1
|
Desmoulins LD, Molinas AJR, Dugas CM, Williams GL, Kamenetsky S, Davis RK, Derbenev AV, Zsombok A. A subset of neurons in the paraventricular nucleus of the hypothalamus directly project to liver-related premotor neurons in the ventrolateral medulla. Auton Neurosci 2025; 257:103222. [PMID: 39647176 DOI: 10.1016/j.autneu.2024.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Sympathetic circuits including pre-sympathetic neurons in the ventrolateral medulla (VLM) and in the paraventricular nucleus (PVN) of the hypothalamus play an important role in the regulation of hepatic glucose metabolism. Despite the importance of central regulatory pathways, specific information regarding the circuits of liver-related neurons is limited. Here, we tested the hypothesis that PVN neurons are directly connected to spinally-projecting liver-related neurons in the VLM of mice. Pseudorabies virus (PRV) was used to identify liver-related neurons and time-dependent analyses revealed the location and distribution of neurons in the PVN and ventral brainstem. Four days following PRV injection, most liver-related neurons were found in the VLM and consist of both catecholaminergic (CA) and non-CA neurons. Furthermore, in addition to PRV inoculation, a monosynaptic viral tracer was used to identify VLM-projecting PVN neurons to specifically dissect PVN-VLM connections within the liver pathway. Five days following PRV inoculation, our anatomical findings revealed that a small population of liver-related PVN neurons projected to the VLM. In addition, photo-stimulation of axonal projections from SIM1-expressing PVN neurons resulted in evoked excitatory postsynaptic currents in a subset of spinally projecting liver-related neurons in the VLM. In summary, our data demonstrate the existence of monosynaptic, glutamatergic connections between PVN neurons and pre-sympathetic liver-related neurons in the VLM. These new findings regarding the central circuits involved in the sympathetic regulation of the liver provide further information necessary for developing new strategies to improve glucose homeostasis via modulation of the autonomic nerves.
Collapse
Affiliation(s)
- Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Adrien J R Molinas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Courtney M Dugas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Gabrielle L Williams
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Sophie Kamenetsky
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Roslyn K Davis
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA; Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA; Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA.
| |
Collapse
|
2
|
Lo J, Melhorn SJ, Kee S, Olerich KLW, Huang A, Yeum D, Beiser A, Seshadri S, De Carli C, Schur EA. Hypothalamic Gliosis is Associated With Multiple Cardiovascular Disease Risk Factors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24313914. [PMID: 39371136 PMCID: PMC11451704 DOI: 10.1101/2024.09.19.24313914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Hypothalamic gliosis is mechanistically linked to obesity and insulin resistance in rodent models. We tested cross-sectional associations between radiologic measures of hypothalamic gliosis in humans and clinically relevant cardiovascular disease risk factors, as well as prevalent coronary heart disease. Methods Using brain MRI images from Framingham Heart Study participants (N=867; mean age, 55 years; 55% females), T2 signal intensities were extracted bilaterally from the region of interest in the mediobasal hypothalamus (MBH) and reference regions in the amygdala (AMY) and putamen (PUT). T2 signal ratios were created in which greater relative T2 signal intensity suggests gliosis. The primary measure compared MBH to AMY (MBH/AMY); a positive control ratio (MBH/PUT) also assessed MBH whereas a negative control (PUT/AMY) did not. Outcomes were BMI, HDL-C, LDL-C, fasting triglycerides, and the presence of hypertension (n=449), diabetes mellitus (n=66), metabolic syndrome (n=254), or coronary heart disease (n=25). Dietary risk factors for gliosis were assessed in a prospective analysis. Statistical testing was performed using linear or logistic regression. Results Greater MBH/AMY T2 signal ratios were associated with higher BMI (β = 21.5 [95% CI, 15.4-27.6]; P<0.001), higher fasting triglycerides (β = 1.1 [95% CI, 0.6-1.7]; P<0.001), lower HDL-C (β = -20.8 [95% CI, -40.0 to -1.6]; P=0.034), and presence of hypertension (odds ratio, 1.2 [95% CI, 1.1-1.4]; P=0.0088), and the latter two were independent of BMI. Findings for diabetes mellitus were mixed and attenuated by adjusting for BMI. Metabolic syndrome was associated with MBH/AMY T2 signal ratios (odds ratio, 1.3 [95% CI, 1.1-1.6]; P<0.001). Model results were almost uniformly confirmed by the positive control ratios, whereas negative control ratios that did not test the MBH were unrelated to any outcomes (all P≥0.05). T2 signal ratios were not associated with prevalent coronary heart disease (all P>0.05), but confidence intervals were wide. Self-reported percentages of macronutrient intake were not consistently related to future T2 signal ratios. Conclusions Using a well-established study of cardiovascular disease development, we found evidence linking hypothalamic gliosis to multiple cardiovascular disease risk factors, even independent of adiposity. Our results highlight the need to consider neurologic mechanisms to understand and improve cardiometabolic health.
Collapse
Affiliation(s)
- Justin Lo
- School of Medicine, University of Washington, Seattle, WA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA
| | - Sarah Kee
- Department of Medicine, University of Washington, Seattle, WA
| | - Kelsey LW Olerich
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, University of Washington, Seattle, WA
| | - Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Dabin Yeum
- Department of Medicine, University of Washington, Seattle, WA
| | - Alexa Beiser
- School of Public Health, Boston University, Boston, MA
| | - Sudha Seshadri
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Charles De Carli
- Department of Neurology, University of California, Davis, Davis, CA
| | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Guzmán-Ruíz MA, Guerrero Vargas NN, Ramírez-Carreto RJ, González-Orozco JC, Torres-Hernández BA, Valle-Rodríguez M, Guevara-Guzmán R, Chavarría A. Microglia in physiological conditions and the importance of understanding their homeostatic functions in the arcuate nucleus. Front Immunol 2024; 15:1392077. [PMID: 39295865 PMCID: PMC11408222 DOI: 10.3389/fimmu.2024.1392077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia are highly dynamic cells that have been mainly studied under pathological conditions. The present review discusses the possible implication of microglia as modulators of neuronal electrical responses in physiological conditions and hypothesizes how these cells might modulate hypothalamic circuits in health and during obesity. Microglial cells studied under physiological conditions are highly diverse, depending on the developmental stage and brain region. The evidence also suggests that neuronal electrical activity modulates microglial motility to control neuronal excitability. Additionally, we show that the expression of genes associated with neuron-microglia interaction is down-regulated in obese mice compared to control-fed mice, suggesting an alteration in the contact-dependent mechanisms that sustain hypothalamic arcuate-median eminence neuronal function. We also discuss the possible implication of microglial-derived signals for the excitability of hypothalamic neurons during homeostasis and obesity. This review emphasizes the importance of studying the physiological interplay between microglia and neurons to maintain proper neuronal circuit function. It aims to elucidate how disruptions in the normal activities of microglia can adversely affect neuronal health.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruíz
- Programa de Becas Post-doctorales, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natalí N Guerrero Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Michelle Valle-Rodríguez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
5
|
Plakkot B, Di Agostino A, Subramanian M. Implications of Hypothalamic Neural Stem Cells on Aging and Obesity-Associated Cardiovascular Diseases. Cells 2023; 12:cells12050769. [PMID: 36899905 PMCID: PMC10000584 DOI: 10.3390/cells12050769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The hypothalamus, one of the major regulatory centers in the brain, controls various homeostatic processes, and hypothalamic neural stem cells (htNSCs) have been observed to interfere with hypothalamic mechanisms regulating aging. NSCs play a pivotal role in the repair and regeneration of brain cells during neurodegenerative diseases and rejuvenate the brain tissue microenvironment. The hypothalamus was recently observed to be involved in neuroinflammation mediated by cellular senescence. Cellular senescence, or systemic aging, is characterized by a progressive irreversible state of cell cycle arrest that causes physiological dysregulation in the body and it is evident in many neuroinflammatory conditions, including obesity. Upregulation of neuroinflammation and oxidative stress due to senescence has the potential to alter the functioning of NSCs. Various studies have substantiated the chances of obesity inducing accelerated aging. Therefore, it is essential to explore the potential effects of htNSC dysregulation in obesity and underlying pathways to develop strategies to address obesity-induced comorbidities associated with brain aging. This review will summarize hypothalamic neurogenesis associated with obesity and prospective NSC-based regenerative therapy for the treatment of obesity-induced cardiovascular conditions.
Collapse
|
6
|
Leptin Increases: Physiological Roles in the Control of Sympathetic Nerve Activity, Energy Balance, and the Hypothalamic-Pituitary-Thyroid Axis. Int J Mol Sci 2023; 24:ijms24032684. [PMID: 36769012 PMCID: PMC9917048 DOI: 10.3390/ijms24032684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
It is well established that decreases in plasma leptin levels, as with fasting, signal starvation and elicit appropriate physiological responses, such as increasing the drive to eat and decreasing energy expenditure. These responses are mediated largely by suppression of the actions of leptin in the hypothalamus, most notably on arcuate nucleus (ArcN) orexigenic neuropeptide Y neurons and anorexic pro-opiomelanocortin neurons. However, the question addressed in this review is whether the effects of increased leptin levels are also significant on the long-term control of energy balance, despite conventional wisdom to the contrary. We focus on leptin's actions (in both lean and obese individuals) to decrease food intake, increase sympathetic nerve activity, and support the hypothalamic-pituitary-thyroid axis, with particular attention to sex differences. We also elaborate on obesity-induced inflammation and its role in the altered actions of leptin during obesity.
Collapse
|
7
|
Shi Z, Stornetta RL, Stornetta DS, Abbott SBG, Brooks VL. The arcuate nucleus: A site of synergism between Angiotensin II and leptin to increase sympathetic nerve activity and blood pressure in rats. Neurosci Lett 2022; 785:136773. [PMID: 35809879 DOI: 10.1016/j.neulet.2022.136773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
The action of leptin in brain to increase sympathetic nerve activity (SNA) and blood pressure depends upon functional Angiotensin II (AngII) type 1a receptors (AT1aR); however, the sites and mechanism of interaction are unknown. Here we identify one site, the hypothalamic arcuate nucleus (ArcN), since prior local blockade of AT1aR in the ArcN with losartan or candesartan in anesthetized male rats essentially eliminated the sympathoexcitatory and pressor responses to ArcN leptin nanoinjections. Unlike mice, in male and female rats, AT1aR and LepR rarely co-localized, suggesting that this interdependence occurs indirectly, via a local interneuron or network of neurons. ArcN leptin increases SNA by activating pro-opiomelanocortin (POMC) inputs to the PVN, but this activation requires simultaneous suppression of tonic PVN Neuropeptide Y (NPY) sympathoinhibition. Because AngII-AT1aR inhibits ArcN NPY neurons, we propose that loss of AT1aR suppression of NPY blocks leptin-induced increases in SNA; in other words, ArcN-AngII-AT1aR is a gatekeeper for leptin-induced sympathoexcitation. With obesity, both leptin and AngII increase; therefore, the increased AT1aR activation could open the gate, allowing leptin (and insulin) to drive sympathoexcitation unabated, leading to hypertension.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruth L Stornetta
- University of Virginia, Department of Pharmacology, Charlottesville, VA 22908, USA.
| | - Daniel S Stornetta
- University of Virginia, Department of Pharmacology, Charlottesville, VA 22908, USA
| | - Stephen B G Abbott
- University of Virginia, Department of Pharmacology, Charlottesville, VA 22908, USA
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Involvement of Neuropeptide Y within Paraventricular Nucleus in Electroacupuncture Inhibiting Sympathetic Activities in Hypertensive Rats. Int J Hypertens 2022; 2022:9990854. [PMID: 35087687 PMCID: PMC8789434 DOI: 10.1155/2022/9990854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Although electroacupuncture (EA) has been used to decrease the blood pressure (BP) clinically, the underlying mechanisms are not clearly clarified. This study aimed to assess the hypothesis that EA treatment exerts a hypotensive action via suppressing sympathetic activities and modulating neuropeptide Y (NPY) function within the paraventricular nucleus (PVN) of hypertensive rats. Male Sprague-Dawley rats were selected for the experiment, and the hypertensive models were established by the two-kidney, one-clip (2K1C) method. Then, the rats were randomly assigned to the sham group, 2K1C group, 2K1C plus EA group, and 2K1C plus sham EA group. EA treatment at the acupoints ST36 and ST40 overlying the peroneal nerves was given once a day for 30 days. The radiotelemetry system was applied to collect the arterial BP recordings. Power spectral analyses of BP variability, BP responses to ganglionic blockade, and plasma levels of norepinephrine and epinephrine were performed to assess the changes in sympathetic nerve activity. Real-time PCR and Western blots were carried out to examine the expression of NPY system in the PVN. The responses of PVN microinjection with NPY Y1R antagonist BIBO3304 were detected to check the endogenous NPY tone. The results showed that the enhanced arterial BP and sympathetic activities were effectively reduced by 30 days of EA treatment, and baroreflex sensitivity was improved in 2K1C hypertensive rats. The level of NPY mRNA and protein expression in the PVN was markedly upregulated by EA treatment in 2K1C rats. In addition, the pressor responses of PVN microinjection with NPY Y1R antagonist BIBO3304 in 2K1C models were remarkably augmented by the EA stimulation. Our results indicate that the increased NPY expression and function in the PVN induced by EA treatment contribute to antihypertensive and sympathetic suppression on hypertensive rats. The findings may elucidate the underlying mechanisms of the acupuncture to be a potential therapeutic strategy against hypertension.
Collapse
|
9
|
Nasimi A, Haddad F, Mirzaei-Damabi N, Rostami B, Hatam M. Another controller system for arterial pressure. AngII-vasopressin neural network of the parvocellular paraventricular nucleus may regulate arterial pressure during hypotension. Brain Res 2021; 1769:147618. [PMID: 34400123 DOI: 10.1016/j.brainres.2021.147618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Angiotensin II (AngII) immunoreactive cells, fibers and receptors, were found in the parvocelluar region of paraventricular nucleus (PVNp) and AngII receptors are present on vasopressinergic neurons. However, the mechanism by which vasopressin (AVP) and AngII may interact to regulate arterial pressure is not known. Thus, we tested the cardiovascular effects of blockade of the AngII receptors on AVP neurons and blockade of vasopressin V1a receptors on AngII neurons. We also explored whether the PVNp vasopressin plays a regulatory role during hypotension in anesthetized rat or not. Hypovolemic-hypotension was induced by gradual bleeding from femoral venous catheter. Either AngII or AVP injected into the PVNp produced pressor and tachycardia responses. The responses to AngII were blocked by V1a receptor antagonist. The responses to AVP were partially attenuated by AT1 antagonist and greatly attenuated by AT2 antagonist. Hemorrhage augmented the pressor response to AVP, indicating that during hemorrhage, sensitivity of PVNp to vasopressin was increased. By hemorrhagic-hypotension and bilateral blockade of V1a receptors of the PVNp, we found that vasopressinergic neurons of the PVNp regulate arterial pressure towards normal during hypotension. Taken together these findings and our previous findings about angII (Khanmoradi and Nasimi, 2017a) for the first time, we found that a mutual cooperative system of angiotensinergic and vasopressinergic neurons in the PVNp is a major regulatory controller of the cardiovascular system during hypotension.
Collapse
Affiliation(s)
- Ali Nasimi
- Dept. of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Haddad
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Mirzaei-Damabi
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahar Rostami
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Hatam
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Shi Z, Bonillas AC, Wong J, Padilla SL, Brooks VL. Neuropeptide Y suppresses thermogenic and cardiovascular sympathetic nerve activity via Y1 receptors in the paraventricular nucleus and dorsomedial hypothalamus. J Neuroendocrinol 2021; 33:e13006. [PMID: 34235800 PMCID: PMC8653878 DOI: 10.1111/jne.13006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
In hungry animals, neuropeptide Y (NPY) neurones in the arcuate nucleus (ArcN) are activated to suppress energy expenditure, in part by decreasing brown adipose tissue sympathetic nerve activity (BAT SNA); however, the NPY receptor subtype and brain neurocircuitry are unclear. In the present study, we investigated the inhibition of BAT SNA by exogenous and endogenous NPY via binding to Y1 receptors (NPY1R) in the hypothalamic paraventricular nucleus (PVN) and dorsomedial hypothalamus (DMH), in anaesthetised male rats. Downstream projections of PVN/DMH NPY1R-expressing neurones were identified using male Npy1r-cre mice and localised unilateral DMH or PVN injections of an adeno-associated virus, which allows for the cre-dependent expression of a fluorescent protein (mCherry) in the cell bodies, axon fibres and nerve terminals of NPY1R-containing neurones. Nanoinjections of NPY into the DMH of cooled rats decreased BAT SNA, as well as mean arterial pressure (MAP) and heart rate (HR), and these responses were reversed by subsequent injection of the selective NPY1R antagonist, BIBO3304. In warmed rats, with little to no BAT SNA, bilateral nanoinjections of BIBO3304 into the DMH or PVN increased BAT SNA, MAP and HR. DMH NPY1R-expressing neurones projected heavily to the raphe pallidus (RPa), which houses BAT presympathetic neurones, as well as the PVN. In anaesthetised mice, DMH BIBO3304 increased splanchnic SNA, MAP and HR, all of which were reversed by nonselective blockade of the PVN with muscimol, suggesting that DMH-to-PVN connections are involved in this DMH BIBO3304 disinhibition. PVN Y1R expressing neurones also projected to the RPa, as well as to the nucleus tractus solitarius. We conclude that NPY tonically released in the DMH and PVN suppresses BAT SNA, MAP and HR via Y1R. Downstream neuropathways for BAT SNA may utilise direct projections to the RPa. Release of tonic NPY inhibition of BAT SNA may contribute to feeding- and diet-induced thermogenesis.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| | - Alyssa C. Bonillas
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| | - Jennifer Wong
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| | - Stephanie L. Padilla
- Department of Biology, University of Massachusetts,
Amherst, Amherst, MA, USA 01003
| | - Virginia L. Brooks
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| |
Collapse
|
11
|
Yang J, Zhang QJ, Zhang JY, Wang YM, Zhu GQ, Song NH, Wang ZJ, Chen JH, Xia JD. Upregulated expression of NMDA receptor in the paraventricular nucleus shortens ejaculation latency in rats with experimental autoimmune prostatitis. Andrology 2021; 9:352-360. [PMID: 32749055 DOI: 10.1111/andr.12879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/20/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Estimated 30%-40% of patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) suffer from premature ejaculation (PE), which is difficult to cure, but the mechanism is still unknown. Based on the results of our previous clinical studies and animal experiments, we propose that the glutamatergic system dysfunction in the paraventricular nucleus (PVN) may be involved. METHODS To test this hypothesis, we used experimental autoimmune prostatitis (EAP) rats to investigate the effects of CP/CPPS on ejaculation behavior through integrating copulatory behavior testing, neuroelectrophysiologic experiments, and molecular biology technologies. RESULTS Histological examination of prostate tissue in EAP rats exhibited consistent pathological findings with that in CP/CPPS patients. Behavior testing showed that ejaculation latency (EL) of EAP rats significantly shortened compared with the controls (5.1 ± 1.8 vs 9.1 ± 2.4 min, P < .001). Sympathetic nervous system (SNS) activity testing revealed that EAP rats displayed significantly higher plasma norepinephrine (NE) level (1780 ± 493 vs 1421 ± 453 pg/mL, P = .043) and SNS sensitivity (67.8 ± 9.6 vs 44.6 ± 8.7%, P < .001). Immunohistochemical detection and Western blot analysis both displayed that NR1 subunit expression of N-methyl-D-aspartic acid (NMDA) receptors in the PVN of EAP rats was significantly upregulated (P = .007 and P < .001). Furthermore, the expression of NMDA NR1 subunit positively correlated both with SNS sensitivity (r = .917, P < .001) and prostatic inflammation scores (r = .964, P < .001). CONCLUSION This study shows that EAP rats suffer from the same PE symptom as CP/CPPS patients. CP/CPPS-induced inflammatory-immune response can significantly upregulate the expression of NMDA receptors in the PVN, which shortening the EL by enhancing SNS sensitivity. However, the exact mechanism of chronic inflammation in the prostate causing the upregulated expression of NMDA receptors needs to be further studied.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi-Jie Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Yi Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Min Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ning-Hong Song
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeng-Jun Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Huai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Dong Xia
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Abstract
Obesity increases sympathetic nerve activity (SNA) in men, but not women. Here, we review current evidence suggesting that sexually dimorphic sympathoexcitatory responses to leptin and insulin may contribute. More specifically, while insulin increases SNA similarly in lean males and females, this response is markedly amplified in obese males, but is abolished in obese females. In lean female rats, leptin increases a subset of sympathetic nerves only during the high estrogen proestrus reproductive phase; thus, in obese females, because reproductive cycling can become impaired, the sporadic nature of leptin-induced sympathoexcitaton could minimize its action, despite elevated leptin levels. In contrast, in males, obesity preserves or enhances the central sympathoexcitatory response to leptin, and current evidence favors leptin’s contribution to the well-established increases in SNA induced by obesity in men. Leptin and insulin increase SNA via receptor binding in the hypothalamic arcuate nucleus and a neuropathway that includes arcuate neuropeptide Y (NPY) and proopiomelanocortin (POMC) projections to the paraventricular nucleus. These metabolic hormones normally suppress sympathoinhibitory NPY neurons and activate sympathoexcitatory POMC neurons. However, obesity appears to alter the ongoing activity and responsiveness of arcuate NPY and POMC neurons in a sexually dimorphic way, such that SNA increases in males but not females. We propose hypotheses to explain these sex differences and suggest areas of future research.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology, L-334, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jennifer Wong
- Department of Physiology and Pharmacology, L-334, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Virginia L Brooks
- Department of Physiology and Pharmacology, L-334, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
13
|
DeLalio LJ, Sved AF, Stocker SD. Sympathetic Nervous System Contributions to Hypertension: Updates and Therapeutic Relevance. Can J Cardiol 2020; 36:712-720. [PMID: 32389344 DOI: 10.1016/j.cjca.2020.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system plays a pivotal role in the long-term regulation of arterial blood pressure through the ability of the central nervous system to integrate neurohumoral signals and differentially regulate sympathetic neural input to specific end organs. Part 1 of this review will discuss neural mechanisms of salt-sensitive hypertension, obesity-induced hypertension, and the ability of prior experiences to sensitize autonomic networks. Part 2 of this review focuses on new therapeutic advances to treat resistant hypertension including renal denervation and carotid baroactivation. Both advances lower arterial blood pressure by reducing sympathetic outflow. We discuss potential mechanisms and areas of future investigation to target the sympathetic nervous system.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Shi Z, Zhao D, Cassaglia PA, Brooks VL. Sites and sources of sympathoexcitation in obese male rats: role of brain insulin. Am J Physiol Regul Integr Comp Physiol 2020; 318:R634-R648. [PMID: 31967846 PMCID: PMC7099464 DOI: 10.1152/ajpregu.00317.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
In males, obesity increases sympathetic nerve activity (SNA), but the mechanisms are unclear. Here, we investigate insulin, via an action in the arcuate nucleus (ArcN), and downstream neuropathways, including melanocortin receptor 3/4 (MC3/4R) in the hypothalamic paraventricular nucleus (PVN) and dorsal medial hypothalamus (DMH). We studied conscious and α-chloralose-anesthetized Sprague-Dawley rats fed a high-fat diet, which causes obesity prone (OP) rats to accrue excess fat and obesity-resistant (OR) rats to maintain fat content, similar to rats fed a standard control (CON) diet. Nonspecific blockade of the ArcN with muscimol and specific blockade of ArcN insulin receptors (InsR) decreased lumbar SNA (LSNA), heart rate (HR), and mean arterial pressure (MAP) in OP, but not OR or CON, rats, indicating that insulin supports LSNA in obese males. In conscious rats, intracerebroventricular infusion of insulin increased MAP only in OP rats and also improved HR baroreflex function from subnormal to supranormal. The brain sensitization to insulin may elucidate how insulin can drive central SNA pathways when transport of insulin across the blood-brain barrier may be impaired. Blockade of PVN, but not DMH, MC3/4R with SHU9119 decreased LSNA, HR, and, MAP in OP, but not OR or CON, rats. Interestingly, nanoinjection of the MC3/4R agonist melanotan II (MTII) into the PVN increased LSNA only in OP rats, similar to PVN MTII-induced increases in LSNA in CON rats after blockade of sympathoinhibitory neuropeptide Y Y1 receptors. ArcN InsR expression was not increased in OP rats. Collectively, these data indicate that obesity increases SNA, in part via increased InsR signaling and downstream PVN MC3/4R.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Ding Zhao
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
- School of Pharmacy, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Priscila A Cassaglia
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Virginia L Brooks
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
15
|
Brooks VL, Fu Q, Shi Z, Heesch CM. Adaptations in autonomic nervous system regulation in normal and hypertensive pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:57-84. [PMID: 32736759 DOI: 10.1016/b978-0-444-64239-4.00003-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is an increase in basal sympathetic nerve activity (SNA) during normal pregnancy; this counteracts profound primary vasodilation. However, pregnancy also impairs baroreflex control of heart rate and SNA, contributing to increased mortality secondary to peripartum hemorrhage. Pregnancy-induced hypertensive disorders evoke even greater elevations in SNA, which likely contribute to the hypertension. Information concerning mechanisms is limited. In normal pregnancy, increased angiotensin II acts centrally to support elevated SNA. Hypothalamic sites, including the subfornical organ, paraventricular nucleus, and arcuate nucleus, are likely (but unproven) targets. Moreover, no definitive mechanisms for exaggerated sympathoexcitation in hypertensive pregnancy have been identified. In addition, normal pregnancy increases gamma aminobutyric acid inhibition of the rostral ventrolateral medulla (RVLM), a key brainstem site that transmits excitatory inputs to spinal sympathetic preganglionic neurons. Accumulated evidence supports a major role for locally increased production and actions of the neurosteroid allopregnanolone as one mechanism. A consequence is suppression of baroreflex function, but increased basal SNA indicates that excitatory influences predominate in the RVLM. However, many questions remain regarding other sites and factors that support increased SNA during normal pregnancy and, more importantly, the mechanisms underlying excessive sympathoexcitation in life-threatening hypertensive pregnancy disorders such as preeclampsia.
Collapse
Affiliation(s)
- Virginia L Brooks
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States.
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, United States; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zhigang Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Cheryl M Heesch
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
16
|
Xia JD, Chen J, Yang BB, Sun HJ, Zhu GQ, Dai YT, Yang J, Wang ZJ. Differences in sympathetic nervous system activity and NMDA receptor levels within the hypothalamic paraventricular nucleus in rats with differential ejaculatory behavior. Asian J Androl 2019. [PMID: 29516873 PMCID: PMC6038171 DOI: 10.4103/aja.aja_4_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Differences in intravaginal ejaculation latency reflect normal biological variation, but the causes are poorly understood. Here, we investigated whether variation in ejaculation latency in an experimental rat model is related to altered sympathetic nervous system (SNS) activity and expression of N-methyl-D-aspartic acid (NMDA) receptors in the paraventricular nucleus of the hypothalamus (PVN). Male rats were classified as “sluggish,” “normal,” and “rapid” ejaculators on the basis of ejaculation frequency during copulatory behavioral testing. The lumbar splanchnic nerve activity baselines in these groups were not significantly different at 1460 ± 480 mV, 1660 ± 600 mV, and 1680 ± 490 mV, respectively (P = 0.71). However, SNS sensitivity was remarkably different between the groups (P < 0.01), being 28.9% ± 8.1% in “sluggish,” 48.4% ± 7.5% in “normal,” and 88.7% ± 7.4% in “rapid” groups. Compared with “normal” ejaculators, the percentage of neurons expressing NMDA receptors in the PVN of “rapid” ejaculators was significantly higher, whereas it was significantly lower in “sluggish” ejaculators (P = 0.01). In addition, there was a positive correlation between the expression of NMDA receptors in the PVN and SNS sensitivity (r = 0.876, P = 0.02). This study shows that intravaginal ejaculatory latency is associated with SNS activity and is mediated by NMDA receptors in the PVN.
Collapse
Affiliation(s)
- Jia-Dong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Bai-Bing Yang
- Department of Andrology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210000, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210000, China
| | - Yu-Tian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Jie Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zeng-Jun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
17
|
Shi Z, Hansen KM, Bullock KM, Morofuji Y, Banks WA, Brooks VL. Resistance to the sympathoexcitatory effects of insulin and leptin in late pregnant rats. J Physiol 2019; 597:4087-4100. [PMID: 31209877 DOI: 10.1113/jp278282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Pregnancy increases sympathetic nerve activity (SNA), although the mechanisms responsible for this remain unknown. We tested whether insulin or leptin, two sympathoexcitatory hormones increased during pregnancy, contribute to this. Transport of insulin across the blood-brain barrier in some brain regions, and into the cerebrospinal fluid (CSF), was increased, although brain insulin degradation was also increased. As a result, brain and CSF insulin levels were not different between pregnant and non-pregnant rats. The sympathoexcitatory responses to insulin and leptin were abolished in pregnant rats. Blockade of arcuate nucleus insulin receptors did not lower SNA in pregnant or non-pregnant rats. Collectively, these data suggest that pregnancy renders the brain resistant to the sympathoexcitatory effects of insulin and leptin, and that these hormones do not mediate pregnancy-induced sympathoexcitation. Increased muscle SNA stimulates glucose uptake. Therefore, during pregnancy, peripheral insulin resistance coupled with blunted insulin- and leptin-induced sympathoexcitation ensures adequate delivery of glucose to the fetus. ABSTRACT Pregnancy increases basal sympathetic nerve activity (SNA), although the mechanism responsible for this remains unknown. Insulin and leptin are two sympathoexcitatory hormones that increase during pregnancy, yet, pregnancy impairs central insulin- and leptin-induced signalling. Therefore, to test whether insulin or leptin contribute to basal sympathoexcitation or, instead, whether pregnancy induces resistance to the sympathoexcitatory effects of insulin and leptin, we investigated α-chloralose anaesthetized late pregnant rats, which exhibited increases in lumbar SNA (LSNA), splanchnic SNA and heart rate (HR) compared to non-pregnant animals. In pregnant rats, transport of insulin into cerebrospinal fluid and across the blood-brain barrier in some brain regions increased, although brain insulin degradation was also increased; brain and cerebrospinal fluid insulin levels were not different between pregnant and non-pregnant rats. Although i.c.v. insulin increased LSNA and HR and baroreflex control of LSNA and HR in non-pregnant rats, these effects were abolished in pregnant rats. In parallel, pregnancy completely prevented the actions of leptin with respect to increasing lumbar, splanchnic and renal SNA, as well as baroreflex control of SNA. Blockade of insulin receptors (with S961) in the arcuate nucleus, the site of action of insulin, did not decrease LSNA in pregnant rats, despite blocking the effects of exogenous insulin. Thus, pregnancy is associated with central resistance to insulin and leptin, and these hormones are not responsible for the increased basal SNA of pregnancy. Because increases in LSNA to skeletal muscle stimulates glucose uptake, blunted insulin- and leptin-induced sympathoexcitation reinforces systemic insulin resistance, thereby increasing the delivery of glucose to the fetus.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Kim M Hansen
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Kristin M Bullock
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Yoichi Morofuji
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - William A Banks
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Virginia L Brooks
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
18
|
Shi Z, Cassaglia PA, Pelletier NE, Brooks VL. Sex differences in the sympathoexcitatory response to insulin in obese rats: role of neuropeptide Y. J Physiol 2019; 597:1757-1775. [PMID: 30628058 DOI: 10.1113/jp277517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Intracerebroventricular insulin increased sympathetic nerve activity (SNA) and baroreflex control of SNA and heart rate more dramatically in obese male rats; in obese females, the responses were abolished. In obese males, the enhanced lumbar SNA (LSNA) responses were associated with reduced tonic inhibition of LSNA by neuropeptide Y (NPY) in the PVN. However, PVN NPY injection decreased LSNA similarly in obesity prone/obesity resistant/control rats. Collectively, these results suggest that NPY inputs were decreased. In obese females, NPY inhibition in the PVN was maintained. Moreover, NPY neurons in the arcuate nucleus became resistant to the inhibitory effects of insulin. A high-fat diet did not alter arcuate NPY neuronal InsR expression in males or females. Obesity-induced 'selective sensitization' of the brain to the sympathoexcitatory effects of insulin and leptin may contribute to elevated basal SNA, and therefore hypertension development, in males with obesity. These data may explain in part why obesity increases SNA less in women compared to men. ABSTRACT Obesity increases sympathetic nerve activity (SNA) in men but not women; however, the mechanisms are unknown. We investigated whether intracerebroventricular insulin infusion increases SNA more in obese male than female rats and if sex differences are mediated by changes in tonic inhibition of SNA by neuropeptide Y (NPY) in the paraventricular nucleus (PVN). When consuming a high-fat diet, obesity prone (OP) rats accrued excess fat, whereas obesity resistant (OR) rats maintained adiposity as in rats eating a control (CON) diet. Insulin increased lumbar SNA (LSNA) similarly in CON/OR males and females under urethane anaesthesia. The LSNA response was magnified in OP males but abolished in OP females. In males, blockade of PVN NPY Y1 receptors with BIBO3304 increased LSNA in CON/OR rats but not OP rats. Yet, PVN nanoinjections of NPY decreased LSNA similarly between groups. Thus, tonic PVN NPY inhibition of LSNA may be lost in obese males as a result of a decrease in NPY inputs. By contrast, in females, PVN BIBO3304 increased LSNA similarly in OP, OR and CON rats. After insulin, PVN BIBO3304 failed to increase LSNA in CON/OR females but increased LSNA in OP females, suggesting that with obesity NPY neurons become resistant to the inhibitory effects of insulin. These sex differences were not associated with changes in arcuate NPY neuronal insulin receptor expression. Collectively, these data reveal a marked sex difference in the impact of obesity on the sympathoexcitatory actions of insulin and implicate sexually dimorphic changes in NPY inhibition of SNA in the PVN as one mechanism.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Priscila A Cassaglia
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Nicole E Pelletier
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Virginia L Brooks
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
19
|
Guo F, Gao S, Xu L, Sun X, Zhang N, Gong Y, Luan X. Arcuate Nucleus Orexin-A Signaling Alleviates Cisplatin-Induced Nausea and Vomiting Through the Paraventricular Nucleus of the Hypothalamus in Rats. Front Physiol 2018; 9:1811. [PMID: 30618823 PMCID: PMC6304364 DOI: 10.3389/fphys.2018.01811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
The most common side effects of cisplatin chemotherapy are nausea and vomiting, and the overwhelming majority of research studies on the mechanism of cisplatin-induced nausea have been focused on the “vomiting center.” As a modulatory center of gastric motility, the roles of the hypothalamus in nausea and vomiting remain unclear. In the present study, we investigated the effects of exogenous orexin-A injected into the arcuate nucleus (ARC) on cisplatin-induced nausea and vomiting, and the possible underlying mechanism. Kaolin intake was calculated daily in cisplatin-treated and saline-treated rats. Gastric motility recording, injections into the ARC, and lesions of the paraventricular nucleus (PVN) were used to study the effects of orexin-A and the hypothalamic nucleus on disorders of gastrointestinal function in cisplatin-treated rats. The pathway from the ARC to the PVN was observed through Fluoro-Gold retrograde tracing. Furthermore, an NPY Y1 receptor antagonist was administered to explore the possible mechanisms involved in the effects of orexin-A in the ARC. We illustrated that exogenous orexin-A injected into the ARC reduced kaolin intake and promoted gastric motility in cisplatin-treated rats, and these effects could have been blocked by an ipsilateral PVN lesion or co-injected antagonist of orexin-A-SB334867. Additional results showed that orexin-A-activated neurons in the ARC communicated directly with other neurons in the PVN that express neuropeptide Y (NPY). Furthermore, activation of the downstream NPY pathway was required for the observed effects of orexin in the ARC on cisplatin-induced nausea and vomiting. These findings reveal a novel neurobiological circuit from the ARC to the PVN that might provide a potential target for the prevention and treatment of cisplatin-induced nausea and vomiting.
Collapse
Affiliation(s)
- Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shengli Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Luo Xu
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiao Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Loewen SP, Paterson AR, Loh SY, Rogers MF, Hindmarch CCT, Murphy D, Ferguson AV. Sex-specific differences in cardiovascular and metabolic hormones with integrated signalling in the paraventricular nucleus of the hypothalamus. Exp Physiol 2017; 102:1373-1379. [PMID: 28762571 DOI: 10.1113/ep086436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the topic of this review? We describe roles of crucial signalling molecules in the paraventricular nucleus of the hypothalamus and highlight recent data suggesting sex-specific changes in the expression of crucial signalling molecules and their receptors, which may underlie sex differences in both cardiovascular and metabolic function. What advances does it highlight? This review highlights the integrative capacity of the paraventricular nucleus in mediating cardiovascular and metabolic effects by integrating information from multiple signalling molecules. It also proposes that these signalling molecules have sex-specific differential gene expression, indicating the importance of considering these differences in our ongoing search to understand the female-male differences in the regulation of crucial autonomic systems. Many traditional cardiovascular hormones have been implicated in metabolic function. Conversely, many hormones traditionally involved in metabolic regulation have an effect on cardiovascular function. Many of these signalling molecules exert such effects through specific actions in the paraventricular nucleus, an integrative autonomic control centre located in the hypothalamus. Here, we focus on four cardiovascular/metabolic peptide hormones that signal within the paraventricular nucleus, namely angiotensin II, orexin, adiponectin and nesfatin-1. Each of these hormones has specific electrophysiological effects on paraventricular nucleus neurons that can be related to its physiological actions. In addition, we introduce preliminary transcriptomic data indicating that the genes for some of these hormones and their receptors have sex-specific differential expression.
Collapse
Affiliation(s)
- Spencer P Loewen
- Centre for Neuroscience, Queen's University, Kingston, Ontario, Canada
| | - Alex R Paterson
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Su Yi Loh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mark F Rogers
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Charles C T Hindmarch
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - David Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.,Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
21
|
Stocker SD, Kinsman BJ, Sved AF. Recent Advances in Neurogenic Hypertension: Dietary Salt, Obesity, and Inflammation. Hypertension 2017; 70:HYPERTENSIONAHA.117.08936. [PMID: 28739972 PMCID: PMC5783795 DOI: 10.1161/hypertensionaha.117.08936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurally-mediated hypertension results from a dysregulation of sympathetic and/or neuroendocrine mechanisms to increase ABP. Multiple factors may exert multiple central effects to alter neural circuits and produce unique sympathetic signatures and elevate ABP. In this brief review, we have discussed novel observations regarding three contributing factors: dietary salt intake, obesity, and inflammation. However, the interaction among these and other factors is likely much more complex; recent studies suggest a prior exposure to one stimulus may sensitize the response to a subsequent hypertensive stimulus. Insight into the central mechanisms by which these factors selectively alter SNA or cooperatively interact to impact hypertension may represent a platform for novel therapeutic treatment strategies.
Collapse
Affiliation(s)
- Sean D Stocker
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA.
| | - Brian J Kinsman
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA
| | - Alan F Sved
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA
| |
Collapse
|
22
|
Shi Z, Madden CJ, Brooks VL. Arcuate neuropeptide Y inhibits sympathetic nerve activity via multiple neuropathways. J Clin Invest 2017. [PMID: 28628036 PMCID: PMC5490747 DOI: 10.1172/jci92008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity increases sympathetic nerve activity (SNA) via activation of proopiomelanocortin neurons in the arcuate nucleus (ArcN), and this action requires simultaneous withdrawal of tonic neuropeptide Y (NPY) sympathoinhibition. However, the sites and neurocircuitry by which NPY decreases SNA are unclear. Here, using designer receptors exclusively activated by designer drugs (DREADDs) to selectively activate or inhibit ArcN NPY neurons expressing agouti-related peptide (AgRP) in mice, we have demonstrated that this neuronal population tonically suppresses splanchnic SNA (SSNA), arterial pressure, and heart rate via projections to the paraventricular nucleus (PVN) and dorsomedial hypothalamus (DMH). First, we found that ArcN NPY/AgRP fibers closely appose PVN and DMH presympathetic neurons. Second, nanoinjections of NPY or an NPY receptor Y1 (NPY1R) antagonist into PVN or DMH decreased or increased SSNA, respectively. Third, blockade of DMH NPY1R reversed the sympathoinhibition elicited by selective, DREADD-mediated activation of ArcN NPY/AgRP neurons. Finally, stimulation of ArcN NPY/AgRP terminal fields in the PVN and DMH decreased SSNA. Considering that chronic obesity decreases ArcN NPY content, we propose that the ArcN NPY neuropathway to the PVN and DMH is pivotal in obesity-induced elevations in SNA.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology and
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
23
|
Serova L, Mulhall H, Sabban E. NPY1 Receptor Agonist Modulates Development of Depressive-Like Behavior and Gene Expression in Hypothalamus in SPS Rodent PTSD Model. Front Neurosci 2017; 11:203. [PMID: 28469551 PMCID: PMC5395638 DOI: 10.3389/fnins.2017.00203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/24/2017] [Indexed: 02/04/2023] Open
Abstract
Delivery of neuropeptide Y (NPY) to the brain by intranasal infusion soon after traumatic stress has shown therapeutic potential, and prevented development of many behavioral and neuroendocrine impairments in the single prolonged stress (SPS) animal model of PTSD. Therefore, we examined whether the Y1R preferring agonist [Leu31Pro34]NPY is sufficient to prevent development of SPS induced depressive-like behavioral changes, and hypothalamic gene expression as obtained with intranasal NPY intervention. Male Sprague-Dawely rats were given intranasal infusion of either NPY (150 μg/rat), a low (68 μg /rat), or high (132 μg/rat) dose of [Leu31Pro34]NPY or vehicle immediately following the last SPS stressor, left undisturbed for 1 week and then tested for depressive-like behavior together with naïve unstressed controls. Vehicle treated animals had elevated immobility forced swim test (FST) and reduced sucrose preference, which were not observed in animals given NPY or the higher dose of [Leu31Pro34]NPY. This dose of [Leu31Pro34]NPY, like NPY, also prevented the SPS-elicited induction of CRF mRNA in the mediobasal hypothalamus. However, [Leu31Pro34]NPY did not prevent, but rather enhanced, the SPS-triggered induction of GR and FKBP5 mRNA levels in the mediobasal hypothalamus. Thus, [Leu31Pro34]NPY may be as effective as NPY and displays therapeutic potential for preventing development of depressive-like behaviors and dysregulation of the CRF/HPA system in PTSD. However, due to its different effects compared to NPY on GR and FKBP5 a broader agonist, such as NPY, may be more desirable.
Collapse
Affiliation(s)
- Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical CollegeValhalla, NY, USA
| | - Hannah Mulhall
- Department of Biochemistry and Molecular Biology, New York Medical CollegeValhalla, NY, USA
| | - Esther Sabban
- Department of Biochemistry and Molecular Biology, New York Medical CollegeValhalla, NY, USA
| |
Collapse
|
24
|
Parker LM, Le S, Wearne TA, Hardwick K, Kumar NN, Robinson KJ, McMullan S, Goodchild AK. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation? J Comp Neurol 2017; 525:2249-2264. [PMID: 28295336 DOI: 10.1002/cne.24203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
Abstract
Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed.
Collapse
Affiliation(s)
- Lindsay M Parker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.,ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, NSW, 2109, Australia
| | - Sheng Le
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Travis A Wearne
- Department of Psychology, Faculty of Human Sciences, Macquarie University, NSW, 2109, Australia
| | - Kate Hardwick
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Natasha N Kumar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.,Department of Pharmacology, School of Medical Science, University of New South Wales, NSW, 2052, Australia
| | - Katherine J Robinson
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Simon McMullan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Ann K Goodchild
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| |
Collapse
|
25
|
Fink BD, Guo DF, Kulkarni CA, Rahmouni K, Kerns RJ, Sivitz WI. Metabolic effects of a mitochondrial-targeted coenzyme Q analog in high fat fed obese mice. Pharmacol Res Perspect 2017; 5:e00301. [PMID: 28357127 PMCID: PMC5368965 DOI: 10.1002/prp2.301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
We recently reported that mitoquinone (mitoQ, 500 μmol/L) added to drinking water of C57BL/6J mice attenuated weight gain, decreased food intake, increased hypothalamic orexigenic gene expression, and mitigated oxidative stress when administered from the onset of high‐fat (HF) feeding. Here, we examined the effects of mitoQ on pre‐existing obesity in C57BL/6J mice first made obese by 107 days of HF feeding. In contrast to our preventative study, we found that already obese mice did not tolerate mitoQ at 500 μmol/L. Within 4 days of administration, obese mice markedly decreased food and water intake and lost substantial weight necessitating a dose reduction to 250 μmol/L. Food and water intake then improved. Over the next 4 weeks, body mass of the mitoQ‐treated mice increased faster than vehicle‐treated controls but did not catch up. Over the subsequent 10 weeks, weights of the mitoQ‐treated group remained significantly less than vehicle control, but percent fat and food intake did not differ. Although the mitoQ‐treated groups continued to drink less, there was no difference in percent body fluid and no laboratory evidence of dehydration at study end. At the time of killing, hypothalamic NPY gene expression was reduced in the mitoQ‐treated mice . Liver fat was markedly increased by HF feeding but did not differ between mitoQ and vehicle groups and, in contrast to our previous preventative study, there was no improvement in plasma alanine amino transferase or liver hydroperoxides. In summary, administration of mitoQ to already obese mice attenuated weight gain, but showed limited overall benefit.
Collapse
Affiliation(s)
- Brian D Fink
- Department of Internal Medicine/Endocrinology University of Iowa and the Iowa City Veterans Affairs Medical Center Iowa City Iowa 52242
| | - Deng Fu Guo
- Department of Pharmacology University of Iowa Iowa City Iowa 52242
| | - Chaitanya A Kulkarni
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa Iowa City Iowa 52242
| | - Kamal Rahmouni
- Departments of Pharmacology and Internal Medicine University of Iowa Iowa City Iowa 52242
| | - Robert J Kerns
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa Iowa City Iowa 52242
| | - William I Sivitz
- Department of Internal Medicine/Endocrinology University of Iowa and the Iowa City Veterans Affairs Medical Center Iowa City Iowa 52242
| |
Collapse
|
26
|
Xia JD, Chen J, Sun HJ, Zhou LH, Zhu GQ, Chen Y, Dai YT. Centrally mediated ejaculatory response via sympathetic outflow in rats: role of N-methyl-D-aspartic acid receptors in paraventricular nucleus. Andrology 2016; 5:153-159. [PMID: 27860425 DOI: 10.1111/andr.12274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/03/2016] [Accepted: 07/19/2016] [Indexed: 11/29/2022]
Affiliation(s)
- J.-D. Xia
- Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - J. Chen
- Department of Obstetrics and Gynecology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| | - H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - L.-H. Zhou
- Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - Y. Chen
- Department of Andrology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| | - Y.-T. Dai
- Department of Andrology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| |
Collapse
|
27
|
Central proopiomelanocortin but not neuropeptide Y mediates sympathoexcitation and hypertension in fat fed conscious rabbits. J Hypertens 2016; 34:464-73; discussion 473. [PMID: 26820476 DOI: 10.1097/hjh.0000000000000811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE High-fat diet (HFD)-induced hypertension in rabbits is neurogenic because of the central sympathoexcitatory actions of leptin. Hypothalamic melanocortin and neuropeptide Y (NPY) neurons are recognized as the major signalling pathways through which leptin exerts its central effects. In this study, we assessed the effects of specific antagonists and agonists to melanocortin and NPY receptors on HFD-induced sympathoexcitation and hypertension. METHODS Rabbits were instrumented with intracerebroventricular cannula, renal sympathetic nerve activity (RSNA) electrode, and blood pressure telemetry transmitter. RESULTS After 3 weeks HFD (13.5% fat, n = 12) conscious rabbits had higher RSNA (+3.8 nu, P = 0.02), blood pressure (+8.6 mmHg, P < 0.001) and heart rate (+15 b/min, P = 0.01), and brain-derived neurotrophic factor levels in the hypothalamus compared with rabbits fed a control diet (4.2% fat, n = 11). Intracerebroventricular administration of the melanocortin receptor antagonist SHU9119 reduced RSNA (-2.7 nu) and blood pressure (-8.5 mmHg) in HFD but not control rabbits, thus reversing 100% of the hypertension and 70% of the sympathoexcitation induced by a HFD. By contrast, blocking central NPY Y1 receptors with BVD10 increased RSNA only in HFD rabbits. Intracerebroventricular α-melanocortin stimulating hormone increased RSNA and heart rate (P < 0.001) in HFD rabbits but had no effect in control rabbits. CONCLUSION These findings suggest that obesity-induced hypertension and increased RSNA are dependent on the balance between greater activation of melanocortin signalling through melanocortin receptors and lesser activation of NPY sympathoinhibitory signalling. The amplification of the sympathoexcitatory effects of α-melanocortin stimulating hormone also indicates that the underlying mechanism is related to facilitation of leptin-melanocortin signalling, possibly involving chronic activation of brain-derived neurotrophic factor.
Collapse
|
28
|
Lim K, Barzel B, Burke SL, Armitage JA, Head GA. Origin of Aberrant Blood Pressure and Sympathetic Regulation in Diet-Induced Obesity. Hypertension 2016; 68:491-500. [DOI: 10.1161/hypertensionaha.116.07461] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022]
Abstract
High fat diet (HFD)–induced hypertension in rabbits is neurogenic and caused by the central action of leptin, which is thought to be dependent on activation of α-melanocortin–stimulating hormone (α-MSH) and neuropeptide Y–positive neurons projecting to the dorsomedial hypothalamus (DMH) and ventromedial hypothalamus (VMH). However, leptin may act directly in these nuclei. Here, we assessed the contribution of leptin, α-MSH, and neuropeptide Y signaling in the DMH and VMH to diet-induced hypertension. Male New Zealand white rabbits were instrumented with a cannula for drug injections into the DMH or VMH and a renal sympathetic nerve activity (RSNA) electrode. After 3 weeks of an HFD (13.3% fat; n=19), rabbits exhibited higher RSNA, mean arterial pressure (MAP), and heart rate compared with control diet–fed animals (4.2% fat; n=15). Intra-VMH injections of a leptin receptor antagonist or SHU9119, a melanocortin 3/4 receptor antagonist, decreased MAP, heart rate, and RSNA compared with vehicle in HFD rabbits (
P
<0.05) but not in control diet–fed animals. By contrast, α-MSH or neuropeptide Y injected into the VMH had no effect on MAP but produced sympathoexcitation in HFD rabbits (
P
<0.05) but not in control diet–fed rabbits. The effects of the leptin antagonist, α-MSH, or neuropeptide Y injections into the DMH on MAP or RSNA of HFD rabbits were not different from those after vehicle injection. α-MSH into the DMH of control diet–fed animals did increase MAP, heart rate, and RSNA. We conclude that the VMH is the likely origin of leptin-mediated sympathoexcitation and α-MSH hypersensitivity that contribute to obesity-related hypertension.
Collapse
Affiliation(s)
- Kyungjoon Lim
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - Benjamin Barzel
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - Sandra L. Burke
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - James A. Armitage
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - Geoffrey A. Head
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| |
Collapse
|
29
|
Statello R, Carnevali L, Paterlini S, Gioiosa L, Bertocchi I, Oberto A, Eva C, Palanza P, Sgoifo A. Reduced NPY Y1 receptor hippocampal expression and signs of decreased vagal modulation of heart rate in mice. Physiol Behav 2016; 172:31-39. [PMID: 27474416 DOI: 10.1016/j.physbeh.2016.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/09/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022]
Abstract
Central neuropeptide Y (NPY) signaling participates in the regulation of cardiac autonomic outflow, particularly via activation of NPY-Y1 receptors (Y1Rs). However, the specific brain areas and neural pathways involved have not been completely identified yet. Here, we evaluate the role of hippocampal Y1Rs in the modulation of the autonomic control of cardiac function using a conditional knockout mouse model. Radiotelemetric transmitters were implanted in 4-month-old male mice exhibiting reduced forebrain expression (rfb) of the Y1R (Npy1rrfb, n=10) and their corresponding controls (Npy1r2lox, n=8). ECG signals were recorded (i) during resting conditions, (ii) under selective pharmacological manipulation of cardiac vagal activity, and (iii) during acute and chronic psychosocial stress challenges, and analyzed via time- and frequency-domain analysis of heart rate variability. Npy1rrfb mice showed a lower Npy1r mRNA density in the dentate gyrus and in the CA1 region of the hippocampus. Under resting undisturbed conditions, Npy1rrfb mice exhibited (i) a higher heart rate, (ii) a reduced overall heart rate variability, and (iii) lower values of the indices of vagal modulation compared to Npy1r2lox counterparts. Following pharmacological vagal inhibition, heart rate was higher in control but not in Npy1rrfb mice compared to their respective baseline values, suggesting that tonic vagal influences on heart rate were reduced in Npy1rrfb mice. The magnitude of the heart rate response to acute stressors was smaller in Npy1rrfb mice compared to Npy1r2lox counterparts, likely due to a concurrent lower vagal withdrawal. These findings suggest that reduced Y1R expression leads to a decrease in resting vagal modulation and heart rate variability, which, in turn, may determine a reduced cardiac autonomic responsiveness to acute stress challenges.
Collapse
Affiliation(s)
| | | | | | - Laura Gioiosa
- Department of Neuroscience, University of Parma, Italy
| | - Ilaria Bertocchi
- Neuroscience Institute Cavalieri-Ottolenghi Foundation, University of Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute Cavalieri-Ottolenghi Foundation, University of Turin, Italy
| | - Carola Eva
- Neuroscience Institute Cavalieri-Ottolenghi Foundation, University of Turin, Italy
| | - Paola Palanza
- Department of Neuroscience, University of Parma, Italy
| | - Andrea Sgoifo
- Department of Neuroscience, University of Parma, Italy.
| |
Collapse
|
30
|
Cassaglia PA, Shi Z, Brooks VL. Insulin increases sympathetic nerve activity in part by suppression of tonic inhibitory neuropeptide Y inputs into the paraventricular nucleus in female rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R97-R103. [PMID: 27122366 PMCID: PMC4967227 DOI: 10.1152/ajpregu.00054.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/26/2016] [Indexed: 11/22/2022]
Abstract
Following binding to receptors in the arcuate nucleus (ArcN), insulin increases sympathetic nerve activity (SNA) and baroreflex control of SNA via a pathway that includes the paraventricular nucleus of the hypothalamus (PVN). Previous studies in males indicate that the sympathoexcitatory response is mediated by α-melanocyte stimulating hormone (α-MSH), which binds to PVN melanocortin type 3/4 receptors (MC3/4R). The present study was conducted in α-chloralose-anesthetized female rats to test the hypothesis that suppression of inhibitory neuropeptide Y (NPY) inputs to the PVN is also involved. In support of this, blockade of PVN NPY Y1 receptors with BIBO 3304 (NPY1x), ArcN insulin nanoinjections, and PVN NPY1x followed by ArcN insulin each increased lumbar SNA (LSNA) and its baroreflex regulation similarly. Moreover, prior PVN injections of NPY blocked the sympathoexcitatory effects of ArcN insulin. Finally, PVN nanoinjections of the MC3/4R inhibitor SHU9119 prevented both the acute (15 min) and longer, more slowly developing (60 min), increases in LSNA in response to ArcN insulin. In conclusion, in females, ArcN insulin increases LSNA, in part, by suppressing tonic PVN NPY inhibition, which unmasks excitatory α-MSH drive of LSNA. Moreover, the steadily increasing rise in LSNA induced by ArcN insulin is also dependent on PVN MC3/4R.
Collapse
Affiliation(s)
- Priscila A Cassaglia
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Zhigang Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Virginia L Brooks
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
31
|
Schaich CL, Wellman TL, Koi B, Erdos B. BDNF acting in the hypothalamus induces acute pressor responses under permissive control of angiotensin II. Auton Neurosci 2016; 197:1-8. [PMID: 26948539 DOI: 10.1016/j.autneu.2016.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) during hypertensive stimuli including stress and hyperosmolarity, but its role in PVN cardiovascular regulatory mechanisms is unclear. Chronic BDNF overexpression in the PVN has been shown to elevate sympathetic tone and blood pressure in part by modulating central angiotensin (Ang) II mechanisms. However, the cardiovascular effects of short-term increases in PVN levels of BDNF and the mechanisms governing them are unknown. Therefore, we investigated whether acute BDNF microinjections into the PVN of conscious and anesthetized Sprague-Dawley rats induce blood pressure elevations and whether Ang II signaling is involved in these hypertensive responses. In conscious rats, unilateral BDNF (12.5ng) microinjections into the PVN increased mean arterial pressure (MAP) by 27±1mmHg (P<0.001 vs vehicle), which was significantly attenuated by intracerebroventricular infusion of the Ang II-type-1 receptor (AT1R) antagonist losartan and by ganglionic blockade with intravenous hexamethonium infusion. In anesthetized rats, unilateral PVN microinjection of BDNF increased MAP by 31±4mmHg (P<0.001 vs vehicle), which was prevented by PVN microinjection pretreatments with the high-affinity BDNF receptor TrkB antagonist ANA-12, losartan, the angiotensin converting enzyme inhibitor lisinopril, or by intravenous hexamethonium. Additional experiments in hypothalamic samples including the PVN revealed that BDNF-induced TrkB receptor phosphorylation was prevented by ANA-12 and losartan pretreatments. Collectively, these data indicate that BDNF acting within the PVN acutely raises blood pressure under permissive control of Ang II-AT1R mechanisms and therefore may play an important role in mediating acute pressor responses to hypertensive stimuli.
Collapse
Affiliation(s)
- Chris L Schaich
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Theresa L Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Blanka Koi
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
32
|
Shi Z, Cassaglia PA, Gotthardt LC, Brooks VL. Hypothalamic Paraventricular and Arcuate Nuclei Contribute to Elevated Sympathetic Nerve Activity in Pregnant Rats: Roles of Neuropeptide Y and α-Melanocyte-Stimulating Hormone. Hypertension 2015; 66:1191-8. [PMID: 26483343 DOI: 10.1161/hypertensionaha.115.06045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/17/2015] [Indexed: 11/16/2022]
Abstract
Pregnancy increases sympathetic nerve activity (SNA), but the mechanisms are unknown. Here, we investigated the contributions of the hypothalamic paraventricular and arcuate nuclei in α-chloralose-anesthetized pregnant and nonpregnant rats. Baseline arterial pressure (AP) was lower, and heart rate (HR), lumbar sympathetic activity, and splanchnic SNA were higher in pregnant rats compared with nonpregnant rats. Inhibition of the paraventricular nucleus via bilateral muscimol nanoinjections decreased AP and HR more in pregnant rats than in nonpregnant rats and decreased lumbar SNA only in pregnant rats. Similarly, after arcuate muscimol nanoninjections, the decreases in AP, HR, and lumbar, renal, and splanchnic sympathetic nerve activities were greater in pregnant rats than in nonpregnant rats. Major arcuate neuronal groups that project to the paraventricular nucleus express inhibitory neuropeptide Y (NPY) and excitatory α-melanocyte-stimulating hormone. Inhibition of paraventricular melanocortin 3/4 receptors with SHU9119 also decreased AP, HR, and lumbar SNA in pregnant rats but not in nonpregnant rats. Conversely, paraventricular nucleus NPY expression was reduced in pregnant animals, and although blockade of paraventricular NPY Y1 receptors increased AP, HR, and lumbar sympathetic activity in nonpregnant rats, it had no effects in pregnant rats. Yet, the sympathoinhibitory, depressor, and bradycardic effects of paraventricular NPY nanoinjections were similar between groups. In conclusion, the paraventricular and arcuate nuclei contribute to increased basal SNA during pregnancy, likely due in part to decreased tonic NPY inhibition and increased tonic α-melanocyte-stimulating hormone excitation of presympathetic neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- Zhigang Shi
- From the Department of Physiology and Pharmacology, Oregon Health & Science University, Portland
| | - Priscila A Cassaglia
- From the Department of Physiology and Pharmacology, Oregon Health & Science University, Portland
| | - Laura C Gotthardt
- From the Department of Physiology and Pharmacology, Oregon Health & Science University, Portland
| | - Virginia L Brooks
- From the Department of Physiology and Pharmacology, Oregon Health & Science University, Portland.
| |
Collapse
|
33
|
Shi Z, Li B, Brooks VL. Role of the Paraventricular Nucleus of the Hypothalamus in the Sympathoexcitatory Effects of Leptin. Hypertension 2015; 66:1034-41. [PMID: 26370892 DOI: 10.1161/hypertensionaha.115.06017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/19/2015] [Indexed: 01/03/2023]
Abstract
Leptin binds to receptors in multiple hypothalamic nuclei to increase sympathetic nerve activity; however, the neurocircuitry is unclear. Here, using anesthetized male Sprague-Dawley rats, we investigated the role of the paraventricular nucleus of the hypothalamus. Intracerebroventricular injection of leptin slowly increased lumbar sympathetic nerve activity (LSNA), heart rate, mean arterial pressure, and baroreflex control of LSNA and heart rate. Inhibition of the paraventricular nucleus with muscimol completely reversed leptin's effects. Blockade of paraventricular melanocortin 3/4 receptors with SHU9119 or ionotropic glutamate receptors with kynurenate, alone or together, each partially reversed the effects of leptin, implicating increased activation of glutamate and melanocortin 3/4 receptors. Conversely, although blockade of neuropeptide Y Y1 receptors in the paraventricular nucleus increased LSNA, mean arterial pressure, and heart rate, these responses were prevented by intracerebroventricular or arcuate nucleus injections of leptin, suggesting that, at least in part, leptin also increases sympathetic nerve activity by suppression of tonic neuropeptide Y inhibitory inputs from the arcuate nucleus. Injection of the melanocortin 3/4 receptor agonist melanotan-II into the paraventricular nucleus increased LSNA, mean arterial pressure, and heart rate only after blockade of neuropeptide Y Y1 receptors. Therefore, we conclude that leptin increases LSNA in part via increased glutamatergic and α-melanocyte-stimulating hormone drive of paraventricular sympathoexcitatory neurons, the latter of which requires simultaneous withdrawal of tonic neuropeptide Y inhibition.
Collapse
Affiliation(s)
- Zhigang Shi
- From the Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR
| | - Baoxin Li
- From the Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR
| | - Virginia L Brooks
- From the Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR.
| |
Collapse
|
34
|
Shi Z, Brooks VL. Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: role of oestrogen. J Physiol 2014; 593:1633-47. [PMID: 25398524 DOI: 10.1113/jphysiol.2014.284638] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/08/2014] [Indexed: 01/30/2023] Open
Abstract
Obesity and hypertension are commonly associated, and activation of the sympathetic nervous system is considered to be a major contributor, at least in part due to the central actions of leptin. However, while leptin increases sympathetic nerve activity (SNA) in males, whether leptin is equally effective in females is unknown. Here, we show that intracerebroventricular (i.c.v.) leptin increases lumbar (LSNA) and renal (RSNA) SNA and baroreflex control of LSNA and RSNA in α-chloralose anaesthetized female rats, but only during pro-oestrus. In contrast, i.c.v. leptin increased basal and baroreflex control of splanchnic SNA (SSNA) and heart rate (HR) in rats in both the pro-oestrus and dioestrus states. The effects of leptin on basal LSNA, RSNA, SSNA and HR were similar in males and pro-oestrus females; however, i.c.v. leptin increased mean arterial pressure (MAP) only in males. Leptin did not alter LSNA or HR in ovariectomized rats, but its effects were normalized with 4 days of oestrogen treatment. Bilateral nanoinjection of SHU9119 into the paraventricular nucleus of the hypothalamus (PVN), to block α-melanocyte-stimulating hormone (α-MSH) type 3 and 4 receptors, decreased LSNA in leptin-treated pro-oestrus but not dioestrus rats. Unlike leptin, i.c.v. insulin infusion increased basal and baroreflex control of LSNA and HR similarly in pro-oestrus and dioestrus rats; these responses did not differ from those in male rats. We conclude that, in female rats, leptin's stimulatory effects on SNA are differentially enhanced by oestrogen, at least in part via an increase in α-MSH activity in the PVN. These data further suggest that the actions of leptin and insulin to increase the activity of various sympathetic nerves occur via different neuronal pathways or cellular mechanisms. These results may explain the poor correlation in females of SNA with adiposity, or of MAP with leptin.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | | |
Collapse
|
35
|
Stocker SD, Gordon KW. Glutamate receptors in the hypothalamic paraventricular nucleus contribute to insulin-induced sympathoexcitation. J Neurophysiol 2014; 113:1302-9. [PMID: 25475355 DOI: 10.1152/jn.00764.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The sympathoexcitatory response to insulin is mediated by neurons in the arcuate nucleus (ARC) and hypothalamic paraventricular nucleus (PVH). Previous studies have reported that stimulation of ARC neurons increases sympathetic nerve activity (SNA) and arterial blood pressure (ABP) through glutamate receptor activation in the PVH. Therefore, the purpose of the present study was to determine whether glutamatergic neurotransmission in the PVH contributes to insulin-induced sympathoexcitation. Male Sprague-Dawley rats (275-400 g) were infused with isotonic saline or insulin (3.75 mU · kg(-1) · min(-1)) plus 50% dextrose to maintain euglycemia. Intravenous infusion of insulin significantly increased lumbar SNA without a significant change in mean ABP, renal SNA, heart rate, or blood glucose. Bilateral PVH injection of the excitatory amino acid antagonist kynurenic acid (KYN) lowered lumbar SNA and ABP of animals infused with insulin. Similarly, a cocktail of the NMDA antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) and non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) reduced lumbar SNA and mean ABP during infusion of insulin. In a final experiment, bilateral PVH injection of AP5 only, but not CNQX, lowered lumbar SNA and mean ABP of animals infused with insulin. The peak changes in lumbar SNA and mean ABP of insulin-treated animals were not different between KYN, AP5 plus CNQX, or AP5 alone. These drug treatments did not alter any variable in animals infused with saline. Altogether, these findings suggest that glutamatergic NMDA neurotransmission in the PVH contributes to insulin-induced sympathoexcitation.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania; and Department of Neural and Behavioral Neuroscience, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Kathryn W Gordon
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania; and
| |
Collapse
|
36
|
Steiner JL, Bardgett ME, Wolfgang L, Lang CH, Stocker SD. Glucocorticoids attenuate the central sympathoexcitatory actions of insulin. J Neurophysiol 2014; 112:2597-604. [PMID: 25185805 PMCID: PMC4233268 DOI: 10.1152/jn.00514.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/26/2014] [Indexed: 11/22/2022] Open
Abstract
Insulin acts within the central nervous system to regulate food intake and sympathetic nerve activity (SNA). Strong evidence indicates that glucocorticoids impair insulin-mediated glucose uptake and food intake. However, few data are available regarding whether glucocorticoids also modulate the sympathoexcitatory response to insulin. Therefore, the present study first confirmed that chronic administration of glucocorticoids attenuated insulin-induced increases in SNA and then investigated whether these effects were attributed to deficits in central insulin-mediated responses. Male Sprague-Dawley rats were given access to water or a drinking solution of the glucocorticoid agonist dexamethasone (0.3 μg/ml) for 7 days. A hyperinsulinemic-euglycemic clamp significantly increased lumbar SNA in control rats. This response was significantly attenuated in rats given access to dexamethasone for 7, but not 1, days. Similarly, injection of insulin into the lateral ventricle or locally within the arcuate nucleus (ARC) significantly increased lumbar SNA in control rats but this response was absent in rats given access to dexamethasone. The lack of a sympathetic response to insulin cannot be attributed to a generalized depression of sympathetic function or inactivation of ARC neurons as electrical activation of sciatic afferents or ARC injection of gabazine, respectively, produced similar increases in SNA between control and dexamethasone-treated rats. Western blot analysis indicates insulin produced similar activation of Akt Ser(473) and rpS6 Ser(240/244) in the ventral hypothalamus of control and dexamethasone-treated rats. Collectively, these findings suggest that dexamethasone attenuates the sympathoexcitatory actions of insulin through a disruption of ARC neuronal function downstream of Akt or mammalian target of rapamycin (mTOR) signaling.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Megan E Bardgett
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Lawrence Wolfgang
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Sean D Stocker
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania; Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|