1
|
Salyer LG, Salhi HE, Brundage EA, Shettigar V, Sturgill SL, Zanella H, Templeton B, Abay E, Emmer KM, Lowe J, Rafael-Fortney JA, Parinandi N, Foster DB, McKinsey TA, Woulfe KC, Ziolo MT, Biesiadecki BJ. Troponin I Tyrosine Phosphorylation Beneficially Accelerates Diastolic Function. Circ Res 2024; 134:33-45. [PMID: 38095088 PMCID: PMC10872382 DOI: 10.1161/circresaha.123.323132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND A healthy heart is able to modify its function and increase relaxation through post-translational modifications of myofilament proteins. While there are known examples of serine/threonine kinases directly phosphorylating myofilament proteins to modify heart function, the roles of tyrosine (Y) phosphorylation to directly modify heart function have not been demonstrated. The myofilament protein TnI (troponin I) is the inhibitory subunit of the troponin complex and is a key regulator of cardiac contraction and relaxation. We previously demonstrated that TnI-Y26 phosphorylation decreases calcium-sensitive force development and accelerates calcium dissociation, suggesting a novel role for tyrosine kinase-mediated TnI-Y26 phosphorylation to regulate cardiac relaxation. Therefore, we hypothesize that increasing TnI-Y26 phosphorylation will increase cardiac relaxation in vivo and be beneficial during pathological diastolic dysfunction. METHODS The signaling pathway involved in TnI-Y26 phosphorylation was predicted in silico and validated by tyrosine kinase activation and inhibition in primary adult murine cardiomyocytes. To investigate how TnI-Y26 phosphorylation affects cardiac muscle, structure, and function in vivo, we developed a novel TnI-Y26 phosphorylation-mimetic mouse that was subjected to echocardiography, pressure-volume loop hemodynamics, and myofibril mechanical studies. TnI-Y26 phosphorylation-mimetic mice were further subjected to the nephrectomy/DOCA (deoxycorticosterone acetate) model of diastolic dysfunction to investigate the effects of increased TnI-Y26 phosphorylation in disease. RESULTS Src tyrosine kinase is sufficient to phosphorylate TnI-Y26 in cardiomyocytes. TnI-Y26 phosphorylation accelerates in vivo relaxation without detrimental structural or systolic impairment. In a mouse model of diastolic dysfunction, TnI-Y26 phosphorylation is beneficial and protects against the development of disease. CONCLUSIONS We have demonstrated that tyrosine kinase phosphorylation of TnI is a novel mechanism to directly and beneficially accelerate myocardial relaxation in vivo.
Collapse
Affiliation(s)
- Lorien G Salyer
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Hussam E Salhi
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Vikram Shettigar
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Sarah L Sturgill
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Helena Zanella
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Benjamin Templeton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Eaman Abay
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Kathryn M Emmer
- University Laboratory Animal Resources (K.M.E.), Ohio State University, Columbus
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Narasimham Parinandi
- Division of Pulmonary, Critical Care and Sleep Medicine (N.P.), Ohio State University, Columbus
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (D.B.F.)
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology (T.A.M., K.C.W.), University of Colorado Anschutz Medical Campus, Aurora
- Consortium for Fibrosis Research and Translation (T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Kathleen C Woulfe
- Department of Medicine, Division of Cardiology (T.A.M., K.C.W.), University of Colorado Anschutz Medical Campus, Aurora
| | - Mark T Ziolo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| |
Collapse
|
2
|
Hanft LM, Robinett JC, Kalogeris TJ, Campbell KS, Biesiadecki BJ, McDonald KS. Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts. J Gen Physiol 2023; 155:e202213290. [PMID: 37000170 PMCID: PMC10067705 DOI: 10.1085/jgp.202213290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
The heart's pumping capacity is determined by myofilament power generation. Power is work done per unit time and measured as the product of force and velocity. At a sarcomere level, these contractile properties are linked to the number of attached cross-bridges and their cycling rate, and many signaling pathways modulate one or both factors. We previously showed that power is increased in rodent permeabilized cardiac myocytes following PKA-mediated phosphorylation of myofibrillar proteins. The current study found that that PKA increased power by ∼30% in permeabilized cardiac myocyte preparations (n = 8) from human failing hearts. To address myofilament molecular specificity of PKA effects, mechanical properties were measured in rat permeabilized slow-twitch skeletal muscle fibers before and after exchange of endogenous slow skeletal troponin with recombinant human Tn complex that contains cardiac (c)TnT, cTnC and either wildtype (WT) cTnI or pseudo-phosphorylated cTnI at sites Ser23/24Asp, Tyr26Glu, or the combinatorial Ser23/24Asp and Tyr26Glu. We found that cTnI Ser23/24Asp, Tyr26Glu, and combinatorial Ser23/24Asp and Tyr26Glu were sufficient to increase power by ∼20%. Next, we determined whether pseudo-phosphorylated cTnI at Ser23/24 was sufficient to increase power in cardiac myocytes from human failing hearts. Following cTn exchange that included cTnI Ser23/24Asp, power output increased ∼20% in permeabilized cardiac myocyte preparations (n = 6) from the left ventricle of human failing hearts. These results implicate cTnI N-terminal phosphorylation as a molecular regulator of myocyte power and could serve as a regional target for small molecule therapy to unmask myocyte power reserve capacity in human failing hearts.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Feng HZ, Huang X, Jin JP. N-terminal truncated cardiac troponin I enhances Frank-Starling response by increasing myofilament sensitivity to resting tension. J Gen Physiol 2023; 155:e202012821. [PMID: 36880803 PMCID: PMC10005897 DOI: 10.1085/jgp.202012821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 03/08/2023] Open
Abstract
Cardiac troponin I (cTnI) of higher vertebrates has evolved with an N-terminal extension, of which deletion via restrictive proteolysis occurs as a compensatory adaptation in chronic heart failure to increase ventricular relaxation and stroke volume. Here, we demonstrate in a transgenic mouse model expressing solely N-terminal truncated cTnI (cTnI-ND) in the heart with deletion of the endogenous cTnI gene. Functional studies using ex vivo working hearts showed an extended Frank-Starling response to preload with reduced left ventricular end diastolic pressure. The enhanced Frank-Starling response effectively increases systolic ventricular pressure development and stroke volume. A novel finding is that cTnI-ND increases left ventricular relaxation velocity and stroke volume without increasing the end diastolic volume. Consistently, the optimal resting sarcomere length (SL) for maximum force development in cTnI-ND cardiac muscle was not different from wild-type (WT) control. Despite the removal of the protein kinase A (PKA) phosphorylation sites in cTnI, β-adrenergic stimulation remains effective on augmenting the enhanced Frank-Starling response of cTnI-ND hearts. Force-pCa relationship studies using skinned preparations found that while cTnI-ND cardiac muscle shows a resting SL-resting tension relationship similar to WT control, cTnI-ND significantly increases myofibril Ca2+ sensitivity to resting tension. The results demonstrate that restrictive N-terminal deletion of cTnI enhances Frank-Starling response by increasing myofilament sensitivity to resting tension rather than directly depending on SL. This novel function of cTnI regulation suggests a myofilament approach to utilizing Frank-Starling mechanism for the treatment of heart failure, especially diastolic failure where ventricular filling is limited.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology and Biophysics, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Xupei Huang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Tanner BCW, Awinda PO, Agonias KB, Attili S, Blair CA, Thompson MS, Walker LA, Kampourakis T, Campbell KS. Sarcomere length affects Ca2+ sensitivity of contraction in ischemic but not non-ischemic myocardium. J Gen Physiol 2023; 155:213800. [PMID: 36633584 PMCID: PMC9859763 DOI: 10.1085/jgp.202213200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In healthy hearts, myofilaments become more sensitive to Ca2+ as the myocardium is stretched. This effect is known as length-dependent activation and is an important cellular-level component of the Frank-Starling mechanism. Few studies have measured length-dependent activation in the myocardium from failing human hearts. We investigated whether ischemic and non-ischemic heart failure results in different length-dependent activation responses at physiological temperature (37°C). Myocardial strips from the left ventricular free wall were chemically permeabilized and Ca2+-activated at sarcomere lengths (SLs) of 1.9 and 2.3 µm. Data were acquired from 12 hearts that were explanted from patients receiving cardiac transplants; 6 had ischemic heart failure and 6 had non-ischemic heart failure. Another 6 hearts were obtained from organ donors. Maximal Ca2+-activated force increased at longer SL for all groups. Ca2+ sensitivity increased with SL in samples from donors (P < 0.001) and patients with ischemic heart failure (P = 0.003) but did not change with SL in samples from patients with non-ischemic heart failure. Compared with donors, troponin I phosphorylation decreased in ischemic samples and even more so in non-ischemic samples; cardiac myosin binding protein-C (cMyBP-C) phosphorylation also decreased with heart failure. These findings support the idea that troponin I and cMyBP-C phosphorylation promote length-dependent activation and show that length-dependent activation of contraction is blunted, yet extant, in the myocardium from patients with ischemic heart failure and further reduced in the myocardium from patients with non-ischemic heart failure. Patients who have a non-ischemic disease may exhibit a diminished contractile response to increased ventricular filling.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Keinan B Agonias
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Seetharamaiah Attili
- Randall Centre for Cell and Molecular Biophysics, King's College London , London, UK
| | - Cheavar A Blair
- Department of Physiology, University of Kentucky , Lexington, KY, USA
| | - Mindy S Thompson
- Department of Physiology, University of Kentucky , Lexington, KY, USA
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London , London, UK
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky , Lexington, KY, USA.,Division of Cardiovascular Medicine, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
5
|
Salhi HE, Shettigar V, Salyer L, Sturgill S, Brundage EA, Robinett J, Xu Z, Abay E, Lowe J, Janssen PML, Rafael-Fortney JA, Weisleder N, Ziolo MT, Biesiadecki BJ. The lack of Troponin I Ser-23/24 phosphorylation is detrimental to in vivo cardiac function and exacerbates cardiac disease. J Mol Cell Cardiol 2023; 176:84-96. [PMID: 36724829 PMCID: PMC10074981 DOI: 10.1016/j.yjmcc.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Troponin I (TnI) is a key regulator of cardiac contraction and relaxation with TnI Ser-23/24 phosphorylation serving as a myofilament mechanism to modulate cardiac function. Basal cardiac TnI Ser-23/24 phosphorylation is high such that both increased and decreased TnI phosphorylation may modulate cardiac function. While the effects of increasing TnI Ser-23/24 phosphorylation on heart function are well established, the effects of decreasing TnI Ser-23/24 phosphorylation are not clear. To understand the in vivo role of decreased TnI Ser-23/24 phosphorylation, mice expressing TnI with Ser-23/24 mutated to alanine (TnI S23/24A) that lack the ability to be phosphorylated at these residues were subjected to echocardiography and pressure-volume hemodynamic measurements in the absence or presence of physiological (pacing increasing heart rate or adrenergic stimulation) or pathological (transverse aortic constriction (TAC)) stress. In the absence of pathological stress, the lack of TnI Ser-23/24 phosphorylation impaired systolic and diastolic function. TnI S23/24A mice also had an impaired systolic and diastolic response upon stimulation increased heart rate and an impaired adrenergic response upon dobutamine infusion. Following pathological cardiac stress induced by TAC, TnI S23/24A mice had a greater increase in ventricular mass, worse diastolic function, and impaired systolic and diastolic function upon increasing heart rate. These findings demonstrate that mice lacking the ability to phosphorylate TnI at Ser-23/24 have impaired in vivo systolic and diastolic cardiac function, a blunted cardiac reserve and a worse response to pathological stress supporting decreased TnI Ser23/24 phosphorylation is a modulator of these processes in vivo.
Collapse
Affiliation(s)
- Hussam E Salhi
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Vikram Shettigar
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Lorien Salyer
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Sarah Sturgill
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Joel Robinett
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Zhaobin Xu
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Eaman Abay
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Noah Weisleder
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Mark T Ziolo
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
6
|
Sevrieva IR, Ponnam S, Yan Z, Irving M, Kampourakis T, Sun YB. Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J Biol Chem 2023; 299:102767. [PMID: 36470422 PMCID: PMC9826837 DOI: 10.1016/j.jbc.2022.102767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ sensitivity and maximum force on sarcomere length (SL), that is, enhanced length-dependent activation. However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin-binding protein C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different SLs. We found Ser22/23 bisphosphorylation of cTnI was indispensable for the enhancement of length-dependent activation by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca2+-dependent manner. In addition, bisphosphorylation at Ser22/Ser23 increased Ca2+ sensitivity at long SL in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bisphosphorylation of cTnI increased Ca2+ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ziqian Yan
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Robinett JC, Hanft LM, Biesiadecki B, McDonald KS. Molecular regulation of stretch activation. Am J Physiol Cell Physiol 2022; 323:C1728-C1739. [PMID: 36280392 PMCID: PMC9744651 DOI: 10.1152/ajpcell.00101.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Stretch activation is defined as a delayed increase in force after rapid stretches. Although there is considerable evidence for stretch activation in isolated cardiac myofibrillar preparations, few studies have measured mechanisms of stretch activation in mammalian skeletal muscle fibers. We measured stretch activation following rapid step stretches [∼1%-4% sarcomere length (SL)] during submaximal Ca2+ activations of rat permeabilized slow-twitch skeletal muscle fibers before and after protein kinase A (PKA), which phosphorylates slow myosin binding protein-C. PKA significantly increased stretch activation during low (∼25%) Ca2+ activation and accelerated rates of delayed force development (kef) during both low and half-maximal Ca2+ activation. Following the step stretches and subsequent force development, fibers were rapidly shortened to original sarcomere length, which often elicited a shortening-induced transient force overshoot. After PKA, step shortening-induced transient force overshoot increased ∼10-fold following an ∼4% SL shortening during low Ca2+ activation levels. kdf following step shortening also increased after PKA during low and half-maximal Ca2+ activations. We next investigated thin filament regulation of stretch activation. We tested the interplay between cardiac troponin I (cTnI) phosphorylation at the canonical PKA and novel tyrosine kinase sites on stretch activation. Native slow-skeletal Tn complexes were exchanged with recombinant human cTn complex with different human cTnI N-terminal pseudo-phosphorylation molecules: 1) nonphosphorylated wild type (WT), 2) the canonical S22/23D PKA sites, 3) the tyrosine kinase Y26E site, and 4) the combinatorial S22/23D + Y26E cTnI. All three pseudo-phosphorylated cTnIs elicited greater stretch activation than WT. Following stretch activation, a new, elevated stretch-induced steady-state force was reached with pseudo-phosphorylated cTnI. Combinatorial S22/23D + Y26E pseudo-phosphorylated cTnI increased kdf. These results suggest that slow-skeletal myosin binding protein-C (sMyBP-C) phosphorylation modulates stretch activation by a combination of cross-bridge recruitment and faster cycling kinetics, whereas cTnI phosphorylation regulates stretch activation by both redundant and synergistic mechanisms; and, taken together, these sarcomere phosphoproteins offer precision targets for enhanced contractility.
Collapse
Affiliation(s)
- Joel C Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Laurin M Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Brandon Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Schick BM, Dlugas H, Czeiszperger TL, Matus AR, Bukowski MJ, Chung CS. Reduced preload increases Mechanical Control (strain-rate dependence) of Relaxation by modifying myosin kinetics. Arch Biochem Biophys 2021; 707:108909. [PMID: 34015323 PMCID: PMC8635462 DOI: 10.1016/j.abb.2021.108909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022]
Abstract
Rapid myocardial relaxation is essential in maintaining cardiac output, and impaired relaxation is an early indicator of diastolic dysfunction. While the biochemical modifiers of relaxation are well known to include calcium handling, thin filament activation, and myosin kinetics, biophysical and biomechanical modifiers can also alter relaxation. We have previously shown that the relaxation rate is increased by an increasing strain rate, not a reduction in afterload. The slope of the relaxation rate to strain rate relationship defines Mechanical Control of Relaxation (MCR). To investigate MCR further, we performed in vitro experiments and computational modeling of preload-adjustment using intact rat cardiac trabeculae. Trabeculae studies are often performed using isometric (fixed-end) muscles at optimal length (Lo, length producing maximal developed force). We determined that reducing muscle length from Lo increased MCR by 20%, meaning that reducing preload could substantially increase the sensitivity of the relaxation rate to the strain rate. We subsequently used computational modeling to predict mechanisms that might underlie this preload-dependence. Computational modeling was not able to fully replicate experimental data, but suggested that thin-filament properties are not sufficient to explain preload-dependence of MCR because the model required the thin-filament to become more activated at reduced preloads. The models suggested that myosin kinetics may underlie the increase in MCR at reduced preload, an effect that can be enhanced by force-dependence. Relaxation can be modified and enhanced by reduced preload. Computational modeling implicates myosin-based targets for treatment of diastolic dysfunction, but further model refinements are needed to fully replicate experimental data.
Collapse
Affiliation(s)
- Brianna M Schick
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Hunter Dlugas
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | | | | | | | - Charles S Chung
- Department of Physiology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
9
|
Hanft LM, Fitzsimons DP, Hacker TA, Moss RL, McDonald KS. Cardiac MyBP-C phosphorylation regulates the Frank-Starling relationship in murine hearts. J Gen Physiol 2021; 153:e202012770. [PMID: 33646280 PMCID: PMC7927661 DOI: 10.1085/jgp.202012770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
The Frank-Starling relationship establishes that elevated end-diastolic volume progressively increases ventricular pressure and stroke volume in healthy hearts. The relationship is modulated by a number of physiological inputs and is often depressed in human heart failure. Emerging evidence suggests that cardiac myosin-binding protein-C (cMyBP-C) contributes to the Frank-Starling relationship. We measured contractile properties at multiple levels of structural organization to determine the role of cMyBP-C and its phosphorylation in regulating (1) the sarcomere length dependence of power in cardiac myofilaments and (2) the Frank-Starling relationship in vivo. We compared transgenic mice expressing wild-type cMyBP-C on the null background, which have ∼50% phosphorylated cMyBP-C (Controls), to transgenic mice lacking cMyBP-C (KO) and to mice expressing cMyBP-C that have serine-273, -282, and -302 mutated to aspartate (cMyBP-C t3SD) or alanine (cMyBP-C t3SA) on the null background to mimic either constitutive PKA phosphorylation or nonphosphorylated cMyBP-C, respectively. We observed a continuum of length dependence of power output in myocyte preparations. Sarcomere length dependence of power progressively increased with a rank ordering of cMyBP-C KO = cMyBP-C t3SA < Control < cMyBP-C t3SD. Length dependence of myofilament power translated, at least in part, to hearts, whereby Frank-Starling relationships were steepest in cMyBP-C t3SD mice. The results support the hypothesis that cMyBP-C and its phosphorylation state tune sarcomere length dependence of myofibrillar power, and these regulatory processes translate across spatial levels of myocardial organization to control beat-to-beat ventricular performance.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Daniel P. Fitzsimons
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Timothy A. Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Richard L. Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
10
|
Kachooei E, Cordina NM, Potluri PR, Guse JA, McCamey D, Brown LJ. Phosphorylation of Troponin I finely controls the positioning of Troponin for the optimal regulation of cardiac muscle contraction. J Mol Cell Cardiol 2020; 150:44-53. [PMID: 33080242 DOI: 10.1016/j.yjmcc.2020.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 12/01/2022]
Abstract
Troponin is the Ca2+ molecular switch that regulates striated muscle contraction. In the heart, troponin Ca2+ sensitivity is also modulated by the PKA-dependent phosphorylation of a unique 31-residue N-terminal extension region of the Troponin I subunit (NH2-TnI). However, the detailed mechanism for the propagation of the phosphorylation signal through Tn, which results in the enhancement of the myocardial relaxation rate, is difficult to examine within whole Tn. Several models exist for how phosphorylation modulates the troponin response in cardiac cells but these are mostly built from peptide-NMR studies and molecular dynamics simulations. Here we used a paramagnetic spin labeling approach to position and track the movement of the NH2-TnI region within whole Tn. Through paramagnetic relaxation enhancement (PRE)-NMR experiments, we show that the NH2-TnI region interacts with a broad surface area on the N-domain of the Troponin C subunit. This region includes the Ca2+ regulatory Site II and the TnI switch-binding site. Phosphorylation of the NH2-TnI both weakens and shifts this region to an adjacent site on TnC. Interspin EPR distances between NH2-TnI and TnC further reveal a phosphorylation induced re-orientation of the TnC N-domain under saturating Ca2+ conditions. We propose an allosteric model where phosphorylation triggered cooperative changes in both the interaction of the NH2-TnI region with TnC, and the re-orientation of the TnC interdomain orientation, together promote the release of the TnI switch-peptide. Enhancement of the myocardial relaxation rate then occurs. Knowledge of this unique role of phosphorylation in whole Tn is important for understanding pathological processes affecting the heart.
Collapse
Affiliation(s)
- Ehsan Kachooei
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nicole M Cordina
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Phani R Potluri
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Joanna A Guse
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dane McCamey
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| |
Collapse
|
11
|
McDonald KS, Hanft LM, Robinett JC, Guglin M, Campbell KS. Regulation of Myofilament Contractile Function in Human Donor and Failing Hearts. Front Physiol 2020; 11:468. [PMID: 32523542 PMCID: PMC7261867 DOI: 10.3389/fphys.2020.00468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
Heart failure (HF) often includes changes in myocardial contractile function. This study addressed the myofibrillar basis for contractile dysfunction in failing human myocardium. Regulation of contractile properties was measured in cardiac myocyte preparations isolated from frozen, left ventricular mid-wall biopsies of donor (n = 7) and failing human hearts (n = 8). Permeabilized cardiac myocyte preparations were attached between a force transducer and a position motor, and both the Ca2+ dependence and sarcomere length (SL) dependence of force, rate of force, loaded shortening, and power output were measured at 15 ± 1°C. The myocyte preparation size was similar between groups (donor: length 148 ± 10 μm, width 21 ± 2 μm, n = 13; HF: length 131 ± 9 μm, width 23 ± 1 μm, n = 16). The maximal Ca2+-activated isometric force was also similar between groups (donor: 47 ± 4 kN⋅m-2; HF: 44 ± 5 kN⋅m-2), which implicates that previously reported force declines in multi-cellular preparations reflect, at least in part, tissue remodeling. Maximal force development rates were also similar between groups (donor: k tr = 0.60 ± 0.05 s-1; HF: k tr = 0.55 ± 0.04 s-1), and both groups exhibited similar Ca2+ activation dependence of k tr values. Human cardiac myocyte preparations exhibited a Ca2+ activation dependence of loaded shortening and power output. The peak power output normalized to isometric force (PNPO) decreased by ∼12% from maximal Ca2+ to half-maximal Ca2+ activations in both groups. Interestingly, the SL dependence of PNPO was diminished in failing myocyte preparations. During sub-maximal Ca2+ activation, a reduction in SL from ∼2.25 to ∼1.95 μm caused a ∼26% decline in PNPO in donor myocytes but only an ∼11% change in failing myocytes. These results suggest that altered length-dependent regulation of myofilament function impairs ventricular performance in failing human hearts.
Collapse
Affiliation(s)
- Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Maya Guglin
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
12
|
Lin YH, Schmidt W, Fritz KS, Jeong MY, Cammarato A, Foster DB, Biesiadecki BJ, McKinsey TA, Woulfe KC. Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity. J Mol Cell Cardiol 2020; 139:135-147. [PMID: 31981571 DOI: 10.1016/j.yjmcc.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cardiac troponin I (cTnI) is an essential physiological and pathological regulator of cardiac relaxation. Significant to this regulation, the post-translational modification of cTnI through phosphorylation functions as a key mechanism to accelerate myofibril relaxation. Similar to phosphorylation, post-translational modification by acetylation alters amino acid charge and protein function. Recent studies have demonstrated that the acetylation of cardiac myofibril proteins accelerates relaxation and that cTnI is acetylated in the heart. These findings highlight the potential significance of myofilament acetylation; however, it is not known if site-specific acetylation of cTnI can lead to changes in myofilament, myofibril, and/or cellular mechanics. The objective of this study was to determine the effects of mimicking acetylation at a single site of cTnI (lysine-132; K132) on myofilament, myofibril, and cellular mechanics and elucidate its influence on molecular function. METHODS To determine if pseudo-acetylation of cTnI at 132 modulates thin filament regulation of the acto-myosin interaction, we reconstituted thin filaments containing WT or K132Q (to mimic acetylation) cTnI and assessed in vitro motility. To test if mimicking acetylation at K132 alters cellular relaxation, adult rat ventricular cardiomyocytes were infected with adenoviral constructs expressing either cTnI K132Q or K132 replaced with arginine (K132R; to prevent acetylation) and cell shortening and isolated myofibril mechanics were measured. Finally, to confirm that changes in cell shortening and myofibril mechanics were directly due to pseudo-acetylation of cTnI at K132, we exchanged troponin containing WT or K132Q cTnI into isolated myofibrils and measured myofibril mechanical properties. RESULTS Reconstituted thin filaments containing K132Q cTnI exhibited decreased calcium sensitivity compared to thin filaments reconstituted with WT cTnI. Cardiomyocytes expressing K132Q cTnI had faster relengthening and myofibrils isolated from these cells had faster relaxation along with decreased calcium sensitivity compared to cardiomyocytes expressing WT or K132R cTnI. Myofibrils exchanged with K132Q cTnI ex vivo demonstrated faster relaxation and decreased calcium sensitivity. CONCLUSIONS Our results indicate for the first time that mimicking acetylation of a specific cTnI lysine accelerates myofilament, myofibril, and myocyte relaxation. This work underscores the importance of understanding how acetylation of specific sarcomeric proteins affects cardiac homeostasis and disease and suggests that modulation of myofilament lysine acetylation may represent a novel therapeutic target to alter cardiac relaxation.
Collapse
Affiliation(s)
- Ying H Lin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - William Schmidt
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Mark Y Jeong
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
13
|
Hanft LM, McDonald KS. Regulating myofilament power: The determinant of health. Arch Biochem Biophys 2019; 663:160-164. [PMID: 30639328 PMCID: PMC10155509 DOI: 10.1016/j.abb.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/27/2018] [Accepted: 01/09/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
14
|
Pinzauti F, Pertici I, Reconditi M, Narayanan T, Stienen GJM, Piazzesi G, Lombardi V, Linari M, Caremani M. The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration. J Physiol 2018; 596:2581-2596. [PMID: 29714038 PMCID: PMC6023834 DOI: 10.1113/jp275579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/13/2018] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Fast sarcomere-level mechanics in intact trabeculae, which allows the definition of the mechano-kinetic properties of cardiac myosin in situ, is a fundamental tool not only for understanding the molecular mechanisms of heart performance and regulation, but also for investigating the mechanisms of the cardiomyopathy-causing mutations in the myosin and testing small molecules for therapeutic interventions. The approach has been applied to measure the stiffness and force of the myosin motor and the fraction of motors attached during isometric twitches of electrically paced trabeculae under different extracellular Ca2+ concentrations. Although the average force of the cardiac myosin motor (∼6 pN) is similar to that of the fast myosin isoform of skeletal muscle, the stiffness (1.07 pN nm-1 ) is 2- to 3-fold smaller. The increase in the twitch force developed in the presence of larger extracellular Ca2+ concentrations is fully accounted for by a proportional increase in the number of attached motors. ABSTRACT The mechano-kinetic properties of the cardiac myosin were studied in situ, in trabeculae dissected from the right ventricle of the rat heart, by measuring the stiffness of the half-sarcomere both at the twitch force peak (Tp ) of an electrically paced intact trabecula at different extracellular Ca2+ concentrations ([Ca2+ ]o ), and in the same trabecula after skinning and induction of rigor. Taking into account the contribution of filament compliance to half-sarcomere compliance and the lattice geometry, we found that the stiffness of the cardiac myosin motor is 1.07 ± 0.09 pN nm-1 , which is slightly larger than that of the slow myosin isoform of skeletal muscle (0.6-0.8 pN nm-1 ) and 2- to 3-fold smaller than that of the fast skeletal muscle isoform. The increase in Tp from 61 ± 4 kPa to 93 ± 9 kPa, induced by raising [Ca2+ ]o from 1 to 2.5 mm at sarcomere length ∼2.2 μm, is accompanied by an increase of the half-sarcomere stiffness that is explained by an increase of the fraction of actin-attached motors from 0.08 ± 0.01 to 0.12 ± 0.02, proportional to Tp . Consequently, each myosin motor bears an average force of 6.14 ± 0.52 pN independently of Tp and [Ca2+ ]o . The application of fast sarcomere-level mechanics to intact trabeculae to define the mechano-kinetic properties of the cardiac myosin in situ represents a powerful tool for investigating cardiomyopathy-causing mutations in the myosin motor and testing specific therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ger J. M. Stienen
- Department of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | | | | | | | | |
Collapse
|
15
|
Soetkamp D, Raedschelders K, Mastali M, Sobhani K, Bairey Merz CN, Van Eyk J. The continuing evolution of cardiac troponin I biomarker analysis: from protein to proteoform. Expert Rev Proteomics 2017; 14:973-986. [PMID: 28984473 DOI: 10.1080/14789450.2017.1387054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The troponin complex consists of three proteins that fundamentally couple excitation with contraction. Circulating cardiac-specific Troponin I (cTnI) serves as diagnostic biomarker tools for risk stratification of acute coronary syndromes and acute myocardial infarction (MI). Within the heart, cTnI oscillates between inactive and active conformations to either block or disinhibit actinomyosin formation. This molecular mechanism is fine-tuned through extensive protein modifications whose profiles are maladaptively altered with co-morbidities including hypertrophic cardiomyopathy, diabetes, and heart failure. Technological advances in analytical platforms over the last decade enable routine baseline cTnI analysis in patients without cardiovascular complications, and hold potential to expand cTnI readouts that include modified cTnI proteoforms. Areas covered: This review covers the current state, advances, and prospects of analytical platforms that now enable routine baseline cTnI analysis in patients. In parallel, improved mass spectrometry instrumentation and workflows already reveal an array of modified cTnI proteoforms with promising diagnostic implications. Expert commentary: New analytical capabilities provide clinicians and researchers with an opportunity to address important questions surrounding circulating cTnI in the improved diagnosis of specific patient cohorts. These techniques also hold considerable promise for new predictive and prescriptive applications for individualized profiling and improve patient care.
Collapse
Affiliation(s)
- Daniel Soetkamp
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Koen Raedschelders
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Mitra Mastali
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Kimia Sobhani
- b Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - C Noel Bairey Merz
- c Women's Heart Center , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Jennifer Van Eyk
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|
16
|
Abstract
The Frank-Starling Law dictates that the heart is able to match ejection to the dynamic changes occurring during cardiac filling, hence efficiently regulating isovolumetric contraction and shortening. In the last four decades, efforts have been made to identify a common fundamental basis for the Frank-Starling heart that can explain the direct relationship between muscle lengthening and its increased sensitization to Ca2+. The term 'myofilament length-dependent activation' describes the length-dependent properties of the myofilaments, but what is(are) the underlying molecular mechanism(s) is a matter of ongoing debate. Length-dependent activation increases formation of thick-filament strongly-bound cross-bridges on actin and imposes structural-mechanical alterations on the thin-filament with greater than normal bound Ca2+. Stretch-induced effects, rather than changes in filament spacing, appear to be primarily involved in the regulation of length-dependent activation. Here, evidence is provided to support the notion that stretch-mediated effects induced by titin govern alterations of thick-filament force-producing cross-bridges and thin-filament Ca2+-cooperative responses.
Collapse
|
17
|
Abstract
The mammalian heart pumps blood through the vessels, maintaining the dynamic equilibrium in a circulatory system driven by two pumps in series. This vital function is based on the fine-tuning of cardiac performance by the Frank-Starling mechanism that relates the pressure exerted by the contracting ventricle (end systolic pressure) to its volume (end systolic volume). At the level of the sarcomere, the structural unit of the cardiac myocytes, the Frank-Starling mechanism consists of the increase in active force with the increase of sarcomere length (length-dependent activation). We combine sarcomere mechanics and micrometer-nanometer-scale X-ray diffraction from synchrotron light in intact ventricular trabeculae from the rat to measure the axial movement of the myosin motors during the diastole-systole cycle under sarcomere length control. We find that the number of myosin motors leaving the off, ATP hydrolysis-unavailable state characteristic of the diastole is adjusted to the sarcomere length-dependent systolic force. This mechanosensing-based regulation of the thick filament makes the energetic cost of the systole rapidly tuned to the mechanical task, revealing a prime aspect of the Frank-Starling mechanism. The regulation is putatively impaired by cardiomyopathy-causing mutations that affect the intramolecular and intermolecular interactions controlling the off state of the motors.
Collapse
|
18
|
Dvornikov AV, Smolin N, Zhang M, Martin JL, Robia SL, de Tombe PP. Restrictive Cardiomyopathy Troponin I R145W Mutation Does Not Perturb Myofilament Length-dependent Activation in Human Cardiac Sarcomeres. J Biol Chem 2016; 291:21817-21828. [PMID: 27557662 DOI: 10.1074/jbc.m116.746172] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Indexed: 02/05/2023] Open
Abstract
The cardiac troponin I (cTnI) R145W mutation is associated with restrictive cardiomyopathy (RCM). Recent evidence suggests that this mutation induces perturbed myofilament length-dependent activation (LDA) under conditions of maximal protein kinase A (PKA) stimulation. Some cardiac disease-causing mutations, however, have been associated with a blunted response to PKA-mediated phosphorylation; whether this includes LDA is unknown. Endogenous troponin was exchanged in isolated skinned human myocardium for recombinant troponin containing either cTnI R145W, PKA/PKC phosphomimetic charge mutations (S23D/S24D and T143E), or various combinations thereof. Myofilament Ca2+ sensitivity of force, tension cost, LDA, and single myofibril activation/relaxation parameters were measured. Our results show that both R145W and T143E uncouple the impact of S23D/S24D phosphomimetic on myofilament function, including LDA. Molecular dynamics simulations revealed a marked reduction in interactions between helix C of cTnC (residues 56, 59, and 63), and cTnI (residue 145) in the presence of either cTnI RCM mutation or cTnI PKC phosphomimetic. These results suggest that the RCM-associated cTnI R145W mutation induces a permanent structural state that is similar to, but more extensive than, that induced by PKC-mediated phosphorylation of cTnI Thr-143. We suggest that this structural conformational change induces an increase in myofilament Ca2+ sensitivity and, moreover, uncoupling from the impact of phosphorylation of cTnI mediated by PKA at the Ser-23/Ser-24 target sites. The R145W RCM mutation by itself, however, does not impact LDA. These perturbed biophysical and biochemical myofilament properties are likely to significantly contribute to the diastolic cardiac pump dysfunction that is seen in patients suffering from a restrictive cardiomyopathy that is associated with the cTnI R145W mutation.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Nikolai Smolin
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Mengjie Zhang
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Jody L Martin
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Seth L Robia
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Pieter P de Tombe
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|
19
|
Cheng Y, Regnier M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch Biochem Biophys 2016; 601:11-21. [PMID: 26851561 PMCID: PMC4899195 DOI: 10.1016/j.abb.2016.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
Cardiac troponin (cTn) acts as a pivotal regulator of muscle contraction and relaxation and is composed of three distinct subunits (cTnC: a highly conserved Ca(2+) binding subunit, cTnI: an actomyosin ATPase inhibitory subunit, and cTnT: a tropomyosin binding subunit). In this mini-review, we briefly summarize the structure-function relationship of cTn and its subunits, its modulation by PKA-mediated phosphorylation of cTnI, and what is known about how these properties are altered by hypertrophic cardiomyopathy (HCM) associated mutations of cTnI. This includes recent work using computational modeling approaches to understand the atomic-based structural level basis of disease-associated mutations. We propose a viewpoint that it is alteration of cTnC-cTnI interaction (rather than the Ca(2+) binding properties of cTn) per se that disrupt the ability of PKA-mediated phosphorylation at cTnI Ser-23/24 to alter contraction and relaxation in at least some HCM-associated mutations. The combination of state of the art biophysical approaches can provide new insight on the structure-function mechanisms of contractile dysfunction resulting cTnI mutations and exciting new avenues for the diagnosis, prevention, and even treatment of heart diseases.
Collapse
Affiliation(s)
- Yuanhua Cheng
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Seattle, WA, USA.
| |
Collapse
|
20
|
Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proc Natl Acad Sci U S A 2016; 113:E3039-47. [PMID: 27162358 DOI: 10.1073/pnas.1602776113] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.
Collapse
|
21
|
Hanft LM, Cornell TD, McDonald CA, Rovetto MJ, Emter CA, McDonald KS. Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function. Arch Biochem Biophys 2016; 601:22-31. [PMID: 26854722 DOI: 10.1016/j.abb.2016.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/08/2023]
Abstract
Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA-induced phosphorylation of cMyBP-C and cTnI may contribute to ventricular pump failure.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Timothy D Cornell
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Colin A McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Michael J Rovetto
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Craig A Emter
- Department of Biomedical Sciences, College of Veterinary Medicine University of Missouri, Columbia, MO 65211, USA
| | - Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
22
|
Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. Proc Natl Acad Sci U S A 2016; 113:2306-11. [PMID: 26858417 DOI: 10.1073/pnas.1516732113] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Frank-Starling mechanism of the heart is due, in part, to modulation of myofilament Ca(2+) sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank-Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.
Collapse
|
23
|
Sequeira V, van der Velden J. Historical perspective on heart function: the Frank-Starling Law. Biophys Rev 2015; 7:421-447. [PMID: 28510104 DOI: 10.1007/s12551-015-0184-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
More than a century of research on the Frank-Starling Law has significantly advanced our knowledge about the working heart. The Frank-Starling Law mandates that the heart is able to match cardiac ejection to the dynamic changes occurring in ventricular filling and thereby regulates ventricular contraction and ejection. Significant efforts have been attempted to identify a common fundamental basis for the Frank-Starling heart and, although a unifying idea has still to come forth, there is mounting evidence of a direct relationship between length changes in individual constituents (cardiomyocytes) and their sensitivity to Ca2+ ions. As the Frank-Starling Law is a vital event for the healthy heart, it is of utmost importance to understand its mechanical basis in order to optimize and organize therapeutic strategies to rescue the failing human heart. The present review is a historic perspective on cardiac muscle function. We "revive" a century of scientific research on the heart's fundamental protein constituents (contractile proteins), to their assemblies in the muscle (the sarcomeres), culminating in a thorough overview of the several synergistically events that compose the Frank-Starling mechanism. It is the authors' personal beliefs that much can be gained by understanding the Frank-Starling relationship at the cellular and whole organ level, so that we can finally, in this century, tackle the pathophysiologic mechanisms underlying heart failure.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,ICIN- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
24
|
Kumar M, Govindan S, Zhang M, Khairallah RJ, Martin JL, Sadayappan S, de Tombe PP. Cardiac Myosin-binding Protein C and Troponin-I Phosphorylation Independently Modulate Myofilament Length-dependent Activation. J Biol Chem 2015; 290:29241-9. [PMID: 26453301 DOI: 10.1074/jbc.m115.686790] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 11/06/2022] Open
Abstract
β-Adrenergic stimulation in heart leads to increased contractility and lusitropy via activation of protein kinase A (PKA). In the cardiac sarcomere, both cardiac myosin binding protein C (cMyBP-C) and troponin-I (cTnI) are prominent myofilament targets of PKA. Treatment of permeabilized myocardium with PKA induces enhanced myofilament length-dependent activation (LDA), the cellular basis of the Frank-Starling cardiac regulatory mechanism. It is not known, however, which of these targets mediates the altered LDA and to what extent. Here, we employed two genetic mouse models in which the three PKA sites in cMyBP-C were replaced with either phospho-mimic (DDD) or phospho-null (AAA) residues. AAA- or DDD-permeabilized myocytes (n = 12-17) were exchanged (~93%) for recombinant cTnI in which the two PKA sites were mutated to either phospho-mimic (DD) or phospho-null (AA) residues. Force-[Ca(2+)] relationships were determined at two sarcomere lengths (SL = 1.9 μm and SL = 2.3 μm). Data were fit to a modified Hill equation for each individual cell preparation at each SL. LDA was indexed as ΔEC50, the difference in [Ca(2+)] required to achieve 50% force activation at the two SLs. We found that PKA-mediated phosphorylation of cMyBP-C and cTnI each independently contribute to enhance myofilament length-dependent activation properties of the cardiac sarcomere, with relative contributions of ~67 and ~33% for cMyBP-C for cTnI, respectively. We conclude that β-adrenergic stimulation enhances the Frank-Starling regulatory mechanism predominantly via cMyBP-C PKA-mediated phosphorylation. We speculate that this molecular mechanism enhances cross-bridge formation at long SL while accelerating cross-bridge detachment and relaxation at short SLs.
Collapse
Affiliation(s)
- Mohit Kumar
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Suresh Govindan
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Mengjie Zhang
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Ramzi J Khairallah
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Jody L Martin
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Sakthivel Sadayappan
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Pieter P de Tombe
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| |
Collapse
|
25
|
Lindert S, Cheng Y, Kekenes-Huskey P, Regnier M, McCammon JA. Effects of HCM cTnI mutation R145G on troponin structure and modulation by PKA phosphorylation elucidated by molecular dynamics simulations. Biophys J 2015; 108:395-407. [PMID: 25606687 DOI: 10.1016/j.bpj.2014.11.3461] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022] Open
Abstract
Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI(1-39)), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl(137-147)) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca(2+) handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), cTnI-R145G/S23D/S24D Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), and cTnI-R145G/PS23/PS24 Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca(2+)-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca(2+) coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory peptide, which have been suggested to play a crucial role in modulating troponin function during β-adrenergic stimulation. These findings offer a molecular-level explanation for how the HCM mutation cTnI-R145G reduces the modulation of cTn by phosphorylation of S23/S24 during β-adrenergic stimulation.
Collapse
Affiliation(s)
- Steffen Lindert
- Department of Pharmacology, University of California San Diego, La Jolla, California; NSF Center for Theoretical Biological Physics, La Jolla, California.
| | - Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Peter Kekenes-Huskey
- Department of Pharmacology, University of California San Diego, La Jolla, California; Department of Chemistry, University of Kentucky, Lexington, Kentucky
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - J Andrew McCammon
- Department of Pharmacology, University of California San Diego, La Jolla, California; Howard Hughes Medical Institute, University of California San Diego, La Jolla, California; Department of Chemistry and Biochemistry, National Biomedical Computation Resource, University of California San Diego, La Jolla, California; NSF Center for Theoretical Biological Physics, La Jolla, California
| |
Collapse
|
26
|
Stienen GJM. Pathomechanisms in heart failure: the contractile connection. J Muscle Res Cell Motil 2014; 36:47-60. [PMID: 25376563 DOI: 10.1007/s10974-014-9395-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/20/2014] [Indexed: 01/07/2023]
Abstract
Heart failure is a multi-factorial progressive disease in which eventually the contractile performance of the heart is insufficient to meet the demands of the body, even at rest. A distinction can be made on the basis of the cause of the disease in genetic and acquired heart failure and at the functional level between systolic and diastolic heart failure. Here the basic determinants of contractile function of myocardial cells will be reviewed and an attempt will be made to elucidate their role in the development of heart failure. The following topics are addressed: the tension generating capacity, passive tension, the rate of tension development, the rate of ATP utilisation, calcium sensitivity of tension development, phosphorylation of contractile proteins, length dependent activation and stretch activation. The reduction in contractile performance during systole can be attributed predominantly to a loss of cardiomyocytes (necrosis), myocyte disarray and a decrease in myofibrillar density all resulting in a reduction in the tension generating capacity and likely also to a mismatch between energy supply and demand of the myocardium. This leads to a decline in the ejection fraction of the heart. Diastolic dysfunction can be attributed to fibrosis and an increase in titin stiffness which result in an increase in stiffness of the ventricular wall and hampers the filling of the heart with blood during diastole. A large number of post translation modifications of regulatory sarcomeric proteins influence myocardial function by altering calcium sensitivity of tension development. It is still unclear whether in concert these influences are adaptive or maladaptive during the disease process.
Collapse
Affiliation(s)
- G J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands,
| |
Collapse
|
27
|
Cheng Y, Lindert S, Kekenes-Huskey P, Rao VS, Solaro RJ, Rosevear PR, Amaro R, McCulloch AD, McCammon JA, Regnier M. Computational studies of the effect of the S23D/S24D troponin I mutation on cardiac troponin structural dynamics. Biophys J 2014; 107:1675-85. [PMID: 25296321 PMCID: PMC4190606 DOI: 10.1016/j.bpj.2014.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/25/2014] [Accepted: 08/11/2014] [Indexed: 11/27/2022] Open
Abstract
During β-adrenergic stimulation, cardiac troponin I (cTnI) is phosphorylated by protein kinase A (PKA) at sites S23/S24, located at the N-terminus of cTnI. This phosphorylation has been shown to decrease KCa and pCa50, and weaken the cTnC-cTnI (C-I) interaction. We recently reported that phosphorylation results in an increase in the rate of early, slow phase of relaxation (kREL,slow) and a decrease in its duration (tREL,slow), which speeds up the overall relaxation. However, as the N-terminus of cTnI (residues 1-40) has not been resolved in the whole cardiac troponin (cTn) structure, little is known about the molecular-level behavior within the whole cTn complex upon phosphorylation of the S23/S24 residues of cTnI that results in these changes in function. In this study, we built up the cTn complex structure (including residues cTnC 1-161, cTnI 1-172, and cTnT 236-285) with the N-terminus of cTnI. We performed molecular-dynamics (MD) simulations to elucidate the structural basis of PKA phosphorylation-induced changes in cTn structure and Ca(2+) binding. We found that introducing two phosphomimic mutations into sites S23/S24 had no significant effect on the coordinating residues of Ca(2+) binding site II. However, the overall fluctuation of cTn was increased and the C-I interaction was altered relative to the wild-type model. The most significant changes involved interactions with the N-terminus of cTnI. Interestingly, the phosphomimic mutations led to the formation of intrasubunit interactions between the N-terminus and the inhibitory peptide of cTnI. This may result in altered interactions with cTnC and could explain the increased rate and decreased duration of slow-phase relaxation seen in myofibrils.
Collapse
Affiliation(s)
- Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington; National Biomedical Computational Resource, University of California, San Diego, La Jolla, California
| | - Steffen Lindert
- National Biomedical Computational Resource, University of California, San Diego, La Jolla, California; Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Peter Kekenes-Huskey
- National Biomedical Computational Resource, University of California, San Diego, La Jolla, California; Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Vijay S Rao
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - R John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Paul R Rosevear
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Rommie Amaro
- National Biomedical Computational Resource, University of California, San Diego, La Jolla, California
| | - Andrew D McCulloch
- National Biomedical Computational Resource, University of California, San Diego, La Jolla, California; Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - J Andrew McCammon
- National Biomedical Computational Resource, University of California, San Diego, La Jolla, California; Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
28
|
The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C. Proc Natl Acad Sci U S A 2014; 111:14412-7. [PMID: 25246568 DOI: 10.1073/pnas.1410775111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cardiac isoform of troponin I (cTnI) has a unique 31-residue N-terminal region that binds cardiac troponin C (cTnC) to increase the calcium sensitivity of the sarcomere. The interaction can be abolished by cTnI phosphorylation at Ser22 and Ser23, an important mechanism for regulating cardiac contractility. cTnC contains two EF-hand domains (the N and C domain of cTnC, cNTnC and cCTnC) connected by a flexible linker. Calcium binding to either domain favors an "open" conformation, exposing a large hydrophobic surface that is stabilized by target binding, cTnI[148-158] for cNTnC and cTnI[39-60] for cCTnC. We used multinuclear multidimensional solution NMR spectroscopy to study cTnI[1-73] in complex with cTnC. cTnI[39-60] binds to the hydrophobic face of cCTnC, stabilizing an alpha helix in cTnI[41-67] and a type VIII turn in cTnI[38-41]. In contrast, cTnI[1-37] remains disordered, although cTnI[19-37] is electrostatically tethered to the negatively charged surface of cNTnC (opposite its hydrophobic surface). The interaction does not directly affect the calcium binding affinity of cNTnC. However, it does fix the positioning of cNTnC relative to the rest of the troponin complex, similar to what was previously observed in an X-ray structure [Takeda S, et al. (2003) Nature 424(6944):35-41]. Domain positioning impacts the effective concentration of cTnI[148-158] presented to cNTnC, and this is how cTnI[19-37] indirectly modulates the calcium affinity of cNTnC within the context of the cardiac thin filament. Phosphorylation of cTnI at Ser22/23 disrupts domain positioning, explaining how it impacts many other cardiac regulatory mechanisms, like the Frank-Starling law of the heart.
Collapse
|
29
|
Bliss KT, Tsukada T, Novak SM, Dorovkov MV, Shah SP, Nworu C, Kostyukova AS, Gregorio CC. Phosphorylation of tropomodulin1 contributes to the regulation of actin filament architecture in cardiac muscle. FASEB J 2014; 28:3987-95. [PMID: 24891520 DOI: 10.1096/fj.13-246009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/19/2014] [Indexed: 01/09/2023]
Abstract
Tropomodulin1 (Tmod1) is an actin-capping protein that plays an important role in actin filament pointed-end dynamics and length in striated muscle. No mechanisms have been identified to explain how Tmod1's functional properties are regulated. The purpose of this investigation was to explore the functional significance of the phosphorylation of Tmod1 at previously identified Thr54. Rat cardiomyocytes were assessed for phosphorylation of Tmod1 using Pro-Q Diamond staining and (32)P labeling. Green fluorescent protein-tagged phosphorylation-mimic (T54E) and phosphorylation-deficient (T54A) versions of Tmod1 were expressed in cultured cardiomyocytes, and the ability of these mutants to assemble and restrict actin lengths was observed. We report for the first time that Tmod1 is phosphorylated endogenously in cardiomyocytes, and phosphorylation at Thr54 causes a significant reduction in the ability of Tmod1 to assemble to the pointed end compared with that of the wild type (WT; 48 vs. 78%, respectively). In addition, overexpression of Tmod1-T54E restricts actin filament lengths by only ∼3%, whereas Tmod1-WT restricts the lengths significantly by ∼8%. Finally, Tmod1-T54E altered the actin filament-capping activity in polymerization assays. Taken together, our data suggest that pointed-end assembly and Tmod1's thin filament length regulatory function are regulated by its phosphorylation state.
Collapse
Affiliation(s)
- Katherine T Bliss
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, USA
| | - Takehiro Tsukada
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, USA
| | - Stefanie Mares Novak
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, USA
| | | | - Samar P Shah
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - Chinedu Nworu
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, USA
| | - Alla S Kostyukova
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, USA;
| |
Collapse
|
30
|
Wijnker PJM, Sequeira V, Foster DB, Li Y, Dos Remedios CG, Murphy AM, Stienen GJM, van der Velden J. Length-dependent activation is modulated by cardiac troponin I bisphosphorylation at Ser23 and Ser24 but not by Thr143 phosphorylation. Am J Physiol Heart Circ Physiol 2014; 306:H1171-81. [PMID: 24585778 DOI: 10.1152/ajpheart.00580.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frank-Starling's law reflects the ability of the heart to adjust the force of its contraction to changes in ventricular filling, a property based on length-dependent myofilament activation (LDA). The threonine at amino acid 143 of cardiac troponin I (cTnI) is prerequisite for the length-dependent increase in Ca(2+) sensitivity. Thr143 is a known target of protein kinase C (PKC) whose activity is increased in cardiac disease. Thr143 phosphorylation may modulate length-dependent myofilament activation in failing hearts. Therefore, we investigated if pseudo-phosphorylation at Thr143 modulates length dependence of force using troponin exchange experiments in human cardiomyocytes. In addition, we studied effects of protein kinase A (PKA)-mediated cTnI phosphorylation at Ser23/24, which has been reported to modulate LDA. Isometric force was measured at various Ca(2+) concentrations in membrane-permeabilized cardiomyocytes exchanged with recombinant wild-type (WT) troponin or troponin mutated at the PKC site Thr143 or Ser23/24 into aspartic acid (D) or alanine (A) to mimic phosphorylation and dephosphorylation, respectively. In troponin-exchanged donor cardiomyocytes experiments were repeated after incubation with exogenous PKA. Pseudo-phosphorylation of Thr143 increased myofilament Ca(2+) sensitivity compared with WT without affecting LDA in failing and donor cardiomyocytes. Subsequent PKA treatment enhanced the length-dependent shift in Ca(2+) sensitivity after WT and 143D exchange. Exchange with Ser23/24 variants demonstrated that pseudo-phosphorylation of both Ser23 and Ser24 is needed to enhance the length-dependent increase in Ca(2+) sensitivity. cTnI pseudo-phosphorylation did not alter length-dependent changes in maximal force. Thus phosphorylation at Thr143 enhances myofilament Ca(2+) sensitivity without affecting LDA, while Ser23/24 bisphosphorylation is needed to enhance the length-dependent increase in myofilament Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yaniv Y. Cardiac troponin I phosphorylation and the force-length relationship. J Physiol 2013; 591:6135-6. [PMID: 24339151 DOI: 10.1113/jphysiol.2013.265090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|