequency bands in humans remain unclear. In the present magnetoencephalographic study, brain oscillations in a wide frequency range were examined using a time-frequency analysis during the 20-, 30-, 40-, and 50-Hz auditory stimuli in 21 healthy subjects. First, dipoles for auditory steady-state response (ASSR) were estimated and interaction among oscillations at 10–60 Hz was examined using the source strength waveforms. Results showed the suppression of ongoing low-gamma oscillations at approximately 30 Hz during stimulation at 40 Hz. Second, multi-dipole analyses suggested that the main dipole for ASSR and dipoles for suppressed low-frequency gamma oscillations were distinct. Third, an all-sensor analysis was performed to clarify the distribution of the 40-Hz ASSR and suppression of low-frequency gamma oscillations. Notably, the area of suppression surrounded the center of the 40-Hz ASSR and showed a trend of extending to the vertex, indicating that different groups of neurons were responsible for these two gamma oscillations and that the 40-Hz oscillation circuit have specific inhibitory innervation to the low-gamma circuit.
Collapse
Affiliation(s)
- Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tomoya Taniguchi
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Nobuyuki Takeuchi
- Department of Psychiatry, Aichi Medical University, Nagakute 480-1195, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute 480-1195, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0304, Japan.,Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
4
|
Disconnection between Rat’s Left and Right Hemisphere Impairs Short-Term Memory but Not Long-Term Memory. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Split-brain experiments, which have been actively conducted since the twentieth century, have provided a great deal of insight into functional asymmetry and inter-hemispheric interactions. However, how communication between the left and right hemispheres directly contributes to memory formation is still poorly understood. To address this issue, we cut the rat commissural fibers prior to performing behavioral tests, which consisted of two short-term and two long-term memory tasks. The result showed that cutting the commissural fibers impairs short-term memory but not long-term memory. This suggests that the left-right hemispheric interaction through the commissural fibers contributes to the appropriate formation of short-term memory, but not that of long-term memory. Our findings would help to elucidate dynamic memory formation between the two hemispheres and contribute to the development of therapeutics for some neurological diseases which cause a reduction in the inter-hemispheric interaction.
Collapse
|
5
|
Peyvandi Karizbodagh M, Sadr-Nabavi A, Hami J, Mohammadipour A, Khoshdel-Sarkarizi H, Kheradmand H, Fallahnezhad S, Mahmoudi M, Haghir H. Developmental regulation and lateralization of N-methyl-d-aspartate (NMDA) receptors in the rat hippocampus. Neuropeptides 2021; 89:102183. [PMID: 34333368 DOI: 10.1016/j.npep.2021.102183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 12/01/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are expressed abundantly in the brain and play a crucial role in the regulation of central nervous system (CNS) development, learning, and memory. During early neuronal development, NMDARs modulate neurogenesis, neuronal differentiation and migration, and synaptogenesis. The present study aimed to examine the developmental expression of NMDARs subunits, NR1 and NR2B, in the developing hippocampus of neonatal rats during the first two postnatal weeks. Fifty-four male offspring were randomly divided into three age groups, postnatal days (P) 0, 7, and 14. Real-time-PCR, western blotting, and immunohistochemistry (IHC) analyses were employed to examine and compare the hippocampal expression of the NMDA receptor subunits. The highest mRNA expression of NR1 and NR2B subunits was observed at P7, regardless of its laterality. The mRNA expression of both subunits in the right hippocampus was significantly higher than that of the left one at P0 and P7. Similarly, the highest protein level expression of NR1 and NR2B subunits was also observed at P7 in both sides hippocampi. Although the protein expression of NR1 was significantly higher on the right side in all studied days, the NR2B was significantly higher in the right hippocampus only at P7. The analysis of optical density (OD) has shown a marked increase in the distribution pattern of the NR1 and NR2B subunits at P7 in all hippocampal subregions. In conclusion, there is a marked right-left asymmetry in the expression of NR1 and NR2B subunits in the developing rat hippocampus, which might be considered as a probable mechanism for the lateral differences in the structure and function of the hippocampus in rats.
Collapse
Affiliation(s)
- Mostafa Peyvandi Karizbodagh
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Hami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Institute of Anatomy and Cell Biology, Universitäsmedizin Greifswald, 17487 Greifswald, Germany
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Khoshdel-Sarkarizi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fallahnezhad
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, School of Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Israel-Elgali I, Hertzberg L, Shapira G, Segev A, Krieger I, Nitzan U, Bloch Y, Pillar N, Mayer O, Weizman A, Gurwitz D, Shomron N. Blood transcriptional response to treatment-resistant depression during electroconvulsive therapy. J Psychiatr Res 2021; 141:92-103. [PMID: 34182381 DOI: 10.1016/j.jpsychires.2021.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are currently the first-line antidepressant drug treatment for major depressive disorder (MDD). Treatment-resistant depression (TRD), defined as failure to achieve remission despite adequate treatment, affects ~30% of persons with MDD. The current recommended treatment for TRD is electroconvulsive therapy (ECT), while ketamine is an experimentally suggested treatment. This study aimed to elucidate the transcriptional differences in peripheral blood mononuclear cells (PBMC) between individuals with TRD and a control group without a psychiatric illness; and between patients with TRD, treated with either standard antidepressant drugs alone, or in combination with ECT or ketamine. Additionally, PBMC transcriptomics were compared between treatment responders, following completion of their treatment protocols. Total RNA was extracted from PBMC of the TRD group at two time points, and RNA and miRNA expression were profiled. Multiple mRNAs and miRNAs were found to be modified, with two protein coding genes, FKBP5 and ITGA2B, which are up- and downregulated, respectively; and several miRNAs have shown changes following successful ECT treatment. Further analysis demonstrated the direct functional regulation of ITGA2B by miR-24-3p. Our findings suggest that PBMC expression levels of FKBP5, ITGA2B, and miR-24-3p should be further explored as tentative ECT response biomarkers.
Collapse
Affiliation(s)
- Ifat Israel-Elgali
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Libi Hertzberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Shalvata Mental Health Center, Hod Hasharon, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Shapira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Segev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Shalvata Mental Health Center, Hod Hasharon, Israel
| | - Israel Krieger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Shalvata Mental Health Center, Hod Hasharon, Israel
| | - Uri Nitzan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Shalvata Mental Health Center, Hod Hasharon, Israel
| | - Yuval Bloch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Shalvata Mental Health Center, Hod Hasharon, Israel
| | - Nir Pillar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ori Mayer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petah Tiqva, Israel
| | - David Gurwitz
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Noam Shomron
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Abstract
Neural correlates of external variables provide potential internal codes that guide an animal’s behaviour. Notably, first-order features of neural activity, such as single-neuron firing rates, have been implicated in encoding information. However, the extent to which higher-order features, such as multi-neuron coactivity, play primary roles in encoding information or secondary roles in supporting single-neuron codes remains unclear. Here we show that millisecond-timescale coactivity amongst hippocampal CA1 neurons discriminates distinct millisecond-lived behavioural contingencies. This contingency discrimination was unrelated to the tuning of individual neurons but instead an emergent property of their coactivity. Contingency discriminating patterns were reactivated offline after learning and their reinstatement predicted trial-by-trial memory performance. Moreover, optogenetic suppression of inputs from the upstream CA3 region selectively during learning impaired coactivity-based contingency information in CA1 and subsequent dynamic memory retrieval. These findings identify coactivity as a primary feature of neural firing that discriminates distinct behaviourally-relevant variables and supports memory retrieval.
Collapse
|
8
|
Huang Y, Hu L, Li H, Huang Y, Li Y, Yang J, Gu J, Xu H. PKA-mediated phosphorylation of CREB and NMDA receptor 2B in the hippocampus of offspring rats is involved in transmission of mental disorders across a generation. Psychiatry Res 2019; 280:112497. [PMID: 31419724 DOI: 10.1016/j.psychres.2019.112497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 02/05/2023]
Abstract
This study is aimed at the mechanism of transmission of mental disorders across a generation. We used 10 different stressors to establish an animal model of chronic unpredictable stress (CUS) before pregnancy. Forced swimming test (FST) and open field test (OFT) were used to analyze the behavior of 30-day-old adolescent offspring rats born to stress mothers. Magnetic resonance spectroscopy was used to measure glutamate, gamma-aminobutyric acid (GABA), and glutamine. Phosphate-activated glutaminase (PAG), glutamate decarboxylase (GAD), GABA-transaminase (GABA-T), protein kinase A (PKA), cAMP response element-binding protein (CREB), and N-methyl-D-aspartate (NMDA) receptor 2B (NR2B) were detected by western blot. Adolescent offspring rats in the CUS group exhibited depressive-like behavior in the FST and anxious behavior in the OFT. GAD was increased and GABA-T was decreased, which resulted in an increase in GABA levels and decrease of the glutamate/GABA ratio in the hippocampus of CUS offspring rats. Disruption of the glutamate/GABA-glutamine cycle was related to decrease PKA-mediated phosphorylation of CREB and NR2B in the hippocampus. These findings highlight the importance of mental health of females before pregnancy and suggest that CUS before pregnancy reduces p-CREB and p-NR2B in the offspring hippocampus, which could be responsible for behavioral disorders in the adolescent offspring.
Collapse
Affiliation(s)
- Yuejun Huang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong, China
| | - Liu Hu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong, China
| | - Hui Li
- Department of Psychiatry and Psychology, Mental Health Center of Shantou University, Taishan Road, Shantou 515041, Guangdong, China
| | - Yanhong Huang
- Department of Psychiatry and Psychology, Mental Health Center of Shantou University, Taishan Road, Shantou 515041, Guangdong, China
| | - Yuewa Li
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong, China
| | - Jianhui Yang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong, China
| | - Jiajie Gu
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Changping Road, Shantou 515041, Guangdong, China
| | - Hongwu Xu
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Changping Road, Shantou 515041, Guangdong, China.
| |
Collapse
|
9
|
O'Riordan KJ, Hu NW, Rowan MJ. Aß Facilitates LTD at Schaffer Collateral Synapses Preferentially in the Left Hippocampus. Cell Rep 2019; 22:2053-2065. [PMID: 29466733 DOI: 10.1016/j.celrep.2018.01.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/16/2017] [Accepted: 01/26/2018] [Indexed: 01/03/2023] Open
Abstract
Promotion of long-term depression (LTD) mechanisms by synaptotoxic soluble oligomers of amyloid-β (Aß) has been proposed to underlie synaptic dysfunction in Alzheimer's disease (AD). Previously, LTD was induced by relatively non-specific electrical stimulation. Exploiting optogenetics, we studied LTD using a more physiologically diffuse spatial pattern of selective pathway activation in the rat hippocampus in vivo. This relatively sparse synaptic LTD requires both the ion channel function and GluN2B subunit of the NMDA receptor but, in contrast to electrically induced LTD, is not facilitated by boosting endogenous muscarinic acetylcholine or metabotropic glutamate 5 receptor activation. Although in the absence of Aß, there is no evidence of hippocampal LTD asymmetry, in the presence of Aß, the induction of LTD is preferentially enhanced in the left hippocampus in an mGluR5-dependent manner. This circuit-selective disruption of synaptic plasticity by Aß provides a route to understanding the development of aberrant brain lateralization in AD.
Collapse
Affiliation(s)
- Kenneth J O'Riordan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland; Department of Gerontology, Yijishan Hospital, Wannan Medical College, Wuhu, China.
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
10
|
Murakami G, Edamura M, Furukawa T, Kawasaki H, Kosugi I, Fukuda A, Iwashita T, Nakahara D. MHC class I in dopaminergic neurons suppresses relapse to reward seeking. SCIENCE ADVANCES 2018; 4:eaap7388. [PMID: 29546241 PMCID: PMC5851664 DOI: 10.1126/sciadv.aap7388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/07/2018] [Indexed: 05/12/2023]
Abstract
Major histocompatibility complex class I (MHCI) is an important immune protein that is expressed in various brain regions, with its deficiency leading to extensive synaptic transmission that results in learning and memory deficits. Although MHCI is highly expressed in dopaminergic neurons, its role in these neurons has not been examined. We show that MHCI expressed in dopaminergic neurons plays a key role in suppressing reward-seeking behavior. In wild-type mice, cocaine self-administration caused persistent reduction of MHCI specifically in dopaminergic neurons, which was accompanied by enhanced glutamatergic synaptic transmission and relapse to cocaine seeking. Functional MHCI knockout promoted this addictive phenotype for cocaine and a natural reward, namely, sucrose. In contrast, wild-type mice overexpressing a major MHCI gene (H2D) in dopaminergic neurons showed suppressed cocaine seeking. These results show that persistent cocaine-induced reduction of MHCI in dopaminergic neurons is necessary for relapse to cocaine seeking.
Collapse
Affiliation(s)
- Gen Murakami
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Mitsuhiro Edamura
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Tomonori Furukawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hideya Kawasaki
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Daiichiro Nakahara
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
11
|
Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits. Behav Brain Res 2017; 336:156-165. [PMID: 28864206 DOI: 10.1016/j.bbr.2017.08.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 11/17/2022]
Abstract
Left-right asymmetry is known to exist at several anatomical levels in the brain and recent studies have provided further evidence to show that it also exists at a molecular level in the hippocampal CA3-CA1 circuit. The distribution of N-methyl-d-aspartate (NMDA) receptor NR2B subunits in the apical and basal synapses of CA1 pyramidal neurons is asymmetrical if the input arrives from the left or right CA3 pyramidal neurons. In the present study, we examined the role of hippocampal asymmetry in cognitive function using β2-microglobulin knock-out (β2m KO) mice, which lack hippocampal asymmetry. We tested β2m KO mice in a series of spatial and non-spatial learning tasks and compared the performances of β2m KO and C57BL6/J wild-type (WT) mice. The β2m KO mice appeared normal in both spatial reference memory and spatial working memory tasks but they took more time than WT mice in learning the two non-spatial learning tasks (i.e., a differential reinforcement of lower rates of behavior (DRL) task and a straight runway task). The β2m KO mice also showed less precision in their response timing in the DRL task and showed weaker spontaneous recovery during extinction in the straight runway task. These results indicate that hippocampal asymmetry is important for certain characteristics of non-spatial learning.
Collapse
|
12
|
Ukai H, Kawahara A, Hirayama K, Case MJ, Aino S, Miyabe M, Wakita K, Oogi R, Kasayuki M, Kawashima S, Sugimoto S, Chikamatsu K, Nitta N, Koga T, Shigemoto R, Takai T, Ito I. PirB regulates asymmetries in hippocampal circuitry. PLoS One 2017; 12:e0179377. [PMID: 28594961 PMCID: PMC5464656 DOI: 10.1371/journal.pone.0179377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B). By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI) proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB), an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.
Collapse
Affiliation(s)
- Hikari Ukai
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Aiko Kawahara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Keiko Hirayama
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Matthew Julian Case
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Shotaro Aino
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Masahiro Miyabe
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ken Wakita
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ryohei Oogi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Michiyo Kasayuki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shihomi Kawashima
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shunichi Sugimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Kanako Chikamatsu
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Noritaka Nitta
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Tsuneyuki Koga
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Isao Ito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
13
|
Sakaguchi Y, Sakurai Y. Left-right functional asymmetry of ventral hippocampus depends on aversiveness of situations. Behav Brain Res 2017; 325:25-33. [PMID: 28235588 DOI: 10.1016/j.bbr.2017.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 01/01/2023]
Abstract
Many studies suggest that animals exhibit lateralized behaviors during aversive situations, and almost all animals exhibit right hemisphere-dominant behaviors associated with fear or anxiety. However, which brain structure in each hemisphere underlies such lateralized function is unclear. In this study, we focused on the hippocampus and investigated the effects of bilateral and unilateral lesions of the ventral hippocampus (VH) on anxiety-like behavior using the successive alleys test. We also examined the expression of c-fos in the VH, which was induced by an aversive situation. Results revealed that consistent right VH dominance trended with the anxiety level. Weaker anxiety induced both right and left VH functions, whereas stronger anxiety induced right VH function. From these results, we conclude that animals are able to adaptively regulate their behaviors to avoid aversive stimuli by changing the functional dominance of their left and right VH.
Collapse
Affiliation(s)
- Yukitoshi Sakaguchi
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University Kyotanabe, Japan.
| | - Yoshio Sakurai
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University Kyotanabe, Japan
| |
Collapse
|
14
|
Goto K, Ito I. The asymmetry defect of hippocampal circuitry impairs working memory in β2-microglobulin deficient mice. Neurobiol Learn Mem 2016; 139:50-55. [PMID: 28039089 DOI: 10.1016/j.nlm.2016.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/13/2016] [Accepted: 12/24/2016] [Indexed: 11/20/2022]
Abstract
Left-right (L-R) asymmetry is a fundamental feature of brain function, but the mechanisms underlying functional asymmetry remain largely unknown. We previously identified structural and functional asymmetries in the circuitry of the mouse hippocampus that result from the asymmetrical distribution of NMDA receptor GluR ε2 (NR2B) subunits. By examining the synaptic distribution of ε2 subunits, we found that β2-microglobulin (β2m)-deficient mice that are defective in the stable cell surface expression of major histocompatibility complex class I (MHCI) lack this circuit asymmetry. To investigate the effect of hippocampal asymmetry defect on brain function, we examined working memory of β2m-deficient mice in a delayed nonmatching-to-position (DNMTP) task. Mice were trained to nosepoke either a left or right key of a sample, to retain the position of the key during a delay interval, and then to choose the key opposite from the sample. During training sessions in which no programmed delay interval was imposed, the β2m-deficient mice acquired the task as fast as control mice, suggesting that the discrimination of left and right positions is not impaired by the total loss of hippocampal asymmetry. In contrast, the β2m-deficient mice made fewer correct responses than control mice when variable delay was imposed, suggesting that the asymmetry of hippocampal circuitry plays an important role in working memory.
Collapse
Affiliation(s)
- Kazuhiro Goto
- Department of Human Psychology, Sagami Women's University, Japan.
| | - Isao Ito
- Department of Biology, Faculty of Science, Kyushu University, Japan
| |
Collapse
|
15
|
Abstract
Epidemiological studies and mouse models suggest that maternal immune activation, induced clinically through prenatal exposure to one of several infectious diseases, is a risk factor in the development of schizophrenia. This is supported by the strong genetic association established by genome wide association studies (GWAS) between the human leukocyte antigen (HLA) locus and schizophrenia. HLA proteins (also known in mice as the major histocompatibility complex; MHC) are mediators of the T-lymphocyte responses, and genetic variability is well-established as a risk factor for autoimmune diseases and susceptibility to infectious diseases. Taken together, the findings strongly suggest that schizophrenia risk in a subgroup of patients is caused by an infectious disease, and/or an autoimmune phenomenon. However, this view may be overly simplistic. First, MHC proteins have a non-immune effect on synaptogenesis by modulating synaptic pruning by microglia and other mechanisms, suggesting that genetic variability could be compromising this physiological process. Second, some GWAS signals in the HLA locus map near non-HLA genes, such as the histone gene cluster. On the other hand, recent GWAS data show association signals near B-lymphocyte enhancers, which lend support for an infectious disease etiology. Thus, although the genetic findings implicating the HLA locus are very robust, how genetic variability in this region leads to schizophrenia remains to be elucidated.
Collapse
Affiliation(s)
- Ryan Mokhtari
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA
| |
Collapse
|
16
|
El-Gaby M, Shipton OA, Paulsen O. Synaptic Plasticity and Memory: New Insights from Hippocampal Left-Right Asymmetries. Neuroscientist 2015; 21:490-502. [PMID: 25239943 DOI: 10.1177/1073858414550658] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
All synapses are not the same. They differ in their morphology, molecular constituents, and malleability. A striking left-right asymmetry in the distribution of different types of synapse was recently uncovered at the CA3-CA1 projection in the mouse hippocampus, whereby afferents from the CA3 in the left hemisphere innervate small, highly plastic synapses on the apical dendrites of CA1 pyramidal neurons, whereas those originating from the right CA3 target larger, more stable synapses. Activity-dependent modification of these synapses is thought to participate in circuit formation and remodeling during development, and further plastic changes may support memory encoding in adulthood. Therefore, exploiting the CA3-CA1 asymmetry provides a promising opportunity to investigate the roles that different types of synapse play in these fundamental properties of the CNS. Here we describe the discovery of these segregated synaptic populations in the mouse hippocampus, and discuss what we have already learnt about synaptic plasticity from this asymmetric arrangement. We then propose models for how the asymmetry could be generated during development, and how the adult hippocampus might use these distinct populations of synapses differentially during learning and memory. Finally, we outline the potential implications of this left-right asymmetry for human hippocampal function, as well as dysfunction in memory disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamady El-Gaby
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Olivia A Shipton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Abstract
In zebrafish, the dorsal habenula shows conspicuous left-right differences. New research shows that the left and right habenula differentially process visual and olfactory information. Spontaneous activity in habenular circuits may lead to activation of distinct neuronal targets and behavioral programs.
Collapse
|
18
|
Edamura M, Murakami G, Meng H, Itakura M, Shigemoto R, Fukuda A, Nakahara D. Functional deficiency of MHC class I enhances LTP and abolishes LTD in the nucleus accumbens of mice. PLoS One 2014; 9:e107099. [PMID: 25268136 PMCID: PMC4182087 DOI: 10.1371/journal.pone.0107099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 08/13/2014] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex class I (MHCI) molecules were recently identified as novel regulators of synaptic plasticity. These molecules are expressed in various brain areas, especially in regions undergoing activity-dependent synaptic plasticity, but their role in the nucleus accumbens (NAc) is unknown. In this study, we investigated the effects of genetic disruption of MHCI function, through deletion of β2-microblobulin, which causes lack of cell surface expression of MHCI. First, we confirmed that MHCI molecules are expressed in the NAc core in wild-type mice. Second, we performed electrophysiological recordings with NAc core slices from wild-type and β2-microglobulin knock-out mice lacking cell surface expression of MHCI. We found that low frequency stimulation induced long-term depression in wild-type but not knock-out mice, whereas high frequency stimulation induced long-term potentiation in both genotypes, with a larger magnitude in knock-out mice. Furthermore, we demonstrated that knock-out mice showed more persistent behavioral sensitization to cocaine, which is a NAc-related behavior. Using this model, we analyzed the density of total AMPA receptors and their subunits GluR1 and GluR2 in the NAc core, by SDS-digested freeze-fracture replica labeling. After repeated cocaine exposure, the density of GluR1 was increased, but there was no change in total AMPA receptors and GluR2 levels in wild-type mice. In contrast, following repeated cocaine exposure, increased densities of total AMPA receptors, GluR1 and GluR2 were observed in knock-out mice. These results indicate that functional deficiency of MHCI enhances synaptic potentiation, induced by electrical and pharmacological stimulation.
Collapse
Affiliation(s)
- Mitsuhiro Edamura
- Division of Psychology and Behavioral Neuroscience, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
- * E-mail: (ME); (DN)
| | - Gen Murakami
- Division of Psychology and Behavioral Neuroscience, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Hongrui Meng
- Division of Psychology and Behavioral Neuroscience, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Daiichiro Nakahara
- Division of Psychology and Behavioral Neuroscience, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
- * E-mail: (ME); (DN)
| |
Collapse
|
19
|
McAllister AK. Major histocompatibility complex I in brain development and schizophrenia. Biol Psychiatry 2014; 75:262-8. [PMID: 24199663 PMCID: PMC4354937 DOI: 10.1016/j.biopsych.2013.10.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/24/2013] [Accepted: 10/07/2013] [Indexed: 02/01/2023]
Abstract
Although the etiology of schizophrenia (SZ) remains unknown, it is increasingly clear that immune dysregulation plays a central role. Genome-wide association studies reproducibly indicate an association of SZ with immune genes within the major histocompatibility complex (MHC). Moreover, environmental factors that increase risk for SZ, such as maternal infection, alter peripheral immune responses as well as the expression of immune molecules in the brain. MHC class I (MHCI) molecules might mediate both genetic and environmental contributions to SZ through direct effects on brain development in addition to mediating immunity. MHCI molecules are expressed on neurons in the central nervous system throughout development and into adulthood, where they regulate many aspects of brain development, including neurite outgrowth, synapse formation and function, long-term and homeostatic plasticity, and activity-dependent synaptic refinement. This review summarizes our current understanding of MHCI expression and function in the developing brain as well as its involvement in maternal immune activation, from the perspective of how these roles for MHCI molecules might contribute to the pathogenesis of SZ.
Collapse
|
20
|
Capogna M. Which molecules regulate synaptic brain asymmetries? J Physiol 2013; 591:4687-8. [PMID: 24085492 DOI: 10.1113/jphysiol.2013.263806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|