1
|
Vatsal VH, Jha BK, Singh TP. Generalised Neuronal Calcium Dynamics of Membrane and ER in the Polar Dimension. Cell Biochem Biophys 2024; 82:3401-3411. [PMID: 39106022 DOI: 10.1007/s12013-024-01425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Calcium ions are the second messenger playing as regulators for various cellular activities. Its spatiotemporal control is critical for various brain functions, including neuroplasticity, apoptosis, and cell death. The Endoplasmic Reticulum (ER) plays an important role in determining these spatiotemporal calcium dynamics. Stromal interaction molecule (STIM) - Orai channel on the membrane generates additional calcium flow, whereas other membrane fluxes contribute to cytosolic flux. Due to their anomalous character, we used the Caputo fractional differential operator to mimic these interactions in polar coordinates. Solutions were generated using hybrid integral transform methods to control the analytical approach. Using Green's function yielded a closed-form solution for Mittag-Leffler-type functions. This work emphasizes the significant relationship between calcium and various buffer levels in neurons. The differential transition simulation of a time derivative with space across different parameters indicated a decrease in calcium concentration. Anomalously low buffer levels exhibited the impact of Alzheimer's disease on calcium higher concentration, leading to the death of neurons. Additionally, the research introduces a method involving S100B, BAPTA, and calmodulin buffers to uphold optimal calcium levels within the neuronal cytosol. The applicability of this model with different buffer properties and parameters and memory impacts the calcium concentration with the neurological disorder.
Collapse
Affiliation(s)
- Vora Hardagna Vatsal
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Tajinder Pal Singh
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Jha BK, Vatsal VH, Singh TP. Navigating the Fractional Calcium Dynamics of Orai Mechanism in Polar Dimensions. Cell Biochem Biophys 2024; 82:3751-3762. [PMID: 39115644 DOI: 10.1007/s12013-024-01462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 11/20/2024]
Abstract
Calcium plays a crucial role as a second messenger in neuronal signal transduction pathways. The influx of calcium ions through various physicochemical gating channels activates neuronal calcium signaling. The Endoplasmic Reticulum (ER) is a significant intracellular structure that sequesters calcium and controls signaling through SERCA, IPR, and leak channel mechanisms. Disruption of calcium dynamics can trigger intrinsic dyshomeostasis, cell damage, and apoptosis. The present study articulates a Caputo fractional time derivative in the polar coordinate dimensions to investigate the role of nonlocal calcium-free ions in the neuron through the Orai channel, and ER fluxes, incorporating various physiological parameters. The solution was obtained through the hybrid integral transform technique for analytical form. The closed form was generated using Green's function in terms of Mainardi and Wright's functions. Our simulation uncovered the calcium concentration bandwidth of interaction with different neuronal parameters. Parameters and calcium ion synergy show normal and Alzheimer's disease-impacted interaction through different illustrations. Our simulation reveals that S100B and BAPTA have significant calcium-controlling behavior.
Collapse
Affiliation(s)
- Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Vora Hardagna Vatsal
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Tajinder Pal Singh
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Ponnusamy T, Velusamy P, Shanmughapriya S. Mrs2-mediated mitochondrial magnesium uptake is essential for the regulation of MCU-mediated mitochondrial Ca 2+ uptake and viability. Mitochondrion 2024; 76:101877. [PMID: 38599304 DOI: 10.1016/j.mito.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial Ca2+ uptake is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here, we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed that decreased matrix [Mg2+] is associated with increased MCU activity and significantly prompted mitochondrial permeability transition pore opening. Our findings support the critical role of mMg2+ in regulating MCU activity.
Collapse
Affiliation(s)
- Thiruvelselvan Ponnusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
4
|
Sadri S, Zhang X, Audi SH, Cowley Jr. AW, Dash RK. Computational Modeling of Substrate-Dependent Mitochondrial Respiration and Bioenergetics in the Heart and Kidney Cortex and Outer Medulla. FUNCTION 2023; 4:zqad038. [PMID: 37575476 PMCID: PMC10413947 DOI: 10.1093/function/zqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Integrated computational modeling provides a mechanistic and quantitative framework to characterize alterations in mitochondrial respiration and bioenergetics in response to different metabolic substrates in-silico. These alterations play critical roles in the pathogenesis of diseases affecting metabolically active organs such as heart and kidney. Therefore, the present study aimed to develop and validate thermodynamically constrained integrated computational models of mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla (OM). The models incorporated the kinetics of major biochemical reactions and transport processes as well as regulatory mechanisms in the mitochondria of these tissues. Intrinsic model parameters such as Michaelis-Menten constants were fixed at previously estimated values, while extrinsic model parameters such as maximal reaction and transport velocities were estimated separately for each tissue. This was achieved by fitting the model solutions to our recently published respirometry data measured in isolated rat heart and kidney cortex and OM mitochondria utilizing various NADH- and FADH2-linked metabolic substrates. The models were validated by predicting additional respirometry and bioenergetics data, which were not used for estimating the extrinsic model parameters. The models were able to predict tissue-specific and substrate-dependent mitochondrial emergent metabolic system properties such as redox states, enzyme and transporter fluxes, metabolite concentrations, membrane potential, and respiratory control index under diverse physiological and pathological conditions. The models were also able to quantitatively characterize differential regulations of NADH- and FADH2-linked metabolic pathways, which contribute differently toward regulations of oxidative phosphorylation and ATP synthesis in the heart and kidney cortex and OM mitochondria.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Said H Audi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA
| | - Allen W Cowley Jr.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Petersen CE, Sun J, Silva K, Kosmach A, Balaban RS, Murphy E. Increased mitochondrial free Ca 2+ during ischemia is suppressed, but not eliminated by, germline deletion of the mitochondrial Ca 2+ uniporter. Cell Rep 2023; 42:112735. [PMID: 37421627 PMCID: PMC10529381 DOI: 10.1016/j.celrep.2023.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/20/2023] [Accepted: 06/18/2023] [Indexed: 07/10/2023] Open
Abstract
Mitochondrial Ca2+ overload is proposed to regulate cell death via opening of the mitochondrial permeability transition pore. It is hypothesized that inhibition of the mitochondrial Ca2+ uniporter (MCU) will prevent Ca2+ accumulation during ischemia/reperfusion and thereby reduce cell death. To address this, we evaluate mitochondrial Ca2+ in ex-vivo-perfused hearts from germline MCU-knockout (KO) and wild-type (WT) mice using transmural spectroscopy. Matrix Ca2+ levels are measured with a genetically encoded, red fluorescent Ca2+ indicator (R-GECO1) using an adeno-associated viral vector (AAV9) for delivery. Due to the pH sensitivity of R-GECO1 and the known fall in pH during ischemia, hearts are glycogen depleted to decrease the ischemic fall in pH. At 20 min of ischemia, there is significantly less mitochondrial Ca2+ in MCU-KO hearts compared with MCU-WT controls. However, an increase in mitochondrial Ca2+ is present in MCU-KO hearts, suggesting that mitochondrial Ca2+ overload during ischemia is not solely dependent on MCU.
Collapse
Affiliation(s)
- Courtney E Petersen
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junhui Sun
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kavisha Silva
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Kosmach
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert S Balaban
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Ponnusamy T, Velusamy P, Kumar A, Morris D, Zhang X, Ning G, Klinger M, Copper JE, Rajan S, Cheung JY, Natarajaseenivasan K, Mnatsakanyan N, Shanmughapriya S. Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca 2+ uptake. RESEARCH SQUARE 2023:rs.3.rs-3088175. [PMID: 37502932 PMCID: PMC10371168 DOI: 10.21203/rs.3.rs-3088175/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Calcium (Ca2+) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. MCU is a heterooligomeric complex with a pore-forming component and accessory proteins required for channel activity. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed Mrs2 as the authentic mammalian mitochondrial Mg2+ channel using the planar lipid bilayer recordings. Using a liver-specific Mrs2 KO mouse model, we showed that decreased matrix [Mg2+] is associated with increased MCU activity and matrix Ca2+ overload. The disruption of Mg2+dependent MCU regulation significantly prompted mitochondrial permeability transition pore opening-mediated cell death during tissue IR injury. Our findings support a critical role for mMg2+ in regulating MCU activity and attenuating mCa2+ overload.
Collapse
Affiliation(s)
- Thiruvelselvan Ponnusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Amrendra Kumar
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Daniel Morris
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Xueqian Zhang
- Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Gang Ning
- Microscopy Core Facility, Penn State Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| | - Marianne Klinger
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Jean E. Copper
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joseph Y Cheung
- Department of Renal Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Vatsal VH, Jha BK, Singh TP. To study the effect of ER flux with buffer on the neuronal calcium. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:494. [PMID: 37304245 PMCID: PMC10240135 DOI: 10.1140/epjp/s13360-023-04077-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/07/2023] [Indexed: 06/13/2023]
Abstract
Calcium signaling is decisive for cellular functions. This calcium random walk stipulates neuronal functions. Calcium concentration could provoke gene transcription, apoptosis, neuronal plasticity, etc. A malformation in calcium could change the neuron's intracellular behavior. Calcium concentration balancing is a complex cellular mechanism. This occurrence can be handled with the Caputo fractional reaction-diffusion equation. In this mathematical modeling, we have included the STIM-Orai mechanism and Endoplasmic Reticulum (ER) flux, Inositol Triphosphate Receptor (IPR), SERCA, plasma membrane flux, voltage-gated calcium entry, and different buffer interactions. A hybrid integral transform and Green's function approach were taken to solve the initial boundary problem. A closed-form solution of a Mittag-Leffler family function plotted using MATLAB software. Different parameters impact changes in the spatiotemporal behavior of the calcium concentration. Specific roles of organelles involved in Alzheimer's disease-affected neurons are computed. Ethylene glycol tetraacetic acid (EGTA), 1,2-bis(o-aminophenoxy)ethane N,N,N,N-tetraacetic acid (BAPTA), and S100B protein effects are also observed. In all simulations, we can say S100B and the STIM-Orai effect cannot be neglected. This model lights up the different approaches for calcium signaling pathway simulation. As a consequence, we determine that a generalized reaction-diffusion approach is a better fit realistic model.
Collapse
Affiliation(s)
- Vora Hardagna Vatsal
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar, 382007 Gujarat India
| | - Brajesh Kumar Jha
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar, 382007 Gujarat India
| | - Tajinder Pal Singh
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar, 382007 Gujarat India
| |
Collapse
|
8
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Electro-anatomical computational cardiology in humans and experimental animal models. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW, Dash RK. Substrate- and Calcium-Dependent Differential Regulation of Mitochondrial Oxidative Phosphorylation and Energy Production in the Heart and Kidney. Cells 2021; 11:131. [PMID: 35011693 PMCID: PMC8750792 DOI: 10.3390/cells11010131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dehydrogenases are differentially stimulated by Ca2+. Ca2+ has also diverse regulatory effects on mitochondrial transporters and other enzymes. However, the consequences of these regulatory effects on mitochondrial oxidative phosphorylation (OxPhos) and ATP production, and the dependencies of these consequences on respiratory substrates, have not been investigated between the kidney and heart despite the fact that kidney energy requirements are second only to those of the heart. Our objective was, therefore, to elucidate these relationships in isolated mitochondria from the kidney outer medulla (OM) and heart. ADP-induced mitochondrial respiration was measured at different CaCl2 concentrations in the presence of various respiratory substrates, including pyruvate + malate (PM), glutamate + malate (GM), alpha-ketoglutarate + malate (AM), palmitoyl-carnitine + malate (PCM), and succinate + rotenone (SUC + ROT). The results showed that, in both heart and OM mitochondria, and for most complex I substrates, Ca2+ effects are biphasic: small increases in Ca2+ concentration stimulated, while large increases inhibited mitochondrial respiration. Furthermore, significant differences in substrate- and Ca2+-dependent O2 utilization towards ATP production between heart and OM mitochondria were observed. With PM and PCM substrates, Ca2+ showed more prominent stimulatory effects in OM than in heart mitochondria, while with GM and AM substrates, Ca2+ had similar biphasic regulatory effects in both OM and heart mitochondria. In contrast, with complex II substrate SUC + ROT, only inhibitory effects on mitochondrial respiration was observed in both the heart and the OM. We conclude that the regulatory effects of Ca2+ on mitochondrial OxPhos and ATP synthesis are biphasic, substrate-dependent, and tissue-specific.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Sunil M. Kandel
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Said H. Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA;
| | - Allen W. Cowley
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
Natarajan GK, Glait L, Mishra J, Stowe DF, Camara AKS, Kwok WM. Total Matrix Ca 2+ Modulates Ca 2+ Efflux via the Ca 2+/H + Exchanger in Cardiac Mitochondria. Front Physiol 2020; 11:510600. [PMID: 33041851 PMCID: PMC7526510 DOI: 10.3389/fphys.2020.510600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial Ca2+ handling is accomplished by balancing Ca2+ uptake, primarily via the Ru360-sensitive mitochondrial calcium uniporter (MCU), Ca2+ buffering in the matrix and Ca2+ efflux mainly via Ca2+ ion exchangers, such as the Na+/Ca2+ exchanger (NCLX) and the Ca2+/H+ exchanger (CHE). The mechanism of CHE in cardiac mitochondria is not well-understood and its contribution to matrix Ca2+ regulation is thought to be negligible, despite higher expression of the putative CHE protein, LETM1, compared to hepatic mitochondria. In this study, Ca2+ efflux via the CHE was investigated in isolated rat cardiac mitochondria and permeabilized H9c2 cells. Mitochondria were exposed to (a) increasing matrix Ca2+ load via repetitive application of a finite CaCl2 bolus to the external medium and (b) change in the pH gradient across the inner mitochondrial membrane (IMM). Ca2+ efflux at different matrix Ca2+ loads was revealed by inhibiting Ca2+ uptake or reuptake with Ru360 after increasing number of CaCl2 boluses. In Na+-free experimental buffer and with Ca2+ uptake inhibited, the rate of Ca2+ efflux and steady-state free matrix Ca2+ [mCa2+]ss increased as the number of administered CaCl2 boluses increased. ADP and cyclosporine A (CsA), which are known to increase Ca2+ buffering while maintaining a constant [mCa2+]ss, decreased the rate of Ca2+ efflux via the CHE, with a significantly greater decrease in the presence of ADP. ADP also increased Ca2+ buffering rate and decreased [mCa2+]ss. A change in the pH of the external medium to a more acidic value from 7.15 to 6.8∼6.9 caused a twofold increase in the Ca2+ efflux rate, while an alkaline change in pH from 7.15 to 7.4∼7.5 did not change the Ca2+ efflux rate. In addition, CHE activation was associated with membrane depolarization. Targeted transient knockdown of LETM1 in permeabilized H9c2 cells modulated Ca2+ efflux. The results indicate that Ca2+ efflux via the CHE in cardiac mitochondria is modulated by acidic buffer pH and by total matrix Ca2+. A mechanism is proposed whereby activation of CHE is sensitive to changes in both the matrix Ca2+ buffering system and the matrix free Ca2+ concentration.
Collapse
Affiliation(s)
- Gayathri K Natarajan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lyall Glait
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jyotsna Mishra
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States.,Research Service, Veteran Affairs Medical Center, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Takeuchi A, Matsuoka S. Integration of mitochondrial energetics in heart with mathematical modelling. J Physiol 2020; 598:1443-1457. [DOI: 10.1113/jp276817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/23/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ayako Takeuchi
- Department of Integrative and Systems PhysiologyFaculty of Medical Sciencesand Life Science Innovation CenterUniversity of Fukui Fukui 910‐1193 Japan
| | - Satoshi Matsuoka
- Department of Integrative and Systems PhysiologyFaculty of Medical Sciencesand Life Science Innovation CenterUniversity of Fukui Fukui 910‐1193 Japan
| |
Collapse
|
13
|
Haumann J, Camara AKS, Gadicherla AK, Navarro CD, Boelens AD, Blomeyer CA, Dash RK, Boswell MR, Kwok WM, Stowe DF. Slow Ca 2+ Efflux by Ca 2+/H + Exchange in Cardiac Mitochondria Is Modulated by Ca 2+ Re-uptake via MCU, Extra-Mitochondrial pH, and H + Pumping by F OF 1-ATPase. Front Physiol 2019; 9:1914. [PMID: 30804812 PMCID: PMC6378946 DOI: 10.3389/fphys.2018.01914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/18/2018] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial (m) Ca2+ influx is largely dependent on membrane potential (ΔΨm), whereas mCa2+ efflux occurs primarily via Ca2+ ion exchangers. We probed the kinetics of Ca2+/H+ exchange (CHEm) in guinea pig cardiac muscle mitochondria. We tested if net mCa2+ flux is altered during a matrix inward H+ leak that is dependent on matrix H+ pumping by ATPm hydrolysis at complex V (FOF1-ATPase). We measured [Ca2+]m, extra-mitochondrial (e) [Ca2+]e, ΔΨm, pHm, pHe, NADH, respiration, ADP/ATP ratios, and total [ATP]m in the presence or absence of protonophore dinitrophenol (DNP), mitochondrial uniporter (MCU) blocker Ru360, and complex V blocker oligomycin (OMN). We proposed that net slow influx/efflux of Ca2+ after adding DNP and CaCl2 is dependent on whether the ΔpHm gradient is/is not maintained by reciprocal outward H+ pumping by complex V. We found that adding CaCl2 enhanced DNP-induced increases in respiration and decreases in ΔΨm while [ATP]m decreased, ΔpHm gradient was maintained, and [Ca2+]m continued to increase slowly, indicating net mCa2+ influx via MCU. In contrast, with complex V blocked by OMN, adding DNP and CaCl2 caused larger declines in ΔΨm as well as a slow fall in pHm to near pHe while [Ca2+]m continued to decrease slowly, indicating net mCa2+ efflux in exchange for H+ influx (CHEm) until the ΔpHm gradient was abolished. The kinetics of slow mCa2+ efflux with slow H+ influx via CHEm was also observed at pHe 6.9 vs. 7.6 by the slow fall in pHm until ΔpHm was abolished; if Ca2+ reuptake via the MCU was also blocked, mCa2+ efflux via CHEm became more evident. Of the two components of the proton electrochemical gradient, our results indicate that CHEm activity is driven largely by the ΔpHm chemical gradient with H+ leak, while mCa2+ entry via MCU depends largely on the charge gradient ΔΨm. A fall in ΔΨm with excess mCa2+ loading can occur during cardiac cell stress. Cardiac cell injury due to mCa2+ overload may be reduced by temporarily inhibiting FOF1-ATPase from pumping H+ due to ΔΨm depolarization. This action would prevent additional slow mCa2+ loading via MCU and permit activation of CHEm to mediate efflux of mCa2+. HIGHLIGHTSWe examined how slow mitochondrial (m) Ca2+ efflux via Ca2+/H+ exchange (CHEm) is triggered by matrix acidity after a rapid increase in [Ca2+]m by adding CaCl2 in the presence of dinitrophenol (DNP) to permit H+ influx, and oligomycin (OMN) to block H+ pumping via FOF1-ATP synthase/ase (complex V). Declines in ΔΨm and pHm after DNP and added CaCl2 were larger when complex V was blocked. [Ca2+]m slowly increased despite a fall in ΔΨm but maintained pHm when H+ pumping by complex V was permitted. [Ca2+]m slowly decreased and external [Ca2+]e increased with declines in both ΔΨm and pHm when complex V was blocked. ATPm hydrolysis supports a falling pHm and redox state and promotes a slow increase in [Ca2+]m. After rapid Ca2+ influx due to a bolus of CaCl2, slow mCa2+ efflux by CHEm occurs directly if pHe is low.
Collapse
Affiliation(s)
- Johan Haumann
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ashish K Gadicherla
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher D Navarro
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Age D Boelens
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Michael R Boswell
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States.,Research Service, Veterans Affairs Medical Center, Milwaukee, WI, United States
| |
Collapse
|
14
|
Javadov S, Chapa-Dubocq X, Makarov V. Different approaches to modeling analysis of mitochondrial swelling. Mitochondrion 2017; 38:58-70. [PMID: 28802667 DOI: 10.1016/j.mito.2017.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are critical players involved in both cell life and death through multiple pathways. Structural integrity, metabolism and function of mitochondria are regulated by matrix volume due to physiological changes of ion homeostasis in cellular cytoplasm and mitochondria. Ca2+ and K+ presumably play a critical role in physiological and pathological swelling of mitochondria when increased uptake (influx)/decreased release (efflux) of these ions enhances osmotic pressure accompanied by high water accumulation in the matrix. Changes in the matrix volume in the physiological range have a stimulatory effect on electron transfer chain and oxidative phosphorylation to satisfy metabolic requirements of the cell. However, excessive matrix swelling associated with the sustained opening of mitochondrial permeability transition pores (PTP) and other PTP-independent mechanisms compromises mitochondrial function and integrity leading to cell death. The mechanisms of transition from reversible (physiological) to irreversible (pathological) swelling of mitochondria remain unknown. Mitochondrial swelling is involved in the pathogenesis of many human diseases such as neurodegenerative and cardiovascular diseases. Therefore, modeling analysis of the swelling process is important for understanding the mechanisms of cell dysfunction. This review attempts to describe the role of mitochondrial swelling in cell life and death and the main mechanisms involved in the maintenance of ion homeostasis and swelling. The review also summarizes and discusses different kinetic models and approaches that can be useful for the development of new models for better simulation and prediction of in vivo mitochondrial swelling.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Xavier Chapa-Dubocq
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Vladimir Makarov
- Department of Physics, Rio Piedras Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
15
|
|
16
|
Spät A, Szanda G. The Role of Mitochondria in the Activation/Maintenance of SOCE: Store-Operated Ca 2+ Entry and Mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:257-275. [PMID: 28900919 DOI: 10.1007/978-3-319-57732-6_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria extensively modify virtually all cellular Ca2+ transport processes, and store-operated Ca2+ entry (SOCE) is no exception to this rule. The interaction between SOCE and mitochondria is complex and reciprocal, substantially altering and, ultimately, fine-tuning both capacitative Ca2+ influx and mitochondrial function. Mitochondria, owing to their considerable Ca2+ accumulation ability, extensively buffer the cytosolic Ca2+ in their vicinity. In turn, the accumulated ion is released back into the neighboring cytosol during net Ca2+ efflux. Since store depletion itself and the successive SOCE are both Ca2+-regulated phenomena, mitochondrial Ca2+ handling may have wide-ranging effects on capacitative Ca2+ influx at any given time. In addition, mitochondria may also produce or consume soluble factors known to affect store-operated channels. On the other hand, Ca2+ entering the cell during SOCE is sensed by mitochondria, and the ensuing mitochondrial Ca2+ uptake boosts mitochondrial energy metabolism and, if Ca2+ overload occurs, may even lead to apoptosis or cell death. In several cell types, mitochondria seem to be sterically excluded from the confined space that forms between the plasma membrane (PM) and endoplasmic reticulum (ER) during SOCE. This implies that high-Ca2+ microdomains comparable to those observed between the ER and mitochondria do not form here. In the following chapter, the above aspects of the many-sided SOCE-mitochondrion interplay will be discussed in greater detail.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, POB 2, 1428, Budapest, Hungary.
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Gergö Szanda
- Department of Physiology, Semmelweis University Medical School, POB 2, 1428, Budapest, Hungary
| |
Collapse
|
17
|
Pannala VR, Camara AKS, Dash RK. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition. J Appl Physiol (1985) 2016; 121:1196-1207. [PMID: 27633738 DOI: 10.1152/japplphysiol.00524.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/11/2016] [Indexed: 01/03/2023] Open
Abstract
Cytochrome c oxidase (CcO) catalyzes the exothermic reduction of O2 to H2O by using electrons from cytochrome c, and hence plays a crucial role in ATP production. Although details on the enzyme structure and redox centers involved in O2 reduction have been known, there still remains a considerable ambiguity on its mechanism of action, e.g., the number of sequential electrons donated to O2 in each catalytic step, the sites of protonation and proton pumping, and nitric oxide (NO) inhibition mechanism. In this work, we developed a thermodynamically constrained mechanistic mathematical model for the catalytic action of CcO based on available kinetic data. The model considers a minimal number of redox centers on CcO and couples electron transfer and proton pumping driven by proton motive force (PMF), and accounts for the inhibitory effects of NO on the reaction kinetics. The model is able to fit well all the available kinetic data under diverse experimental conditions with a physiologically realistic unique parameter set. The model predictions show that: 1) the apparent Km of O2 varies considerably and increases from fully reduced to fully oxidized cytochrome c depending on pH and the energy state of mitochondria, and 2) the intermediate enzyme states depend on pH and cytochrome c redox fraction and play a central role in coupling mitochondrial respiration to PMF. The developed CcO model can easily be integrated into existing mitochondrial bioenergetics models to understand the role of the enzyme in controlling oxidative phosphorylation in normal and disease conditions.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; .,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
18
|
Seidlmayer LK, Kuhn J, Berbner A, Arias-Loza PA, Williams T, Kaspar M, Czolbe M, Kwong JQ, Molkentin JD, Heinze KG, Dedkova EN, Ritter O. Inositol 1,4,5-trisphosphate-mediated sarcoplasmic reticulum-mitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca2+ uptake through the mitochondrial ryanodine receptor in cardiac myocytes. Cardiovasc Res 2016; 112:491-501. [PMID: 27496868 DOI: 10.1093/cvr/cvw185] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
AIMS Elevated levels of inositol 1,4,5-trisphosphate (IP3) in adult cardiac myocytes are typically associated with the development of cardiac hypertrophy, arrhythmias, and heart failure. IP3 enhances intracellular Ca(2+ )release via IP3 receptors (IP3Rs) located at the sarcoplasmic reticulum (SR). We aimed to determine whether IP3-induced Ca(2+ )release affects mitochondrial function and determine the underlying mechanisms. METHODS AND RESULTS We compared the effects of IP3Rs- and ryanodine receptors (RyRs)-mediated cytosolic Ca(2+ )elevation achieved by endothelin-1 (ET-1) and isoproterenol (ISO) stimulation, respectively, on mitochondrial Ca(2+ )uptake and adenosine triphosphate (ATP) generation. Both ET-1 and isoproterenol induced an increase in mitochondrial Ca(2+ )(Ca(2 +) m) but only ET-1 led to an increase in ATP concentration. ET-1-induced effects were prevented by cell treatment with the IP3 antagonist 2-aminoethoxydiphenyl borate and absent in myocytes from transgenic mice expressing an IP3 chelating protein (IP3 sponge). Furthermore, ET-1-induced mitochondrial Ca(2+) uptake was insensitive to the mitochondrial Ca(2+ )uniporter inhibitor Ru360, however was attenuated by RyRs type 1 inhibitor dantrolene. Using real-time polymerase chain reaction, we detected the presence of all three isoforms of IP3Rs and RyRs in murine ventricular myocytes with a dominant presence of type 2 isoform for both receptors. CONCLUSIONS Stimulation of IP3Rs with ET-1 induces Ca(2+ )release from the SR which is tunnelled to mitochondria via mitochondrial RyR leading to stimulation of mitochondrial ATP production.
Collapse
Affiliation(s)
- Lea K Seidlmayer
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany Comprehensive Heart Failure Center, University of Würzburg, Straubmühlweg 2a, 97078 Würzburg, Germany
| | - Johannes Kuhn
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | - Annette Berbner
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | - Paula-Anahi Arias-Loza
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | - Tatjana Williams
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | - Mathias Kaspar
- Comprehensive Heart Failure Center, University of Würzburg, Straubmühlweg 2a, 97078 Würzburg, Germany
| | - Martin Czolbe
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | - Jennifer Q Kwong
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7020 Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7020 Cincinnati, OH 45229, USA
| | - Katrin Gertrud Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Elena N Dedkova
- Department of Pharmacology, School of Medicine, University of California Davis, 451 E. Health Sciences Drive, Genome and Biomedical Sciences Facility, Davis, CA 95616, USA
| | - Oliver Ritter
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany Comprehensive Heart Failure Center, University of Würzburg, Straubmühlweg 2a, 97078 Würzburg, Germany Medizinische Hochschule Brandenburg, Campus Klinikum Brandenburg/Havel, Abteilung für Kardiologie und Pneumologie, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
| |
Collapse
|
19
|
Blomeyer CA, Bazil JN, Stowe DF, Dash RK, Camara AKS. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration. J Bioenerg Biomembr 2016; 48:175-88. [PMID: 26815005 DOI: 10.1007/s10863-016-9644-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.
Collapse
Affiliation(s)
- Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jason N Bazil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Ranjan K Dash
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
20
|
Pannala VR, Beard DA, Dash RK. Letter to the Editor: Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation. J Appl Physiol (1985) 2015; 119:157. [PMID: 26177971 DOI: 10.1152/japplphysiol.00290.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Venkat R Pannala
- Department of Physiology and Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ranjan K Dash
- Department of Physiology and Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
21
|
Seidlmayer LK, Juettner VV, Kettlewell S, Pavlov EV, Blatter LA, Dedkova EN. Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovasc Res 2015; 106:237-48. [PMID: 25742913 DOI: 10.1093/cvr/cvv097] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/30/2015] [Indexed: 12/16/2022] Open
Abstract
AIMS The mitochondrial permeability transition pore (mPTP) plays a central role for tissue damage and cell death during ischaemia-reperfusion (I/R). We investigated the contribution of mitochondrial inorganic polyphosphate (polyP), a potent activator of Ca(2+)-induced mPTP opening, towards mPTP activation and cardiac cell death in I/R. METHODS AND RESULTS A significant increase in mitochondrial free calcium concentration ([Ca(2+)]m), reactive oxygen species (ROS) generation, mitochondrial membrane potential depolarization (ΔΨm), and mPTP activity, but no cell death, was observed after 20 min of ischaemia. The [Ca(2+)]m increase during ischaemia was partially prevented by the mitochondrial Ca(2+) uniporter (MCU) inhibitor Ru360 and completely abolished by the combination of Ru360 and the ryanodine receptor type 1 blocker dantrolene, suggesting two complimentary Ca(2+) uptake mechanisms. In the absence of Ru360 and dantrolene, mPTP closing by polyP depletion or CSA decreased mitochondrial Ca(2+) uptake, suggesting that during ischaemia Ca(2+) can enter mitochondria through mPTP. During reperfusion, a burst of endogenous polyP production coincided with a decrease in [Ca(2+)]m, a decline in superoxide generation, and an acceleration of hydrogen peroxide (H2O2) production. An increase in H2O2 correlated with restoration of mitochondrial pHm and an increase in cell death. mPTP opening and cell death on reperfusion were prevented by antioxidants Trolox and MnTBAP [Mn (III) tetrakis (4-benzoic acid) porphyrin chloride]. Enzymatic polyP depletion did not affect mPTP opening during reperfusion, but increased ROS generation and cell death, suggesting that polyP plays a protective role in cellular stress response. CONCLUSIONS Transient Ca(2+)/polyP-mediated mPTP opening during ischaemia may serve to protect cells against cytosolic Ca(2+) overload, whereas ROS/pH-mediated sustained mPTP opening on reperfusion induces cell death.
Collapse
Affiliation(s)
- Lea K Seidlmayer
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA
| | - Vanessa V Juettner
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA
| | - Sarah Kettlewell
- Institute of Cardiovascular and Medical Sciences, College of Veterinary Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Evgeny V Pavlov
- Dalhousie University, Halifax, NS, Canada New York University, NY, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA
| | - Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Williams GSB, Boyman L, Lederer WJ. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 2014; 78:35-45. [PMID: 25450609 DOI: 10.1016/j.yjmcc.2014.10.019] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/28/2023]
Abstract
Consumption of adenosine triphosphate (ATP) by the heart can change dramatically as the energetic demands increase from a period of rest to strenuous activity. Mitochondrial ATP production is central to this metabolic response since the heart relies largely on oxidative phosphorylation as its source of intracellular ATP. Significant evidence has been acquired indicating that Ca(2+) plays a critical role in regulating ATP production by the mitochondria. Here the evidence that the Ca(2+) concentration in the mitochondrial matrix ([Ca(2+)]m) plays a pivotal role in regulating ATP production by the mitochondria is critically reviewed and aspects of this process that are under current active investigation are highlighted. Importantly, current quantitative information on the bidirectional Ca(2+) movement across the inner mitochondrial membrane (IMM) is examined in two parts. First, we review how Ca(2+) influx into the mitochondrial matrix depends on the mitochondrial Ca(2+) channel (i.e., the mitochondrial calcium uniporter or MCU). This discussion includes how the MCU open probability (PO) depends on the cytosolic Ca(2+) concentration ([Ca(2+)]i) and on the mitochondrial membrane potential (ΔΨm). Second, we discuss how steady-state [Ca(2+)]m is determined by the dynamic balance between this MCU-based Ca(2+) influx and mitochondrial Na(+)/Ca(2+) exchanger (NCLX) based Ca(2+) efflux. These steady-state [Ca(2+)]m levels are suggested to regulate the metabolic energy supply due to Ca(2+)-dependent regulation of mitochondrial enzymes of the tricarboxylic acid cycle (TCA), the proteins of the electron transport chain (ETC), and the F1F0 ATP synthase itself. We conclude by discussing the roles played by [Ca(2+)]m in influencing mitochondrial responses under pathological conditions. This article is part of a Special Issue entitled "Mitochondria: From BasicMitochondrial Biology to Cardiovascular Disease."
Collapse
Affiliation(s)
- George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|